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1 Classical Fields

2 Finite Fields



Field of Dreams

The first field one typically encounters early in life is the field of rationals Q.

Q can be built from the ring of integers by introducing fractions. In other
words, this is algebra by wishful thinking, we simply declare that some
mysterious object

1

a
exists for each 0 # a € Z, and that a - £ = 1.
Of course, writing down pretty symbols is useless, we need to define arithmetic

operations on our new symbols, in a way that is consistent with the old ring
operations over Z.



Fractions

Here is a construction that builds fractions over an arbitrary integral domain R
in a way that guarantees that the final result extends R and is a field (actually,
the smallest field extending R).

Define an equivalence relation =~ on R x R* by
(r,s) = (r',s') <= rs' =1's.

One usually writes the equivalence classes of R x R* in fractional notation:

g or r1/s for (r,s) € R x R".

Equivalence classes are inevitable here; over Z we have

12345 4115
6789 2263



field of Fractions

Now define arithmetic operations

a c ad + be
5T b
v & . _
b d bd

Lemma
(R x R*;+,-,0,1) is a field, the so-called field of fractions or quotient field of
R. Here 0 is short-hand for 0/1 and 1 for 1/1.

The proof is not hard, but one needs to check all the relevant properties. E.g.,
one has to verify that addition is associative. Character-building exercise.



Computing in a Quotient Field

How hard is it to implement the arithmetic in the quotient structure?

Not terribly, we can just use the old ring operations. For example, using the
asymptotically best algorithm for integer multiplication we can multiply two
rationals in O(nlogn) steps (but that's not practical).

But there is a significant twist: since we are really dealing with equivalence
classes, there is the eternal problem of picking canonical representatives.

For example, in the field of rationals 12345/6789 is the same as 4115/2263
though the two representations are definitely different.

The second one is in lowest common terms and is preferred — but requires extra
computation: we need to compute and divide by the GCD.



Rational Function Fields

A particularly interesting case of the quotient construction starts with an
integer domain that is a polynomial ring R[z]. If we apply the fraction
construction to R[x] we obtain the so-called rational function field R(x):

R(zx) := { %

p7qGR[x]7q750}

Performing arithmetic operations in R(z) requires no more than standard
polynomial arithmetic.

Incidentally, fields used to be called rational domains, this construction is really
a classic. It will be very useful in a moment.



Fields and Numbers

We are ultimately interested in finite fields, but let's start with the classical

number fields
QCRCC

where everybody has pretty good intuition.

o Q is effective: the objects are finite and all operations are easily com-
putable. Alas, upper bounds and limits typically fail to exist.

@ R fixes this problem, but at the cost of losing effectiveness: the carrier
set is uncountable, only generalized models of computation apply. Find-
ing reasonable models of actual computability for the reals is a wide open
problem.

o C is quite similar, except that essentially all polynomials there have roots
(at the cost of losing order).



Towers

The scenario when one has nested fields
F, CFy; CF3

and so on occurs with some frequency, one speaks of a tower of fields. Strictly
speaking, F; here should be a subfield of F;;.

Usually one is very casual about isomorphisms, it is fine to have a field F’
isomorphic to F; such that I/ C F;yq. Pointing out the isomorphism gets to be
really tedious, so one simply ignores this issue.

For example, look up any formal definition of @ and R. You will find that Q is
isomorphic to some Q" C R but, in terms of pure set theory, Q "R = §.
Likewise for R C C.



A Challenge

Suppose we want to preserve computability as in Q, but we need to use other
reals such as v/2 € R. This is completely standard in geometry, and thus in
engineering.

Definition
A complex number « is algebraic if it is the root of a non-zero polynomial p(x)
with integer coefficients. « is transcendental otherwise.

Algebraic numbers are computable, the associated polynomials provide a handle
(though the details are quite messy).

Transcendental numbers may or may not be computable in some sense; e.g., 7
and e certainly are computable in the right setting. BTW, proving that a
number is transcendental is often very difficult.



Adjoining a Root 10

Here is a closer look. We want to use a root of the polynomial
f(x) =2 — 2 € Q]
commonly known as /2 € R.

We need to somehow “adjoin” a new element « to QQ so that we get a new field

Qo)
in which
o « behaves just like v/2

o the extended field is fully effective.

Ideally, all computations should easily reduce to Q.



Specs 11

We want a field F such that

e QCF
o [ contains a root of f
o I is effective
And, as always, we want to do this in the cheapest possible way (algebraically,

the field should be simple, and the algorithms for the field operations should be
straightforward and fast).



Slimy Trick

In this case, there is a trick: we already know the reals R and we know that f
has a root in R, usually written V2.

Q(\/ﬁ) = least subfield of R containing Q, v/2

In the standard impredicative definition this looks like

Q(v2) =([{K CR|Q,V2C K subfield of R}

Terminology: We adjoin v/2 to Q.

12



Quoi?

The intersection-of-all-candidates definition is very elegant, but it leaves a
number of questions wide open.

@ So what exactly is the structure of Q(v/2)?

@ How do we actually compute in this field?

First note that since a subfield is closed under addition and multiplication we
must have p(v/2) € Q(v/2) for any polynomial p € Q[z].

Simple Observation: \/52 =2, so any polynomial expression p(1/2) actually
simplifies to a + byv/2 where a,b € Q.

13



Adjoining Root of 2

We claim that Q(v/2) is none other than

P={a+b/2|a,beQ}CQ(V2)CR

Clearly, P is closed under addition, subtraction and multiplication, so we
definitely have a commutative ring.

But can we divide in P? We need coefficients ¢ and d such that
(a+bV2)(c+dv2) =1
provided that a # 0 or b # 0. Since v/2 is irrational this means
ac+2bd =1
ad+bc=0

14



Field Operations

Solving the linear system for ¢ and d we get

CfL df_ib
T a2 —2b2 T a2 —2b2

Note that the denominators are not 0 since a # 0 or b # 0 and /2 is irrational.

Hence P is actually a field and indeed P = Q(v/2). The surprise is that we
obtain a field just from polynomials, not rational functions.

Moreover, we can implement the field operations in Q(/2) rather easily based
on the field operations of Q: we just need a few multiplications and divisions of
rationals.

15



Again: Killing Denominators

Division of field elements comes down to plain polynomial arithmetic over the
rationals. There is no need for rational functions.

a+b\/§7 1

res - Aozt YA —evD)

16



Primitive Elements

Let F C K be a tower of fields and o € K.

Definition
K is a simple extension of F if K = F(«).
In this case, « is called a primitive element for this extension.

For example, the imaginary unit i is a primitive element for the extension
R C C =R(i).

Particularly interesting is the case when « is algebraic over I, so that « is the
root of some f(x) € Flz].

17



Adjoining Roots in General 18

Theorem
The least field containing F and a root a of f(x) € F[z] is

F(e) ={g(a) | g € Fla] } = Flel,

the field of fractions of F[a].

Proof.

Fla] is an integral domain, so we can form the field of fractions K, and any
field containing F[a] must contain K. By minimality, F(a) = K.

Again: What's surprising here is that polynomials are enough. If we let g range
over all rational functions with coefficients in I the result would be trivial — and
much less useful.



2 Finite Fields



Is that It? 20

So far, we have a few infinite fields from arithmetic and calculus, Q, R, C, and
variants such as Q(v/2), plus a family of finite fields from number theory: Z,,
for m prime.

Question:

@ Is that already it, or are there other fields?

@ In particular, are there other finite fields?

We will avoid infinite fields beyond this point.

It turns out to be rather surprisingly difficult to come up with more examples of
finite fields: none of the obvious construction methods seem to apply here.



Finite Integral Domains 21

Of course, every field is an integral domain. In the finite case, the opposite
implication also holds.

Lemma

Every finite integral domain is already a field.

Proof. Let a # 0 € R and consider our old friend, the multiplicative map
a:R*— R*, a(z) = ax.

By multiplicative cancellation, @ is injective and hence surjective on R*. But
then every non-zero element is a unit: ab = a(b) = 1 for some b. a



Classification 22

Instead of trying to construct finite fields right away, let's do a bit of reverse
engineering first.

Question:
Is there a nice taxonomy for finite fields?

The analogous question for rings is hopeless, and for infinite fields it is rather
difficult. But for finite fields we can carry out a complete classification
relatively easily.

Recall that the characteristic of a finite ring R is the least k such that

0=1x=1+...+1
k



Prime Subfield

Lemma

The least subfield of any field F, the so-called prime subfield, has the form
P:{illn nZO,m>O,1m7$O}

Proof.

Obviously, every subfield must contain all the 1,, and thus all of P.

On the other hand, it is easy to check that P already forms a field, and our
claim follows.

For characteristic 0 the produces the rational numbers, P = Q.

23



Positive Characteristic 24

For positive characteristic p, we don't need denominators: the prime subfield
can be simplified to

P={1|0<k<p}

To see why, note that the characteristic p must be a prime, otherwise we would
have zero-divisors. So P is isomorphic to Z,", the ordinary modular numbers.

It is well-known that all elements other than 0 have multiplicative inverses in
this structure. Moreover, we can compute the inverse using the (extended)
Euclidean algorithm.

fStrictly speacking, this should be written Z/pZ or Z/(p), but c’'mon.



Structure Theorem

Here is the surprising theorem that pins down finite fields completely (this
compares quite favorably to, say, the class of finite groups).

Theorem

Every finite field F has cardinality p* where p is the prime characteristic of T,
and k > 1.

Moreover, for every p prime and k > 1, there is a finite field of cardinality p*.

Lastly, all fields of cardinality p* are isomorphic.

From the computational angle it turns out that we can perform the field
operations quite effectively (at least for reasonable p and k), in particular in
some cases that are important for applications.

25



Proof Strategy 26

The proof comes in two parts:
e For each p and k, construct a finite field of size p*.
o Show that two fields of size p* must already be isomorphic.

Both require a bit of work.
For the existence part, we already are good for k£ = 1 and we know that every
finite field contains a subfield of the form Z, where p is prime, the characteristic

of the field. So the real problem is to determine the rest of the structure.

Here is the key idea.



Vector Spaces 27

Definition
A vector space over a field F is a two-sorted structure (V; +, -, 0) where
e (V;+,0) is an Abelian group,
@ The scalar multiplication -:F x V — V is subject to
ea-(z+y)=a-z+a-vy,
o (a+b)-z=a-z+b-x,
o (ab)-z=a-(b-x),

o l-z=uw.

In this context, the elements of V' are vectors, the elements of F are scalars.

Note that the last two axioms mean that the multiplicative group of [ acts on
V' on the left. In addition, 0 - x = 0, but that wrecks the invertibility condition.



The Mother of All Vector Spaces

Let F be any field, finite or infinite.

Consider F™, the collection of all lists over [F of length n.

In this context, these lists are always called n-dimensional vectors.

F™ is a vector space over IF using componentwise operations:

u—l—'v:(ui—i—vi)

a-v=(av;)

Note that this is all easy to compute, given the field operations.

28



More Examples of Vector Spaces 29

Example

Let K C IF be a subfield of F. Then F is a vector space over K via scalar
multiplication a - z = az.

Example

HI F and Hz F are vector spaces over F, for arbitrary index sets I (including
infinite ones).

Example

The set of functions X — [ using pointwise addition and multiplication is a
vector space over F. Here X # () is any set.



Independence

A linear combination in a vector space is a finite sum

ai-v1+az v2+...+an U

where the a; are scalars and the v; vectors, n > 1. The linear combination is
trivial if a; = 0 for all <.

Definition
A set X C V of vectors is linearly independent if every linear combination
> aiv; =0, v; € X, is already trivial.

In other words, we cannot express any vector in X as a linear combination of
others. In some sense, X is not redundant.

30



Spanning Sets 31

Definition
Let X C V. The span (X) of X is the collection of all vectors in V' that are
linear combinations of vectors in X. X is spanning if its span is all of V.

Clearly, spanning sets always exist: V itself is trivially spanning. In the standard
Euclidean space R", the collection of unit vectors e;, i = 1,...,n, is spanning.

Proposition

Every span (X) is a subspace of V.



Bases 32

Definition

A set X C V of vectors is a basis (for V) if it is independent and spanning.

Note that independent/spanning sets trivially exist if we don't mind them being
small/large, respectively. The problem is to combine both properties.

Theorem

Every vector space has a basis.
Moreover, all bases have the same cardinality.

Correspondingly, one speaks of the dimension of the vector space.



Digression: Proof 33

For vector spaces of the form V = ]_[I F this is fairly easy to see: let e; € V be
the ith unit vector: e;(j) =1 if i = j, e;(j) = 0, otherwise.

Then B={e; | i€ 1} is a basis for V.

But how about HN F? The set B from above is still independent, but no
longer spanning: we miss e.g. the vector (1,1,1,1,...). We could try to add
this vector to B, but then we would still miss (1,0,1,0,1,...). Add that vector
and miss another. And so on and so on.

This sounds pretty hopeless; how are we supposed to pick the next missing
vector? And will the process ever end?

Solution: invoke the Axiom of Choice.



(AC) to the Rescue 34

Using (AC) and transfinite induction one can construct a basis in any vector
space whatsoever.

With more work one can show that this process always produces a basis of the
same cardinality, no matter which choice function we use.

A Surprise: One can also show that the existence of a basis in any vector
space already implies the axiom of choice (over ZF).

So linear algebra without (AC) is pretty weird.



Is it True?

The Axiom of Choice is obviously true,
the Well-Ordering Principle obviously false,

and who can tell about Zorn's Lemma?

Jerry Bona

35



Coordinates

The importance of bases comes from the fact that they make it possible to
focus on the underlying field and, in a sense, avoid arbitrary vectors.

To see why, suppose V' has finite dimension and let B = {b1,b2,...,bq} be a
basis for V.

Then there is a natural vector space isomorphism

V +— F?

that associates every linear combination > c;b; with the coefficient vector
(c1y...,ca) € F<. Since B is a basis this really produces an isomorphism.

So, we only need to deal with d-tuples of field elements. For characteristic 2
this means: bit-vectors.

36



The Linear Algebra Angle 37

Back to finite fields. Given the prime subfield Z, = K C F we have just seen
that we can think of [F as a finite dimensional vector space over K. Hence we
can identify the field elements with fixed-length vectors of elements in the

prime field.

F 2 =2, xZyx...x 1L
Addition on these vectors (the addition in F) comes down addition in Z, and
thus to modular arithmetic: vector addition is pointwise.

So addition is trivial in a sense. Alas, multiplication is a bit harder to explain.

At any rate, it follows from linear algebra that the cardinality of F must be p*
for some k.



Cyclic Multiplicative Group 38

Lemma
The multiplicative subgroup F* of any finite field F is cyclic.

To see this, recall that the order of a group element was defined as
ord(a) = min(e >0]a® = 1).

For finite groups, e always exists.

A group (G, -, 1) is cyclic if it has a generator: for some element a, we have
G ={a'|i€Z}. In the finite case this means G = {a’' | 0 <i < o} where o
is the order of a.

Proposition (Lagrange)
For finite G and every element a € G: the order of a divides the order of G.



Ugly Proof of lemma 39

Let m be the maximum order in F*, n the size of F*, so m < n.

We need to show that m = n.

Case 1: Assume that every element of F* has order dividing m.

Then the polynomial z™ — 1 € F[z] has n roots in F: letting ¢ be the order of
some element a in F* and m = k¢ we have

Mo1=2M 1= (zak*l) + 2D gy 1)(;;[ —-1)
and it follows that a is a root.

But then n < m since a degree m polynomial can have at most m roots in a
field. Hence m = n.



Odious Second Case 40

Case 2: Otherwise.
Then we can pick a € F* of order m and b € F* of order £ not dividing m.
Then by basic arithmetic there is a prime ¢ such that

m = q¢°mo £=q"lo s<r

where g is coprime to £y and my.

Set .
a =a? b = bt

Then a’ has order mg, and b’ has order ¢".

But then a'b’ has order ¢"mo > ¢°*mo = m, contradiction. O



Who Cares? 41

Given the fact that F* is cyclic, there is an easy way to generate the field:
generate F* and then add 0.

o Find a generator g of F*, and

@ compute all powers of g.

Of course, this assumes that we can get our hands on a generator g. Note that

multiplication is trivialized in the sense that g% * g7 = g**9 med Lt}

Hence it is most interesting to be able to rewrite the field elements as powers
of g. This is known as the discrete logarithm problem and quite difficult (and
therefore useful for cryptography).



Representation Woes 42

As far as a real implementation is concerned, we are a bit stuck at this point:
we can represent a finite field as a vector space which makes addition easy. Or
we can use powers of a generator to get easy multiplication:

addition F 2 (Z,)" (a1,...,axr)
multiplication F* = Zk_ 4 g’
So either case comes down to plain modular arithmetic. Nice, but in typical

applications we need to be able to freely mix both operations. Alas, everything
breaks when we try to mix and match: who knows what

Jg+4q or (a1y... ak) * (bi,...,bk)
should be.

This is analogous to the problem of representing both addition and
multiplication in arithmetic as rational relations.



Frivolous Picture 43

A little color: pictures of the addition and multiplication tables for Fas.

One can see the prime subfield in the top left corner.
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