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Computational Memes 2

There are several general ideas that are useful to organize computation,
perhaps the two most important ones being

Recursion (top-down, declarative)

Iteration (bottom-up, imperative)

Recursion is quite popular and can be used directly as an elegant model of
computation (Herbrand-Gödel equations).

Iteration is equally powerful, but usually requires extra work (and may be more
efficient, in time and space).

Both are predicated on the notion of self-similarity.



Droste Effect 3



Sierpinski Carpet 4



Iteration 5

Definition
Let f : A → A be an endofunction. The kth power of f (or kth iterate of f) is
defined by induction as follows:

f0 = IA

fk = f ◦ fk−1

Here IA denotes the identity function on A and f ◦ g denotes composition of
functions.

Informally, this just means: compose function f with itself, (k−1)-times.

fk = f ◦ f ◦ f ◦ . . . ◦ f︸ ︷︷ ︸
k terms



General Laws 6

Without any further knowledge about f there is not much one can say about
the iterates fk. But the following always holds.

Lemma (Laws of Iteration)

fn ◦ f = fn+1

fn ◦ fm = fn+m

(fn)m = fn·m

Exercise
Prove these laws by induction using associativity of composition.



Fase Exponentiation 7

Exponentiation is a standard example of iteration:

an =
(
λz . a · z

)n(1)

There is a standard speedup for fast exponentiation based on squaring:

a2e = (ae)2

a2e+1 = (ae)2 · a

which allows us to compute an in O(log n) multiplications.

This is used everywhere in computer algebra.



Wurzelbrunft’s Idea 8

Prof. Dr. Alois Wurzelbrunft† stares at the iteration equations and immediately
recognizes a deep analogy to exponentiation.

Wurzelbrunft’s Conjecture:
There is a “fast iteration” method analogous to fast exponentiation.

So we can compute fn(a) in O(log n) applications of f .

†A famous if fictitious professor in the Bavarian hinterland. Well-known for his unconvential
and often controversial ideas.



Aside 9

A mathematician is a person who can find analogies between
theorems; a better mathematician is one who can see analogies
between proofs and the best mathematician can notice analogies
between theories. One can imagine that the ultimate mathemati-
cian is one who can see analogies between analogies.

S. Banach

So is Wurzelbrunft brilliant?



Fast Iteration 10

Suppose we want to compute f1000. The obvious way requires 999
compositions of f with itself.

By copying the standard divide-and-conquer approach for fast exponentiation
we would try to exploit the equations

f2e = (fe)2

f2e+1 = f ◦ (fe)2

This seems to suggest that we really can compute fn(a) in O(log n)
applications of the basic function f .

What could possibly go wrong?



Computational Compressibility 11

There is an interesting idea here: we would like to take a plain computation

C = C0, C1, C2, . . . , C42, . . . , Cn

and somehow translate it into another computation

C′ = C′
0, C′

1, . . . , C′
m

such that

the result is the same, but
m ≪ n

Of course, this won’t always be possible, but sometimes we might be able to
“compress” a computation (by using a smarter algorithm). Computational
hardness is just a reference to incompressible computations.



Closed Forms 12

Consider the orbit of a under the rational function (a clear abuse of a Möbius
transformation):

f(x) = 2 + 2x

3 + x

A little fumbling shows that

f t(x) = 2(a − 1) + (a + 2)x
2a + 1 + (a − 1)x a = 4t

So there is no need to iterate f , we can simply do the coefficient arithmetic.

https://en.wikipedia.org/wiki/Mobius_transformation
https://en.wikipedia.org/wiki/Mobius_transformation


But if you insist . . . 13
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Fibonacci Numbers 14

The obvious bottom-up method to compute Fn requires essentially n additions
(we will ignore the growing size of the numbers).

We can exploit matrix multiplication to get an alternative description:

M =
(

0 1
1 1

)
implies Mn =

( Fn−1 Fn

Fn Fn+1

)
Using standard fast exponentiation we obtain Mn in only log n matrix
multiplications (8 integer multiplications plus 4 integer additions).

Asymptotically this is much faster, even though multiplication is substantially
more expensive than addition.



Linear Maps 15

If the function f in question is linear it can be written as

f(x) = M · x

where M is a square matrix over some suitable algebraic structure. Then

f t(x) = M t · x

and M t can be computed in O(log t) matrix multiplications.

So this is an exponential speed-up over the standard method.



Polynomials 16

Another important case is when f is a polynomial

f(x) =
∑
i≤d

aix
i

given by a coefficient vector a = (ad, . . . , a1, a0).

Squaring comes down to computing the coefficients for f(f(x)). This turn out
to be a bit messy.

bℓ =
∑
k≤d

ak

∑
m

k!
m0! . . . md!

∏
i≤d

ami
i

Here the middle sum ranges of all m = m0, . . . , md such that
∑

mi = k and∑
i mi = ℓ.



Really? 17
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Warning 18

We do get an exponential speedup, but one really needs to keep track of the
actual cost of squaring here.

The degree doubles at each step.

The coefficients can grow exponentially.

These problems go away if we compute over a finite structure such as the
modular numbers Zm and in particular in a quotient like Zm/

(
xn − 1

)
.



But Beware of Hasty Conclusions 19

We cannot conclude that f t(x) can always be computed in
O(log t) applications of f .

The reason fast exponentiation and the examples above work is that we can
explicitly compute a representation of f ◦ f , given the representation of f .

In general, we have no representation for f ◦ f , we just have to evaluate f
twice.

Just think of f as being given by an executable, a compiled piece of C code.
We can wrap a loop around the executable to compute f t, but that just
evaluates f t-times, in the obvious brute-force way. No speed-up whatsoever.



Wurzelbrunft’s Conjecture 20

. . . is wishful thinking.

To see why, recall that checking a Boolean formula ϕ(x1, . . . , xn) for
satisfiability is NP-hard.

Define a function f on 2n ∪ {⊤} as follows

f(x) =
{

⊤ if ϕ(x) is true
x + 1 otherwise.

f(⊤) = ⊤

Then ϕ is satisfiable iff f2n

(0) = ⊤.



Another Hasty Conclusion 21

Here is a strange integer sequence based on logs, floors and ceilings:

an =
⌈ 2

21/n − 1

⌉
−

⌊ 2n

ln 2

⌋
This time, the sequence starts like so:

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . .

and continues like this for a long, long time, for trillions of terms†.

At any rate, it sure looks like the sequence is constant 0. Alas

a777 451 915 729 368 = 1

†Note that it is a minor pain to compute the terms; it’s not even clear that n 7→ an is prim-
itive recursive (the expression looks like real arithmetic, but it can be handled with just integer
arithmetic).



Iteration versus Recursion 22

Intuitively, there are two basic ways to evaluate a recursive function:

bottom-up Use a loop to calculate result for large arguments, starting at
small arguments.

top-down Unfold the recursion starting from large arguments and tracing
things downward till termination occurs at small arguments.

The unfolding part requires a bit of bureaucracy, one needs to keep track of
pending calls. On the other hand, the number of calls may be smaller than in
the bottom-up approach.



More Formally . . . 23

Iteration can be construed as a special case of primitive recursion.

F (0, y) = y

F (x+, y) = f(F (x, y))

Then F (x, y) = fx(y).

Again, this is just the standard bottom-up approach to computing an primitive
recursive function, expressed in an elegant and concise way.



As Iteration 24

Conversely, iteration can be used to express recursion. Suppose

f(0, y) = g(y)
f(x+, y) = h(x, f(x, y), y)

Define a new function H by

H : N × N × Nk −→ N × N × Nk

H(x, z, y) = (x + 1, h(x, z, y), y)

Then

f(x, y) = snd(Hx(0, g(y), y))

This is perhaps the most natural definition, but if we wanted to we could make
H unary by coding everything up as a sequence number.



Unary Iteration 25

More surprisingly, suppose we have some simple basic functions such as

x + y x ∗ y x
•− y rt(x)

Here rt(x) is the integer part of
√

x. These functions suffice to set up the usual
coding machinery. If we add an additional operation of iteration

f(x) = gx(0)

we can replace primitive recursion by unary iteration.

Exercise
Come up with a precise version of this statement (define a clone) and give a
detailed proof.



Trajectories and Orbits 26

Definition
The trajectory or orbit of a ∈ A under f is the infinite sequence

orbf (a) = a, f(a), f2(a), . . . , fn(a), . . .

The set of all infinite sequences with elements from A is often written Aω.
Hence the we can think of the trajectory as an operation of type

(A → A) × A → Aω

that associates a function on A and element in A with an infinite sequence
over A.



Terminology Warning 27

Sometimes one is not interested in the actual sequence of points but rather in
the set of these points:

{ f i(a) | i ≥ 0 }

While the sequence is always infinite, the underlying set may well be finite,
even when the carrier set is infinite.

In a sane world one would refer to the sequences as trajectories, and use the
term orbit for the underlying sets. Alas, in the literature the two notions are
hopelessly mixed up.
So, when we refer to a “trajectory” we will always mean the sequence, but,
bending to custom, we will use “orbit” for both.



The Lasso 28

At any rate, if the carrier set is finite, all trajectories must ultimately wrap
around and all orbits must be finite:

What changes is only the length of the transient part and the length of the
cycle (in the picture 5 and 11).



Limit Cycles 29

The lasso shows the general shape of any single orbit, but in general orbits
overlap. All orbits with the same limit cycle are called a basin of attraction in
dynamics.



Recall Topswops 30



Reachability 31

The geometric perspective afforded by the diagram also suggests to study
path-existence problems.

Definition
Let f be a function on A and a, b ∈ A two points in A. Then point b is
reachable from a if for some i ≥ 0:

f i(a) = b

In other words, point y belongs to the orbit of x.

Proposition
Reachability is reflexive and transitive but in general not symmetric.

Reachability is symmetric when A is finite and f injective (and therefore a
permutation): each orbit then is a cycle and forms an equivalence class.



Confluence (aka Basins of Attraction) 32

Definition
Let f be a function on A and a, b ∈ A two points in A. Points a and b are
confluent if for some i, j ≥ 0:

f i(a) = f j(b)

In other words, the orbits of a and b merge, they share the same limit cycle
(which may be infinite and not really a cycle).

Reachability implies confluence but not conversely. For finite carrier sets
reachability is the same as confluence iff the map is a bijection.



Confluence is an Equivalence 33

Proposition
Confluence is an equivalence relation.

Reflexivity and symmetry are easy to see, but transitivity requires a little
argument.
Let f i(a) = f j(b) and fk(b) = f l(c), assume j ≤ k. Then with d = k − j ≥ 0
we have

f i+d(a) = f j+d(b) = fk(b) = f l(c).

Each equivalence class contains exactly one cycle of f , and all the points whose
orbits lead to this cycle – just as in the last picture.
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Calculating Transients and Periods 35

How do we compute the transient t and period p of the orbit of a ∈ A under
f : A → A for finite carrier sets A?

The obvious brute force approach is to use a container to keep track of
everything we have already seen:

a, f(a), f2(a), . . . , f i(a)

and then to compare f i+1(a) to all these previous values.

In most cases, the data structure of choice is a hash table or tree: we can
check whether f i+1(a) is already present in expected constant time or
logarithmic time, respectively. Memory requirement is linear in the size of the
orbit assuming the elements in A require constant space (a fairly safe
assumption, if the elements are big use pointers).



Floyd’s Trick 36

A (simplified version of a) classical problem from the early days of Lisp:
Suppose we have a pointer-based linked list structure in memory and we want
to check if there are any cycles in the structure (as opposed to having all lists
end in nil).

We can think of this as an orbit problem:

A is the set of all nodes of the structure,
f(x) = y means there is a pointer from x to y.

The Problem:
Suppose further the structure consumes 90% of memory, so we cannot afford
to build a large hash table or tree.
Can we compute transients and periods in O(1) space?



Time/Space Tradeoff 37

At first glance, this might even seem impossible: if we forget already discovered
elements we obviously cannot detect cycles. Right?

Not at all: we have an element b = f t(a), and we want to check if it is new.

We can simply compare b to all fs(a) for s < t.

This requires an absurd amount of recomputation and is thus highly inefficient,
but it trivially works and it uses only constant memory.

The method is actually quite simple: instead of storing an object, we
recompute whenenver necessary.



A Memoryless Approach 38

Here is a better way to handle the time/space tradeoff: race two pebbles down
the orbit.

u = f(a);
v = f(u);
while( u != v ) {

u = f(u);
v = f(f(v));

}

Claim
Upon termination, u = v is a position on the cycle.



Pebble Race 39

Think of two pebbles u and v, moving at speed 1 and 2, respectively.

The slow pebble u enters the limit cycle at time t, the transient, when the fast
pebble v is already there. From now on, v gains one place on u at each step.
So pebble v must catch up at time s where s ≤ t + p, where p is the period.
The meeting time is called the Floyd-time.

Once we have a foothold on the cycle it is not hard to compute transient and
period, see below.

One can make a nice movie out of this. OK, it is pretty boring after all, but
what do you expect.



Example 40

Here the transient is 6, and the period 17.

The Floyd-time here is 17.



Tables 41

One can also write out a simple table of the process. Here we think of the
points on the orbit as −τ, . . . , −1, 0, 1, . . . , π − 1. To avoid visual clutter, we
write −k as k.

Not as pretty, but potentially more useful. Note that when the slow pebbles
enters the cycle at time 6, the fast one is in position 6. 6 + 11 = 17.



How about the Period? 42

Suppose we already have a point b on the cycle.

t = 1;
u = f(b);

while( u != b ) {
u = f(u);
t++;

}
return t;

We walk around the cycle, and count steps.



How about the Transient? 43

Suppose we already know p, the period.

t = 0;
u = a;
v = iterate( f, a, p ); // v = fˆp(a)
while( u != v ) {
u = f(u);
v = f(v);
t++;

}
return t;

v has a headstart of p. So, when u first enters the cycle, v has just gone
around once, and they meet at the contact point.



Floyd’s Cycle Finding Algorithm 44

Let us assume f to be computable in time O(1) and elements of the carrier set
A to take space O(1).

Theorem
One can determine the transient t and period p of a point in A under f in time
O(t + p), and space O(1).

Here time really means “number of applications of f” and space means the size
of an object in A: we only need to store a small constant number of elements
in A.



Generalization 45

Innocent Question:
What happens if we change the pebble speeds to some value
1 ≤ u < v?

More precisely, for which values of u, v, t, p does Floyd’s algorithm find a point
on the cycle?

It might be that for some combinations the pebbles cycle forever and never
meet.



Example 46

Pebbles speeds 2 and 3, transient 6, period 17. Everything works fine.



Floyd-Times 47



Floyd-Times Chaos 48

This uses speeds 2 and 4. Seems fairly complicated.



Some Questions 49

Exercise
What would happen to the Floyd-time if we changed the pebble speeds to u
and v, where 1 ≤ u < v?
Would the algorithm even work for all transients and period?

Exercise
Try to find an algebraic way to compute the Floyd-time directly from the
parameters τ and π. Do this for the (1, 2) version first, then generalize to
speeds u < v.

Exercise
Call the place where the pebbles meet the Floyd-point. Study it.



Brent’s Algorithm 50

Here is a method to compute the period using “teleportation.”

slow = a;
fast = f(a);
cnt = pow2 = 1;
while( fast != slow )

if( cnt == pow2 )
{ slow = fast; cnt = 0; pow2 *= 2; }

fast = f(fast);
cnt++;

return cnt;

Exercise
Figure out how this works. Compare its performance to Floyd’s method.



Applications 51

discrete dynamical systems (such as cellular automata)

analysis of hash functions

Pollard’s factorization method
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Logarithms in a Group 53

Suppose G is some finite cyclic group with generator g and order n. We can
easily exponentiate in G, the operation

e ; ge

takes O(M log e) steps where M is the cost of a single multiplication in G. But
going backwards is apparently hard in many groups:

Discrete Logarithm Problem:
Given a ∈ G, find e such that ge = a.

Of course, e = logg a is trivially computable by a brute force search, but we are
here interested in efficient computation when the group order n is sufficiently
large.



Pollard’s Rho Method 54

This should be called Pollard’s Lasso method (in particular since the second
algorithm in the paper is about “catching kangaroos”), but it’s too late now.

A Rohrschach test:

If you have a classical education, you will see a ρ .
If you’re a cowboy, you will see a lasso.



Random Maps 55

The motivation for this method is a bit strange. Consider a random function
f : A → A where A has size n.
Then the expected value of some key parameters of the functional digraph of f
are as follows:

# components 1
2 log n

# leaf nodes e−1n

# recurrent nodes
√

πn/2
transient length

√
πn/8

period length
√

πn/8

The expected lengths of the longest transient/cycle are also c1/2
√

n where
c1 ≈ 1.74 and c2 ≈ 0.78.



Computing Transient and Period 56

For simplicity we can think of the expected value of transient length t and
period length p of a random point a in A as

√
n.

We know an elegant algorithm to compute these parameters: Floyd’s trick.
More precisely, we can compute t and p in expected time O(

√
n) using O(1)

space.

Wild Idea:
Can we compute a (pseudo-)random sequence (xi) of group ele-
ments so that xi = x2i helps us to compute a discrete logarithm?



The Map 57

We need a “random” map.
To this end we first split the group G into three sets G1, G2 and G3 of
approximately equal size (sets, not subgroups, so this will be easy in practical
situations). Any ham-fisted approach will do.

Now, given a generator g and some element a, define f : G → G as follows:

f(x) =


gx if x ∈ G1,

x2 if x ∈ G2,

ax otherwise.

Of course, f is perfectly deterministic given the partition of G.



The Orbits 58

Consider the orbit (xi) of 1 under f .

Clearly, all the elements have the form aαi gβi and the exponents are updated
according to

(αi+1, βi+1) =


(αi, βi + 1) if x ∈ G1,

(2αi, 2βi) if x ∈ G2,

(αi + 1, βi) otherwise.

Since the partition of G is random, the three steps are chosen randomly.



Use Floyd 59

Use Floyd to find the minimal index e such that xe = x2e:

aαe gβe = aα2e gβ2e

But then

aαe−α2e = gβ2e−βe

This equality does not solve the discrete logarithm problem directly but it can
help at least sometimes.

Again, for cryptographic applications any such weakness is potentially fatal: a
good method must be secure under any and all circumstances.



Example: Z999959 60

Consider the multiplicative group of Zp where p = 999959.
Pick generator g = 7 and let a = 3.

Perhaps the most simpleminded partition is to chop [p−1] into thirds. This
produces an orbit with transient and period

928 587

A similarly obvious partition would use x mod 3. This produces an orbit with
transient and period

919 575

Note the values are order-of-magnitude close to √
p, looks like our maps are

sufficiently random.



Onward 61

Running a suitably modified version of Floyd’s algorithm with the first partition
produces e = 1174 and xe = 11400, plus the identity

3310686 = 7764000 (mod p)

Close, but no cigar: we need to somehow clobber the exponent 310686.

The last identity lives in Z⋆
p, a group of order p−1.

So we could try to simplify exponents modulo p−1.



Magic 62

Use the Extended Euclidean algorithm to get

gcd(310686, p − 1) = 2
= 148845 · 310686 − 46246 · 999958

Then raise 3310686 to the 148845 power mod p to obtain

32 = 7356324 (mod p)
3 = ±7178162 (mod p)

We can simply check the two cases and find that in Zp: log7 3 = 178162.



How Random Is It? 63
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A plot of the orbit of 1 given our “random” partition.



Aside: Elliptic Curves 64

Curves of the form y2 = x3 + ax + b
over a finite field produce a nice group
that can be used for discrete logarithm
methods.
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