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Chapter 1

Introduction

Sets, functions, and binary relations provide a convenient, yet rigorous, framework for modeling
software systems. Z [Spi92], probably the most widely used formal notation for describing soft-
ware systems, is based entirely on these constructs. As relational formulae can describe sets, func-
tions, and relations, I use the term relational specification to describe any specification built on these
constructs.

Other software description notations also draw much of their expressive power from these
constructs. Within the database community, the inter-relationships in a database schema are often
specified using an entity-relationship diagram [Che76]. Given the name, it should not be surpris-
ing that relations are a clear and succinct method of describing entity-relationship diagrams.

More recently, UML [BJR99] has gathered great interest in the object community. Although
UML combines several different notations to describe a single object design, many of these nota-
tions are built from sets, functions, and binary relations.

Despite the broad appeal of these constructs, little automated support is available for analyz-
ing relational specifications. Theorem provers [ES94; SM96] can help, but they require enormous
manual effort and provide little guidance to help repair faulty specifications. Model checkers
[BC+92; CPS93] can analyze system specifications based on other formalisms, but no model check-
ers are available for relational specifications. 

1.1 Generate-and-Test Searching

A method for solving relational formulae must lie at the core of any automated tool for analyzing
relational specifications. The simplest approach is a generate-and-test search. A generate-and-test
search generates possible mappings of variables to values, called assignments, for a particular for-
mula. The search tests each generated assignment against that formula. The result of the search is
a set of satisfying assignments, that is, assignments that give a true interpretation to the formula. 

An exhaustive-enumeration search is the simplest generate-and-test search that is sound.
Exhaustive enumeration generates all possible assignments in a search tree, with each level of the
search tree corresponding to a distinct variable in the formula. Testing a single assignment against
a formula is straightforward, requiring only an implementation of the standard boolean, set, and
relational operations.

However, using exhaustive-enumeration search as a solver presents two limitations. By its
nature, a generate-and-test search will consider only some finite subset of the (generally infinite)
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possible assignment space. Although this limitation prevents a generate-and-test search from
being a true verifier for infinite problems, it does not remove all practical applications. As I believe
that many, if not most, errors in specifications can be demonstrated using only a small subset of
the entire assignment space, a generate-and-test search can be the basis of a practical specification
analysis tool.

The second limitation is the time required to generate and test the complete set of assign-
ments. This limitation has far more significant practical implications. Even with a simple specifica-
tion (such as finder [JD95]) limited to only five underlying objects, the total number of
assignments required to generate and test exceeds 1027.

Generating all 1027 assignments is clearly inconceivable, rendering exhaustive enumeration
impractical. Fortunately, the vast majority of these assignments are in some sense “duplicates” of
other assignments. One assignment may be isomorphic to another assignment. Two assignments
may share some common partial assignment, which itself determines the interpretation of the for-
mula. Regardless of the nature of the duplication, generating only one assignment from each set of
duplicate assignments is sufficient.

Selective enumeration is a generate-and-test search method that prevents the generation (and
therefore the testing) of most duplicates. By preventing the generation of these duplicates, selec-
tive enumeration is effective in solving many interesting relational formulae.

1.2 Alloc — An Example

This section introduces a very simple relational specification, which I will use to illustrate points
throughout the remainder of this dissertation. The example describes a heap allocation system,
such as malloc, in very general terms.

The specification is written in NP [JD96a], a relational specification language that is roughly a
subset of Z. NP is limited to first-order objects, so, for example, NP does not allow functions of
functions. Figure 1.1 contains the NP specification for the heap allocation system.

The first line of the example introduces the two given types used in this specification, Addr and
Data. A given type is a set of elements, with each element having no internal structure. Every ele-
ment is contained in exactly one given type. All variables and expressions in NP are typed, indi-
cating that they refer to one of three kinds of values. A variable or expression may refer to (1) an
element of a given type, (2) a set of elements of a single given type, or (3) a relation that maps ele-
ments of a given type (the domain) to elements of a given type (the range). Relations can be
restricted to functions, injections, or bijections and can be restricted to total or surjective relations.

When using NP, specifiers describe their system using a collections of schemas, which allow a
simple structuring and composition of individual pieces of the specification, similar to the mecha-
nism provided by Z. Two independent characteristics jointly classify schemas in NP. A schema is
either a definition, which defines the system being specified, or a claim, which makes assertions
about the system being specified. A schema, whether a definition or a claim, refers either to a sin-
gle state or to a transition between two states. A transitional schema is called an operation and
describes both a pre-state and a post-state. The specification given in Figure 1.1 contains examples
of three of the four possible combinations of these characteristics, as explained in the following
paragraphs.

All schemas have the same basic structure. The body of the schema comes after the name of
the schema and is enclosed in square brackets ([]). A single vertical bar (|) divides the body into
two sections. The first section defines the variables used in the schema, whereas the second section
gives a collection of relational formulae that must be satisfied in any system described by this
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specification.

In the example given in Figure 1.1, Heap is a definitional schema that describes the basic struc-
ture of a heap. Heap introduces two variables, usage and used. The variable usage denotes a func-
tion mapping addresses (elements of Addr) to their data (elements of Data). The other variable,
used, denotes a set that contains all the addresses currently in use. Heap also defines a single for-
mula that describes a relationship that must hold in all valid heaps: the set of addresses in use is
exactly the set of addresses currently mapped, that is, the domain of the function usage.

Alloc is an operation that describes the change in a heap when a new piece of memory is allo-
cated. As Alloc refers to Heap in its declaration section, Alloc inherits all the variables defined by
Heap. Within Alloc, the pre-state is referenced using the simple variable names, whereas the post-
state is referenced using primed variables, such as usage'. Operations are indicated by the presence
of a (possibly empty) parameter list. The parameter list for Alloc defines a single parameter, addr,
which is the newly allocated address.

Figure 1.1. A trivial NP specification describing a heap allocation system. Addr and Data 
are the given types. Heap describes the basic structure being manipulated, Alloc 

describes an allocation operation, and uniqueAddrAlloc is a claim about the specification.

[Addr, Data]

Heap =
[ 
  usage : Addr -> Data
  used : set Addr

|

  /* all currently mapped addresses are used */
  used = dom usage
]

Alloc(addr : Addr) = 
[ 
  Heap

|

  /* Allocating a new address does not change the current allocation */
  used <: usage' = usage

  /* But addr is now mapped (to some unknown data element) */
  used' = used U {addr}
 ]

uniqueAddrAlloc::
[
  Heap
  newAddr : Addr

|

  /* A newly allocated address should not have been in use */
  Alloc(newAddr) => newAddr not in used
]
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Alloc contains two formulae. The first (used <: usage' = usage)1 guarantees that the allocation
does not change any existing mappings. The second formula (used' = used U addr) indicates that the
newly allocated address is now considered to be in use (in addition to any addresses already in
use).

The third schema, uniqueAddrAlloc, is a claim that asserts that the newly allocated address is not
in use prior to the allocation.

1.3 Reducing the Search

Attempting to validate claims such as uniqueAddrAlloc is a common analysis of NP specifications. A
claim is valid if there are no assignments that satisfy the negation of the claim. Ladybug, the tool
that I have implemented to analyze relational specifications, validates claims (within user speci-
fied finite bounds) using selective enumeration to solve the negation of the claim. The satisfying
assignments for the negation of the claim are counterexamples of the claim, which can be pre-
sented to the user. For the claim uniqueAddrAlloc, a counterexample must satisfy the schemas Heap
and Alloc but violate the consequent newAddr not in used.

Selective enumeration recognizes and exploits two kinds of duplications: partial-assignment
duplicates and isomorph duplicates. Two assignments are partial-assignment duplicates if they
share a common mapping of values for a subset of the variables (called a partial assignment) and
that partial assignment itself determines the value of the formula. Two assignments are isomorph
duplicates if one is isomorphic to the other.

In many specifications, the values of some variables are defined constructively, that is, their
value is constrained to be equal to a function of the values of the other variables. In the example,
Heap defines the formula used = dom usage. Therefore, the value of used is constrained to be equal
to the domain of the value of usage in any counterexample to uniqueAddrAlloc.

The simplest way to exploit partial assignment duplicates is to exploit derived variables [JD95].
Variables with a constructive definition are the most common example of derived variables. Given
the bindings for the other variables, the search can directly construct the value of a derived vari-
able, rather than generating many possible values and testing each one. Assuming that usage is
bound prior to used being generated, Ladybug computes the value of used.

As is obvious from this example, selective enumeration requires the imposition of a variable
ordering. Although any ordering is legal for selective enumeration, some orderings yield a much
greater reduction in the number of assignments generated than is yielded by other orderings. I
discuss the choice of orderings in Chapter 5.

Because the constraint newAddr not in used must be violated, the value of newAddr must be an
element of the value of used in any counterexample to uniqueAddrAlloc. Although this constraint
does not limit the possible values of newAddr to a single value, the constraint can be used to limit
the values actually generated during the search. Bounded generation uses constraints from the for-
mula to limit the values generated. Assuming that used is bound before the value of newAddr is
generated, bounded generation will generate each element in the set that is the value of used,
instead of each value in the given type Addr.

A second opportunity for bounded generation exists in uniqueAddrAlloc. The first formula in

1. The <: operator is the domain restriction operator. The result of this expression is a relation that
includes all of the pairs in the relation given as the second argument whose first element is con-
tained in the set given as the first argument. For the formal definition of this and other operators,
refer to the definitions beginning on page 16.
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Alloc, used <: usage' = usage, must be true for any counterexample to uniqueAddrAlloc. To simplify
the implementation, bounded generation does not directly take advantage of this constraint;
instead, bounded generation uses a weaker constraint, usage <= usage', that is implied by the orig-
inal formula. This weaker constraint allows bounded generation to limit both the domain and range
of any value generated for usage to be subsets of the domain and range of the value of usage'.

Derived variable analysis and bounded generation cannot fully exploit all formulae within a
specification. If these formulae do not depend on all the variables, they still present an opportu-
nity for reducing the assignments to be generated. Short circuiting [DJ96] does not reduce the num-
ber of values generated for any variables involved in the formula, as would bounded generation.
Instead, short circuiting prevents generation of values for any subsequent variables when the par-
tial assignment cannot satisfy the formula.

An example of short circuiting can be found for the constraint on usage and usage' that initi-
ated the second bounded generation example. Although bounded generation will guarantee that
dom usage <= dom usage' and ran usage <= ran usage', this constraint does not guarantee that usage
<= usage' . Once values have been bound to both usage and usage', short circuiting evaluates the
constraint usage <= usage' for the resulting partial assignment. Short circuiting will terminate the
current path of the search for any partial assignments not satisfying the constraint. Similarly, once
usage, usage', and used have been generated, short circuiting will check the full constraint, 
used <: usage' = usage. By utilizing all three techniques, selective enumeration can eliminate all par-
tial assignment duplicates available with the selected ordering.

The second form of duplication is called isomorph duplication. Because each element in a
given type is unstructured, exchanging a pair of elements throughout an assignment does not
change the interpretation of the formula for that assignment. Isomorph elimination [JJD96;JJD98]
prevents the generation of most2 values that are isomorphic to other values already generated.

As an example of isomorph elimination, consider the values generated for usage'. If Addr and
Data are limited to three elements apiece, it is necessary to generate 64 ((#range+1)#domain) values
for the partial function usage' without isomorph elimination. With isomorph elimination, on the
other hand, only the following seven values need to be generated:

usage' = 
usage' = { a0 d0 }
usage' = { a0 d0, a1 d1 }
usage' = { a0 d0, a1 d0 }
usage' = { a0 d0, a1 d1, a2 d2 }
usage' = { a0 d0, a1 d0, a2 d1 }
usage' = { a0 d0, a1 d0, a2 d0 }

The result of this reduced search is illustrated in Figure 1.2 and Figure 1.3. Figure 1.2 demonstrates 
the search until the first counterexample is found. When the number of elements in Addr and Data 
are limited to three apiece, derived variables and bounded generation reduce the search to find the 
first counterexample from 13,851 assignments to just 3. Figure 1.3 expands the tree for one more 
value of usage', exhibiting the further advantages of short circuiting and isomorph elimination.   
Related Work

Selective enumeration includes two general categories of reductions: cases where two or more
assignments are known to be both satisfying or both not satisfying for a formula, without explic-
itly testing them, and cases where two or more assignments are known to give the same unknown

2. The implementation of isomorph elimination does not consider all possible isomorphisms. In
particular, only products of selected single permutations are considered.
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interpretation to the formula. Bounded generation, short circuiting, and derived variables all
exploit the former case, and isomorph elimination exploits the latter case. Ladybug also incorpo-
rates one approach that is compatible with, but not a form of selective enumeration; solving one
ore more related formulae that are somehow simpler to solve and have equivalent satisfying
assignments. Normalizing the formula and type rewriting are the two examples of this approach
that Ladybug employs.

Figure 1.2. The search tree for finding a counterexample to the claim uniqueAddrAlloc. The variables 
used' and used are derived; their values can be directly computed from the earlier assignments. 

Bounded generation limits the domain and range of the values generated for usage to a subset of 
the domain and range used in usage'. Similarly, bounded generation limits the values considered 
for newAddr to the elements in the value of used. The first two paths down the search tree result in 
used being empty, leaving no possible values for newAddr. The first counterexample discovered is 

shown in a heavier box.
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1.4 The Thesis

In this dissertation, I show that selective enumeration is a useful approach to reduce the cost of a
search. In particular, I demonstrate that selective enumeration reduces, to a practical level, the cost
of otherwise infeasible searches that solve relational formulae derived from Z-like specifications.

My thesis offers four major contributions:

1) the selective enumeration framework for understanding and implementing search tree
pruning techniques;

2) a number of techniques and algorithms for pruning search trees defined by relational
formulae; 

3) the Ladybug checker, which implements these techniques and supports the first practi-
cal analysis of many Z-like specifications;

4) the benchmark suite, which provides an empirical framework for comparing
approaches.

1.5 Related Work

This section provides a broad overview of how other work relates to the work described in this
dissertation. Sections at the end of many subsequent chapters describe how the specific techniques
relate to other similar techniques. General related work falls into two basic groups: efforts to vali-
date properties of specifications and techniques to reduce the cost of a search, regardless of
domain. 

Validating properties of specifications is a central issue in formal methods [CW+96]. The formal
methods community has developed three approaches to check specifications: theorem provers,
model checkers, and relational formula solvers. 

Automated theorem provers [ES94; SM96] validate a property by developing a proof of the
validity, much as a human would. This approach offers two advantages over the other
approaches. If the property is valid, the final result is a proof of that validity, which can be cross
checked by humans or other tools. This cross-checking can provide a significantly greater degree
of confidence in the final results than is provided by counter-example generators. Furthermore,
the validity is not limited by the finite bounds generally required in other approaches.

Theorem provers have their downside as well. Generating a proof for the validity of a non-
trivial property can be exceedingly time consuming. Furthermore, theorem provers offer little
guidance when the property is invalid. 

The other approaches offer their greatest support when the property is invalid; a specification
is presumably no more likely to satisfy the desired properties initially than would be a similarly
complex program. These approaches produce a concrete counterexample when the property is
invalid. They also typically produce these counterexamples quickly and with minimal human
intervention.

 Model checking [BC+92; CPS93] is a broadly used approach that exhibits these advantages.
Although several different techniques have been developed to implement model checking, all the
techniques solve the same problem. The specification to be analyzed describes the graph of all
possible states for a system by describing one or more starting states and a transition function that
extends these states into all reachable states. Properties to be validated state that a set of paths (or
trees), which may be cyclic or even infinite, do or do not exist in the graph of states. The specifica-
tions analyzed by model checkers can describe individual states in the path in only very exact
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ways; properties such as cycles within the data structures can be described only very clumsily, if at
all.

This pairing of powerful expressive power for describing paths with poor expressive power
for describing individual states is the inverse of the situation for the relational formula solvers,
including Ladybug. Relational formulae can describe paths only by enumerating exact sequences
of operations, but they provide more descriptive power for individual states.

The other two relational formulae solvers, the BDD version of Nitpick[DJJ96] and
Alcoa[Jac98], both translate a relational formula into a boolean formula and then apply existing
boolean satisfiability systems to find solutions to the boolean formula. Unlike Ladybug, where the
effort is to reduce the size of the search space by removing duplicates, the effort in these tools is
finding an efficient mechanism to translate the relational formula into an appropriate boolean for-
mula. Whereas Ladybug uses only a small amount of memory that grows approximately linearly
with the size of the specification, these tools are exponential in size as well as time.

The other area of work that is broadly relevant to this thesis is the extensive development of
search techniques. Historically, many different forms of search have been considered; only the
work that can be expressed as searching for a solution to a formula are relevant to this dissertation.
Four other communities are actively researching this form of search: planning, constraint satisfac-
tion, boolean satisfaction, and model finding.

In general, planners [FN71;BW94; BF97] look to bind one or more actions to each time step,
with the complete sequence of actions satisfying the requirements of the goal. In terms of selective
enumeration, the variables are equivalent to the time steps, the universe of elements are the possi-
ble actions, and the values are individual actions, sets of actions, or relations mapping actors to
actions, depending on the exact framework. Planners incorporate techniques that are domain spe-
cific as well as general search reduction techniques similar to selective enumeration. The general
techniques are described in the related work sections in the relevant chapters. No effort in plan-
ning attempts to formalize or generalize these techniques. Selective enumeration can cleanly
describe (and regularize) a large portion of the work done by the planning community.

Constraint satisfaction [Kum92] more obviously solves a problem that fits the selective enu-
meration framework. Constraint satisfaction binds values to variables that satisfy the constraints
described in the problem. Haralick and Elliot [HE80] define a statistical model that describes the
effectiveness of simplified versions of the various search reduction techniques commonly
employed, including generate and test, backtracking, forward checking, and look ahead. Van Hen-
tenryck [VHe89] provides a formal framework that cleanly describes these techniques. Dechter
and Frost [DF98] provide a more refined formal model to distinguish the variations of backtrack-
ing and forward checking. However, all these models describe only a common subset of all possi-
ble constraint satisfaction problems; each individual constraint must involve no more than two
variables. Despite the common use of phrases such as “pruning the search tree” in the explanatory
text, none of these formal models describe duplication. As a result, these models ignore isomorph
elimination, instead considering only a subset of what I term partial-assignment reductions.

Constraint satisfaction algorithms also place restrictions on the problems they can solve.
Waltz’s classic shape recognition algorithm [Wal75], as well as many later CSP algorithms,
requires a complete enumeration of the possible values for each variable. This approach is not
feasible for relational formulae, where the number of values for a single variable may number in
the millions. Mackworth [Ma77] generalized Waltz’s algorithm into arc-consistency, which
supports only binary constraints. Other tools, such as the one from Lee and Plaisted[LP94], require
the formula to be expressed as Horn clauses, which is less expressive than the relational language.

Some constraint problems, such as job shop scheduling [Fox83], are similar in complexity and
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scale of the problems to those handled by Ladybug. Although many interesting techniques have
been developed, no general formal framework exists that can describe those techniques.

Although boolean satisfaction cleanly and exactly fits the description of selective enumeration
and has been amenable to practical solutions [DP60;Bry92;SLM92], the two most powerful tech-
niques incorporated in Ladybug, bounded generation and isomorph elimination, are not applica-
ble to boolean formulae. Bounded generation reduces the number of values by removing some of
the values from the universe of values based on the structure of this or previous values. Boolean
values are obviously atomic and unstructured and no portion of them can be removed. Similarly,
no symmetry exists with boolean values. Symmetries may exist in the variables; exploiting this
symmetry, however, would require a completely different approach from the one described here.

The problem solved by the model finding community, such as Finder [Sla94] and SEM
[ZZ95a], is similar to the problem solved by Ladybug. Like Ladybug, model generators search for
solutions to relation formulae. Significant differences exist in both the formula language and the
target problems. Whereas the relational formula language supports only binary relations, the
model finding community considers general n-ary relations. Ladybug is tuned to handle formulae
with several variables using small scopes; the model finders expect to handle problems with only
one or two variables with larger scopes. These differences impact both the techniques and the
implementation of the tools. These differences are discussed in the related works sections of the
upcoming chapters. Although the model finding tools may exploit limited forms of both isomorph
elimination and partial assignment reduction, none provide a framework for considering their
interactions.

1.6 Structure of The Dissertation

Chapter 2 formally defines selective enumeration and provides the framework for describing each
of the techniques. It defines the basic elements of selective enumeration including search, duplica-
tion, and generators, as well as desirable properties such as soundness, reduction, and efficiency.
The definitions are mostly applicable to solving a broad range of problems, including relation for-
mulae, but a few of the definitions deal specifically with the issues arising when solving relational
formulae.

Chapter 3 describes the partial-assignment techniques, beginning with a formal definition of
each technique. The chapter follows with a discussion of estimating the possible benefits of par-
tial-assignment duplication. The following three sections details each of the three techniques. The
chapter also investigates the interactions between these techniques. I conclude the chapter with a
review of similar techniques applied to search optimizations.

Chapter 4 describes the isomorph-reduction techniques. It begins with the formal definitions
necessary to describe the isomorph duplication and generators precisely. The chapter also
addresses the interactions between techniques utilizing the two duplications. Finally, the chapter
includes an overview of other related work that has been done.

Chapters 5 and 6 address implementation issues involved in building Ladybug. Chapter 5
provides an overview of the architecture of the tool as well as details about some of the specific
mechanisms used to support partial assignment reductions, such as the heuristic for choosing a
variable ordering and the process for discovering facts about the formula. Chapter 6 focuses on
the techniques used to support isomorph elimination, such as the algorithm used to discover
approximations for automorphism groups.

Chapter 7 provides empirical evidence for the success of selective enumeration as imple-
mented in Ladybug. It describes a benchmark suite, consisting of twenty claims and operations



1.6.  STRUCTURE OF THE DISSERTATION 11

drawn from eleven specifications. The chapter provides measurements of both the time and the
number of cases and values required by Ladybug to analyze these specifications. The measure-
ments demonstrate both the overall effectiveness of Ladybug, as well as the effectiveness of each
constituent technique.

Although Chapter 7 provides a detailed description of each specification in the benchmark
suite, other chapters sometimes refer to these specifications and a brief summary is worthwhile
here. The specifications underlying the mobile IP specification, the two HLA specifications, and
the coda specification are “real world” specifications, in that they were written as part of an
attempt to discover problems in real systems. The digicash specification and the faa specification
are smaller analyses of real systems. The styles specification, the math specification, the phone
specification, and the finder specification, along with the previously introduced alloc specification,
are artificial, having been generated more to investigate the properties of the tool than the proper-
ties of real systems. 

Chapter 8 describes an analysis of the HLA system specification [DOD97]. This case study
focuses on two aspects of the entire system: ownership properties and bridge federates. After I for-
malized appropriate portions of the specification (into NP), Ladybug checked several claims about
the system. I discovered flaws in the original specification during both the formalization and the
checking. While providing a “real-world” context for analyzing relational specifications, this chap-
ter focuses on the performance of Ladybug during the checking.

Chapter 9 concludes the dissertation. It shows how selective enumeration can be used to solve
other problems and places selective enumeration in its larger context.
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Chapter 2

Basic Definitions

This chapter develops the terminology required to define selective enumeration precisely. In the
next two chapters, I use this terminology to define each selective enumeration technique used by
Ladybug to reduce the size of the search.

In Chapter 1, I demonstrated how Ladybug, using selective enumeration, discovers counter-
examples of a claim about a system specified in NP. The user of Ladybug provides a formula that
describes the claim and a scope that defines the set of values to be considered in the search. I call
this pairing of a formula and a set of values the problem to be solved.

However, solving relational formulae is only one of many possible domains for selective enu-
meration. A problem domain for selective enumeration consists of two elements: (1) a language def-
inition and (2) a universe of values. A problem is constrained by its problem domain: the formula
must be an element of the language and the set of values for the search must be a subset of the uni-
verse.

Although in this thesis I will focus on using selective enumeration to solve relational formu-
lae, most of the definitions in this chapter describe selective enumeration generally, across all
problem domains. Definitions that apply only to the relational problem domain are starred.

The first two sections of this chapter formally develop the relational problem domain, while
providing an overview of the requirements for defining a problem domain for selective enumera-
tion. The next three sections define the key concepts of selective enumeration for any domain:
search, duplications, and generators. The final section develops a framework for comparing selec-
tive-enumeration techniques.

2.1 Values and Variables

One of the two elements in the definition of a problem domain is the underlying set of values,
called Value. For the relational problem domain, Value contains three kinds of values, all con-
structed from a universe of unstructured elements, which I call U. The kinds of values are (1)
atomic elements of U, (2) sets of atomic elements, and (3) binary relations on the atomic elements.
To simplify the presentation, I ignore the type distinctions between elements for most of this dis-
sertation. Therefore, for the simple alloc example described in Chapter 1, U includes both the Addr
and Data sets.
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Definition 2.1 (Value - for Relational Problem Domain)    

Valuescalar = U
Valueset =  U

Valuerel =  (U  U)
Value = Valuescalar  Valueset  Valuerel

The search binds these values to variables. The variables of interest are the variables of the formula
to be solved. 

Definition 2.2 (Variable)    

The set of variables in the formula to be solved is given by the set Variable. 

I define N to be the number of variables in the formula for a problem.

Definition 2.3 (N)    

N = |Variable|

For many problem domains, including the relational problem domain, the variables are typed; any
given variable can only be bound to a subset of Value. I describe this requirement with a typing
function.

Definition 2.4 (Typing)    

The function Typing : Variable   Value describes the subset of values that may 
be bound to each variable. 

For the relational formulae problem domain, I partition the complete collection of variables into
three sets based on the kind of value they can denote: Varscalar, Varset, and Varrel. 

*Definition 2.5 (Variable - for Relation Domains)    

Varscalar = dom (Typing  Valuescalar)

Varset = dom (Typing  Valueset)

Varrel = dom (Typing  Valuerel)

For the claim uniqueAddrAlloc from Figure 1.1, N is 5 and the variables are

Varscalar = { newAddr }
Varset = { used, used' }
Varrel = { usage, usage' }

An assignment is a mapping from variables to appropriate values. An assignment can be a full
assignment, mapping all variables to appropriate values, or it can be a partial assignment, map-
ping only a subset of the variables to values.

Definition 2.6 (A)    

The set of assignments A : (Variable  Value) is defined as
{ a : Variable  Value | (var,value)  a. value  Typing(var)  }

2.2 Relational Language

The Value set is one half of the definition of a selective-enumeration problem domain. The other
half is the definition of the formula language. Intuitively, any “well-behaved” formula language
can be used. In this section, I define a formula language for the relational problem domain, which
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is used for the examples throughout this thesis. I also note specific requirements for a language to
be supported by selective enumeration.

The relational problem domain could use any one of the many traditional relational formula
languages. The formula language I have chosen is based on the language NP [JD96a], which, in
turn, is based on the specification language Z [Spi92]. The formula language is a simplification of
NP in two significant ways. The schema constructs, which simplify both the writing and reading
of a specification for humans, add no semantic value and are excised from the formula language.
Many operators in NP are semantically equivalent to the combination of other operators and have
been dropped from the formula language.1 To simplify the presentation of the thesis, I omit a
number of operators which cannot be expressed from the remaining operators. These operators,
including function application and relational universe, were not required by any of the examples
and introduce no new complications.

The foundation of the formula language for any problem domain is the terms. Terms describe
the ways that values can be constructed using the language. As with other items in the relational
problem domain, I divide terms into three categories: Termscalar, Termset, and Termrel.

*Definition 2.7 (Term)    

Term = Termscalar  Termset  Termrel

Termscalar ::= Varscalar

Termset ::= Varset | { Termscalar } | { } | Un |
( Termset U Termset ) | ( Termset & Termset ) |
( Termset \ Termset ) | Termrel(Termset) |
dom Termrel | ran Termrel

Termrel ::= Varrel | ( Termset <: Termrel) |
( Termrel U Termrel ) | ( Termrel & Termrel ) |
( Termrel \ Termrel ) | ( Termrel ; Termrel ) |
Termrel+ | Termrel~ | { Termscalar -> Termset }

As an overview, Un is the universe of atomic elements, & is the intersection operator, <: is the
domain restriction operator, ; is the composition operator, + is the transitive closure operator, ~ is
the inverse operator, and Termrel(Termset) gives the relational image. The complete, formal defini-
tions of the operators begin on page 16.

Atomic formulae are constructed from terms.

*Definition 2.8 (AtomicFormula)    

AtomicFormula ::= Termscalar in Termset | Termscalar = Termscalar |
Termset = Termset | Termset <= Termset |
Termrel = Termrel | Termrel <= Termrel | 
 func Termrel | true | false

The <= operator denotes the standard subset relationship.

Finally, Wffs in the formula language are built from atomic formulae.

1. For clarity of presentation, I did choose to retain some redundant operators. For example, in the
presence of the inverse operator, only one of the dom and ran operators is necessary.
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*Definition 2.9 (Wff)    

Wff ::= AtomicFormula | not Wff | ( Wff and Wff ) | ( Wff or Wff )

For any formula in the relational language, there is a unique derivation for that formula from
this grammar. Formula (2.1) is the formula derived from the claim uniqueAddrAlloc given in Figure
1.1.2

(2.1)  ( not ( (dom usage = used and dom usage' = used')
and ( func usage and func usage' ) ) or

( not ( ( dom usage = used and dom usage' = used' ) and
( ( used <: usage' ) = usage and used' = ( used U {newAddr} ) ) )

or not newAddr in used ) )

For the relational formula language, the set of variables for a term is given by the function Var.

Definition 2.10 (Variables of a Term)     
The variables of a term are given by the function, Var(τ) : Term  Variable, 
defined as all variables appearing in the term.

Similarly, the Var function yields the set of variables for a formula.

Definition 2.11 (Variables of a Formula)    

The variable of a formula are given by the function, Var(φ) : Wff  Variable, 
defined as all variables appearing in the formula.

For any given assignment in the context of some subset of Value, the interpretation of a formula is
TRUE, FALSE, or UNK (unknown). Intuitively, the interpretation of a formula may be unknown if any
of the variables of the formula are not mapped by the assignment. Otherwise, the interpretation
function replaces each variable in the formula by the corresponding value from the assignment
and evaluates the formula using the usual semantics for relational formulae.

The interpretation of a formula depends on the interpretation of each term. The notation
Mterm[τ,a,υ] describes the interpretation of a term τ in the formula language for an assignment a
and a set of values υ. The interpretation function Mterm is the union of three functions: Mscalar, Mset,
and Mrel.

*Definition 2.12 (Mscalar)    

The interpretation of a scalar term τ for an assignment a and a set of values υ is 
given by the function Mscalar[τ,a,υ] : Termscalar  A  Value  Valuescalar  { UNK }, 
defined as

if τ is v where v  Varscalar
a(v) if v  dom a
UNK otherwise 

*Definition 2.13 (Mset)    

The interpretation of a set term τ for an assignment a and a set of values υ is given 
by the function Mset[τ,a,υ] : Termset  A  Value  Valueset  { UNK }, defined as

2. To simplify the presentation, I have elided the constraints that enforce the given type constraints.
Removing these constraints from a well-typed formula does not change its satisfiability. As noted
in Chapter 6, however, the implementation of Ladybug does make significant use of these con-
straints.
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if τ is v where v  Varset
a(v) if v  dom a
UNK otherwise

if τ is { τ1 } where  τ1  Termscalar
{ Mscalar[τ1,a,υ] } if Mscalar[τ1,a,υ]  UNK

UNK otherwise
if τ is { }

if τ is Un
U  υ

if τ is τ1 U τ2 where  τ1,τ2  Termset
{ x | x  Mset[τ1,a,υ] if Mset[τ1,a,υ]  UNK Mset[τ2,a,υ]  UNK 

x  Mset[τ2,a,υ] }
UNK otherwise

if τ is τ1 & τ2 where  τ1,τ2  Termset
{ x | x  Mset[τ1,a,υ] if Mset[τ1,a,υ]  UNK Mset[τ2,a,υ]  UNK

x  Mset[τ2,a,υ] }  
UNK otherwise

if τ is τ1 \ τ2 where  τ1,τ2  Termset
{ x | x  Mset[τ1,a,υ] if Mset[τ1,a,υ]  UNK Mset[τ2,a,υ]  UNK

x  Mset[τ2,a,υ] }  
UNK otherwise

if τ is dom τ1 where  τ1  Termrel 
{ x | y. (x,y)  Mrel[τ1,a,υ]} if Mrel[τ1,a,υ]  UNK

UNK otherwise
if τ is ran τ1 where  τ1  Termrel 

{ y | x. (x,y)  Mrel[τ1,a,υ]} if Mrel[τ1,a,υ]  UNK

UNK otherwise
if τ is τ1(τ2) where  τ1  Termrel and τ2  Termset

{ y | x. x  Mset[τ2,a,υ] if Mrel[τ1,a,υ]  UNK 
(x,y)  Mrel[τ1,a,υ] } Mset[τ2,a,υ]  UNK

UNK otherwise

*Definition 2.14 (Mrel)    

The interpretation of a relational term τ for an assignment s and a set of values υ is 
given by the function Mrel[τ,a,υ] : Termrel  A  Value  Valuerel  { UNK }, 
defined as

if τ is v where v  Varrel
a(v) if v  dom a
UNK otherwise

if τ is τ1 U τ2 where  τ1,τ2  Termrel
{ (x,y) | (x,y)  Mrel[τ1,a,υ] if Mrel[τ1,a,υ]  UNK Mrel[τ2,a,υ]  UNK 

(x,y)  Mrel[τ2,a,υ] }
UNK otherwise

if τ is τ1 & τ2 where  τ1,τ2  Termrel
{ (x,y) | (x,y)  Mrel[τ1,a,υ] if Mrel[τ1,a,υ]  UNK Mrel[τ2,a,υ]  UNK 

(x,y)  Mrel[τ2,a,υ] }
UNK otherwise

if τ is τ1 \ τ2 where  τ1,τ2  Termrel
{ (x,y) | (x,y)  Mrel[τ1,a,υ] if Mrel[τ1,a,υ]  UNK Mrel[τ2,a,υ]  UNK 

(x,y)  Mrel[τ2,a,υ] }
UNK otherwise
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if τ is τ1 ; τ2 where  τ1,τ2  Termrel
{ (x,y) | z. (x,z)  Mrel[τ1,a,υ] if Mrel[τ1,a,υ]  UNK Mrel[τ2,a,υ]  UNK 

(z,y)  Mrel[τ2,a,υ] }
UNK otherwise

if τ is τ1+ where  τ1  Termrel
{ (x,y) | z1,z2,...,zk. if Mrel[τ1,a,υ]  UNK

(x,z1)  Mrel[τ1,a,υ] 
(z1,z2)  Mrel[τ1,a,υ] ...
 (zk,y)  Mrel[τ1,a,υ] }

UNK otherwise
if τ is τ1~ where  τ1  Termrel

{ (x,y) | (y,x)  Mrel[τ1,a,υ] } if Mrel[τ1,a,υ]  UNK

UNK otherwise
if τ is τ1 <: τ2 where  τ1  Termset and τ2  Termrel 

{ (x,y) | x  Mset[τ1,a,υ]  if Mset[τ1,a,υ]  UNK Mrel[τ2,a,υ]  UNK

(x,y)  Mrel[τ2,a,υ] }
UNK otherwise

if τ is { τ1 -> τ2 } where  τ1  Termscalar and τ2  Termset 
{ (x,y) | x  Mscalar[τ1,a,υ]  if Mscalar[τ1,a,υ]  UNK 

y  Mset[τ2,a,υ] } Mset[τ2,a,υ]  UNK

UNK otherwise

*Definition 2.15 (Mterm)    

The interpretation of a term τ for an assignment a and a set of values υ is given by 
the function Mterm[τ,a,υ] : Term  A  Value  Value  { UNK }, defined by the 

union of the three specific interpretation functions:
Mterm = Mscalar  Mset  Mrel

The interpretation of a formula for an assignment in the context of a set of values is given by
M[φ,a,υ], where φ  Wff, a  A, and υ  Value.

*Definition 2.16 (M)    

The interpretation of a formula φ for an assignment a is given by the function 
M[φ,a,υ] : Wff  A  Value  { TRUE, FALSE, UNK }, defined as

if φ is τ1 = τ2 where  τ1,τ2  Termscalar
TRUE if Mscalar[τ1,a,υ]  UNK Mscalar[τ2,a,υ]  UNK 

Mscalar[τ1,a,υ]  Mscalar[τ2,a,υ])
FALSE if Mscalar[τ1,a,υ]  UNK Mscalar[τ2,a,υ]  UNK 

Mscalar[τ1,a,υ]  Mscalar[τ2,a,υ]
UNK otherwise

if φ is τ1 in τ2 where  τ1  Termscalar and τ2  Termset
TRUE if Mscalar[τ1,a,υ]  UNK Mset[τ2,a,υ]  UNK 

Mscalar[τ1,a,υ]  Mset[τ2,a,υ]
FALSE if Mscalar[τ1,a,υ]  UNK Mset[τ2,a,υ]  UNK 

Mscalar[τ1,a,υ]  Mset[τ2,a,υ]
UNK otherwise
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if φ is τ1 = τ2 where  τ1,τ2  Termset
TRUE if Mset[τ1,a,υ]  UNK Mset[τ2,a,υ]  UNK 

Mset[τ1,a,υ] = Mset[τ2,a,υ]
FALSE if Mset[τ1,a,υ]  UNK Mset[τ2,a,υ]  UNK 

Mset[τ1,a,υ]  Mset[τ2,a,υ]
UNK otherwise

if φ is τ1 <= τ2 where  τ1,τ2  Termset
TRUE if Mset[τ1,a,υ]  UNK Mset[τ2,a,υ]  UNK 

Mset[τ1,a,υ]  Mset[τ2,a,υ]
FALSE if Mset[τ1,a,υ]  UNK Mset[τ2,a,υ]  UNK 

x  Mset[τ1,a,υ]. x  Mset[τ2,a,υ]
UNK otherwise

if φ is τ1 = τ2 where  τ1,τ2  Termrel
TRUE if Mrel[τ1,a,υ]  UNK Mrel[τ2,a,υ]  UNK 

Mrel[τ1,a,υ] = Mrel[τ2,a,υ]
FALSE if Mrel[τ1,a,υ]  UNK  Mrel[τ2,a,υ]  UNK 

Mrel[τ1,a,υ]  Mrel[τ2,a,υ]
UNK otherwise

if φ is τ1 <= τ2 where  τ1,τ2  Termrel
TRUE if Mrel[τ1,a,υ]  UNK Mrel[τ2,a,υ]  UNK Mrel[τ1,a,υ]  Mrel[τ2,a,υ]

FALSE if Mrel[τ1,a,υ]  UNK Mrel[τ2,a,υ]  UNK 
(x,y)  Mrel[τ1,a,υ]. (x,y)  Mrel[τ2,a,υ]

UNK otherwise

if φ is func τ1 where  τ1  Termrel
TRUE if Mrel[τ1,a,υ]  UNK 

x,y,z.((x,y)  Mrel[τ1,a,υ]  (x,z)  Mrel[τ1,a,υ])  y = z
FALSE if Mrel[τ1,a,υ]  UNK 

x,y,z.(x,y)  Mrel[τ1,a,υ]  (x,z)  Mrel[τ1,a,υ]  y  z

UNK otherwise

if φ is true 
TRUE

if φ is false 
FALSE

if φ is ( φ1 and φ2 ) where  φ1,φ2  Wff
TRUE if M[φ1,a,υ] = TRUE  M[φ2,a,υ] = TRUE

FALSE if M[φ1,a,υ] = FALSE  M[φ2,a,υ] = FALSE

UNK otherwise

if φ is ( φ1 or φ2 ) where  φ1,φ2  Wff
TRUE if M[φ1,a,υ] = TRUE  M[φ2,a,υ] = TRUE

FALSE if M[φ1,a,υ] = FALSE  M[φ2,a,υ] = FALSE

UNK otherwise

if φ is not φ1 where  φ1  Wff
TRUE if M[φ1,a,υ] = FALSE

FALSE if M[φ1,a,υ] = TRUE

UNK otherwise

Definitions of the term and formula interpretation functions must be a part of the language defini-
tion for any problem domain.

As an example of the relational formula interpretation function, consider the negation of (2.1)
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(derived from uniqueAddrAlloc) given by (2.2):

(2.2)  ( ( ( dom usage = used and dom usage' = used' ) and
( func usage and func usage' ) ) and 
( ( ( used <: usage' ) = usage and used' = ( used U {newAddr} ) ) 
and newAddr in used ) )

This formula can be interpreted with respect to any assignment and set of values. Using the subset
of U called u, including elements a0 and d0, three possible interpretations are

M[(2.2),{ },u  u  (u u)] = UNK

M[(2.2),{ usage'  { a0  d0 }, used'   },u  u  (u u)] = FALSE

M[(2.2), 
{ usage'  { a0  d0 }, used'  {a0},usage  { a0  d0 }, used  {a0}, newAddr  a0 },
u  u  (u u)] = TRUE

If the assignment maps all the variables in a term, the interpretation of the term for that assign-
ment is an element of Value, not UNK.

Lemma 2.1 υ  Value. a  A. τ  Term. Var(τ)  dom a  Mterm[τ,a,υ]  UNK

Proof: By structural induction.

If τ is v where v  Variable
Obviously, Var(τ) = { v }
Because Var(τ)  dom a, v  dom a
By definition of Mterm, v  dom a  Mterm[τ,a,υ]  UNK.

if τ is τ1 U τ2 where τ1,τ2  Termset
Obviously, Var(τ1)  Var(τ) and Var(τ2)  Var(τ)
Therefore, Var(τ1)  dom a and Var(τ2)  dom a
Therefore, by hypothesis, Mterm[τ1,a,υ]  UNK and Mterm[τ2,a,υ]  UNK

By definition of Mterm, Mterm[τ,a,υ]  UNK

Other productions follow similarly.  ■

Similarly, if the assignment maps all the variables in a formula, the interpretation of the formula
for the assignment is either TRUE or FALSE, but not UNK.

Lemma 2.2 a  A. φ  Wff. Var(φ)  dom a  M[φ,a,υ]  UNK

Proof: By structural induction.

If φ is τ1 in τ2 where τ1  Termscalar and τ2  Termset
Obviously, Var(τ1)  Var(φ) and Var(τ2)  Var(φ)
Therefore, Var(τ1)  dom a and Var(τ2)  dom a
Therefore, by Lemma 2.1, Mterm[τ1,a,υ]  UNK and Mterm[τ2,a,υ]  UNK

By definition of M, M[φ,a,υ]  UNK

If φ is (φ1 and φ2) where φ1,φ2  Wff
Obviously, Var(φ1)  Var(φ) and Var(φ2)  Var(φ)
Therefore, Var(φ1)  dom a and Var(φ2)  dom a
Therefore, by hypothesis, M[φ1,a,υ]  UNK and M[φ2,a,υ]  UNK

By definition of M, M[φ,a,υ]  UNK

Other productions follow similarly.  ■
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Lemma 2.1 and Lemma 2.2 must hold for the language definition for any valid problem domain.

Some formulae are logically implied by other formulae. The notation φ φ' indicates that φ logi-
cally implies φ'.

Definition 2.17 (Logical Implication)    

φ φ' iff υ  Value. a  A. M[φ,a,υ] = TRUE  M[φ',a,υ] = TRUE

For the formula (2.2) given earlier, newAddr must be an element of used for any satisfying assign-
ment.

(2.2) newAddr in used

2.3 Search

Selective enumeration is a generate-and-test search that finds a solution to a formula. This section
formally defines a search.

Selective enumeration orders the variables to control the order of the search. Unlike some
search approaches, selective enumeration fixes the order for the entire search. The function Ord
defines this ordering.

Definition 2.18 (Ord)    

The variables are ordered according to Ord, a one-to-one function mapping the 
variables to the first N natural numbers.

The search illustrated by Figure 1.2 and Figure 1.3 uses the ordering

Ord = { usage'  1, used'  2, usage  3, used  4, newAddr  5 }

The search considers only subsets of the variables at a time, choosing these subsets based on the
ordering. The ith subset of Variable contains the first i variables, as determined by Ord.

Definition 2.19 (Vari)    

Vari = { v  Variable | 1  Ord(v)  i }

Projecting these subsets of Variable though A yields useful sets of assignments.

Definition 2.20 (Ai)    

Ai = { a  A | dom a = Vari }

Ai is the set of assignments that map exactly the first i variables, as defined by Ord. The assign-
ments on the ith level of the search tree are drawn from Ai. Two such sets are of particular note: A0

contains only the empty assignment and AN contains all full assignments.

A solution is a satisfying full assignment. 

Definition 2.21 (Solution)    

A full assignment a  AN is a solution for a formula φ and a set of values υ iff 
M[φ,a,υ] = TRUE.

A search is a procedure that discovers solutions to a formula. The search is limited to a subset of
Value.
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Definition 2.22 (Search)    

A function ω(φ,υ) : Wff  Value  AN is a search iff 
a  ω(φ,υ).ran a  υ  M[φ,a,υ] = TRUE.

A search is sound if it is guaranteed to find a solution if any exist for the formula and the set of val-
ues considered.

Definition 2.23 (Sound Search)    

A search ω(φ,υ) is sound for a formula φ and a set of values υ iff 
( a  AN. M[φ,a,υ] = TRUE  ran a  υ)  ω(φ,υ)  

A search is complete, on the other hand, if it discovers all solutions to a formula. Completeness can
be an undesirable property, as the number of solutions to a formula may overwhelm their
intended consumer.

2.4 Duplications

The essence of selective enumeration is reducing the number of cases to be tested by not generat-
ing “duplicates”. A duplication is an equivalence relation on the full assignments, partitioning
them into equivalence classes for a formula φ. All assignments in any equivalence class must give
the same interpretation to φ. Selective enumeration generates at least one assignment to be tested
from each equivalence class. Assignments beyond the first in any equivalence class are the dupli-
cates to be suppressed.

Definition 2.24 (Duplication)    

An equivalence relation ≈d is a duplication for the formula φ and set of values υ iff 

a,a'  AN.ran a  υ  ran a'  υ  a ≈d a'  M[φ,a,υ] = M[φ,a',υ]

Two obvious duplications are uninteresting for the purposes of selective enumeration. The
first, which I call ≈ , places each assignment in its own equivalence class. This corresponds to the
exhaustive-enumeration search. The other obvious duplication, which I call ≈M, divides the assign-
ments into two classes, ones that satisfy φ and ones that do not satisfy φ. Although this would be
the ideal duplication, it is not directly computable for interesting problem domains and therefore
of little practical benefit. These two duplications are formally defined as

(2.3)  a,a'  AN. a ≈  a'  a = a'

(2.4)  υ  Value. a,a'  AN. ran a  υ  ran a'  υ (a ≈M a'  M[φ,a,υ] = M[φ,a',υ])

The duplications described in the previous chapter for finding the counterexample to
uniqueAddrAlloc can also be defined in this manner. For the reduction involving newAddr in used,
every assignment for which newAddr was not an element of used was placed into a single equiva-
lence class, with each remaining assignment forming its own equivalence class.

(2.5)  υ  Value. a,a'  AN. ran a  υ  ran a'  υ  
(a ≈newAddr in used a'  

((M[newAddr in used,a,υ] = FALSE  M[newAddr in used,a',υ] = FALSE)  a = a'))

Other bounded generation duplications, such as the constraint on usage and usage', behave simi-
larly. They group known false assignments together into a single equivalence class, placing all
other assignments into individual equivalence classes.
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This form of equivalence relation can be generalized to support any partial assignment dupli-
cation. Each partial assignment duplication has a related formula φ' that is implied by the target
formula itself.

Definition 2.25 (Partial Assignment Duplication)    

An equivalence relation ≈ρ(φ') is a partial assignment duplication of the related for-

mula φ' for a formula φ and a set of values υ iff 
φ φ' a,a'  AN. (a ≈ρ(φ') a'  (a = a'  (M[φ',a,υ] = FALSE  M[φ',a',υ] = FALSE)))

This equivalence relation places all assignments that fail to satisfy φ' into a common equivalence
class and each assignment that satisfies φ' into its own equivalence class.

Lemma 2.3 The partial assignment duplication ≈ρ(φ') is a duplication for the formula φ and the 

set of values υ.

Proof:  To prove that ≈ρ(φ') is a duplication, it is necessary to prove that 

a,a'  AN.ran a  υ  ran a'  υ  a ≈ρ(φ') a'  M[φ,a,υ] = M[φ,a',υ]

By the definition of ≈ρ(φ'), there are two cases to consider:

(1) a = a' 
(2) (M[φ',a,υ] = FALSE  M[φ',a',υ] = FALSE)

For (1), clearly M[φ,a,υ] = M[φ,a',υ]. 

For (2), because a  AN, M[φ,a,υ] is either TRUE or FALSE by Lemma 2.2.
Because φ φ', if M[φ,a,υ] = TRUE then M[φ',a,υ] = TRUE.
Therefore, if M[φ',a,υ] = FALSE, then M[φ,a,υ] = FALSE.
Therefore, for (2), M[φ,a,υ] = FALSE  M[φ,a',υ] = FALSE.  ■

I define the isomorph duplication in Chapter 4 where I formalize the notion of isomorphism.

Duplications may also be combined, resulting in a duplication with generally fewer equiva-
lence classes (but never more). The combination of two duplications is the transitive closure of the
union of the two duplications.

Definition 2.26 (Duplication Composition)    

For any duplications ≈a and ≈b for a formula φ and a set of values υ, their compo-
sition, ≈a  ≈b , is defined as the smallest relation such that

a,a'  AN. ( a ≈a  ≈b a'  ( a ≈a a'  a ≈b a'  ( a''  AN.( a ≈a  ≈b a''  a'' ≈a  ≈b a'))))

The result of combining two duplications is itself an equivalence relation and therefore a duplica-
tion.

Lemma 2.4 For any duplications ≈a and ≈b for a formula φ and a set of values υ, ≈a  ≈b is an 

equivalence relation.

Proof: A relation must be reflexive, symmetric, and transitive to be an equivalence rela-
tion.

Let ≈ab = ≈a  ≈b

There are three possibilities allowed by the definition of ≈1  ≈2

(1) a ≈a a'
(2) a ≈b a'
(3) a''  AN. a ≈ab a''  a'' ≈ab a'  a ≈ab a'

Therefore, a ≈a a'  a ≈ab a' and a ≈b a'  a ≈ab a'
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As ≈1 is reflexive, a  AN. a ≈a a.
Therefore, because a ≈a a'  a ≈ab a',

a  AN. a ≈ab a and ≈ab is reflexive

To demonstrate symmetry, I use structural induction with the hypothesis
a,a'  AN . a ≈ab a'  a' ≈ab a

If (1) holds, 
then a' ≈a a because ≈a is symmetrical.
Therefore, because a ≈a a'  a ≈ab a',

a' ≈ab a
A similar argument holds for (2)
If (3) holds, a ≈ab a'' and a'' ≈ab a' for some a''  AN

By induction, a'' ≈ab a and a' ≈ab a''
Therefore, a' ≈ab a''  a'' ≈ab a
Therefore, a' ≈ab a

Therefore a' ≈ab a and ≈ab is symmetric.

Transitivity is a direct result of (3).  ■

Lemma 2.5 For any duplications ≈a and ≈b for a formula φ and a set of values υ, ≈a  ≈b is a du-
plication for φ and υ.

Proof: Let ≈ab = ≈a  ≈b.

There are two requirements for ≈ab to be a duplication:
(a) ≈ab must be an equivalence relation on AN. 
(b) υ  Value. φ  Wff. a,a'  AN.

ran a  υ  ran a'  υ  a ≈ab a'  M[φ,a,υ] = M[φ,a',υ].

By Lemma 2.4,  ≈ab is an equivalence relation on AN.

Assume a,a'  AN such that a ≈ab a'

By definition, one of 
(1) a ≈a a'
(2) a ≈b a'
(3) a''  AN. (a ≈ab a''  a'' ≈ab a')

must hold.

If either (1) or (2) holds,
then M[φ,a,υ] = M[φ,a',υ] because ≈a and ≈b are duplications.

(3) requires the existence of a sequence of full assignments, 
a1, a2, ..., ak  AN. 

a ≈1 a1  a1 ≈2 a2  ...  ak-1 ≈k ak  ak ≈k+1 a'
where ≈1, ≈2, ..., ≈k, ≈k+1 are either ≈a or ≈b

That any such sequence must guarantee that M[φ,a,υ] = M[φ,a',υ] is obvious by 
induction on the length of the sequence.  ■

2.5 Generators

The key to any generate-and-test search is the ability to generate assignments. A special function,
called a generator, generates a finite set of assignments for level i of the search tree given an initial
assignment , which I refer to as α, from level i-1 and a finite set of values, which I refer to as υ. For
each assignment generated, a level i generator binds a value from υ to the ith variable, copying the
mapping of the first i-1 variables from the initial assignment α.
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Definition 2.27 (Generator)    

A function g : Ai-1  Value  Ai is a level i generator iff 
υ  Value. α  Ai-1. a  g(α,υ). Vari-1  a = α  a(vi)  (υ  Typing( vi) )

where vi  Variable and Ord(vi) = i.

A generator function expands a single assignment in the search tree into the set of its immediate
children in the search tree. Therefore, the fanout of the search tree at each level (and the ultimate
number of assignments generated) is dependent on the number of assignments generated by the
generator for that level.

 A generator is sound if the only possibly satisfying assignments excluded are duplicates of
other assignments generated.

Definition 2.28 (Sound Generator)    

A level i generator g is sound for a duplication ≈d iff 
υ  Value. a  AN. (M[φ,a,υ] = TRUE  ran a  υ)  

a'  AN. Vari  a'  g(Vari-1  a,υ)  a ≈d a'  ran a'  υ.

As a reminder, a duplication is an equivalence relation over full assignments such that two assign-
ments can be in the same equivalence class only if they give the same interpretation to the for-
mula. This definition of soundness for generators projects the duplication back to level i of the
search tree using domain restriction. A generator is sound if, for each invocation, it excludes an
assignment a only if (1) every full assignment extension of a gives a false interpretation to the for-
mula or (2), for each equivalence class in which a satisfying full assignment extension of a occurs,
the generator yields an assignment a' that has a full assignment extension in that equivalence
class.

Figure 2.1 illustrates a duplication for a simple two-variable search and the projection of that
duplication into level 1. A sound level 1 generator can safely omit the partial assignment {v1 y} if
it generates the partial assignment {v1 z}, as all satisfying equivalence classes that contain exten-
sions of the omitted assignment also contain an extension of generated assignment. Therefore,
only two partial assignments ({v1 x} and {v1 z}) must be generated for the generator to be
sound.  

For any level of any search of any formula for any set of values, there is at least one sound gen-
erator. A trivial level i generator, which I call gx, implements the naive exhaustive-enumeration
search.

Definition 2.29 (gx)    

The level i exhaustive-enumeration generator gx : Ai-1  Value  Ai is defined as

gx(α,υ) = { α  { vi  x } | x    (υ  Typing( vi) ) }
where vi  Variable. Ord(vi) = i.

Because the exhaustive-enumeration generator generates every possible assignment, it is sound,
with many unnecessary assignments typically being generated.

Lemma 2.6 The exhaustive-enumeration generator gx, as defined in Definition 2.28, is sound 
for any duplication.

Proof: Obvious.

A search becomes unsound only if a satisfying equivalence class is orphaned, having no appropri-
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ately domain-projected assignments generated at some level of the search tree. For the duplication
illustrated in Figure 2.1, failing to generate the partial assignment {v1 x} at level 1 would orphan
the rightmost equivalence class (the one containing {v1 x,v2 y} and {v1 x,v2 z}).

Assuming that the prior level of the search tree has not orphaned any satisfying equivalence
classes, a search level expanded by a sound generator will not orphan any satisfying equivalence
classes either. More precisely, at level i, and for any satisfying full assignment a, there must be an
equivalent full assignment  a' whose projection (Vari-1  a') was generated at level i-1 if the equiva-
lence class containing a was not already orphaned. A sound level i generator is guaranteed to gen-
erate the projection of some full assignment a'' that is equivalent to a, therefore guaranteeing that
the equivalence class is still not orphaned.

Lemma 2.7 If a level i generator g is sound for ≈d then 
φ  Wff. υ  Value. a,a'  AN. (a ≈d a'   M[φ,a,υ] = TRUE  ran a'  υ) 

a''  AN. a ≈d a''  Vari  a''  g(Vari-1  a',υ)

Proof: Because g is sound,
a''  AN. a' ≈d a''  Vari  a''  g(Vari-1  a',υ).

By transitivity, a ≈d a''.  ■

A combination of duplications defines a new duplication, with each new equivalence class com-
pletely containing at least one equivalence class from each inital duplication. Therefore, a genera-
tor that is sound for one duplication is also sound for that duplication in combination with any
other duplication.

Theorem 2.8 If a level i generator g is sound for some duplication ≈a,
then for any duplication ≈b, g is also sound for ≈a  ≈b.

Proof:  Let υ  Value and a  AN such that ran a  υ  M[φ,a,υ] = TRUE.

Also let ≈ab = ≈a  ≈b.

v1 z
v2 x

v1 z
v2 y

v1 y
v2 x

v1 x
v2 x

v1 y
v2 y

v1 z
v2 z

v1 y
v2 z v1 x

v2 y
v1 x
v2 z

v1 z
v1 y

v1 x

v1 y

v1 z

v1 x

v1 y

Figure 2.1. The left hand side illustrates a duplication for a simple two-variable search and the 
right hand side illustrates the projection of that duplication to level 1. The shaded equivalence 

classes contain satisfying assignments.
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By the definition of a sound generator,
a'  AN.Vari  a'  g(Vari-1  a,υ)  a ≈a a'  ran a'  υ.

By definition of , a ≈a a'  a ≈ab a'.

Therefore, g is sound for ≈a  ≈b.  ■

A search requires a collection of generators, one associated with each variable. A function map-
ping each variable to an appropriate generator is called a generator suite.

Definition 2.30 (Generator Suite)    

A function γ : Variable  (A  A) is a generator suite iff 
dom γ = Variable  v  Variable. Ord(v) = i  γ(v) is a level i generator.

It is convenient to refer to the function gained by composing the generators contained in a genera-
tor suite. This composite generator, which I call γ*, yields the complete set of assignments to test
given a set of values to consider.

Definition 2.31 (Composite Generator)    

A composite generator γ* : Value  SN is defined using a generator suite γ as
γ*(υ) = GN(GN-1(GN-2(...G2(G1(A0,υ),υ)...),υ),υ)

where Gi(Q,υ) =  gi(q,υ) and gi = γ(vi).
q  Q

Selective enumeration is the result of testing each full assignment generated by a composite gener-
ator, keeping only the satisfying assignments.

Definition 2.32 (Selective Enumeration)    

Selective enumeration for the generator suite γ is the procedure that computes the 
function ω*(φ,υ) for a formula φ and a set of values υ, where

 ω*(φ,υ) = { a  AN | a  γ*(υ)  M[φ,a,υ] = TRUE }.

Lemma 2.9 Selective enumeration is a search.

Proof: Obvious.

If every generator in a generator suite is sound, then no satisfying equivalence class can be
orphaned. The result of a composite generator containing only sound generators will therefore
include at least one assignment for each satisfying equivalence class. Therefore, selective enumer-
ation is sound if the generators used are sound.

Theorem 2.10 For any formula φ, the selective enumeration search ω*(φ,υ)  for the generator suite 
γ is sound for φ and υ if g  ran γ. g is sound for some duplication ≈d.

Proof: By induction on level.

The induction hypothesis is 
a  AN.M[φ,a,υ] = TRUE  ran a  υ 

a'  AN. a ≈d a'  Vari  a'  Gi(Gi-1(... G1(A0,υ) ... ), υ),υ)
where Gi(X,υ) =  γ(vi)(x,υ)

x  X

For the base case, where i = 1,  the hypothesis to demonstrate is
a  AN.M[φ,a,υ] = TRUE  ran a  υ 

a'  AN. a ≈d a'  Vari  a'  G1(A0,υ)

Because A0 = {  }, G1(A0,υ) = γ(v1)( ,υ).
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Because Var0  a = , G1(A0,υ) = γ(v1)(Vari-1  a,υ).

Because γ(v1) is sound, the hypothesis holds directly from Lemma 2.7.

For the inductive case, we know that 
a'  AN. a ≈d a'  Vari-1  a'  Gi-1(... G1(A0,υ) ... ), υ).

Therefore, Gi will include the results of γ(vi)(Vari-1  a',υ).

By Lemma 2.7, therefore, a''  AN. a ≈d a''  Vari  a''  Gi(Gi-1(... G1(A0,υ) ... ), υ),υ).

Therefore, if there exists a full assignment a such that M[φ,a,υ] = TRUE  ran a  υ,
then γ*(φ,υ) will contain at least one assignment a'.

Because a ≈d a' and M[φ,a,υ] = TRUE, M[φ,a',υ] = TRUE and the search is sound.

2.6 Reductions and Efficiency

The goal of selective enumeration is to reduce the cost of searching for a solution. There are two
primary costs involved in the search: generating assignments and testing those assignments
against the formula. Selective enumeration attempts to reduce the number of assignments that are
generated, and thus the number of assignments that are tested. For any given formula and set of
values, the total cost of the search is (approximately) linearly related to the number of assignments
generated.

The number of assignments generated during a selective-enumeration search depends both
on the duplications chosen and on the generators implemented to remove the duplicates. A selec-
tive-enumeration technique is the combination of a duplication and a generator suite implement-
ing that duplication. I therefore introduce measures of both factors in this section.

Because at most one assignment from each equivalence class needs to be generated in a sound
search, the fewer equivalence classes in the duplication, the fewer assignments that need to be
generated. I can thus compare the effect of two different duplications on the cost of a search by
comparing the number of equivalence classes given by those duplications. The ratio of the number
of equivalence classes gives a measure of the relative effectiveness of two duplications at reducing
the cost of the search. Rather than comparing each pair of duplications, I instead compare each
duplication to the duplication underlying exhaustive-enumeration search, given by ≈  in (2.3).
This ratio, called the reduction by the duplication, is a number greater than or equal to one, with a
larger number representing a more substantial reduction in the cost of the search.

Definition 2.33 (Reduction)    

The reduction of a duplication ≈d for a formula φ and a set of values υ is

R(≈d,φ,υ) = |{ a  AN | ran a  υ }|

|≈d/υ|

where |≈d/υ| is the number of equivalence classes in ≈d including any assign-
ments containing only values from υ.

The search does not need to generate exactly one assignment per satisfying equivalence class to be
sound, it only needs to generate at least one assignment per equivalence class. For some duplica-
tions, including the ideal duplication ≈M defined in (2.4), perfect generators are computationally
infeasible. For other duplications, including the isomorph duplication defined in Chapter 4, a per-
fect generator is computationally significantly more expensive than a conservatively approximate
generator. Therefore, to fully compare duplications, the generator suite used must also be consid-
ered.
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The efficiency of a generator suite is the fraction of assignments generated that are necessary,
that is the fraction of assignments that are the first ones generated in their equivalence class. A per-
fect generator suite has an efficiency of one — every assignment generated is necessary for a
sound search. An inefficient generator will have an efficiency of less than one.

Definition 2.34 (Efficiency)    

The efficiency of a generator suite γ for a duplication ≈d, a formula φ, and a set of 
values υ is

E(γ,≈d,φ,υ) = |≈d/υ|

|γ*(υ)|
where |≈d/υ| is the number of equivalence classes in ≈d including any assign-
ments containing only values from υ.

The total cost of the search using generator suite γ, a duplication ≈d, and a set of values υ is
approximately the cost of the exhaustive-enumeration search divided by the product of R(≈d,φ,υ)
and E(γ,≈d,φ,υ). The cost of the exhaustive-enumeration search is proportional to the product of
the number of values in the intersection of υ with Typing(vi) for each variable vi.

It is more useful, however, to compare individual generators than to compare entire generator
suites. The efficiency of a single generator is conceptually the same as the efficiency of a generator
suite, the fraction of assignments generated that are necessary for soundness.

To help define this value, I define an extension of a set of partial assignments into a duplica-
tion as a set of full assignments that contains only assignments that are derivable from an element
in the set of partial assignments and is unique with regards to the duplication.

Definition 2.35 (ext)    

The function ext(Q,≈d) : Ai  Duplication  AN is defined by the recursive proce-
dure 

if Q is empty
ext(Q,≈d) =  

else
for some a  Q
ext(Q,≈d) = ext(Q  {a},≈d)  

{ a' : AN | Vari  a'  a   a''  ext(Q  {a},≈d).a'  ≈d a''}

The efficiency of a generator is the ratio of the size of the extension of the result of the generator
projected back to level i to the size of the actual result of the generator. Because the efficiency of a
generator may vary with different initial partial assignments, I average the efficiency across all
possible initial partial assignments.

Definition 2.36 (Efficiency)    

The efficiency of a level i generator g for a duplication ≈d, a formula φ, and a set of 
values υ is

E(g,≈d,φ,υ) = Σ| { Vari  a | a ext(g(α,υ),≈d) }|
α  Ai-1

Σ|g(α,υ)|
α  Ai-1

If the efficiency of a generator was independent of the initial partial assignment, the product of the
efficiencies of the individual generators in a generator suite would be the efficiency of the genera-
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tor suite. In general, however, the input does affect the efficiency of the generator, although this
appears only as a secondary effect in practice. The product of the efficiencies of each generator in a
generator suite is therefore a reasonable approximation of the efficiency of the generator suite. 

In the following two chapters I give heuristic computations to approximate the reduction of
the two classes of duplications used by Ladybug and to approximate the efficiency of the genera-
tors implemented in Ladybug. In Chapter 7, I validate these approximations with the empirical
results of checking specifications using Ladybug.
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Chapter 3

Partial Assignment Duplication

This chapter describes partial-assignment duplications and how they are exploited by Ladybug. A
partial-assignment duplication, like other duplications, allows a search to ignore assignments that
“duplicate” other assignments that are generated by the search.

A partial-assignment duplication depends on two factors: a filter formula, which is implied by
the formula being solved, and a common partial assignment, where multiple assignments bind
one or more variables to the same value(s). For two full assignments to be partial-assignment
duplicates, they must share a common mapping for some subset of the variables. This partial
assignment must fail to satisfy the filter formula, thus guaranteeing that any full assignment
extending the partial assignment will not satisfy the formula being solved by the search.

Ladybug uses three different techniques to exploit this pairing of a filter formula with partial
assignments: short circuiting, derived variables, and bounded generation. Each of these tech-
niques has different performance implications and is enabled by a different class of filter formulae.

Short circuiting is the most broadly applicable of the techniques. It uses an underlying genera-
tor to generate a set of partial assignments. Short circuiting then filters each assignment generated
through the filter formula, dropping any partial assignments that fail to satisfy the filter formula.
Although short circuiting can be used for any filter formula that is fully bound by the partial
assignments generated, it is the least efficient means of trimming the search tree, requiring many
partial assignments to be generated and subsequently thrown away.

Derived variables, on the other hand, are the most efficient means of generating the search tree,
but have the most limited set of possible filter formulae. For a level i derived variable generator,
there must be only a single value that can be bound to the ith variable to satisfy the filter formula
for any partial assignment from Ai-1. For Ladybug, only formulae that equate a variable to an
expression using only the first i-1 variables enables a level i derived variable generator.

Bounded generation  occupies a middle ground between the efficient, but narrowly applicable
approach of derived variables and the inefficient, but broadly applicable approach of short circuit-
ing. Like short circuiting, bounded generation uses an underlying generator to generate assign-
ments. Unlike short circuiting, however, bounded generation passes a reduced set of values to the
underlying generator, resulting in a smaller set of assignments being generated. The bounded-
generation generator projects each of these assignments into assignments that are guaranteed to
satisfy the filter formula. In this manner, bounded generation never generates assignments that are
immediately discarded and is therefore much more efficient than short circuiting. Although
bounded generation draws upon a more limited class of formulae than allowed by short circuit-
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ing, the class of formulae supporting bounded generation is much larger than the equalities
required by derived variables.

The first section of this chapter introduces another NP specification and solves a formula
based on that specification to provide an example of how partial-assignment duplications can be
exploited during a search. The second section formally defines a partial-assignment duplication
and each form of partial-assignment duplication generator. The third section explores the work-
ings of bounded generation in more detail. The fourth section describes the reduction available
from a partial-assignment duplication. The final section places these techniques in the context of
similar search reduction techniques developed by other researchers.

3.1 Example Search

This section informally considers how partial-assignment duplications can reduce the size of the
search tree. I introduce a new specification to illustrate this reduced search tree.     

Figure 3.1 lists a simple specification of the Macintosh desktop, including aliases and the trash
can. Everything on the desktop is an object (an element of the given type OBJ). The desktop objects
are partitioned into files and folders. Two distinct elements of folders are specially distinguished, the
trash can, denoted by the variable trash, and the hard drive, denoted by the variable drive.The func-
tion dir relates each object to the folder that contains it (if any). Any object except the ones denoted
by trash and drive can be contained in a folder. Some files are aliases (contained in the set aliases),
and provide links to other objects (as denoted by the function links). This specification simplifies
the system being modeled by disallowing aliases to link to other aliases. This restriction also disal-
lows cyclic links functions. The set trashed consists of all objects that are directly or indirectly con-
tained in trash.

 Because the variables files, folders, drive, and trash are marked as const, their bindings cannot
change across operations. This restriction means that the primed variables have the same binding
as the unprimed variables. For example, in any operation based on Finder, files = files'. As a conve-
nience, the resultant formula includes only the unprimed variables for these constant variables,
replacing the primed variables with the base equivalents throughout.

Figure 3.1 specifies a single operation, Move. The operation Move reparents an object (given by
the parameter x) from one folder to another (given by the parameter to). The preconditions not x =
to and not x in dir+.{to} disallow moving a folder into itself or one of its (direct or indirect) children.
The Move operation also indicates how the dir and links relations are modified by the operation.
Without aliases, the update to dir would be simply dir' = ((OBJ\{x}) <: dir) U { x-> {to}}. The additional
complexity inserts x into the folder fow which to is an alias, if to is an alias.

The claim TrashingWorks states that moving an object into the trash can (or a folder contained in
the trash can) should result in the object being considered trashed. Checking this claim requires
finding a solution to the formula1

(3.1)  { drive } <= folders \ dom dir and { trash } <= folders \ dom dir and
{ drive } <= folders \ dom dir' and { trash } <= folders \ dom dir' and
ran dir <= folders and ran dir' <= folders and
trashed = dir~+. {trash } and trashed' = dir'~+. {trash } and
not drive in trashed U { trash } and not drive in trashed' U { trash } and
aliases <= files and aliases' <= files and

1.  To improve readability, I have dropped several unnecessary parentheses required by the formula
language grammar.
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[OBJ] /* Everything is an object */

/* Constrain what a legal desktop can look like */
Finder = [

/* files and folders partition the objects */
  const files, folders: set OBJ 

/* drive and trash are two fixed, special folders */
  const drive, trash: OBJ

/* dir relates objects to their enclosing folder,
   links relates an alias to its underlying object */

  dir, links: OBJ -> OBJ
/* any object that has been thrown away is in trashed,
   aliases includes any object that is an alias */

  trashed, aliases: set OBJ
 |

/* drive and trash are both folders and not contained in any folder */  
 {drive, trash} <= folders \ dom dir 

/* only folders can contain other objects */
  ran dir <= folders

/* anything that is transitively contained in the trash is trashed */
  trashed = dir~+.{trash}

/* the drive can never be in the trash */
  not drive in trashed U {trash}

/* only files can be aliases */
  aliases <= files

/* only aliases are links */
  aliases = dom links

/* alases are never liked to */
  aliases & ran links = {}

/* no cycles are allowed in the links */
  links+ & Id = {}

/* files and folders partition OBJ */
  files & folders = {}
  files U folders = OBJ
]

/* Move an object (x) to inside another object (to) */
Move (x, to: OBJ) = [
  Finder
|

/* The object being moved cannot already contain the target */
  not x = to
  not x in dir+.{to}

/* update dir to indicate x is now in to (or what to refers to) */
  dir' = ((OBJ\{x}) <: dir) U { x-> (links U ((OBJ\aliases) <: Id)).{to} }

/* links is unchanged */
  links' = links
]

/* check that this guarantees that trashing something puts it in the trash */
TrashingWorks (x, to: OBJ) :: [ Finder | 

Move (x, to) and to in trashed U {trash} => x in trashed' ]

Figure 3.1. A simple specification of the Macintosh desktop interface to the trash,
including a simplified version of aliases.
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aliases = dom links and aliases' = dom links' and
aliases & ran links = {} and aliases' & ran links' = {} and
links+ & Id = {} and links'+ & Id = {} and
files & folders = {} and files U folders = Un and
not x = to and not x in dir+.{to} and links' = links and
dir' = ((Un\{x}) <: dir) U { x-> (links U ((Un\aliases) <: Id)).{to} } and
to in trashed U {trash} and not x in trashed'

This formula involves twelve variables. For this example search, I assume the ordering

Ord = <links, links', aliases, aliases', folders, trash, drive, files, to, dir, trashed, x, dir', trashed'>

In this example, I define a universe of four elements, with OBJ={ o0, o1, o2, o3 }.

Ladybug includes a mechanism for discovering potential filter formulae. This mechanism,
which is fully described in Chapter 5, starts with the conjuncts of the formula being solved and
adds any formulae that it can discover that are implied by these formulae. For (3.1), the candidate
formulae discovered by Ladybug includes

{ drive } <= folders \ dom dir
{ trash } <= folders \ dom dir
{ drive } <= folders \ dom dir'
{ trash } <= folders \ dom dir'
ran dir <= folders
ran dir' <= folders
trashed = dir~+. {trash }
trashed' = dir'~+. {trash }
not drive in trashed U { trash }
not drive in trashed' U { trash }
aliases <= files
aliases' <= files
aliases = dom links
aliases' = dom links'
aliases & ran links = {}
aliases' & ran links' = {}
links+ & Id = {}
 links'+ & Id = {}
files & folders = {}
files U folders = Un
not x = to
not x in dir+.{to}
links' = links
dir' = ((Un\{x}) <: dir) U { x-> (links U ((Un\aliases) <: Id)).{to} }
to in trashed U {trash}
not x in trashed'
trash in folders
not drive in {trash}
drive in folders
Un \ folders <= files
files <= Un \ folders
not drive in dom dir
not trash in dom dir

In considering the possible choices of values for the first variable, links, all possible functions
must be generated and bound to links, totaling 625 distinct assignments2. One of the formulae
above, links+ & Id = {}, involves only the variable links. By testing each of the 625 assignments
against this formula, 500 can be discarded as not satisfying the acyclic requirement, leaving 125
partial assignments at level 1. For example, the assignment binding the function { o0  o0 } to links
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yields an assignment that does not satisfy this formula. To progress in this search example, I
choose to bind { o0  o1 } to links.

The next variable,  links', must be bound to the same value as links, as required by the candidate
formula links' = links. Rather than generating all 625 possible functions and testing each one for
equality to the one chosen for links, the search will simply bind the same value to links' as was
already bound to links. This direct assignment is an example of a derived variable.

The third variable, aliases, can also be derived, using the filter formula aliases = dom links.
Therefore, the assignment constructed thus far in the search is

{ links = { o0  o1 }, links' = { o0  o1 }, aliases = { o0 } }.

The formula aliases & ran links = {}, which is one of the candidate formulae implied by (3.1), is fully
bound by this assignment and can be used to further short circuit the search. Although the assign-
ment chosen for this example search path satisfies this formula, many (84 to be exact) of the 125
level 1 partial assignments generated will be pruned here. The search binds the variable aliases' to
the same value as aliases, using equivalent primed formulae. All remaining 41 partial assignments
generated at level 3 can be extended to level 4.

All 16 possible sets must be considered for folders, as all candidate formulae that involve fold-
ers also includes a variable not yet enumerated in the search. For this example search path, I
choose the partial assignment

{ links = { o0  o1 }, links' = { o0  o1 }, aliases = { o0 }, aliases' = { o0 }, 
folders = { o1, o2  } }.

An improved formula discovery process could reduce the number of level 5 assignments consid-
ered. The formula aliases & folders = {} is implied by the combination of aliases <= files and files &
folders = {}, both of which are candidate formulae implied by (3.1). This missing formula allows
eight assignments (all sets including o0) to be generated along this path, only to be discovered as
the basis of dead end paths later in the search.

The search could choose to generate assignments with each of the four objects bound to trash,
the next variable in the search. Short circuiting would then test each of these four assignments
against the candidate formula fully bound by these assignments, trash in folders. However, this for-
mula also enables the more efficient bounded generation, which I always choose over short cir-
cuiting when available. With bounded generation, only the two elements in the set currently
bound to folders, o1 and o2, are considered. This restriction guarantees that the candidate formula
is satisfied and no short-circuiting tests are necessary. For this example search path, I choose to
bind the element o2 to trash, yielding the assignment

{ links = { o0  o1 }, links' = { o0  o1 }, aliases = { o0 }, aliases' = { o0 }, 
folders = { o1, o2  }, trash = o2  }.

The other distinguished folder, drive, is the next variable to be bound. Two candidate formulae
involve only drive and variables already bound: not drive in { trash } and drive in folders. Each of these
formulae enable bounded generation, jointly requiring that drive be an element of folders \ { trash }.
For the current search path, this restriction means that only the element o1 will be considered for
drive. Although this restriction limits drive to a single possible value, drive is not a derived variable,

2. Only 155 of these functions are isomophically distinct. As I shall demonstrate in Chapter 4, the
techniques demonstrated in this chapter can be combined with isomorph elimination to further
reduce the cost of the search.
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as other partial assignments will leave more than one value to consider.

The search also uses two formulae to limit the possible values for the next variable, files, to a
single choice. Unlike the case with drive, the formulae Un \ folders <= files and files <= Un \ folders
always limit the number of possible values to one and could be used to derive this variable. How-
ever, the candidate formula discovery process never yields the formula files = Un \ folders that
would enable files to be treated as a derived variable. The candidate formula aliases <= files is also
fully bound by a level 8 assignment and enables further bounded-generation opportunities. With
bounded generation, only the set that includes all the elements of aliases and every element not
included in folders and does not include any elements of folders is considered to be bound to files.
Whenever the earlier unrecognized formula aliases & folders = {} is satisfied, there is exactly one set
to be considered. For the example search path being considered, the partial assignment construct
thus far is

{ links = { o0  o1 }, links' = { o0  o1 }, aliases = { o0 }, aliases' = { o0 }, 
folders = { o1, o2  }, trash = o2, drive = o1,  files = { o0, o3  } }.

The next variable to be bound is to. No candidate formulae involve only to and the variables
bound earlier, so all 4 possible values of to must be considered. For the example search path, I
choose to bind the element o0 to the variable to.

The next variable, dir, is a function that is supported by five candidate formulae: not drive in dom
dir, not trash in dom dir, ran dir <= folders, { drive } <= folders \ dom dir, and { trash } <= folders \ dom dir. The
first three of these formulae enable bounded generation, meaning that the domain and range of
any values to be considered for dir are limited (e.g. dir  ({ o0, o3  }  { o1, o2  }) ). From the nine
functions satisfying this constraint, I choose the value { o0  o2 } to bind to the variable dir in this
example. The fourth and fifth candidate formulae are used to short circuit the search. This short
circuiting will gain no reduction, as these formulae are implied by other filter formulae already
considered in the search.

The next variable, trashed, can be derived from the formula trashed = dir~+.{trash}. The search
therefore binds the value { o0 } to trashed. Two more formulae, not drive in trashed U { trash } and to in
trashed U { trash }, can prune some assignments generated thus far, but allow the assignment con-
structed by the example search to continue. The assignment constructed thus far is

{ links = { o0  o1 }, links' = { o0  o1 }, aliases = { o0 }, aliases' = { o0 }, 
folders = { o1, o2  }, trash = o2, drive = o1,  files = { o0, o3  },
 to = o0, dir = { o0  o2 }, trashed = { o0 }  }.

The next variable, x, is the last non-derived variable considered in the search. Two candidate for-
mulae enable bounded generation for x: not x = to and not x in dir+.{to}. These formulae require that
the value of x be drawn from Un \ ({to} U dir+.{to}). In the example search constructed thus far, this
allows any element other than o0 to be considered for x. For this example search path, I choose the
value o3 for x.

The variable dir' can be derived from the assignment constructed thus far, based on the for-
mula dir' = ((Un\{x}) <: dir) U { x-> (links U ((Un\aliases) <: Id)).{to} }. For the example assignment con-
structed thus far, this requires dir' to be bound to { o0  o2, o3  o1 }. Three candidate formulae, ran
dir' <= folders, { drive } <= folders \ dir', and { trash } <= folders \ dir', enable further short circuiting of the
search tree.

Finally, the variable trashed' must be bound to the value of dir'+.{ trash }, based on the candidate
formula trashed' = dir'+.{ trash }. The resultant full assignment only needs to be checked against the
formula not drive in trashed' U { trash }. The following full assignment constructed by the example
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search satisfies this formula, thus providing a counterexample to the claim TrashingWorks.

{ links = { o0  o1 }, links' = { o0  o1 }, aliases = { o0 }, aliases' = { o0 }, 
folders = { o1, o2  }, trash = o2, drive = o1,  files = { o0, o3  },
 to = o0, dir = { o0  o2 }, trashed = { o0 }, x = o3,
 dir' = { o0  o2, o3  o1 }, trashed' = { o0 }  }.

In this counterexample, an object is moved into an alias for a folder. The alias is in the trash, but
the underlying folder is not. In the model, this action does result in the object being in the trash. In
the actual Macintosh desktop, this action results in an alert disallowing the action and recom-
mending that the user remove the alias from the trash.

The example search path I demonstrated required no backtracking to discover this counterex-
ample. Ladybug, using a simple, smallest-first value selection process, requires 9,633 different
paths before locating this counterexample. Although some backtracking is required, this number
still represents a huge reduction from the total search tree, which contains 6.55 1020 total search
paths. Even finding all 408 counterexamples requires only 36,288 distinct search paths to be con-
sidered. By integrating isomorph elimination, the number of paths considered drops to only 92 to
find both isomorphically distinct counterexamples. Each of these searches requires less than a sec-
ond to complete.

3.2 Formal Definitions

This section formally defines each of the three techniques for exploiting a partial-assignment
duplication. As a reminder, I re-introduce the definition of a partial-assignment duplication given
by Definition 2.25.

Definition 2.25 (Partial Assignment Duplication)    

An equivalence relation ≈ρ(φ') is a partial-assignment duplication of the filter formula 

φ' for a formula φ and a set of values υ iff
φ φ' a,a'  AN. (a ≈ρ(φ') a'  (a = a'  (M[φ',a,υ] = FALSE  M[φ',a',υ] = FALSE))).

The key to a partial-assignment duplication is the filter formula φ'. Two distinct full assignments
are duplicates only if neither satisfies φ'. Each assignment satisfying φ' forms its own equivalence
class in ≈ρ(φ'), with all other full assignments combining into a single equivalence class.

To be useful to a level i generator implementing any of these approaches, the variables of the
filter formula must be limited to a subset of Vari. Each technique described in this section places
additional constraints on this filter formula.

Short circuiting is independent of the problem domain. A short circuiting generator uses an
underlying generator to generate a set of assignments, and then yields the subset of those assign-
ments that satisfies the filter formula.

Definition 3.1 (Short Circuiting Generator)    

A level i generator g : Ai-1  Value   Ai with an underlying level i generator g' 
and a filter formula φ' is a level i short-circuiting generator for a formula φ and a 
set of values υ iff
φ φ' Var(φ')  Vari  g(α,υ) = { a | a  g'(α,υ)  M[φ',a,υ] = TRUE }.

A short circuiting generator is sound if the underlying generator is sound because short circuiting
only excludes partial assignments with no satisfying extensions.
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Theorem 3.1 A level i short-circuiting generator for a formula φ and a set of values υ with an un-
derlying level i generator g' and a filter formula φ' is sound for any duplication ≈ if 
g' is sound for ≈.

Proof: By Definition 2.28, g is sound for ≈ iff
υ  Value. a  AN. (M[φ,a,υ] = TRUE  ran a  υ)  

a'  AN. Vari  a'  g(Vari-1  a,υ)  a≈ a'  ran a'  υ
Let a  AN such that M[φ,a,υ] = TRUE  ran a  υ.

Because g' is sound for ≈,
a'  AN. Vari  a'  g'(Vari-1  a,υ)  a ≈ a'  ran a'  υ.

Because  ≈ is a duplication and a ≈ a' and M[φ,a,υ] = TRUE,
M[φ,a',υ] = TRUE.

Therefore, because φ φ', M[φ',a',υ] = TRUE.

Therefore, because Var(φ')  Vari, by Lemma 2.2, M[φ',Vari  a',υ] = TRUE.

Therefore, by Definition 3.1, Vari  a'  g(Vari-1  a,υ).  ■

A short-circuiting generator reduces the cost of the search by pruning some uninteresting paths
from the tree, but at a significant cost. For the last level of the tree, this cost is identical to the sav-
ings. Therefore, short circuiting is not appropriate for use as a level N generator.

Unlike short circuiting, derived variables are appropriate, if available, at any level. To be avail-
able, the filter formula φ' must constrain the ith variable to the same value in all satisfying full
assignments that are extensions of any given partial assignment from Ai-1.

Definition 3.2 (Derived-Variable Generator)    

A level i generator g : Ai-1  Value  Ai with a filter formula φ' is a level i 

derived-variable generator for a formula φ and a set of values υ iff
φ φ' Var(φ')  Vari  α  Ai-1.

(( x  υ.( a  Ai.(Vari-1  a = α  M[φ',a,υ] = TRUE)  a(vi) = x) 
g(α,υ) = { α  { vi  x } }) 

( x  υ  Typing(vi).M[φ',α  { vi  x },υ] = FALSE g(α,υ) = ))

where vi  Variable and Ord(vi) = i.

A derived-variable generator is sound because the formula φ' sufficiently constrains the problem
to guarantee that the single assignment generated is the only possibly satisfying extension of the
initial assignment.

Theorem 3.2 A level i derived-variable generator g for a formula φ and a set of values υ with a 
filter formula φ' is sound for any duplication ≈ if α  Ai-1.

( ( x  υ.( a  Ai.(Vari-1  a = α  M[φ',a,υ] = TRUE)  a(vi) = x)) 
( x  υ  Typing(vi).M[φ',α  { vi  x },υ] = FALSE) )

where vi  Variable and Ord(vi) = i..

Proof: Let a  AN such that M[φ,a,υ] = TRUE  ran a  υ.
If no such assignment exists, any result of the generator, including the empty set, 
would be sound.

Because φ φ', M[φ',a,υ] = TRUE.

Therefore, because Var(φ')  Vari, M[φ',Vari  a,υ] = TRUE.

Therefore, there exists a value x and the first case is relevant.
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Therefore, g(Vari-1  a,υ) = { Vari-1  a  { vi  a(vi) } }.

Obviously, { Vari-1  a  { vi  a(vi) } } = Vari  a.

Therefore, Vari  a  g(Vari-1  a,υ)  a ≈ a  ran Vari  a  υ  ■

Derived-variable generators give large reductions with little cost, an ideal combination. Unfortu-
nately, relatively few variables in practice are constrained by an appropriate equality.

Bounded generation is appropriate where the filter formula constrains the value to something
less than all of υ, but more than a single value. Although the specific forms of constraints sup-
ported vary across problem domains and implementations, two classes of constraints are gener-
ally available.

The simplest constraints require that the value for the ith variable be chosen from an easily
described subset of the set of values υ. As an example, assume that t and s are elements of Varset

and ordered as i-1th and ith variables respectively. The formula s <= t constrains s to be bound only
to a subset of the set bound to t in any assignment that satisfies this formula. A level i bounded-
generation generator uses a reduced set of values equal to the powerset of t. Bounded generation
passes this reduced set of values to an underlying generator to generate assignments. All assign-
ments generated by this underlying generator will satisfy the formula s <= t.

Other constraints limit the value for the ith variable to be an element of a set most easily
described as projections of the values in a subset of the set of values υ. An obvious example is the
formula x in s, where s is defined as before and x is a scalar variable enumerated before s. A possi-
ble approach involves enumerating all sets that include the value of  x. This approach, however,
cannot be described as a powerset and is not closed under set difference or permutation, causing
problems in the implementation. Instead, bounded generation excludes any set containing the
value of x from the reduced set of values υ'. Bounded generation then uses a projection function to
insert the value of x into each set bound to s in the assignments generated by the underlying gen-
erator.

To combine these concepts, I view the simpler constraints as a special case of the more com-
plex constraints. All bounded-generation generators require four pieces: a filter formula, an
underlying generator, a reduced set of values, and a projection function. The simpler constraints
define the projection function to be the identity.

Definition 3.3 (Bounded-Generation Generator)    

A level i generator g : Ai-1  Value  Ai for a formula φ and a set of values υ 

with a filter formula φ', reduced set of values υ', a projection function proj, and an 
underlying generator g' defined as

φ' : Wff . φ φ' Var(φ')  Vari 

υ' : Value . υ'  υ 
proj : (υ'  Typing(vi))  Ai-1 x Value  (υ  Typing(vi)) . 

α  Ai-1. x  υ  Typing(vi). 
 M[φ',α  { vi  x },υ] = TRUE  x'  υ'. x = proj(x',α,υ)

g' : Ai-1  Value   Ai. g' is a level i generator  

is a level i bounded-generation generator iff
α  Ai-1. g(α,υ) = { proj(a(vi),α,υ) | a  g'(α,υ') }.

where vi  Variable and Ord(vi) = i.

Ideally, the next theorem would state that bounded generation is sound if the underlying genera-
tor is sound for some duplication ≈. Because the projection function may change the assignments
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generated by the underlying generator, it may transform the lone representative of some equiva-
lence class of ≈ into an element of a separate equivalence class for ≈. The underlying generator
must therefore satisfy a different sense of soundness to guarantee that the bounded-generation
generator is sound. Limited soundness for a generator is similar to soundness with two notable dif-
ferences. The newly bound value must be from a reduced set of values. The results of the genera-
tor must cover the duplication only after each assignment in the result is projected through a
projection function.

Definition 3.4 (Limited Soundness)    

A level i generator g is limited sound for a duplication ≈, a formula φ, and a set of 
values υ under a reduced set of values υ' and a projection function 
proj : (υ'  Typing(vi))  Ai-1 x Value  (υ  Typing(vi)) iff

υ'  υ  a  AN. (M[φ,a,υ] = TRUE  ran a  υ)  

a'  AN. a ≈ a'  ran a'  υ   
a''  g(Vari-1  a,υ'). Vari-1  a'  Vari-1  a''  

a'(vi) = proj(a''(vi),Vari-1  a,υ)

where vi  Variable and Ord(vi) = i.

If the reduced set of values is the inclusive subset and the projection function is the identity,
the definition of limited soundness degenerates to the definition of soundness. All sound genera-
tors therefore are limited sound for the inclusive set of values and the identity function. Many gen-
erators that are sound are also limited sound under other subsets of values and projection
functions. The exhaustive-enumeration generator gx, given in Definition 2.29, is limited sound for
any reduced set of values which is projected by the projection function to include all values satis-
fying some formula implied by the formula being solved.

Lemma 3.3 The level i exhaustive-enumeration generator gx for a formula φ and a set of val-
ues υ is limited sound under a set of values υ' and a projection function proj if
 φ'  Wff. φ φ'  Var(φ')  Vari  

α  Ai-1. x  υ  Typing(vi).
M[φ',α  { vi  x },υ] = TRUE  x'  υ'. x = proj(x',α,υ)

where vi  Variable and Ord(vi) = i.

Proof: Let a  AN such that M[φ,a,υ] = TRUE  ran a  υ and 
let x  υ  Typing(vi) such that M[φ',Vari-1  a  { vi  x' },υ] = TRUE

Therefore, x'  υ'. x  proj(x',Vari-1  a, υ).

By the definition of gx, because x'  υ', 
(Vari-1  a  { vi  x' })  gx(Vari-1  a,υ').

Therefore, a'  g(Vari-1  a,υ'). Vari-1  a  Vari-1  a'  
a(vi) = proj(a'(vi),Vari-1  a,υ).  ■

A level i bounded-generation generator is sound if the underlying generator is limited sound.

Theorem 3.4 A level i bounded-generation generator g for a formula φ and a set of values υ with 
the underlying level i generator g', set of values υ', projection function proj, and fil-
ter formula φ' is sound for a duplication  ≈ if g' is limited sound for ≈ under the set 
of values  υ' and the projection function proj.

Proof: Let a  AN such that M[φ,a,υ] = TRUE  ran a  υ.

To prove soundness, it is necessary to show that,
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a'  AN. Vari  a'  g(Vari-1  a,υ)  a ≈ a'  ran a'  υ

Because g' is limited sound for ≈ under υ' and proj,
a'  AN. a ≈ a'  ran a'  υ   

a''  g'(Vari-1  a,υ'). Vari-1  a' = Vari-1  a''  
a'(vi) = proj(a''(vi),Vari-1  a,υ).

Therefore, a'  AN. a ≈ a'  ran a'  υ  Vari  a'  g(Vari-1  a,υ).  ■

Although not exploited by Ladybug, another form of duplication similar to partial-assign-
ment duplication is also available for reducing the search space. A disjunctive partial-assignment
duplication considers two full assignments to be equivalent iff they both contain a common partial
assignment that satisfies a filter formula and that filter formula implies the formula being solved.
Whereas a partial-assignment duplication groups assignments that are not satisfying by testing
them against a conjunct of the formula being solved, a disjunctive partial-assignment duplication
groups satisfying assignments that contain a common partial assignment that satisfies a disjunct
of the formula being solved.

Definition 3.5 (Disjunctive Partial Assignment Duplication)    

An equivalence relation ≈ (φ') is a disjunctive partial-assignment duplication of the fil-

ter formula φ' for a formula φ and a set of values υ iff
φ' φ a,a'  AN. (a ≈ (φ') a'  (a = a'  (M[φ',a,υ] = TRUE  M[φ',a',υ] = TRUE))).

Unlike a partial-assignment duplication, a disjunctive partial-assignment duplication needs to
retain one representative of each equivalence class. Therefore, the techniques used to exploit a par-
tial-assignment duplication are not directly applicable to a disjunctive partial-assignment duplica-
tion. Ladybug ignores this duplication, as the default normalization it uses eliminates disjunctions
from any formula solved directly by selective enumeration. 

3.3 Bounded Generation

Bounded generation is the most interesting and the most complicated of the three techniques
addressed in this chapter. This section explores the workings of bounded generation in detail.

The selection of a filter formula is the primary consideration in using bounded generation.
The choice of a filter formula for short circuiting, because of its broad applicability, and for derived
variable generation, because of its narrow applicability, is straightforward. Any formula using
only the first i variables enables short circuiting. Only equivalences relating the ith variable to the
value of a term using only the first i-1 variables support derived variables. In Ladybug, bounded
generation can exploit formulae that use the first i variables and match any of the bounded-gener-
ation patterns. Table 3.1 shows the complete set of patterns used by Ladybug and the effect of
these formulae on the reduced set of values and projection function.

For set variables, the applicable formulae fall into three categories: atomic formulae that
restrict the value bound to a variable to be a subset of the value denoted by a set term, atomic for-
mulae that restrict the value bound to a variable to be a superset of the value denoted by a set
term, and atomic formulae that restrict the value bound to a set variable to be disjoint from the
value denoted by a set term. In every case, the associated set term must include only variables
from Vari-1.   

Bounded generation converts each of these cases into a reduced set of values and a projection
function. For the first pattern, set subsetting, the reduced set of values is simply the powerset of
the value bound to the set term and the projection function is the identity. For the second category,
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set supersetting, the reduced set of values is the powerset of the complement of the value denoted
by the set term and the projection function yields the union of value denoted by the set term and
the value bound to ith variable. The disjoint case also uses the powerset of the complement of the
value denoted by the set term as the reduced set of values, but uses the identity function as the
projection function.

Scalar variables have three categories of available filter formulae: membership in a set, the
negation of membership in a set, and negated equality to another scalar. Again, all filter terms
must include only variables from Vari-1. For the first case, membership, the reduced set of values is
the set denoted by the set term. For the second case, negated membership, the reduced set of val-
ues is the complement of the set term. The third case, inequality, indicates that the reduced set of
values is the universe of atomic elements minus the scalar denoted by the other scalar term. In all
scalar cases, the projection function is the identity.

Rather than subsetting and supersetting the relations themselves, Ladybug generally consid-
ers subsetting only the domains and ranges of relation values. If the filter formula restricts the
domain of the ith relational variable to be a subset of a set term including only variables from Vari-1,
the reduced set of values includes all relations where the domain is a subset of the indicated set
term. The range or both the domain and the range can be restricted similarly. For either of these
cases, the projection function is the identity.

Bounded generation will subset the relation value itself only when the relational variable is
constrained to be a function. The reduced set of values for this case includes only values in the
complement of the domain of the value denoted by τ. The projection function in this case yields
the union of the value denoted by τ and the relation bound to the ith variable. Unlike other cases of
bounded generation, the generator does not guarantee that the filter formula is satisfied. In partic-
ular, if the value denoted by τ is not a function, the newly generated relation will not be either.
This case also applies to relations constrained to be injections, reducing the range rather than the
domain.

Filter Formula Reduced values Projection function

vset <= τ Mset[τ,α,υ] proj(X,α,υ) = X

τ <= vset Mset[(Un \ τ),α,υ] proj(X,α,υ) = Mset[(X U τ),α,υ]

(vset & τ) = {} Mset[(Un \ τ),α,υ] proj(X,α,υ) = X

vscalar in τ Mset[τ,α,υ] proj(x,α,υ) = x

not vscalar in τ Mset[(Un \ τ),α,υ] proj(x,α,υ) = x

not vscalar = τ Mset[(Un \ {τ}),α,υ] proj(x,α,υ) = x

dom vrel <= τ Mset[ τ,α,υ]  U) proj(R,α,υ) = R

ran vrel <= τ U  Mset[τ,α,υ]) proj(R,α,υ) = R

func vrel and τ <= vrel Mset[(Un \ dom τ),α,υ]  U) proj(R,α,υ) = Mrel[(R U τ),α,υ]

Table 3.1: Forms of filter formulae supporting bounded generation. The first column gives a 
description of each filter formula that supports bounded generation. The second column indicates 

the values that can still be included in the reduced set of values. The third column gives the 
projection function required by each filter formula. 
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If multiple atomic formulae support bounded generation for the ith variable, the filter formula
used is the conjunction of two formulae. The resultant reduced set of values is the intersection of
the reduced sets of values from each atomic formula and the resultant projection functions is the
composition of the projection function from each atomic formula3.

I return to the Alloc example to demonstrate how bounded generation works. The set of for-
mulae implied by (2.2) discovered by Ladybug includes

1) dom usage <= used

2) dom usage' <= used'

3) used <= used'

4) func usage and ( used <: usage' ) <= usage

5) ran usage <= ran usage'

6) newAddr in used'

7) newAddr in used

For bounded generation alone, Ladybug chooses the variable ordering

Ord = < used, used',  newAddr,  usage', usage }

Because all the formulae considered reference variables enumerated after used, no bounded gener-
ation is available for used. Therefore, bounded generation is equivalent to the underlying genera-
tor for used. If this underlying generator is the exhaustive-enumeration generator, all possible sets
must be generated.

The third formula (used <= used') enables the bounded generation of used'. All sets containing
any element found in used are excluded from the set of reduced values. The value of used' in each
assignment generated by the bounded-generation generator is the union of the value of used and
the value bound to used' in the assignment generated by the underlying generator. 

The last two formulae (newAddr in used', newAddr in used) support the bounded generation of
newAddr. Without bounded generation, each element in Addr would need to be considered for
newAddr. Instead, the reduced set of values passed to the underlying generator includes only the
intersection of the values of used' and used.

The second formula (dom usage' <= used') supports the bounded generation of usage'. The
reduced set of values passed to the underlying generator includes only relations that include ele-
ments found in used' in their domain. 

The first formula (dom usage <= used) has the equivalent effect on the generation of usage as
the second formula has on the generation of usage'. Because it constrains usage to be a function,
the fourth formula (func usage and ( used <: usage' ) <= usage) supports a further reduction. Any
relation including elements from the domain of used <: usage' in its domain is excluded from the
reduced set of values. The value of used <: usage'  is then unioned into each relation generated by
the underlying generator. These two reductions interact very well, with the first reduction remov-
ing all elements not in used from the domain and the second removing all elements in the intersec-
tion of used and the domain of usage'. The reduced set of values therefore only includes relations
whose domain is included in used \ dom usage'. In addition, the fifth formula (ran usage <= ran
usage') removes any relation with a range containing elements not found in the range of usage'.  

Figure 3.2 illustrates a single path to a solution in this bounded-generation search given a uni-

3. The order of composition is inconsequential as union, the only operation used in the projection
functions, is both associative and commutative.
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verse of three addresses and three data elements. Each row of the figure is associated with a single
variable and shows the process for choosing the value to be bound to that variable in an assign-
ment generated at that level. The first column lists the variable and any filter formulae used by
bounded generation. The three (six) circles in the second column represent the domain (domain
and range) from which the reduced set of values is constructed. A circle is grayed when the corre-
sponding element is removed from consideration in the reduced set of values. The third column
lists the reduced set of values passed to the underlying generator.

used { a0 }

used'
( used <= used' )

{ a0 }

newAddr
(newAddr in used )

a0

usage'
( dom usage' <= used' )

usage
(   dom usage <= used

  used <: usage' <= usage

  ran usage <=  ran usage' ) 

{  }

Variable
(Constraint)

Available
Elements

Possible
Values  

 
Value

Generated

{ a0 v0 }

{ a0 v0 }

{ }

{ a0 }

{ a1 }

{ a2 }

{ a0, a1}

{ a0, a2 }

{ a1, a2 }

{ a0, a1, a2 }

{ }

{ a1 }

{ a2 }

{ a1, a2 }

a0

{ } { a0 v0 }

{ a0 v1 } { a0 v2 }

{ a0 v0, a0 v1

{ a0  v0, a0 v2 }

{ a0  v1, a0 v2 }

{ a0 v0, a0  v1, a0 v2 }

Figure 3.2. An illustration of a single path in a bounded generation search. The triple circles rep-
resent the three atomic elements in the universe from which the value may be drawn. Elements
represented by circles that have been grayed are not made available in the reduced set of values
given to the underlying generator.The boxed value from the reduced list of possible values rep-
resents the value chosen by the underlying generator.
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As indicated in Figure 3.2, the underlying generator has several possible choices for most vari-
ables. I have chosen a specific value (indicated by a heavy box) from the reduced set of values to
be bound to an assignment generated by the underlying generator at that level. Before being
bound to the assignment yielded by the bounded-generation generator itself, the bounded-gener-
ation generator must pass this value to the projection function, which may modify the value. The
fourth column indicates the value that will be bound in the assignment yielded by the bounded-
generation generator. As an example, the projection function inserts the value of used ({ a0 } in this
case) into the value chosen for used'. Bounded generation uses the projection function to similarly
modify the value bound to usage before returning that (full) assignment.

3.4 Reduction

This section considers how effectively partial-assignment duplications reduce the size (and cost)
of the search for a satisfying assignment. Chapter 2 introduces the concepts of reduction and effi-
ciency as a measure of this effectiveness. For the techniques described in this chapter, the effi-
ciency is always a perfect 1.0 for any filter formula supported by the technique. The reduction, on
the other hand, depends both on the problem domain and the filter formula φ'. In this section, I
develop a heuristic that estimates the reduction for the relational problem domain as a function of
the filter formula.

The reduction of a formula φ for a duplication ≈ and a set of values υ is given by R(≈,φ,υ). The
reduction is the ratio of the number of full assignments that contain only values drawn from υ το
the number of equivalence classes in ≈ containing at least one assignment drawn entirely from υ.
For a partial-assignment duplication, the number of equivalence classes is one more than the num-
ber of full assignments that satisfy the filter formula φ'.

Computing the exact number of satisfying assignments for a relational formula is in general
not possible without the exhaustive search that selective enumeration seeks to avoid. Obtaining
reasonable estimates, on the other hand, is a straightforward procedure.

For atomic formulae (or negated atomic formulae), the combination of the grammar produc-
tion defining the formula and the set of values maps directly to an estimated percentage of satisfy-
ing assignments. For example, if the atomic formula involves the scalar equality operator and υ
contains k scalars, approximately 1/k of all full assignments will be satisfying assignments. On the
other hand, approximately 1/2 of all full assignments will be satisfying assignments if the opera-
tor is the set membership operator (in), regardless of the set of values υ. 

These approximations assume that the set of values used for any variable includes all well-
typed values derived from any atomic elements in the set of values, which I call a complete set of
values for that variable. A complete set of values passed to a generator for a set variable includes
the powerset of the set of all atomic elements in both the set of values itself and the given type of
that variable. Similarly, a complete set of values passed to a generator for a relation variable
includes all relations that can be built from the cross product of the atomic elements in the set of
values and that satisfy the typing requirements of the variable. Ladybug only considers complete
sets of values.

Definition 3.6 (Complete Set Of Values)    

A set of values υ : Value is a complete set of values for a variable v iff
( (U  υ)  (U  υ)  ((U  υ)  (U  υ)))  Typing(v)  υ .

( (U  υ)  (U  υ)  ((U  υ)  (U  υ)))

If the set of values is complete and the terms in the formula are simple variables, these approx-
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imations will be exact. Assuming the set of values includes the atomic elements e1, e2, ..., ek, the
atomic formula a in s will be satisfied by one half of the full assignments, whereas the atomic for-
mula a = b (where a and b are both scalar variables) will be satisfied by 1/k of the full assignments.        

This approach can yield unacceptably inaccurate approximations where the terms are not sim-
ple variables. It approximates that the formula a in { b } will satisfied by one half of the full assign-
ments, although this formula obviously is satisfied by the same 1/k of the assignments that satisfy
a = b. For set terms, much of this inaccuracy can be overcome by adjusting for the cardinality of the
terms. The average cardinality of a term can be approximated as a function of the underlying set of
values and the term itself. Table 3.2 provides a formula giving an approximation of the mean car-
dinality for each set term production in the grammar, based on the set of values and an approxi-
mation of the average cardinality of each component term. Table 3.3 provides formulae
approximating the cardinality of the domain and the range as well as the cardinality of the relation
itself for each relation term production.    

The approximations of the cardinalities of sets other than the relational image term are exact
computations of the mean across all values in a complete set of values. Other computations,
including relational image and the relational union, intersection, and difference operators, are
exact for some subsets of a complete set of values and remain a reasonable approximation for a
complete set of values. Finally, some approximations, such as the average cardinality of the
domain and range of relational variables, are simply reasonable approximations over the size of
problems handled by Ladybug.

Table 3.4 indicates how these approximate mean cardinalities are used to predict the portion
of assignments that will satisfy various atomic formulae. In general, the filter formula of a partial-
assignment duplication may be the conjunction of atomic formulae4. For this approximation, I

τ #τ

v k/2

{ τ1 } 1

{ } 0

Un k

τ1 U τ2 (#τ1 + #τ2) - (#τ1 ∗ #τ2)/k

τ1 & τ2 (#τ1 ∗ #τ2)/k

 τ1 \ τ2 #τ1 - (#τ1 ∗ #τ2)/k

dom τ1 #dτ1

ran τ1 #rτ1

τ1(τ2) #rτ1 ∗ (#dτ1 ∗ #τ2)/k2

Table 3.2: Approximating the mean cardinality of set terms. In the approximations, k represents the 
number of atomic elements in the set of values, #τ1 represents the estimated mean cardinality of 

the set term τ1 or the estimated mean number of edges in the relation term τ1, #dτ1 represents the 
estimated mean cardinality of the domain of the relation term τ1, and #rτ1 represents the estimated 

mean cardinality of the range of the relation term τ1.
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4. Because Ladybug normalizes the formula and solves each disjunct separately, the base formula
to solve involves only conjunctions. Ladybug will never generate disjunctions in the filter formu-
lae. 

τ #dτ #rτ #τ

v k - 1/2 k - 1/2 k2/2

τ1 U τ2 (#dτ1 + #dτ2) - 

(#dτ1 * #dτ2)/k

(#rτ1 + #rτ2) - 

(#rτ1 * #rτ2)/k

#τ1 + #τ2 - 

(#τ1 * #τ2)/k2

τ1 & τ2 (#dτ1 * #dτ2)/k (#rτ1 * #rτ2)/k (#τ1 * #τ2)/k2

τ1 \ τ2 #dτ1 -

(#dτ1 * #dτ2)/k

#rτ1 -

(#rτ1 * #rτ2)/k
#τ1 - (#τ1 * #τ2)/k2

τ1 ; τ2 #dτ1 * #dτ2/k #rτ2 * #rτ2/k #τ1 * 

(1 -  #τ2/k2)#τ1 /#dτ1 * 

#τ2/k

τ1+ #dτ1 #rτ1 (k2 + #τ1)/2

τ1~ #rτ1 #dτ1 #τ1

τ1 <: τ2 (#τ1 ∗ #dτ2)/k (#τ1 ∗ #rτ2)/k (#τ1 ∗ #τ2)/k

Table 3.3: Approximations for estimating mean cardinalities of relation terms. In the 
approximations, k represents the number of atomic elements in the set of values, #τ1 represents 

the estimated cardinality of the set term τ1 or the estimated mean number of edges of the relation 
term τ1, #dτ1 represents the estimated mean cardinality of the domain of the relation term τ1, and 

#rτ1 represents the estimated mean cardinality of the range of the relation term τ1.

φ Fraction Satisfying

τ1 = τ2 where  τ1,τ2  Termscalar 1/k

τ1 in τ2 where  τ1  Termscalar and τ2  Termset #τ2/k

τ1 = τ2 where  τ1,τ2  Termset 1/2k

τ1 <= τ2 where  τ1,τ2  Termset (#τ2/k)#τ1

τ1 = τ2 where  τ1,τ2  Termrel 1/2kk

τ1 <= τ2 where  τ1,τ2  Termrel (#τ2/k2)#τ1

 func τ1 ((k+1)/2k)k

Table 3.4: Approximate fraction of full assignments satisfying atomic formulae. In the 
approximations, k represents the number of atomic elements in the set of values, #τ1 represents 

the estimated mean cardinality of the set term τ1 or the relation term τ1, #dτ1 represents the 
estimated mean cardinality of the domain of the relation term τ1, and #rτ1 represents the estimated 

mean cardinality of the range of the relation term τ1.



48 CHAPTER 3.  PARTIAL ASSIGNMENT DUPLICATION

assume that the atomic formulae are independent, with the exception of any implied formulae
detected. Therefore, the overall fraction of assignments satisfying the combined formulae is
assumed to be the product of the fractions determined for each atomic formulae.

Working through a simple example is of value here. I return to the formula used to search for
counterexamples to the claim UniqueAddrAlloc from Chapter 1, which appeared originally as (2.2).

(2.2)  ( ( ( dom usage = used and dom usage' = used' ) and
( func usage and func usage' ) ) and 
( ( ( used <: usage' ) = usage and used' = ( used U { newAddr } ) ) 
and newAddr in used ) )

From this formula, Ladybug recognizes eight implied formulae to be considered:

1) dom usage = used

2) dom usage' = used’

3) func usage

4) func usage'

5) ( used <: usage' ) = usage

6) used' = ( used U { newAddr } )

7) newAddr in used

8) { newAddr } <= used'

Ladybug also recognizes that the last formula ({ newAddr } <= used') is implied by the sixth formula
(used' = ( used U { newAddr } ) ).

Three of these atomic formulae involve equality of sets (dom usage = used, dom usage' = used',
and used' = ( used U { newAddr } ) ). Assuming that the set of values includes three scalar elements,
the heuristic estimates that one out of every eight (23) assignments will satisfy these formulae indi-
vidually. Similarly, the fifth formula ( ( used <: usage' ) = usage ) involves equality of relations, so 
1/512 (1/23*3) of all assignments are expected to satisfy it. The seventh formula (newAddr in used)
uses the in operator and thus the estimated fraction satisfying depends on the estimated cardinal-
ity of the set term. The set term (used) is a simple variable with an average cardinality of 3/2. The
heuristic gives an estimated satisfying fraction of (3/2)/3 or simply one half. The last formula uses
a subset relation, whose satisfying fraction depends on the estimated mean cardinality of both
terms. The right hand term (used') is again a simple variable with an estimated mean cardinality of
3/2. The cardinality of the left hand term is exactly 1. Thus the expected fraction of assignments
that will satisfy this term is ((3/2)/3)1 or simply one half. The heuristic estimates that 1/8 
( ((3+1)/(23))3) of full assignments will satisfy either functional predicate formulae.

When using only short circuiting, Ladybug chooses the ordering for the search as

Ord = < newAddr , used', used, usage, usage'>

Table 3.5 shows the expected and actual results of the search. The first column lists the variables, in
the order considered by Ladybug. The second column shows the number of applicable values,
assuming a universe of three atomic elements. The third column shows the number of expected
assignments computed (before pruning by short circuiting) at each level in the search. The fourth
column shows the expected number of assignments generated (after pruning by short circuiting).
The final two columns show the actual number of assignments computed and generated by this
search when executed by Ladybug with only short circuiting enabled (and without optimizing
backtracking — see Chapter 5 for details).5
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To determine the expected number of assignments computed in the ith row, I multiply the
number of assignments generated by the previous row (or one for the first row) by the number of
possible values for the variable. The expected number of assignments yielded is the expected
number computed multiplied by the product of the fraction of assignments expected to be satis-
fied by each of the relevant filter formulae. This number is divided by the fraction of assignments
that are satisfied by any formulae implied by the set of formulae considered here.

For the second row (used'), the number of assignments computed is 3 (the expected number of
assignments generated from the previous row) times 8 (the number of values for used'). This result
(24) is multiplied by one half (the fraction of assignments expected to satisfy { newAddr } <= used') to
obtain the expected number of assignments yielded (12).

For the third row (used), the number of assignments computed is 96 (12  8). The expected
number of assignments yielded considers three formulae

used' = ( used U { newAddr } )

newAddr in used

{ newAddr } <= used'

The first two formulae are first fully bound in level 3. The product of the fractions expected to sat-
isfy these formulae (1/16 = 1/8  1/2) is multiplied by the number of assignments computed,
yielding 6 assignments. However, the formula { newAddr } <= used' has already been factored into
the expected number of assignments generated and is implied by used' = used U { newAddr }. There-
fore, its expected fraction of satisfying assignments (1/2) is divided into the number of assign-
ments yielded, resulting in the final estimate of 12.

The expected and actual number of assignments are in exact agreement for the first three vari-
ables. The inaccuracy for usage arises because the heuristic for satisfaction of set equality does not
consider the cardinalities of the sets involved and because the assumption of independence of the
formulae is invalid. The formula used = dom usage is the culprit on both counts. The mean cardi-
nalities of each set term is larger than the 3/2 assumed by the fraction satisfying the set equality

5. In the searches reported, Ladybug actually used a universe of six elements: three elements of the
given type Data and three elements of the given type Addr. As noted earlier, I have chosen to
ignore this given type distinction wherever possible. If the two given types were combined, the
results in Ladybug for this example would be identical. 

Variable (Type) # Values

Expected # 

Assignments 

Computed

Expected # 

Assignments 

Yielded

Actual # 

Assignments

Computed

Actual # 

Assignments 

Generated

newAddr   (scalar) 3 3 3 3 3

used'  (set) 8 24 12 24 12

used  (set) 8 96 12 96 12

usage  (relation) 512 768 96 768 144

usage'  (relation) 512 6,144 12 9,216 144

Table 3.5: Expected and actual results when analyzing the claim UniqueAddrAlloc with a scope of 
three. These numbers assume that only short circuiting is enabled, without optimized 

backtracking.
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heuristic, although for differing reasons. The actual mean cardinality of dom usage is approxi-
mately 2.6, slightly larger than the 2.5 estimated by the heuristic. The mean cardinality of used in
partial assignments being considered at level 4 is 2, significantly different than the predicted 3/2.
This larger cardinality is the result of the formula newAddr in used . Because both terms have simi-
larly larger mean cardinalities, they are slightly more likely to be equal than is estimated by the
heuristic.

The inaccuracy for the last variable (usage') also arises due to the assumption of independence
of the formulae. The formula used' = dom usage' is implied by the conjunction of the other formu-
lae, a fact missed by the formula discovery process.

Overall, this approach gives reasonable approximations of the actual search performance.
Whereas an exhaustive enumeration search requires generating 1,053,192 assignments, including
786,432 full assignments, the heuristic estimated 7,035 assignments would be required including
6,144 full assignments. This estimate matches well to the actual 10,107 assignments generated
including 9,216 full assignments, although the number of satisfying assignments discovered is
wrong by a factor of 12, a product of the earlier errors.

All the reductions in the previous example were due to the tree-pruning effects of short cir-
cuiting. Although the reduction gained by any partial-assignment technique is identical, the heu-
ristic can be improved when derived variables or bounded generation is used. For derived
variables, the reduction is simply the number of possible values for the derived variable, as
allowed by the set of values and the Typing function.

The reduction gained by bounded generation is a factor of the type of variable and the number
of values removed in the reduced set of values. Removing a single element from the reduced set of
values gives only a slight reduction for a scalar variable, whereas removing all relations contain-
ing that element in their domain gives a great reduction. Table 3.6 summarizes the reductions
gained for different types of variables by removing r atomic elements from a complete set of val-
ues.  

By combining these reductions with the expected mean cardinality computations given ear-
lier, Ladybug is able to estimate the number of assignments that will be generated at each level of
the search tree. Table 3.7 gives the expected and actual number of assignments generated using
only bounded generation. The first column lists each variable enumerated in the search, in the
order enumerated by the search. The second column gives the number of values available for that
variable without bounded generation. The third column gives the average amount by which the
number of atomic elements in the reduced set of values will be reduced. This column is the prod-
uct of the estimated cardinality of each set of values excluded. For example, the variable newAddr is
reduced by two formulae (newAddr in used' and newAddr in used). Each formula reduces the space to

Variable Kind # Original Values # Reduced Values Reduction

Scalar k k-r k/(k-r)

Set 2k 2k-r 2r

Relation (range or 
domain)

2k*k 2k*(k-r) 2k*r

Table 3.6: Reductions gained when reducing the set of values by r atomic elements. In this table, k 
refers to the number of atomic elements in the initial (non-reduced) set of values.
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one half of the original (removing 3/2 of the 3 elements, on average). The combination reduces the
available space to one quarter the original size or an average reduction of 2.25 elements.  

The fourth column indicates the average number of values expected to remain in the reduced
set of values. This fifth column indicates the number of assignments expected to be generated at
this level. This number is the product of the average number of values for this variable and the
number of assignments expected for the previous level (or 1 for the first row). The final column
gives the actual number of assignments generated by the Ladybug search.

As with the short circuiting estimates, the estimates for the performance of bounded genera-
tion match well to the actual results achieved. The errors are again traceable to the independence
assumption. As an example, the two filter formulae enabling bounded generation for the variable
newAddr are not independent. Because used <= used', only newAddr in used actually contributes to
the reduction for newAddr. As the effects of the non-independence can increase or decrease the esti-
mated  cardinality, such errors tend to offset in practice, yielding reasonable bottom-line estimates. 

3.5 Related Work

The bulk of the work done on reducing the cost of searches focuses on what I call partial-assign-
ment reductions. For each of my three partial-assignment techniques, other researchers have
developed techniques that gain similar reductions. These other techniques may require a greater
expense to achieve this reduction or may interact poorly with other reduction techniques that are
part of selective enumeration. Almost all approaches efficiently exploit derived variables, which is
the simplest and most obvious technique.

 Short circuiting is simply a form of backtracking search, an idea that dates back at least four
decades [Wal58]. Van Hentenryck [VHe89] categorizes the approaches used to reduce this search
as
• standard backtracking: pruning a subtree when the current partial assignment fails to satisfy a 

constraint involving only variables already bound6.
• forward checking: pruning a subtree if, for some unbound variable there does not exist a value 

Variable (Type) # Values

Average #  

Elements 

Removed

Average 

Reduced # 

Values

Expected # 

Assignments 

Generated

Actual # 

Assignments

Generated

used   (set) 8 0 8 8 8

 used'  (set) 8 1.5 2.8 23 27

newAddr (scalar) 3 2.25 0.75 17 27

usage'  (relation) 512 1.5 (domain) 23 391 972

usage  (relation) 512 2.5 (domain)
1 (range)

2 782 972

Table 3.7: Expected and actual results when analyzing the claim UniqueAddrAlloc with a scope of 
three. These numbers assume that only bounded generation is enabled.

6. Van Hentenryck restricts standard backtracking to binary constraints, a common restriction in
constraint satisfaction. I have relaxed that requirement for this discussion.
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that satisfies all constraints involving that unbound variable and a bound variable.
• looking ahead: pruning a subtree if, for some unbound variable there does not exist a value for 

that variable along with a set of variables binding the other remaining variables that satisfy all 
constraints involving the unbound variable and one other unbound variable.

Van Hentenryck refers to the latter two cases as a priori  conditions, because they prune the tree
before actually binding the values to variables. Haralick and Elliot [HE80] show that, for a simple
model of searching, forward checking is expected to reduce the cost of the search, but looking
ahead may actually increase the cost of the search.

If quantifiers are allowed in the formula language, short circuiting incorporates all three
approaches, the difference being determined by the choice of filter formula. Ladybug only allows
quantifier-free formulae as filter formulae, meaning that short circuiting is limited to standard
backtracking.

The a priori reductions instead come from bounded generation. Bounded generation exploits a
set of constraints that overlaps with those considered by forward checking: bounded generation is
limited in the range of formulae that it supports, but can consider formulae that involve multiple
bound variables. More importantly, bounded generation performs this pruning without explicit
generation of possible values or testing of extra constraints. In addition, forward checking prunes
the entire subtree rooted at the current variable, but only if no value can satisfy the next variable.
Instead of this all or nothing pruning, bounded generation prunes individual subtrees rooted at
the next variable. This pruning prevents the generation of useless values when some, but not all,
values can satisfy the next variable. Therefore, for the constraints that support bounded genera-
tion, bounded generation is far more efficient and effective. Adding forward checking for the
unsupported constraints would probably improve the efficiency of the search, although the pub-
lished predicted results [HE80;VHe89] indicate that this gain would probably be minimal.

Bounded generation is more similar in its effect to constraint propagation. In classical con-
straint propagation, all possible values are enumerated for each variable. As variables are bound
to specific values, the constraints restrict the values that are permissible for other variables. The
values that are not permitted by previous bindings are explicitly removed from the set associated
with the variable. This technique works well when the number of values for each variable is rela-
tively small. For the relational formulae solved by Ladybug, the number of possible values can be
huge, making an explicit enumeration of the values intractable.

SEM [ZZ96b], Falcon [Zha96], and Finder [Sla94], all model generation tools, handle this diffi-
culty by breaking the large relational variables into many scalar variables, or cells. Each cell repre-
sents the result of the function variable for a tuple of input values, like an entry in a standard
multiplication table. This approach limits the number of values for any variable to the size of U,
the universe of elements. This approach can exploit more forms of formulae than can be exploited
by bounded generation, including formulae which constrain parts of a relation in terms of other
parts of the same relation. This latter opportunity is important to model finding, as the problems
may involve only a single n-ary relational variable, making bounded generation useless. This gain
comes at the cost of maintaining many sets of values, increasing the complexity of the implemen-
tation.

More important, however, is the interaction of this decision with isomorph elimination. With
the structure of the relations sacrificed, only a small portion of the isomorphs can be eliminated.
Although this would severely limit the effectiveness of this approach for the problems considered
by Ladybug, the impact is relatively minor in model generation, as the domain under consider-
ation is often the integers or another relatively rich domain, where the elements may be distin-
guished and little symmetry is available.
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Chapter 4

Isomorph Duplication

This chapter describes how selective enumeration exploits the isomorph duplication. The iso-
morph duplication is an outgrowth of the observation that any two elements in the same given
type are interchangeable. Therefore, permuting elements within an assignment does not change
the interpretation of a formula. A permuted assignment duplicates the original assignment.

Much of the work reflected in this chapter is due in large part to previous work, particularly
that of Jackson and Jha [JJD96][JJD98]. This chapter recasts that work in terms of selective enumer-
ation, enabling the analysis of the interactions of the isomorph duplication with the other tech-
niques described elsewhere in this dissertation.

The chapter considers two issues largely ignored in the rest of this dissertation: given types
and functions. Although not necessary for introducing isomorph elimination, given types simplify
the consideration of isomorph elimination in some cases. Similarly, there is no need to consider
functions as distinct from general relations for isomorph elimination. However, the behavior of
this commonly used subset of the relations is sufficiently different from other relations under iso-
morph elimination that separate consideration is warranted.

The first section in this chapter presents an informal, intuitive overview of permutations, dem-
onstrating a path through the search tree for the ongoing Alloc example. The second section for-
malizes the isomorph duplication. Section 4.3 describes how to compute the reduction gained
from the isomorph duplication. The fourth section considers the interaction between the tech-
niques based on the isomorph duplication and those based on the partial assignment duplication.
Finally, Section 4.5 describes related work.

4.1 Introduction

This section uses the previously introduced alloc example to develop the intuition behind the iso-
morph duplication. As a reminder, the alloc specification describes a simple memory allocator in
terms of addresses and data bound to those addresses. The example search looks for a counterex-
ample to a claim that a newly allocated address is never already in use. A counterexample to this
claim does not depend on which address is bound to which data element. The counterexample
does, however, depend on the same address appearing both as previously used (being in the
domain of the variable used) and as the newly allocated address (being the value of the variable
newAddr).

In demonstrating a single path through this search tree, I consider a scope that limits the
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search to three elements in Address (a0, a1, and a2) and three elements in Data (d0, d1, and d2). The
search builds a single assignment using the search ordering

Ord = <usage, used, newAddr, usage', used' >

The first step in the search is determining the set of “interesting” values for the first variable,
usage. Because usage is a partial function with a domain and range of three elements apiece, there
are 64 possible values to consider (|range+1||domain| or 43). These 64 values include 9 distinct
functions that contain a single edge, mapping only one address to a data element. As noted earlier,
which address maps to which data element is insignificant to the counterexample. Therefore, I
consider only one of these 9 single-edge functions.

Similarly, I consider only two two-edge functions, one that maps both addresses to the same
data element and one that maps the two addresses to two distinct data elements. Three three-edge
functions must also be considered: all three addresses mapping to the same data element, two
addresses mapping to one data element with the other address mapping to a distinct element, and
all three addresses mapping to distinct data elements.

Including with the empty function, seven functions represent the entire space of interesting
values. Figure 4.1 shows one possible set of interesting values.

To demonstrate a single path through the search tree, I must choose one of these “interesting”
values. For this example, I choose the single edge function { a0 d0 }. For a sound search, generat-
ing assignments with each of the seven representative functions (or equivalent replacements) is
required.

The next step in the search is choosing a value for the variable used. Because used is a set-val-
ued variable with three elements in the domain, there are eight possible values to consider
(2|domain| or 23). Without other considerations, four of these sets are interesting: one for each cardi-
nality from zero to three.

However, the function bound to usage earlier in the search differentiates the address a0 from
the other addresses. Therefore two separate single-element sets must be considered: one contain-
ing a0 and one containing an address other than a0. Similarly, two separate two-element sets must
be considered: one containing a0 (along with one of the other addresses) and one containing two
addresses other than a0. Figure 4.2 shows six sets that represent all the interesting sets for the vari-
able used. Figure 4.2 excludes only two possible values, { a2 } and { a0, a2 }. Because a1 and a2 are
indistinguishable, these missing values are interchangeable with { a1 } and { a0, a1 }, respectively.      

Figure 4.1. Seven functions representing all “interesting” values for the variable 
usage, with the value chosen for this example circled.
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Figure 4.2. Six sets representing all interesting values for the variable used, after 
considering the effects of the function bound to usage. The set chosen for this 

example is circled.

a0

a1

a2

Figure 4.3. The 36 functions representing all interesting values to be considered for 
the variable usage' for this search. The value chosen is circled.
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For this example, I choose the set {a0} to bind to the variable used. Although adding additional
variables typically further differentiates the atomic elements, some values yield no further differ-
entiation. The set {a0} differentiates the element a0 from all other elements of Address, but a0 has
already been differentiated by the value of usage. Therefore, this choice of the value of used does
not further differentiate the addresses.

Choosing values for a scalar variable is the simplest of the possible cases. With no differentia-
tion, all elements are indistinguishable and any single element represents all interesting values. If
any previous values differentiate the elements, one element from each differentiated set must be
considered. When choosing a value for the variable newAddr in this example, two elements must be
considered: the differentiated element a0 and one of the two non-differentiated elements. For this
example, I choose the scalar value a1 as the value of the variable newAddr.

All three addresses are now distinguished. Only two elements of Data, d1 and d2, remain indis-
tinguishable. This significantly increases the requirements on the set of functions to be considered
for the variable usage'. Without any differentiation, the set of functions to be considered for the
variable usage' would consist of the same 7 functions (out of all 64 possible) that I considered for
the variable usage. With the differentiation, however, 36 distinct functions must be considered.

Figure 4.3 illustrates a set of functions covering all the interesting functions. As an example,
consider the function that binds only a0 to d2, which is not included. Because d1 and d2 remain
undifferentiated, this function is equivalent to the function binding a0 to d1, which is included.
From this set of interesting functions, I choose the function { a0 d0, a1 d1 } to bind to usage' for
this example search.    

As all elements of Address are now distinguished, all eight possible sets must be considered for
the variable used'.

Figure 4.4 illustrates the path through the search considered in this example. From this exam-
ple, it is obvious that not all values need to be considered for a search to be sound. The reduction
in the number of values to be considered depends, in part, on the type of the variable being bound.
Functions (and especially relations) can offer greater reductions than sets or scalars. However, this
reduction fades as the elements are differentiated by the assignment being constructed.  

4.2 Definitions

The reductions illustrated in the previous section are sound because each value that is ignored can
be permuted to a value that is already under consideration. This section formalizes this notion of
permutation and develops a framework for applying permutations to reduce the search space.

The last section developed the intuitive notion that the elements of a given type can be
exchanged without changing the interpretation of the formula. A mapping which exchanges the
elements of U is called a permutation. Formally, a permutation is any one-to-one total mapping of
the atomic elements.

Definition 4.1 (Permutation)    

 A permutation π:U U is a one-to-one, total mapping of atomic elements.

As a convenience, I denote the special identity permutation that maps each value to itself by
parentheses, as in ().

A permutation can be applied to sets and relations by mapping each element within the set or
relation with the permutation.
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Definition 4.2 (Permutations of values)    

A permutation π applied to a value v, given by πv, is defined as
π(v) where v  Valuescalar

π(v)
π(v) where v  Valueset

{ π(x) | x  v }
π(v) where v  Valuerel

{ (π(x),π(y)) | (x,y)  v }

As a convenience, I also allow a permutation to be applied to an assignment. The result of apply-
ing a permutation π to an assignment a is an assignment with each variable bound to the corre-

usage={ } usage={ (a0,d0) }
usage={ (a0,d0),

(a1,d0) }
usage={ (a0,d0),

(a1,d1) }

usage={ (a0,d0),
(a1,d0),
(a2,d0) }

usage={ (a0,d0),
(a1,d0),
(a2,d1) }

usage={ (a0,d0),
(a1,d1),
(a2,d2) }

usage={ (a0,d0) }
used = { }

usage={ (a0,d0) }
used = { a0 }

usage={ (a0,d0) }
used = { a1 }

usage={ (a0,d0) }
used = { a0, a1 }

usage={ (a0,d0) }
used = { a1, a2  }

usage={ (a0,d0) }
used={ a0, a1, a2 }

usage={ (a0,d0) }
used = { a0 }
newAddr = a0

usage={ (a0,d0) }
used = { a0 }
newAddr = a1

usage={ (a0,d0) }
used = { a0 }
newAddr = a1

usage’={ (a0,d0),
(a1,d0)} 

usage={ (a0,d0) }
used = { a0 }
newAddr = a1

usage’={ (a0,d1),
(a1,d2),
(a2,d0)} 

usage={ (a0,d0) }
used = { a0 }
newAddr = a1

usage’={ (a0,d0),
(a1,d1))} 

usage={ (a0,d0) }
used = { a0 }
newAddr = a1

usage’={ (a0,d1),
(a1,d1)} 

usage={ (a0,d0) }
used = { a0 }
newAddr = a1

usage’={ (a0,d0)} 
. . . . . .

usage={ (a0,d0) }
used = { a0 }
newAddr = a1

usage’={ (a0,d0),
(a1,d1))}

used’ = { a0, a1 } 

(36 total)

usage={ (a0,d0) }
used = { a0 }
newAddr = a1

usage’={ (a0,d0),
(a1,d1))}

used’ = {  } 

usage={ (a0,d0) }
used = { a0 }
newAddr = a1

usage’={ (a0,d0),
(a1,d1))}

used’ = { a2 } 

usage={ (a0,d0) }
used = { a0 }
newAddr = a1

usage’={ (a0,d0),
(a1,d1))}

used’ = { a0, a2 } 

usage={ (a0,d0) }
used = { a0 }
newAddr = a1

usage’={ (a0,d0),
(a1,d1))}

used’ ={ a0,a1 a2 } 

. . . . . . (8 total)

Figure 4.4. The heavy boxes illustrate the path through the search tree described in Section 
4.1. At each level the children considered are listed, with the final two levels eliding some of 

the assignments generated 
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sponding value bound in a, permuted by π.

Definition 4.3 (Permutations of assignments)    

 For any permutation π and assignment a, the value of πa is defined as
πa = { v  π (a(v)) | v  dom a }

Combining permutations yields new permutations. The resulting permutation has the same
effect as applying both the original permutations, in the order specified.

Definition 4.4 (Product of permutations)    

 The product of any two permutations π1 and π2, given by π1π2, is defined as

x  Value. π1π2(x) = π2(π1(x)).

The simplest form of permutation is a swap. For any given value, a swap exchanges two
atomic elements within that value, leaving all other portions of the value unchanged. A swap is
denoted by enclosing the names of the two elements in parentheses. Because the two elements are
exchanged, the swaps (e0 e1) and (e1 e0) are equivalent. As a convention, I always list the lexico-
graphically first element first.

Definition 4.5 (Swap)    

For any two distinct atomic elements e0 and e1, the swap denoted by (e0 e1) is the 
permutation that maps e0 to e1, e1 to e0, and all other elements to themselves.

The compositions of the swaps yield more complicated permutations. Ultimately, any permu-
tation can be constructed from the composition of some set of simple swaps. The identity permu-
tation, ( ), is represented by the empty sequence of swaps.

Lemma 4.1 For any permutation π, there exists a (possibly empty) sequence of swaps σ1, σ2, 
σ3, ... σk such that π = ( )σ1σ2σ3 ... σk.

Proof: Obvious. ■

For convenience, I frequently denote products of swaps using the traditional (e0 e1 ... ek) nota-
tion, meaning that e0 is mapped to e1, e1 is mapped to e2, and so on ending with ek being mapped
to e0. This notation denotes the permutation defined by the product of swaps (e0 e1) (e0 e2) ... (e0

ek).

Not all possible permutations are of interest. I define a permutation as stabilizing a set of
atomic elements if that permutation preserves that set.

Definition 4.6 (Stabilizing)    

A permutation π stabilizes a set s iff s = πs.

For the remainder of this chapter, I consider only permutations that stabilize the given types.
That is, no permutation is considered that would swap elements between two different given
types.

A mapping of values that is structure preserving is called an isomorphism.

Definition 4.7 (Isomorphism)    

 A one-to-one, total mapping h:Value Value is an isomorphism of Value onto itself 
iff the following conditions hold

x  Valuescalar. s  Valueset. x  s  h(x)  h(s)

r  Valuerel. t  Valueset. s  Valueset. r(t) = s  (h(r))(h(t)) = h(s).
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That an isomorphism can map only scalars to scalars, sets to sets, and relations to relations follows
from this definition. Two values that are mapped by an isomorphism are called isomorphic to each
other.

Any permutation of the atomic elements is an isomorphism of Value when it is applied to val-
ues.

Lemma 4.2 Any permutation π is an isomorphism of Value onto itself.

Proof: From Definition 4.2. ■

This section began by stating that a search can be sound even if the search ignores assignments
that are permutations of ones considered. This is true because permuting an assignment does not
affect its truth value for any formulae.

Lemma 4.3 (Permutation distributes across term interpretation)
For any term τ, permutation π, set of values υ, and assignment a,
if π stabilizes υ and Var(τ)  dom a, then π Mterm[τ,a,υ] = Mterm[τ,πa,πυ].

Proof: By structural induction.

For all cases, because π stabilizes υ, πυ = υ.

If τ is v where v  Variable
Because Var(τ)  dom a, v  dom a
By definition of Mterm, v  dom a  Mterm[τ,a,υ] = a(v).
By definition of πa, π(a(v)) = (πa)(v).

if τ is τ1 U τ2 where τ1,τ2  Termset
By definition, Mterm[τ,a,υ] = { x | x  Mset[τ1,a,υ] x  Mset[τ2,a,υ] }.
Because π is an isomorphism, for any set S, πS =  { πs | s  S }.
Therefore, πMterm[τ,a,υ] = { πx | x  Mset[τ1,a,υ] x  Mset[τ2,a,υ] } and

Mterm[τ,πa,πυ] = { x | x  Mset[τ1,πa,πυ] x  Mset[τ2,πa,πυ] }.
By hypothesis, 

Mterm[τ,πa,πυ] = { x | x  πMset[τ1,a,υ] x  πMset[τ2,a,υ] }.
Therefore, π Mterm[τ,a,υ] = Mterm[τ,πa,πυ]. 

Other productions follow similarly.  ■

Theorem 4.4 (Permutation preserves formula interpretation)
For any formula φ, permutation π, set of values υ, and assignment a,
if π stabilizes υ and Var(φ)  dom a, then M[φ,a,υ] = M[φ,πa,πυ].

Proof: By structural induction.

If φ is τ1 in τ2 where τ1  Termscalar and τ2  Termset
By definition, M[φ,a,υ] = Mterm[τ1,a,υ]  Mterm[τ2,a,υ]
Because π is an isomorphism, 

Mterm[τ1,a,υ]  Mterm[τ2,a,υ]  πMterm[τ1,a,υ]  πMterm[τ2,a,υ].
By Lemma 4.3,

πMterm[τ1,a,υ] = Mterm[τ1,πa,πυ] and  πMterm[τ2,a,υ] = Mterm[τ2,πa,πυ]
By substitution, 

Mterm[τ1,a,υ]  Mterm[τ2,a,υ]  Mterm[τ1,πa,πυ]   Mterm[τ2,πa,πυ].

If φ is (φ1 and φ2) where φ1,φ2  Wff
By hypothesis.

Other productions follow similarly.  ■

If two assignments are guaranteed to yield the same result for a formula, one of the assignments is
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a duplicate of the other. The isomorph duplication  considers a pair of assignments to be related if
one can be permuted to become the other. Only one assignment from each permutation equiva-
lence class needs to be considered for the search to be sound.

Definition 4.8 (Isomorph Duplication)    

The isomorph duplication ≈π is defined as a,a'  AN. a ≈π a'  π. πa = a'.

The isomorph duplication formally captures the intuition developed in the previous section. That
intuition focused on the values considered at each level, whereas the isomorph duplication
requires permuting the entire assignment. The intuition captures this requirement by differentiat-
ing elements based on the assignment generated thus far. By disallowing swaps involving two ele-
ments that have been differentiated, the intuition does not allow any permutations that modify the
initial assignment. The set of permutations that leave a single value unchanged is called the auto-
morphism group of that value.

Definition 4.9 (Automorphism Group)    

 The automorphism group of a value, given by Aut(x) : Value  Permutation, is 
defined as x  Value. Aut(x) = { π | πx = x }

If the entire universe of atomic elements is only the four elements of the type T = { t0, t1, t2, t3 }, the
automorphism group of the value { t0, t1 } includes any combination of the swap of the first two
elements and the swap of the last two elements, totaling four permutations:

() (t0 t1) (t2 t3) (t0 t1)(t2 t3)

Automorphism groups for relations are similar. Consider the universe of values with T as before
and S = { s0, s1, s2, s3 }. The automorphism group of the relation { s0 t0, s0 t1, s1 t2 } contains
the four permutations

() (s2 s3) (t0 t1) (s2 s3)(t0 t1)

Because the isomorph duplication considers the effect of permutations on a full assignment, the
automorphism group for assignments is required. Each permutation in the automorphism group
of an assignment leaves the assignment unchanged.

Definition 4.10 (Automorphism Group for Assignments)     

The automorphism group of an assignment, given by Aut(a) : A  Permutation, is 
defined as a  A. Aut(a) = { π | πa = a }

As each permutation in the automorphism group for an assignment must leave each individual
value unchanged, the automorphism group of the assignment is exactly the intersection of the
automorphism groups of those values.

Lemma 4.5 a  Ai, Aut(a) = Aut(a(vj))  Aut( )
j=1..i

Proof: Obvious.  ■

All the pieces are now in place to define isomorph-eliminating generators. As a reminder, a level i
generator is a function that takes two arguments: an initial assignment α from Ai-1 and a universe
of values to consider υ. A generator yields a set of assignments from Ai, each of which is identical
to the initial assignment α for the first i-1 variables. A sound isomorph-eliminating generator can
ignore any assignments that are permutations of an assignment generated. To accomplish this, a
level i isomorph-eliminating generator needs to consider a value to be bound to vi only if that



4.2.  DEFINITIONS 61

value is not related to a value bound in another generated assignment by a permutation in the
automorphism group of the initial assignment.

Definition 4.11 (Isomorph-Eliminating Generator)    

A level i generator g(α,υ) : Ai-1  Value  Ai is an isomorph-eliminating generator 
iff 

all permutations in Aut(α) stabilizes υ and
x  υ. a  g(α,υ). π  Aut(α). a(vi) = πx.

An isomorph-eliminating generator is only well-defined if all permutations in the automorphism
group of the initial assignment stabilizes the set of values. Otherwise, the generator may generate
an assignment where a(vi)   υ, violating the requirements of a generator. Fortunately, any permu-
tation that stabilizes the given type sets is also consitent with the standard set of values used by
Ladybug.

Computing the exact isomorph-free set of assignments is computationally infeasible for a
large universe of elements. The definition of isomorph-eliminating generator allows the generator
to generate some isomorphic assignments. This relaxation allows conservative, but efficient, iso-
morph-eliminating generators to be considered. In the extreme, however, this definition also
allows the exhaustive generator to be considered an isomorph-eliminating generator.

Because any permutation in the automorphism group of the initial assignment leaves the ini-
tial assignment unchanged, a permutation of each possible level i assignment extended from the
initial assignment is generated. Therefore, an isomorph-eliminating generator is sound for the iso-
morph duplication.

Theorem 4.6 An isomorph-eliminating generator g(α,υ) is sound for the isomorph duplication 
≈π for any formula φ if all permutations in Aut(α) stabilizes υ.

Proof: Assume a is an element of AN. Vari-1  a = α  M[φ,a,υ] = TRUE.

If no such assignment exists, any result of g(α,υ) is sound. Otherwise, for g to be 
sound, there must exist an assignment a' such that a' ≈π a and Vari  a'  g(α,υ).

By definition, a' ≈π a iff there exists a permutation π such that πa' = a.

By definition of an isomorph-eliminating generator, 
a''  g(α,υ). π  Aut(α). a''(vi) = πa(vi).

Because π  Aut(α)  Vari-1  a'' = α,
a'' = Vari  πa.  ■

Although this section is based solely on permutations, any truth-preserving mapping could be
used as the basis for a similar duplication. Therefore, other problem domains may have similar
opportunities. However, no other formula-independent truth-preserving mappings are available
for the relational problem domain.

Lemma 4.7  For any mapping m such that M[φ,a,υ] = M[φ,m(a),m(υ)] for all formulae φ, assign-
ments a, and sets of values υ, there exists a permutation π such that x  Value. 
m(x) = πx.

Proof: The definition of permutation can be expressed as a pair of formulae that must be 
preserved by the mapping.

Therefore, any mapping that preserves all possible formulae is a permutation.  ■

Other mappings may exist, however, that preserve the truth of the formula being solved. For
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example, for some formulae, it can be shown that any assignment drawn from a sufficiently large
universe of atomic elements is equivalent to a “smaller” assignment, drawn on a smaller universe
of elements. These “larger” assignments therefore duplicate the “smaller” assignments.

Although Ladybug does not exploit any formula-dependent truth-preserving mappings, these
mappings present additional opportunities to trim the search space. Future search engines could
exploit this or other formula-dependent mapping duplications.

4.3 Reduction From The Isomorph Duplication

This section focuses on determining the effectiveness of the isomorph duplication. To compute the
reduction from the isomorph duplication, I need to introduce some concepts from group theory.

A group is a set of elements with an associative binary operation that is closed over that set of
elements. The group must contain an identity element for that operation and each element in the
set must have an inverse within the set. An automorphism group is a group, with the elements
being permutations and the operation being the product of permutations.

A subset of the elements in a group may be closed under the operation. If such a subset
includes the identity element, it forms a subgroup. According to Lagrange's Theorem, the size of a
group is a multiple of the size of any of its subgroups.

A coset is the set of elements obtained by multiplying each element in a subgroup by an ele-
ment in the full group. A coset is called a left (or right) coset based on the position of the element
from the full group in the multiplication. Any two left (or right) cosets of the same subgroup are
either identical or disjoint.

As seen in Section 4.1, each “interesting” value represents some set of possible values. There-
fore, each assignment generated by an isomorph-eliminating generator is equivalent to any
assignment in some set of assignments that could have been generated. For a perfect generator,
exactly one assignment generated represents each of these sets. The sum of the size of these sets
represented by the assignments generated is therefore exactly the size of the set of all possible
assignments, for a perfect isomorph-eliminating generator.

Determining the size of these sets can therefore be used to compute the number of assign-
ments that must be generated by an isomorph-eliminating generator. For any of the “representa-
tive” assignments that are actually generated, the set of equivalent assignments can be no larger
than the size of the automorphism group of the initial assignment, as this automorphism group
includes each permutation considered by the generator. Some of these permutations do not yield
distinct assignments. In particular, applying any permutation in the automorphism group of the
assignment generated to the assignment yields that assignment.

Therefore, the number of assignments that are equivalent to any assignment generated is
equal to the size of the automorphism group of the initial assignment reduced in some manner by
the size of the automorphism group of the assignment generated. To determine the exact form of
this reduction, I construct a table containing the permutations in the automorphism group of the
original assignment. The permutations in a column all transform the assignment generated into
the same assignment.

Figure 4.5 illustrates this table for the first level of the example search illustrated in Figure 4.4
in Section 4.1. The first column includes the permutations that transform the assignment into
itself, or in other words, the automorphism group of the assignment generated. The second col-
umn shows each permutation that maps the assignment generated into a second assignment. In
Figure 4.5, these permutations map the assignment generated to the assignment that binds usage
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to {a0 v1}. Intuitively, this column must be the same size as the first column because the two
assignments are structurally equivalent and therefore should have the same size automorphism
groups. The same argument can be made for each subsequent column, yielding the result that the
size of the set of equivalent assignments is exactly the size of the automorphism group of the orig-
inal assignment divided by the size of the automorphism group of the assignment generated. Each
of these columns is a right coset of the automorphism group of the assignment generated.

Lemma 4.8 For any assignment a generated by an isomorph-eliminating generator g(α,υ), the 
size of the set { πa | π  Aut(α) } is |Aut(α)| / |Aut(a)|.

Proof: There are two cases to consider: Aut(a) = Aut(α) and Aut(a)  Aut(α).

When the two automorphism groups are identical, the only assignment in the 
equivalence set is a itself. Therefore, the size of the set is 1 = |Aut(α)| / |Aut(a)|.

Otherwise, there exists some permutation π in Aut(α), but not in Aut(a).

Because π  Aut(a), πa  a.

Because the identity permutation is in Aut(a), π is an element of the right coset 
Aut(a)π.

By definition of the right coset, 
ρ  Aut(a)π. µ  Aut(a). ρa = (µ π)a = π(µ a) = πa.

Therefore, there is a one-to-one correspondence between right cosets of Aut(a) and 
assignments in the equivalence set.

By Lagrange's theorem, there are |Aut(α)| / |Aut(a)| distinct right cosets of 
Aut(a).

Therefore, the size of the equivalence set of assignments is |Aut(α)| / |Aut(a)|. ■

Through some algebraic manipulations, the reduction from the isomorph duplication available to
a single generator (a single level of the search tree) is the size of the automorphism group divided
by the average of the sizes of the automorphism groups of all assignments that could be gener-
ated.

Theorem 4.9 The set of assignments generated by any sound, level i isomorph-eliminating gen-
erator g(α,υ) contains at least

mean(|Aut(y)  Aut(α)|)  |υ  Typing(vi)|
y  υ  Typing(vi) 

|Aut(α)|
assignments.

Proof: Let M be the set of assignments generated by g(α,υ).

To be minimal, a  M. M  { πa | π  Aut(α) } = { a }.

( ) (d0d1) (d0d2) (a0a1) (a0a2) (a0a1)(d0d1) (a0a1)(d0d2) (a0a2)(d0d1) (a0a2)(d0d2)

(d1d2 ) (d0d1d2) (d0d2d1) (d1d2 )(a0a1) (a0a2)(d1d2 ) (a0a1)(d0d1d2) (a0a1)(d0d2d1) (a0a2)(d0d1d2) (a0a2)(d0d2d1)

(a1a2 ) (a1a2 )(d0d1) (a1a2 )(d0d2) (a0a1a2) (a0a2a1) (a0a1a2)(d0d1) (a0a1a2)(d0d2) (a0a2a1)(d0d1) (a0a2a1)(d0d2)

(a1a2 )(d1d2 ) (a1a2 )(d0d1d2) (a1a2 )(d0d2d1) (a0a1a2)(d0d1) (a0a2a1)(d1d2) (a0a1a2)(d0d1d2) (a0a1a2)(d0d2d1) (a0a2a1)(d0d1d2) (a0a2a1)(d0d2d1)

Figure 4.5. The permutations in the automorphism group of , arranged with all permuta-
tions in each column mapping the relation { a0 d0 } to the same relation. The universe of 
elements is assumed to include just the three addresses a0, a1, a2  and the three data ele-

ments d0, d1, d2.
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From Lemma 4.8, for any a  M, there are |Aut(α)| / |Aut(a)| assignments in 
{ α  {vi x} | x  υ  Typing(vi)}.

As these assignments are disjoint for the minimal set, they can be summed, yield-
ing

|Aut(α)|
 = | υ  Typing(vi) |.Σ |Aut(a)|

a  M

Because the size of the automorphism group is identical for each assignment in an 
equivalence set, the sizes of the automorphism groups can be summed by 

|Aut(α)|
 |Aut(y)  Aut(α)| = ∗ |Aut(a)|.Σ   Σ|Aut(a)|

y  υ  Typing(vi) a  M

The two Aut(a) on the right hand side cancel out, yielding 

|Aut(y)  Aut(α)| = |Aut(α)||M|.Σ
y  υ  Typing(vi)

Dividing each side by the number of possible values gives

 |Aut(α)|  |M|mean(|Aut(y)  Aut(α)|) =
y  υ  Typing(vi) |υ  Typing(vi)|.

Isolating for the size of the minimal set of assignments yields

mean( |Aut(y)  Aut(α)|)  |υ  Typing(vi)|
y  υ  Typing(vi)|M| = 

|Aut(α)|  ■

This result gives the reduction for a single-variable search. Computing the reduction for a larger
search is somewhat problematic. The exact reduction is a function of the automorphism group of
each intermediate assignment generated by the search.

To approximate the reduction for a general search, I first consider the reduction given by a
two-variable search. The reduction for this search is given by the reduction for the first level com-
bined with the average reduction given by each invocation of the second level generators. This
reduction is given by

 |Aut( )|                     |Aut(a')|
            ∗ mean( )

mean(|Aut(a)| )        a'  g( ,υ) mean(|Aut(a'')|)
a  {v1 x|x  υ  Typing(v1)} a''  {a'  v2 x|x  υ  Typing(v2)}

Although the two averages over the sizes of the automorphism groups of level 1 are not the same,
they are close. By replacing the second numerator by the first denominator and cancelling the like
terms, I obtain

 |Aut( )|          
mean(|Aut(a'')|)

a''  {a'  v2 x|x  υ  Typing(v2) a'  {v1 x|x  υ  Typing(v1)}}

Generalizing for arbitrary levels, the reduction for the isomorph duplication can be approximated
by

 |Aut( )|

mean(|Aut(a)|)
a  AN

The average size of the automorphism group for full assignments asymptotically approaches 1 as
N grows. With only a few variables per given type, the average of the sizes of the automorphism
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groups of full assignments is already close to one.

The size of the automorphism group of the empty assignment is the product of the factorials
of the number of elements in the given type sets. Therefore, the reduction given by the isomorph
duplication can be approximated with

R(≈π,φ,υ)   Π |T|!
T  Given Types

Unlike the reduction for the partial assignment duplication, this reduction is nearly independent
of the number of variables or the number of known facts about the formula. It is dependent, how-
ever, on the number of given types. For this reason, Ladybug redefines the Typing relation for the
formula to increase the number of given types wherever possible, as described in Chapter 6.

Also, unlike the partial assignment duplication, the efficiency of the Ladybug generators for
the isomorph duplication is less than the perfect 1.0. Two factors introduce this inefficiency:
approximating the automorphism groups and missed permutations in the generators themselves.
These inefficiencies are described in Chapter 6.

4.4 Interactions with Partial Assignment Duplication

This section explores the interaction between the isomorph-eliminating generators and the gener-
ators described in Chapter 3 that exploit the partial assignment duplication, focusing on the
soundness of a search that utilizes both forms of generator. Chapter 7 will discuss the performance
implications of these interactions, supported by empirical evidence from the benchmarks.

A search can mix isomorph-eliminating generators with partial-assignment duplication gener-
ators in two distinct ways. In the simpler case, the two forms of generator are segregated by vari-
able. In this case, the search for the binding for some variables will exploit a partial-assignment
duplication, whereas the search for others will exploit the isomorph duplication, but no search
will exploit both. This situation arises with Ladybug when derived variables are enabled as well
as isomorph elimination. By Theorem 2.10, the search is sound if each generator is sound for some
duplication, even if each generator is sound for a different duplication.

The other form of interaction occurs when an isomorph-eliminating generator is used as the
underlying generator for a short-circuiting or bounded-generation generator. The short-circuiting
case is again straightforward. Intuitively, short circuiting only removes non-satisfying assign-
ments, so no bad interactions should be expected. More formally, Theorem 3.1 requires only that
the underlying generator be sound for some (unspecified) duplication for the short-circuiting gen-
erator to be sound for that same duplication. Therefore, as an isomorph-eliminating generator is
sound for the isomorph duplication, a short-circuiting generator using an isomorph-eliminating
generator as its underlying generator is also sound for the isomorph duplication.

The interesting interaction comes when an isomorph-eliminating generator serves as the
underlying generator for bounded generation. As a quick review of bounded generation, bounded
generation passes a subset of the set of values to the underlying generator. The underlying gener-
ator then produces a representative set of assignments for the reduced set of values. The bounded-
generation generator then modifies each assignment by projecting the value bound to the ith vari-
able using a projection function. The rules for defining the reduced set of values and the projection
functions are given in Table 3.1.

 Bounded generation requires that the underlying generator be limited sound, given a projec-
tion function and a reduced set of values. As a reminder, a generator is sound for a duplication if,
for any satisfying full assignment, the level i prefix of an equivalent full assignment is generated.
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A generator is limited sound if the projection of a generated assignment is the level i prefix of an
equivalent full assignment. Definition 3.4 on page 40 formally defines limited soundness.

As I shall demonstrate in this section, any level i isomorph-eliminating generator g(α,υ') is
limited sound with two restrictions on the reduced set of values and the projection function. All
the permutations in the automorphism group of the initial assignment must (1) stabilize the uni-
verse of values and (2) distribute across the proj function. More formally

1) π  Aut(α). π stabilizes υ'

2) π  Aut(α). x  υ  Typing(vi). x'  υ'  Typing(vi). 
π(proj(x',α)) = proj(πx',πα)

Intuitively, these constraints hold because the reduced set of values υ' and the projection function
proj both depend solely on the initial assignment α and each permutation considered leaves α
unchanged. Any permutation that leaves α unchanged must also leave the value of any term
based solely on variables bound unchanged.

Lemma 4.10 For any assignment a  Ai, term τ, and set of values υ, if Var(τ)  Vari and Aut(a) 
stabilizes υ then Aut(a)  Aut(MTerm[τ,a,υ]).

Proof:

By Lemma 4.3, π. MTerm[τ,πa,πυ] = πMTerm[τ,a,υ].

Therefore, π  Aut(a). MTerm[τ,a,πυ] = πMTerm[τ,a,υ].

Because π stabilizes υ,
π  Aut(a). MTerm[τ,a,υ] = πMTerm[τ,a,υ].

Therefore, by definition of Aut, π  Aut(MTerm[τ,a,υ]).  ■

The rules for producing the reduced set of values under bounded generation falls into two catego-
ries: the variable is either a scalar- or set-valued variable or the variable is a relation-valued vari-
able. For the scalar/set case, each reduced set of values is the set difference between the original
set of values and a term fully bound by the initial assignment. Bounded generation combines
reduced sets by intersecting them. The resultant reduced set of values is equivalent to the differ-
ence between the original set of values and the meaning of the union of each term used for the sep-
arate reduced set of values. Therefore, Vari-1 contains all the variables of this final term.

The relation-valued case is similar, with the reduced set of values being the relations from the
original set of values, each domain (or range) restricted by a term fully bound by the initial assign-
ment. The intersection of these reduced sets is described by the set of relations contained in the
original set of values, each domain (or range) reduced by the intersection of the domain (or range)
reducing term from each reduced set of values. Again, Vari-1 contains all the variables of these final
reducing terms.

Lemma 4.11 For any level i bounded-generation generator g(α,υ) with a projection function 
proj and a reduced set of values υ', as described in Section 3.3, each permutation in 
Aut(α) stabilizes υ' if each permutation in Aut(α) stabilizes υ.

Proof: To demonstrate consistency of υ', I must demonstrate that 
x  υ', π  Aut(α). πx  υ',

Each reduced set of values allowed in Section 3.3 includes the elements construct-
ed from one of two forms:

case 1: MTerm[(Un \ τi),α,υ]

case 2: MTerm[((τj <: Un) :> τk),α,υ]
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where Var(τi), Var(τj), and Var(τk) are all subsets of Vari-1.

For the first case,
υ' = { x \ MTerm[τi,α,υ] | x  υ  Valueset }

Therefore,
x  υ  Valueset. x'  υ'. x' = x \ MTerm[τi,α,υ].

Because permutation distributes over set difference,
π  Aut(α). x  υ  Valueset. x'  υ'. πx' = πx \ πMTerm[τi,α,υ].

By Lemma 4.10, π. πMTerm[τi,α,υ] =  MTerm[τi,πα,πυ].

Because Aut(α) stabilizes υ, π  Aut(α). πMTerm[τi,α,υ] =  MTerm[τi,α,υ].

Therefore, πx \ πMTerm[τi,α,υ] = πx \ MTerm[τi,α,υ].

Therefore,
π  Aut(α). x  υ  Valueset. x'  υ'. πx' = πx \ MTerm[τi,α,υ].

Because Aut(α) stabilizes υ, 
π  Aut(α). x  υ. x''  υ. x'' = πx.

Therefore,
 π  Aut(α). x'  υ'. x''  υ. πx' = x'' \ MTerm[τi,α,υ].

Therefore, πx'  υ'.

The proof for the second case follows similarly.  ■

The argument for the constraint on the projection functions follows similarly. Projection functions
are also divided into two categories. The simpler projection functions are the identity function,
which clearly preserves the permutation. The other projection functions union the value generated
by the underlying generator with the value of a term whose variables are contained in Vari-1.

Lemma 4.12 For any level i bounded-generation generator g(α,υ) with a projection function 
proj and a reduced set of values υ', as described in Section 3.3,

x  υ'  Typing(vi). π  Aut(α). π proj(x,α) = proj(πx,α).

Proof: Assume x  υ'  Typing(vi).

For scalar- and relation-valued variables, proj(x,α) = x.

Therefore, π proj(x,α) = πx and proj(πx,α) = πx.

For set- or function-valued variables, proj takes the form
proj(x,α) = x  MTerm[τ,α,υ] where Var(τ)  Vari-1.

Because permutation distributes across union,
π  Aut(α). π proj(x,α) = πx  πMTerm[τ,α,υ].

By Lemma 4.10, π  Aut(α). πx  πMTerm[τ,α,υ] = πx  MTerm[τ,α,υ].

But πx  MTerm[τ,α,υ] = proj(πx,α).  ■

Finally, I prove that these two constraints are sufficient to guarantee that isomorph-eliminating
generators are limited sound. 

Lemma 4.13 The level i isomorph-eliminating generator g for a formula φ and a set of values υ 
is limited sound for the isomorph duplication under a set of values υ' and a pro-
jection function proj if
 

φ'  Wff. φ φ'   Var(φ')  Vari  a  AN. x  υ  Typing(vi). π  Aut(Vari-1  a).
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π stabilizes υ' 
M[φ',a  { vi  x },υ] = TRUE  

x'  υ'. x = proj(x',Vari-1  a)  πx = proj(πx',a)

where vi  Variable and Ord(vi) = i.

Proof: Let a  AN such that M[φ,a,υ] = TRUE ran a  υ and 
let x  υ  Typing(vi) such that M[φ',Vari-1  a  { vi  x },υ] = TRUE

Therefore, x'  υ'. x  proj(x',Vari-1  a).

I need to prove that a'  AN. π  Aut(Vari-1  a). 
Vari  a'  g(Vari-1  a,υ')  π(a'  { vi proj(a'(vi),Vari-1  a)}) = a.

If Vari  a'  g(Vari-1  a,υ'),
then Vari-1  a' = Vari-1  a.

Because π  Aut(Vari-1  a), π(Vari-1  a') = Vari-1  a'.

Therefore, only π(proj(a'(vi),Vari-1  a)) = a(vi) is required.

By assumption, π(proj(a'(vi),Vari-1  a)) = proj(πa'(vi),Vari-1  a).

Therefore, πa'(vi) = x'.

By the definition of an isomorph-eliminating generator, 
and because x'  υ' and Aut(Vari-1  a) stabilizes υ', 

a''  Ai. π  Aut(Vari-1  a). a''  g(Vari-1  a,υ')  a''(vi) = πx'.  ■

Finally, tying this all together means that a bounded-generation generator is sound for the iso-
morph duplication when using any isomorph-eliminating generator as its underlying generator.

Theorem 4.14 A level i bounded-generation generator for a formula φ and a set of values υ with 
an underlying level i isomorph-eliminating generator g'(α,υ'), set of values υ', pro-
jection function proj, and related formula φ' is sound for the duplication  ≈π.

Proof: Obvious from Lemma 4.11, Lemma 4.12, Lemma 4.13, and Theorem 3.4.  ■

4.5 Related Work

The idea of removing isomorphs from a search space is very old. Butler et al [BFP88] trace it
back to 1874, when Glaisher removed isomorphs in solving the 8 queens problem. Swift [Swi58]
coined the term isomorph rejection to describe the pruning of isomorphs in several projects that
were searching for solutions to interesting mathematical problems or puzzles. He described
searches that generated and then removed partial assignments that were isomorphs of other par-
tial assignments generated. This approach of generating and then removing is a common
approach in search pruning. Explicit testing by itself can be prohibitively expensive; Freuder
[Fre91] describes an algorithm for constraint satisfaction that involves trying all pairs of values for
all variables, an algorithm that is exponential in the number of variables. Lam and Thiel [LT89]
realized that the cost of generation followed by isomorph testing could exceed the time saved by
the reduced number of cases; they suggest only removing isomorphs at selected levels. The
approach described in this chapter avoids both generating excess values that will be later removed
and any explicit isomorphism tests. These advantages allow the removal of virtually all isomorphs
with little cost.

Other researchers have recognized the problem of isomorph rejection. Crawford et al [CG+96]
add additional constraints that limit the choices to a single assignment in many equivalence
classes. For example, a scalar variable that can vary freely over a set of values can be constrained
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to a specific value. The challenge in this approach is finding appropriate formulae to constrain a
variable, without removing any non-isomorphic cases.

Zhang and Zhang prevent the generation of some isomorphs in SEM [ZZ95b;ZZ96b] with an
approach that they call the Least Number Heuristic. In SEM, functions are represented as a vector of
cells, with each cell representing the value of the function for a particular combination of input
arguments. SEM uses these cells as Ladybug uses variables; each layer of the search tree binds
possible values to a single cell. Zhang and Zhang note that any value not yet represented in any
cell higher in the tree is indistinguishable from any other value not yet represented. Therefore, for
the nth cell, they only consider at most the first n values. This approach cannot exploit any symme-
tries in the structure of the function being generated. While providing a significant reduction at lit-
tle runtime cost, the least number heuristic removes only a relatively small fraction of the
isomorphs.

Allowing model checkers to exploit the symmetries inherent in the underlying systems is cur-
rently a focus of active research [CE+96;ID96;ET99]. Although the specific approaches taken vary
between the different systems, all these researchers frame the problem essentially identically to the
definition of the isomorph duplication in this chapter. None of these approaches uses an explicit
search strategy similar to selective enumeration, therefore none considers the level-by-level con-
structive approach to the permutation group developed in this chapter or considers the problem
of generating isomorph-free sets of values.

Other attempts at symmetries have focused on partial-order symmetries [Jha96;BW94], rather
the symmetry of values considered here. Partial order symmetries are difficult to discover in rela-
tional formulae; the CTL logic used in model checkers and the standard STRIPS framework used
in planners both offer more obvious opportunities for partial-order reductions.
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Chapter 5

Implementing Ladybug

The previous three chapters describe the theory of selective enumeration and the techniques that
allow duplications to be exploited for the relational problem domain. This chapter and Chapter 6
describe how these techniques have been realized in Ladybug. This chapter focuses on the mecha-
nisms that support the partial-assignment techniques, whereas Chapter 6 describes the mecha-
nisms that support isomorph elimination. In both chapters, I ignore many details of the
implementation, focusing only on the algorithms and heuristics that are not obvious in their
design or that are surprising in their results.

The first section provides an overview of the Ladybug architecture, giving a context into
which the mechanisms can be placed. The second section describes the search function that Lady-
bug generates to control the search. The third section describes the consequence closure mecha-
nism that Ladybug uses to discover additional candidate filter formulae. The fourth section
describes the heuristic used to choose derived variables. The fifth section describes the heuristic
used to choose a variable ordering for the search. The sixth section describes Ladybug’s genera-
tors. The seventh section describes the generation of the search function. The final section
describes related work.

5.1 Ladybug Architecture

As illustrated in Figure 5.1, Ladybug consists of two major pieces: the front end and a solver. The
front end provides the user interface, the parser, and the thread control. The front end is also
responsible for invoking the solver. By default, the front end normalizes the formula into disjuncts
of purely conjunctive formulae. The front end invokes the solver once for each conjunctive for-
mula. For the remainder of this chapter, I assume that the formula being solved is purely conjunc-
tive.

Ladybug is designed to support multiple solvers; the user can choose the solver used in the
analysis. In this way, Ladybug can support apples-to-apples comparisons between different
approaches to solving relational formulae. For example, a solver could perform a random walk
directly over the relational formula produced by the front end, or it could translate that formula
into an equivalent boolean formula and employ one of the many existing boolean satisfaction
tools. The only solver currently implemented is the selective-enumeration solver.

Along with numerous communication and control methods, each solver provides two major
methods: translate and solve. Each solver may choose to do any preparatory work during translate,



72 CHAPTER 5.  IMPLEMENTING LADYBUG

but only solve is allowed to return any solutions that are discovered. For some solvers, such as the
parse tree random-walk approach, translate might perform little actual work. In other solvers, the
translate method might embody the majority of the effort undertaken, such as the translation to a
boolean formula for a boolean-satisfaction solver.

The selective-enumeration solver makes extensive use of the translate method to improve the
chance that the search will quickly locate a counterexample. The result of the translate method is
the search function, implemented as an easily interpretable structure that embodies all the compu-
tations, tests, and appropriate calls to the generators required by a selective-enumeration search.
Section 5.2 describes this function in more details.

Figure 5.1 illustrates the overall architecture with selective enumeration chosen as the solver.
The primary flow of information is:     

1) the specification is loaded by the parser,
2) the parser passes parse trees and related structures to the translate method of 
the solver,
3) the selective-enumeration translate method passes the generated search 
function to the solve method, and
4) the solve method passes counterexamples to the user interface to display to the 
user. 

 The translate method of the selective-enumeration solver works through five steps: 

1) identify candidate filter formulae,
2) choose derived variables,
3) choose an ordering for the variables,
4) select and initialize appropriate generators, and

translate
  Identify Formulae
  Choose Derived
  Order Variables
  Choose Generators
  Generate Function

Selective-Enumeration Solver

solve
  Search
  Compute Aut()
  Backtracking

Front End

Parser User Interface
Control

Spec

Figure 5.1. The architecture of the Ladybug tool with the selective-enumeration
solver “plugged-in”.
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5) generate the search function.

The five sections beginning with Section 5.3 detail these steps. 

5.2 Search Function

To understand how these techniques work, it is useful to understand how the generated search
function behaves. The search function controls all aspects of the search and performs all computa-
tions except the generation of values.

These computations are divided by variable and kind into blocks of computations, which I call
sections. The first of the two kinds of sections compute the value of the terms used in the search.
The computation section related to the last variable bound in a term computes the value of that
term and stores the value in a compiler-generated variable allocated for that value. For a search
over n (non-derived) variables, the search function contains n+1 computation sections: one for
each variable and one for any terms that are independent of the variable bindings. This section,
called the constants section, is the first section to be evaluated. 

The second kind of section evaluates each atomic formula for the assignment generated thus
far. Again, the testing section related to the last bound variable appearing in an atomic formula
evaluates that atomic formula. For a search over n (non-derived) variables, the function contains n
testing sections.    

The search function also invokes the generators. The generators used in Ladybug behave
somewhat differently from the idealized generators described in the previous chapters. Rather
than returning a set of assignments, each generator is a subclass of a Java Enumeration, yielding one
value for each invocation.

The search function combines these three building blocks, computation sections, testing sec-
tions, and generator invocations, into a function that controls the search. The structure of the
search implements derived variables and short circuiting; specialized generators implement
bounded generation and isomorph-elimination. The search function treats derived variables iden-
tically to the compiler-generated variables; portions of the appropriate computation section com-
pute and store the value of the derived variable.

The simplest structure occurs with short circuiting disabled. After the constants section comes
the invocation of each generator along with the corresponding computation section. All the testing
sections follow the last computation section. Normal execution flows from the beginning of the
function to the end. If a generator yields no more values, the execution loops back to the invoca-
tion of the previous generator. If the generated assignment fails to satisfy any of the atomic formu-
lae encoded in the testing sections, execution returns to the invocation of the final generator. Any
assignment that passes all the tests is a counterexample and is presented to the user.

If short circuiting is enabled, each testing section appears immediately after the corresponding
computation section. If the partial assignment fails a test, execution branches back to the invoca-
tion of the corresponding generator. The tests embodied in the testing section are the filter formu-
lae for short circuiting. With optimized backtracking enabled, the execution branches back to the
invocation of some earlier generator when a generator yields no more values. Section 5.7 briefly
describes how the search function chooses the target for backtracking.

Ladybug compiles this structure into the machine language for a virtual machine optimized
for evaluating relational expressions. The details of this virtual machine are uninteresting, so I
simply summarize its behavior. The basic execution of this machine is similar to a traditional pro-
cessor, with instructions made up of an operation and one or more operands, each indicated by a
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Terms Computed:
BndGen-newAddr: set Addr = Addr \ used
BndGen-dom usage': set Addr = Addr \ used'
Set0: set Addr = Addr
Set1: set Addr = { newAddr }
Set2: set Addr = dom usage
Set3: set Addr = dom usage'

constants 

  // terms

  // Addr 
  SUniv Set0

used
  invoke used SetIsoGenerator

  // terms

  // Addr \ used
  SDiff BndGen-a  Set0,used

  // tests 

newAddr
  invoke newAddr ScalarBndGenerator(ScalarIsoGenerator)

  // terms

  // Init { newAddr }
  SClear Set1
  // Add newAddr
  SElem Set1  newAddr
  // usedU{ newAddr }
  SUnion used'  used,Set1
  // Addr \ used'
  SDiff BndGen-dom usage'  Set0,used'

  // tests

usage'
  invoke usage’ FuncBndGenerator(FuncIsoGenerator)]

  // terms
  // used <: usage'
  FDomR usage  usage',used
  // dom usage
  FDom Set2  usage
  // dom usage'
  FDom Set3  usage'

  // tests
  // used = dom usage
  SEq  used,Set2 { used }
  // used' = dom usage'
  SEq  used',Set3 { used, newAddr }

Figure 5.2. The search function for the search for a counterexample to the UniqueAd-
drAlloc claim. Derived variables, bounded generation, isomorph elimination, and
optimized backtracking are all enabled.
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storage location. Some operations write to a location, whereas others branch based on the result of
a test encoded in the instruction. The operations perform standard relational and set operations,
such as intersection and equality.

Figure 5.2 shows the search function for the analysis of the UniqueAddrAlloc claim. The first part
of Figure 5.2 lists the storage locations used in this search and describes the values that are bound
to each location. The first storage location listed, referred to as BndGen-newAddr, is the reduced set
of values for the bounded generation of newAddr. The second location listed, referred to as BndGen-
dom usage', is the reduced domain for the bounded generation of usage'. The cross product of this
set with the set of all elements in Data forms the reduced set of values for usage'. The remaining
locations are equivalent to classic compiler temporaries, each holding the result of a simple com-
putation.

The constants section, appearing immediately after the storage section, is the beginning of the
code that can be executed by the virtual machine. The code in the constants section computes a
single value that is independent of the binding of any variables, the universal set containing all
elements in Addr. The code shown, as dumped by Ladybug, follows a standard format. The first
line of a pair gives a comment describing the computation, usually by giving the term or formula
being computed. The actual code line consists of up to four parts: a mnemonic for an operation, a
target to store the value (for terms), a list of operands (if any), and a set of variables influencing the
outcome (for tests only). The first letter of the mnemonic indicates the type of the operand(s), such
as “S” for set and “F” for functions. The remainder of the mnemonic indicates the operation itself,
such as “Eq” for equality test or “Diff” for difference computation. For the one instruction in the
constants section, the operation (SUniv or set universe) assigns the universe of all values in Addr to
the variable Set0.

The remainder of the search function is separated by the three non-derived variables: used,
newAddr, and usage'. The first instruction in each part invokes the indicated generator, storing the
returned value, if any, in the indicated variable. The first generator invoked, for the variable used,
is the set-valued isomorph-eliminating generator. The remaining two generators are bounded-
generation generators based on isomorph-eliminating generators. This relationship is described
more thoroughly in Section 5.6.

The third instruction in the computation section for newAddr computes the union of the value
of used with the value stored in the compiler-generated variable Set1, which is the set containing
only the value of newAddr. By storing this result in used', this instruction implements the derived-
variable generation of used'.

In this example, the only tests are performed after all the variables are bound, indicating that
short circuiting offers no advantages. The first test, checking used = dom usage, does not depend of
the binding of the variable newAddr, as indicated by the set of variables shown at the end of the
test. As explained in Section 5.7, this knowledge allows the search to backtrack to the optimal vari-
able. The second test, which checks used' = dom usage', does depend on newAddr, as shown in the
set of variables. This dependency arises because the value of used' is derived (in part) from the
value of newAddr.

5.3 Consequence Closure

All partial-assignment opportunities depend on the knowledge of appropriate filter formulae.
Identifying a collection of candidate filter formulae is the first step during translation. This section
describes how Ladybug discovers these candidates.

The initial collection of candidate filter formulae is the set of conjuncts that make up the for-
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mula being solved. This collection may miss opportunities for short circuiting, derived variables,
or bounded generation. To improve the results, Ladybug employs a consequence closure mechanism
to increase the size of this collection.     

Consequence closure recognizes new formulae implied by the current collection. These newly
recognized formulae are added to the collection, possibly enabling further recognitions. The con-
sequence closure mechanism uses a set of pattern-based rules that generate new formulae when
matched. Table 5.1 lists some of the rules used by Ladybug. The complete set of rules appears in
Appendix A.     

As a simple example, consider a formula that indicates that two sets cover a third set, as in
(set1 U set2) = set3. This formula matches the antecedent pattern for the first rule shown in Table
5.1 (R1), triggering the generation of the formula (set1 U set2) <= set3.1 This new formula matches
the fifth rule (R5), generating two additional formulae: set1 <= set3 and set2 <= set3.

This new formula improves the short circuiting reduction if the variable ordering enumerates
set1 and set3 before set2; the new formula set1 <= set3 can short circuit the tree earlier than can the
original formula, which requires all three variables to be bound. Alternatively, the new formula
set1 <= set3 supports the bounded generation of either set1 or set3, depending on the variable
ordering.   

Rule # Antecedent Consequent

R1 S0 = S1 S0 <= S1

R2 R0 = R1 R0 <= R1

R3 { G0 } <= S1 G0 in S1

R4 not G0 in (S1 U S2) not G0 in S1

R5 (S1 U S2) <= S0 S1 <= S0

R6 not S0 <= (S1 U S2) not S0 <= S1

R7 R1 <= R0 (dom R1) <= (dom R0)

R8 R1 <= R0 (ran R1) <= (ran R0)

R9 S0 <= (S1 \ S2) S0 <= (Un \ S2)

R10 S0 <= (S1 & S2) S0 <= S1

R11 R0 <= (S1 <: R2) (dom R0) <= S1

R12 R0 <= (S1 <: R2) R0 <= R2

R13 (S1 U S2) = S0 (S0 \ S1) <= S2

Table 5.1: Selected rules used by the consequence closure mechanism. Any formula discovered that 
matches an antecedent pattern will generate a formula matching the consequent pattern, with 

each term in the consequent pattern replaced with the equivalent term from the antecedent 
pattern. In these rules, any identifier starting with an S represents any term that yields a set, a G 

any term that yields an element of a given type, and an R any term that yields a relation.

1. The pattern-matching algorithm is aware of the associative and commutative properties of the
operators. Therefore, this rule also generates the formula set3 <= (set1 U set2).
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Sometimes this mechanism generates unwieldy or seemingly ridiculous formulae. To prevent
significant effort being placed on these generated formulae, Ladybug employs an expression sim-
plifier to “clean up” each formula before it is added to the collection. The simplifier replaces terms
or entire formulae with simpler terms or formulae that are guaranteed to be equivalent. If a for-
mula simplifies to the constant true, it is ignored. On the other hand, if a formula simplifies to the
constant false, the base formula cannot be satisfied and no search is attempted.

The generative rules used by consequence closure are written to guarantee that the mecha-
nism will terminate for any initial collection of formulae. Each term in the antecedent will appear
at most once in the consequent, meaning that the generated formula is never longer than the for-
mula triggering the match. Because the number of formulae of any given length is finite, the num-
ber of formulae that can be generated is finite.

In practice, the rules typically refer to only two or three terms, so only arrangements of those
few terms with the available operators are actually generated. These rules yield a relatively small
increase in the number of formulae to consider. Using single antecedent rules, such as those
shown, consequence closure typically increases the number of formulae by about a factor of five,
with no formula tested showing an increase as large as a factor of nine2.

Ladybug also supports multiple antecedent rules, which capture concepts such as transitivity.
Allowing multiple antecedent patterns in a single rule, however, increases the growth factor sig-
nificantly (and the cost of discovering them even more significantly). Allowing multiple anteced-
ent rules increases the typical closure time from less than a second to more than an hour. Multiple
antecedent rules are therefore impractical, at least in the current implementation, and are disabled
by default and for all measurements shown in this dissertation. Unfortunately, multiple anteced-
ent rules are the only rules that can add new opportunities for derived variables.

At this point, an example will help explain the mechanism. This example shows the discovery
of candidates from the formula that appeared originally as (2.2) (repeated here for convenience):

Rule # Antecedent Consequent

S1 S0 <= S0 true

S2 { } <= S0 true

S3 Un <= S0 Un = S0

S4 S0 < S0 false

S5 S0 \ { } S0

S6 S0 U (S1 \ S0) S0 U S1

S7 S0 \ (S1 \ S0) S0

S8 dom (S0 <: R1) S0 & dom R1

Table 5.2: Selected rules used by the expression simplifier.

2. Table 5.4 on page 80 lists the results of single antecedent consequence closure on the claims in the
benchmark suite.
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(2.2)  ( ( ( dom usage = used and dom usage' = used' ) and
( func usage and func usage' ) ) and 
( ( ( used <: usage' ) = usage and used' = ( used U {newAddr} ) ) 
and newAddr in used ) )

The initial collection of candidate filter formulae is the conjuncts of the formula:

dom usage = used
dom usage' = used'
( used <: usage' ) = usage
used' = ( used U {newAddr} )
newAddr in used
func usage
func usage'

The first candidate triggers the first rule (R1) shown in Table 5.1, yielding the new formulae dom
usage <= used and used <= dom usage. Neither of these formulae triggers any further matches. The
second candidate formula triggers two equivalent new formulae, dom usage' <= used' and used' <=
dom usage'. Again, neither of these new formulae matches any further patterns. 

The third candidate formula, ( used <: usage' ) = usage, matches the equivalent relational equal-
ity rule (R2), yielding two more formulae: ( used <: usage' ) <= usage and usage <= ( used <: usage' ).
These new formulae, in turn, each match rules R7 and R8. These matches directly yield four addi-
tional formulae:

dom ( used <: usage' ) <= dom usage
ran ( used <: usage' ) <= ran usage
dom usage <= dom ( used <: usage' )
ran usage <= ran ( used <: usage' )

Two of these formulae, however, are first simplified by the simplifier using the last rule in Table 5.2
(S8). The four formulae added to the candidate collection are

used & (dom usage' ) <= dom usage
ran ( used <: usage' ) <= ran usage
dom usage <= used & (dom usage' )
ran usage <= ran ( used <: usage' )

The third of these new formulae matches rule R10 in Table 5.1, yielding two more formulae:

dom usage <= used
dom usage <= dom usage'

The first of these new formulae is already in the collection, having been introduced as a result of
the original formula dom usage = used. The second formula, however, is newly discovered and is
added to the collection of candidate filter formulae.

The remaining derivations follow a similar routine. Table 5.3 lists all 27 candidate formulae
generated in this process along with a summary of their derivations.    

The consequence closure mechanism records the derivation trail for each fact discovered,
allowing the search function to test only formulae that are not implied by other formulae already
satisfied. The search function shown in Section 5.2 considers only eight of the formulae discovered
by this process (1-7 and 10 from Table 5.3) and explicitly tests only two of those formulae (1,2).
Ladybug ignores the two functional predicates (6,7) because they are guaranteed by using a gener-
ator that yields only functions. By deriving the variables usage and used', Ladybug guarantees the
satisfaction of two more formulae (3,4). The final two formulae considered (5,10) support bounded
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generation, which guarantees their satisfaction in any assignments generated.      

For this example, only the trivial weakening of an equality (dom usage' = used' to dom usage' <=
used') proved useful. For most of the specifications studied in the benchmark suite, there are more

Formula # Candidate Formula
Derived 

From

1 dom usage = used

2 dom usage' = used'

3 ( used <: usage' ) = usage

4 used' = ( used U {newAddr} )

5 newAddr in used

6 func usage

7 func usage'

8 dom usage <= used 1(R1),16(R10)

9 used <= dom usage 1(R1)

10 dom usage' <= used' 2(R1)

11 used' <= dom usage' 2(R1)

12 ( used <: usage' ) <= usage 3(R2)

13 usage <= ( used <: usage' ) 3(R2)

14 used & (dom usage' ) <= dom usage 12(R7,S8)

15 ran ( used <: usage' ) <= ran usage 12(R8)

16 dom usage <= used & (dom usage' ) 13(R7,S8)

17 ran usage <= ran ( used <: usage' ) 13(R8)

18 dom usage <= dom usage' 16(R10),19(R7)

19 usage <= usage' 3(R12)

20 ran usage <= ran usage' 19(R8)

21 used' <= ( used U {newAddr} ) 4(R1)

22 ( used U {newAddr} ) <= used' 4(R1)

23 used <= used' 22(R5)

24 {newAddr} <= used' 22(R5)

25 newAddr in used' 24(R3)

26 used' \ used <= {newAddr} 4(R13)

27 used' \ used <= {newAddr} 4(R13)

Table 5.3: The candidate formulae generated by the consequence closure mechanism. 
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significant effects. Table 5.4 summarizes the effects of consequence closure on the formulae
derived from the specifications in the benchmark suite. Chapter 1 provides a brief outline of the
benchmarks and Chapter 7 fully describes them. 

Table 5.4 gives four pair of numbers for each claim tested. The first half of each pair represents
the number of formulae without consequence closure and the second gives the number with con-
sequence closure. The first pair of numbers indicates the total number of candidate filter formulae
discovered, whether actually used or not. The second pair of numbers indicates how many of
these formula were chosen to support bounded generation and the third pair indicates how many
of these formula were chosen to support short circuiting The fourth pair of numbers gives the total
number of filter formula chosen (excluding derived variables), which is always the sum of the cor-
responding numbers from the second and third pairs. For claims whose original formula included

Specification Claim

Candidate 

Filter 

Formulae

B-Gen Filter 

Formulae

S. C. Filter 

Formulae

Total Filter 

Formulae

alloc UniqueAddrAlloc 7/27 1/2 2/2 3/4

coda RCreate 81/322 3/10 40/41 43/51

RSDRefRen 83/327 0/5 44/50 44/55

digicash SpendOnce 10/32 1/3 5/6 6/9

faa X1b_OK NA NA NA NA

finder Move 23/111 5/12 9/12 14/24

TrashingWorks 25/113 6/12 10/14 16/26

HLA owners AttrDivNot 44/159 2/3 18/19 20/22

AttrAcqNot 45/170 3/4 19/21 22/25

CompOwners 134/585 4/13 50/57 54/70

HLA bridge ObjMapping 30/90 0/2 15/16 15/18

CheckAcyclicMaps 31/107 0/1 16/18 16/19

math connex 2/6 0/0 2/2 2/2

comp 1/1 0/0 1/1 1/1

shroder 2/8 0/0 1/1 1/1

closure 1/1 0/0 1/1 1/1

functions 1/1 0/0 4/4 4/4

mobile IP loc_update_ok 60/200 2/10 26/28 28/38

phone CallersCalledP 8/48 0/0 4/4 4/4

styles FormattingP 34/273 1/14 20/21 21/35

Table 5.4: Summary of the effects of consequence closure on the number of filter formulae. The first 
number in each column is the number without consequence closure, whereas the second number 

allows consequence closure. For multiple clause claims, only the final clause is considered.
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disjunction, the formula was normalized into conjunctive clauses and the numbers describe the
last clause.

As seen by comparing the two numbers in the fourth column, consequence closure improved
the number of filter formulae actually chosen for all the claims except those from two specifica-
tions: math and phones. The math specification embodies a number of classic mathematical tautol-
ogies and, like the phone specification, does not have the rich set of initial candidates typical of a
“real world” specification. Neither of these specifications afford partial-assignment reductions
that are comparable in size to those found in the other specifications.

Consequence closure increased the number of filter formulae used by just one in only three
claims, UniqueAddrAlloc from alloc, X1a_check from faa, and the HLA bridge claim. As with the
math and phone specifications, alloc has an unrealistically small initial set of candidate formulae.
Although not indicated in the table, the discovered filter formula for the HLA bridge claim was
very significant, adding a new short circuiting opportunity high in the tree and reducing the
search time for the first counterexample from over a day to less than a second.

Consequence closure had an even more dramatic effect on the final clause of the X1b_OK
claim of the faa specification; an inconsistency in the clause was detected and no search was
required. Several other clauses of this and other claims had inconsistencies detected, but no others
were the final clause of a claim.

5.4 Selecting Derived Variables

After the consequence closure mechanism has completed, discovering the list of equalities that
support derived variables is straightforward. Any formula that equates a variable to the value of a
term not using that variable supports deriving the variable. From the collection of candidate for-
mulae discovered in the previous section, four formulae support derived variables:

dom usage = used
dom usage' = used'
( used <: usage' ) = usage
used' = ( used U {newAddr} )

Although each of these formulae individually support derived variables, no single search can use
all four formulae to support derived variables. One conflict is immediately obvious: used' can be
derived as the value of the term dom usage' or as the value of the term ( used U {newAddr} ), but not
both. Choosing between these two options is straightforward.

The second conflict is less immediately obvious. Deriving the variable used from the value of
term dom usage requires that a value is bound to the variable usage before the value of the variable
used is computed. Similarly, deriving the variable usage from the value of the term ( used <: usage'
) requires that a value is bound to the variable used before computing the value of usage. There-
fore, Ladybug can use only one of these derivations.

Nitpick, the predecessor to Ladybug, simply chose derived variables as enabling formulae
were discovered. If Nitpick discovered a later formula that supported deriving a variable but con-
flicted with a derivation already chosen, Nitpick ignored the opportunity presented by the later
formula. This arbitrary selection of derived variables led to instability in the variables that were
derived and thus the search time. For at least one specification, mobile IP, a simple rearrangement
of the constraints within the specification increased the search time from minutes to hours.

Ladybug, on the other hand, identifies all possible filter formulae for derived variables ini-
tially and then attempts to make a good, consistent choice of filter formulae to support derived
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variables. One constraint and one heuristic guide this choice: no cycles are allowed in the deriva-
tion chain and variables whose type includes more values are preferred as derived variables over
variables with smaller types. For example, a variable typed as a function with three elements in
the domain and three elements in the range has 64 values in its type, whereas a variable typed as a
set with three elements in its domain has only 8 values in its type. Therefore, all other things being
equal, Ladybug would choose to derive the function rather than the set. Note, however, that deriv-
ing one variable may force one or more other variables to not be derived, so the size of types of the
variables found in the defining terms must also be considered.    

To solve these constraints, Ladybug constructs a weighted, directed hyper-graph, with the
each node representing a variable and each hyper-edge representing a possible derivation. Each
edge starts at the variable to be derived by a candidate filter formula and ends at each variable in
the term being equated to the derived variable. The weight of an edge is computed as the number
of values in the type of the variable being derived minus the sum of the number of values in the
types of each variable in the defining term

 Figure 5.3 illustrates this hyper-graph for the four candidate filter formulae given earlier. As
an example, the edge at the top of the graph represents the derivation used' = ( used U {newAddr} ).
The weight of this edge is the number of values in the type of used' (8) minus the sum of the num-
ber of values in the types of used (8) and newAddr (3), for a total of -3.

Any variable that is the starting node for an edge, but is not the terminus for any edge can be
derived without placing any restrictions on the other possible derivations. Ladybug begins by
choosing the edge with the largest weight originating at one of these “unencumbered” variables.
Ladybug uses the formula associated with this edge to support deriving the variable associated
with originating node. Ladybug removes the node representing the newly derived variable from
the graph, along with any edges that are adjacent to the node.

For the example, used' is the only variable that is a pure source in Figure 5.3. The edge repre-

usedused'newAddr

usageusage'

-3

-56

-8

-56

Figure 5.3. The hyper-graph representing the possible derived variables for the
search to find counterexamples to the claim UniqueAddrAlloc. This graph includes
two edges originating at node representing the variable used' and one each origi-
nating from the nodes representing usage and used. Each hyper-edge connects a
possibly derived variable to the variables in the term defining the derivation. The
weights approximate the savings, with a larger value indicating greater expected
savings.
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senting used' = ( used U {newAddr} ), with a weight of -3, has the maximum weight of any edge
beginning at used' and is chosen. Therefore, I select the node labeled used' and remove it from the
graph, resulting in a new graph shown in Figure 5.4.    

When no more variables can be derived using this approach, all possible derivations remain-
ing conflict with another remaining possible derivation. At this point, Ladybug chooses the maxi-
mal weight edge remaining in the graph and selects the corresponding formula to support the
derivation of the variable associated with the originating node. Ladybug again removes that node
from the graph, along with any adjacent edges and the process is continued, checking first for
unencumbered variables, and then choosing an edge to break a cycle until all edges have been
removed.

The edge with weight -8 is the maximal weight edge in Figure 5.4. Choosing this edge corre-
sponds to deriving the variable usage with the filter formula ( used <: usage' ) = usage. Once usage
is removed along with all its adjacent edges, the graph has no more edges and no more variables
can be derived.

Once the algorithm terminates with all edges removed, the resulting collection is maximal (no
more derivations are possible) and likely to provide a good reduction in the search, although not
necessarily the largest reduction possible. The first claim is obvious as every possible derivation is
represented by an edge and edges are only removed when they are chosen as the basis for a
derived variable or they conflict with a derivation chosen. The second claim is based on the intu-
ition that the weighting assigned to the edges is somehow correlated to the reductions actually
provided by the derivations. Like greedy algorithms in general, this approach tends to make a
good, but not necessarily optimal choice.

5.5 Variable Ordering

Before compiling the discovered formulae into the search function, Ladybug must choose an
ordering for the variables. Assuming that the cost of the search is proportional to the number of
values generated, one ordering is better than another if it requires fewer values to be generated.

Conceptually, choosing a good ordering is straightforward. For each possible ordering, some
of the discovered formulae enable bounded generation, derived variables, or short circuiting.
Using the formula-based heuristics developed in Chapter 3 for estimating the partial-assignment

usedused'newAddr

usageusage'

-8

-56

Figure 5.4. The hyper-graph for choosing derived variables after removing the
node for used'.
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reduction, Ladybug can estimate the cumulative effect of each ordering on the size of the reduc-
tion offered by the partial-assignment techniques.3 The ordering offering the largest reduction is
chosen as the optimal ordering. Unfortunately, the number of possible orderings increases as the
factorial of the number of variables, making this estimation impractical for all but the smallest for-
mulae.

Ladybug uses heuristics to approximate this ordering. Ladybug’s first heuristic estimates the
savings, in numbers of values not being generated for other variables, of placing a variable at the
start of the ordering. Ladybug initially orders the variables in descending order of this estimated
savings, refining this ordering with local adjustments.

Ladybug only considers the non-derived variables in this approximation. As implemented in
the search function, each derived variable increases the cost of enumeration for a non-derived
variable, but not the number of values generated for that variable. Moving this cost higher in the
tree reduces the overall cost of the search, but this difference is insignificant compared to changing
the number of values generated. The ordering heuristics therefore consider only the dominant cost
of the number of values generated.

The ordering affects the number of values generated by controlling the opportunities for
bounded generation and short circuiting. For example, the formula dom usage' <= used' enables the
bounded generation of usage' if used' is bound prior to usage' or the bounded generation of used' if
usage' is bound prior to used'. The variable used' was already chosen as a derived variable and is
therefore not available for bounded generation. The derivation of used' does not depend on usage',
so used' may be ordered before usage'. Because used' is a derived variable based on the formula
used' = ( used U {newAddr} ), bounded generation actually requires that usage' must appear after
used and newAddr. The heuristics in Chapter 3 estimate that using the bounded generation enabled
by the formula dom usage' <= used' will reduce the number of values generated for usage' by
approximately a factor of 23.4 Any variables coming later would also be reduced in number by this
same factor.

To approximate the effect of the reduction, the variables required to appear first are given a
weight proportional to the effect of the reduction. In this case, the variables used and newAddr accu-
mulate a weight of 23 times the number of possible values for usage'. Therefore, used and newAddr
accumulate a weight of 1472 (23∗64 possible values for usage'). If the search included other non-
derived variables not involved in this reduction, they too would be included in the calculation.
The weighting factor is multiplied by the number of possible values for any non-derived variables
not involved in the filter formula being considered.

As a second example of the weighting heuristic, consider the formula newAddr in used. If the
variable newAddr is ordered before used, bounded generation will reduce the number of values
generated for used by a factor of 2. Therefore, Ladybug adds 1024 (2 ∗ 8 values for used ∗ 64 values
for usage') to the weighting for newAddr. Similarly, bounded generation will reduce the number of
values generated for newAddr by 3/2 if used is ordered before newAddr. Therefore, Ladybug adds a
weight of 288 to used (3/2 ∗ 3 values for newAddr ∗ 64 values for usage').

3. Although the ordering does not in theory have an effect on the reduction offered by isomorph
elimination, there is a practical effect. As shown in the next chapter, isomorph elimination is
more efficient for some types of variables than others. In particular, relations with overlapping
domains and ranges “lose” many isomorphisms. Generating these values after other variables
will improve the efficiency of isomorph elimination. Ladybug currently ignores this consider-
ation.

4. Ladybug actually uses a heuristic that takes into consideration that usage' is a function, yielding
a smaller reduction estimate of about 6.
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After Ladybug has accumulated the weightings for each variable from each candidate filter
formulae, its sorts the variables according to their cumulative weight. In general, an ordering with
the higher weight variablesthe lower weight variables will offer more reductions. For the ongoing
example, the weight based ordering is

< newAddr, used, usage' >

However, this ordering is not guaranteed to be optimal. The first variable may improve the reduc-
tions of all non-derived variables but the second one and the second variable might offer reduc-
tion opportunities for the first variable. If the second variable only contributes to the reduction of
the first variable, it will likely be ordered after it, yielding a poor ordering. To improve these local
orderings, Ladybug uses a standard bubble sort5, this time swapping adjacent variables only if
swapping them would improve the ordering. The comparison in this sort considers only partial-
assignment reductions that depend on a specific ordering of the two variables being compared
(and is consistent with the remainder of the ordering established, of course).

In the example, when considering the first two variables in the initial ordering, Ladybug looks
for candidate filter formulae that involve both used and newAddr, but do not depend on any other
variables (as no variables precede them). The only relevant formulae are newAddr in used and
{newAddr} <= used. The existing ordering enables a reduction of a factor of 2 in the number of val-
ues generated for used. Considered independently, each of these candidate formulae yields a
reduction of 3/2 in the number of values generated for newAddr if the order is swapped. Ladybug
incorrectly assumes that this leads to a 9/4 reduction in combination and swaps the two variables.
In the next step, no advantage is seen when considering swapping newAddr and usage' because no
opportunity depends on the ordering of these two variables.

This complete heuristic requires O(n2f) time to run, where n is the number of non-derived
variables and f is the number of candidate formulae discovered by consequence closure. This time
is a significant reduction from the O(n!f) cost required for the computing the more obvious order-
ing.

Although this heuristic chooses a good ordering, the ordering may be flawed for two reasons.
First, the algorithm may choose a non-optimal ordering for the estimated reductions. Second, the
reductions themselves are estimates. As noted in Chapter 3, where the reduction heuristics were
introduced, the heuristics often double count reductions. The double counting occurs more fre-
quently in this algorithm, where every candidate filter formula is considered, often recounting the
same basic reductions many times. Despite these problems, the heuristic appears to work well in
practice.

5.6 Ladybug Generators

This section describes how Ladybug chooses the generators to be invoked by the search function.
Ladybug considers three factors in this choice: the type of the variable being generated, whether
isomorph-elimination has been enabled, and if any filter formulae supporting the bounded gener-
ation of the variable have been discovered.

Ladybug includes two sets of generators, each covering a variety of types of values. One set
includes isomorph-eliminating generators and the other contains exhaustive generators. The types

5. Ladybug uses a bubble sort because the bubble sort compares a pair of variables only if they are
ordered consecutively. This final sort is attempting to adjust for local inefficiencies in the order-
ing, so depends on this locality of comparison. The comparison test used in the sort is also mean-
ingful only for these local comparisons.
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covered include not only the basic types supported in relational formulae, scalars, sets, and rela-
tions, but also subsets of these types, such as functions, injections, and bijections. In choosing the
most appropriate generator, Ladybug considers both information supplied in the declarations of
the variable and information given by the discovered candidate filter formulae.

The implementation of the exhaustive generators is straightforward, generating all possible
combinations. The isomorph-eliminating generators are described in detail in the next chapter.
From the outside, however, the two kinds of generators are indistinguishable, both offering the
same collection of methods.

If a candidate filter formula supports bounded generation of the variable, Ladybug initializes
a bounded-generation generator. The previously chosen type-based generator becomes the under-
lying generator. The search function computes the reduced domain and range sets and any projec-
tion values and stores them in compiler-defined variables. The bounded-generation generator
uses these values to produce the values. If consequence closure discovers multiple formulae that
support bounded generation for the variable, the search function computes the intersection of all
the reduced domain and range sets and the union of any projection values, allowing one generator
to perform the composition of the possible bounded generation. 

As noted earlier in this chapter, the generators implemented in Ladybug behave differently
than the idealized generators considered in the previous chapters. Rather than returning a set of
assignments, each generator is a Java Enumeration. Each invocation returns a single value.This
difference offers two advantages: work is performed only as needed and only a fixed (and small)
amount of memory is required for generated values. To maximize the advantage of the fixed mem-
ory, every aspect of the search is structured so that no memory allocation occurs during the search.

5.7 Generating the Search Function

Once the decisions outlined in the previous sections have been made, generating the search func-
tion is straightforward. The class representing each operator in the formula language “knows”
how to generate the virtual machine code to implement itself.6 A simple post-order traversal of the
parse tree for a term or atomic formula thus yields the complete code required that expression.

The only question remaining is the order in which to compile these expressions. Other than
the obvious variable and inclusion requirements, the possible orderings of the terms are equiva-
lent. Different orderings of the tests, on the other hand, may result in different times required to
complete the search. Two factors in the ordering affect the search time: the number of tests evalu-
ated and the target for the next backtrack. By moving the tests most likely to fail earlier in the
code, the search time can be reduced slightly.

The second factor, the backtrack target, is far more significant and is the primary selection cri-
teria used by Ladybug in ordering the tests. Ladybug chooses the backtrack target based on a cri-
teria essentially identical to the conflict-directed backjumping algorithm originally developed and
described by Prosser in 1993 [Pro93]. In conflict-directed backjumping, when all values for a given
variable are exhausted, the backtrack returns to the previous variable that can effect the outcome
of one of the tests failed for at least one of the values considered. Obviously, changing the value of
any intervening variable will lead to the same tests failing, leading to unproductive subtrees.

Ladybug therefore preferentially orders tests that only involve variables relatively high in the
search tree (ignoring the current variable, of course). Ladybug must also consider the variables

6. To maintain separation between the front end and the selective-enumeration solver, the compila-
tion is actually done by a class hierarchy that is parallel to the parse tree class hierarchy. 
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that are considered by bounded generation; these variables are assumed to also have filtered some
values.

The search function tracks the relevant variables with tag sets added to selected instructions in
the search function. Ladybug tags the generator invocation with the set of variables involved in
bounded generation, if any. Each test has an associated tag set of variables involved in that test.
When a generator is reset, the tag set for a variable is reset to the set associated with that invoca-
tion. The search function unions the set associated with a test to the variable’s set each time a test
fails. When a generator exhausts its set of values, the search backtracks to the last variable in the
set associated with the current variable.

5.8 Related Work

The consequence closure mechanism is a simplistic version of unification. Traditional unification
systems are more goal directed than the mechanism used here. Adding more goal direction may
be one approach to improve the quality and efficiency of the fact discovery. 

Many other tools, including the model finding tools [Sla94; ZZ96b], use some form of dynamic
fact discovery. Dechter and Frost [DF98] call dynamic fact discovery learning algorithms, differenti-
ating the approaches by the amount and quality of information maintained. Slaney maintains
extensive information discovered, finding it necessary to reduce the information in two ways to
reduce the cost of maintaining the information to a tolerable level. Zhang and Zhang reduce the
information maintained significantly to be able to reduce this cost, requiring correspondingly
more backtracks in the search as a consequence.

Ladybug depends on static fact discovery to provide information used in choosing a static
variable ordering. The static fact discovery and variable ordering allow Ladybug to compile the
search function; the compiled search function leads to a significantly faster processing time per
assignment.

Other search approaches [SF93;Sla94;ZZ96b;DF98] use heuristics to choose the variable order-
ing dynamically. The traditional ordering heuristic is to always bind the most constrained remain-
ing variable next. As observed in Section 5.5, the two possible advantages in one ordering over
another is 1) the earlier opportunity to backtrack when a variable is constrained to be unsatisfiable
and 2) the affect of an early variable on the number of values to consider for the latter variables. If
all variables still allow some values, dynamic ordering would better reduce the search space by
choosing the variable that most constrains other variables. Although this approach would proba-
bly choose a similar ordering to the one chosen by Ladybug in many cases, the overall effective-
ness of the orderings chosen would presumably be better. In some cases, no static ordering may
perform as well as the dynamic ordering chosen. In many cases, the additional information
offered by the partial assignment will allow a better choice to be made. These advantages are off-
set by the additional expense of continually recomputing the ordering.

Another search optimization, value ordering [SF93], is not employed by Ladybug. A value
ordering heuristic chooses the next value that is believed to be the most likely to be satisfying or
the most constraining for the remainder of the search. Every heuristic attempted to date in Lady-
bug proved to slow the generation down far more than gain from the search space reduction. An
effective and efficient value ordering heuristic is an open research problem. 
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Chapter 6

Implementing Isomorph Elimination

This chapter describes Ladybug’s implementation of isomorph elimination. As with Chapter
5, I only present algorithms that are not obvious. This chapter describes three distinct areas of
implementation: approximating the automorphism group, generating an isomorphically-reduced
set of values, and rewriting the typing relation.

Whereas the domain- and functional-coloring approaches to approximating the automor-
phism groups and the function- and relation-valued isomorph-reducing generator algorithms are
original to this thesis, the type rewriting concept is derived directly from Jackson [JJD97]. I have
presented the work here for completeness, to show its integration into the selective-enumeration
framework, and to illustrate an additional approach to reducing the cost of the search.

Section 6.1 introduces an additional example to illustrate the groups used in a isomorph-
duplication reduced search. Section 6.2 describes the opportunities and problems in using tradi-
tional coloring vectors to describe automorphism groups. Section 6.3 describes domain coloring,
an enhancement to the traditional coloring vectors that provides a better approximation for auto-
morphism groups. Section 6.4 develops an algorithm for generating domain coloring vectors. Sec-
tion 6.5 defines algorithms for generators that exploit the isomorph duplication. Section 6.6
describes how rewriting the typing relation can improve the reduction gained from isomorph
elimination. The final section discusses related work.

6.1 Another Example

This section introduces another small specification. The specification describes a portion of a sim-
ple phone system with conference calls. I include only one operation, Join, ignoring many obvi-
ously necessary operations. I use this specification to demonstrate the automorphism groups that
are required by the isomorph-eliminating generators. This example was originally presented in
[JJD97].

Figure 6.1 lists this specification. The specification is built with two given types, Phone and
Number. Elements of Phone model physical phones and elements of Number represent phone num-
bers.

Switch is a schema that describes the state of the basic phone switch for this system. The rela-
tion-valued variable net, which is restricted to be a function, provides the mapping from phone
numbers to physical phones. The relation-valued variable called indicates what numbers have
been successfully called from each phone (and have not yet been disconnected). The third variable
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defined by Switch is conns. Conns models the connections between phones that are current at any
point. The value of conns can be computed by composing called and net.

The Join operation allows an additional phone (as addressed by a phone number) to be added
to an existing conversation. The operation is parameterized by two variables: p, the phone origi-
nating the call, and n, the number of the phone being added to the call. Join places two constraints
on these calls: p in dom called, requiring that p already originated a phone call, and not n in ran called,
requiring that the number being called has not already been called. Finally, Join requires that the
new phone call be added to called.

The invariant NoTwoCallers requires that the connections are injective (or equivalently, that the
inverse of conns is functional). This constraint means that a single phone number can only be
called successfully by one phone at a time. The corresponding NoTwoCallersPreserved claim checks
that this invariant holds across a Join operation.

Searching for counterexamples to this claim requires solving formula (6.1).

(6.1)  func net and func net' and conns = called; net and conns' = called' ; net' and 
net = net' and p in dom called and not n in ran called and 
called' = called U { p -> n } and fun conns~ and not func conns'~

 I assume that net', conns, called', and conns' are solved as derived variables, with the search solving

[Phone, Number ]

Switch = 
[
   called : Phone <-> Number
   net : Number <-> Phone
   conns : Phone <-> Phone
|
   func net  
   conns = called ; net
]

Join(p : Phone, n : Number ) = 
[
    Switch 
|
    net' = net
    p in dom called
    not n in ran called
    called' = called U { p -> n } 
]

NoTwoCallers = 
[
 Switch  
|
 fun conns~ 
]

NoTwoCallersPreserved(p: Phone, n : Number):: 
[ |   (Join(p,n) and NoTwoCallers) => NoTwoCallers' ]

Figure 6.1. A partial specification of a simple model of a phone switch supporting
conference calls.
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the other variables using the variable ordering

< net, called, n, p >

Solving formula (6.1) with isomorph-eliminating generators and a scope of three phones and three
numbers, starts with an initial automorphism group containing 36 permutations. These 36 permu-
tations are the cross product of the six permutations of phones with the six permutations of phone
numbers.

These permutations reduce the number of assignments to consider for the first level from 64 to
7. I choose one of these assignments, binding net to the simple bijection { n0 p0, n1 p1, n2 p2 } to
continue considering the search. To compute the automorphism group of this assignment, I first
compute the automorphism group of the newly bound value. Intersecting this automorphism
group with the automorphism group of the initial assignment yields the automorphism group of
the assignment chosen. The automorphism group of the relation chosen for net includes any per-
mutation of the numbers, each paired with the corresponding permutation of the phones.

Table 6.1 summarizes one complete path through the search. Each row displays information
relevant to a single variable. The first column shows the variable assigned by that row. The second
column shows the automorphism group of the initial assignment α. For the first row, this group
includes all 36 permutations that preserve the given types. After the first row, this group is always
the intersection of the two automorphism groups from the previous row (in columns two and six).
The third column lists the number of assignments generated by an exhaustive enumeration gener-
ator. The fourth column lists the number of assignments generated by a perfect isomorph-elimi-
nating generator. The fifth column shows the value chosen for the variable in this example. The
final column shows the automorphism group of that value.

Many of the automorphism groups shown in Table 6.1 use the traditional symmetric group
notation Sx. This indicates all possible transpositions of x elements. In Table 6.1, I use this notation
as one half of a cross product of two sets of permutations. The first part always refers to permuta-
tions of numbers and the second part always refers to permutations of phones. The complete auto-

Variable Aut(α) |Typing(vi)  υ| |g(α,υ)| a(vi) Aut(a(vi))

net S3  S3 64 7 { n0 p0,

  n1 p1,

  n2 p2 }

( )
(n0n1)(p0p1)

(n0n2)(p0p2)

(n1n2)(p1p2)

(n0n1n2)(p0p1p2)

(n0n2n1)(p0p2p1)

called ( )
(n0n1)(p0p1)

(n0n2)(p0p2)

(n1n2)(p1p2)

(n0n1n2)(p0p1p2)

(n0n2n1)(p0p2p1)

512 136 { p0 n1} S2  S2

p ( ) 3 3 p0 S3  S2

n ( ) 3 3 n2 S2  S3

Table 6.1:  The automorphism groups used in the example search of the phone example. 
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morphism group contains all combinations of these permutations.

The next section develops an approximation of these automorphism groups and an algorithm
for generating that approximation. The following two sections develop an improved approxima-
tion for automorphism groups. Section 6.5 describes how isomorph-eliminating generators can
prevent the generation of most isomorphic duplicates by exploiting these permutation groups.

6.2  Coloring Vectors

Computing the exact automorphism group for an assignment or a value is too expensive to be via-
ble for use in the search. Even the problem of counting the size of the automorphism group is a
member of the isomorph-complete complexity class. Assuming that the complexity classes P and
NP are not equal, isomorph-complete problems cannot be solved in polynomial time. This section
explores approaches to more cheaply approximate the automorphism group.

Choosing an appropriate representation is an important, and non-trivial, part of choosing a
good approximation. A naive representation will be excessively large — the number of possible
permutations in the automorphism group grows with the factorial of the size of the universe of
elements U. The permutations in the automorphism group are the product of some subset of the
automorphism group, called the generators of the group. It can be shown [Hof81] that a small set
of generators can always be found (no larger than log2 of the size of the automorphism group). An
explicit enumeration of the generators of the group therefore forms a compact representation of
the automorphism group. Unfortunately, finding a set of generators for an automorphism group is
itself an isomorph-complete problem.

As seen in Table 6.1, many automorphism groups are the product of symmetry groups. A
product of symmetry groups can approximate the remaining automorphism groups, with a vary-
ing degree of error.

Each symmetry group defines an equivalence class, with any element swapped by a permuta-
tion in the symmetry group interchangeable with any other element swapped by that or any other
permutation in the symmetry group. The set of symmetry groups forms an equivalence relation
over the universe of elements. Any element not appearing in a permutation in any symmetry
group is equivalent only to itself.

Coloring vectors provide a natural representation for these equivalence relations. Each element
in the vector represents a single element in U. The vector maps each of these elements to an equiv-
alence class or color, represented by a small integer.

The accuracy of the coloring vector as an approximation of the automorphism group depends
both on the values underlying the automorphism group and the equivalence relation used to
define the coloring vector. The automorphism group for any scalar value or set value is exactly the
product of symmetry groups and can therefore be represented exactly by a coloring vector.

On the other hand, coloring vectors cannot exactly represent the automorphism groups of
many relations. In these cases, the quality of the approximation depends on the equivalence rela-
tion chosen. Two possible choices are obvious, which I call orbital coloring and atomic coloring.

For the orbital coloring, two elements are colored the same if they are in the same orbit. Two
elements are in the same orbit if a permutation in the group exchanges the elements.

Definition 6.1 (Orbital Coloring Relation)    

 The orbital coloring relation oc of the permutation group G is defined as
x,y  U. x oc y  π  G.πx = y.
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The automorphism group of the value of the variable net ({n0 p0, n1 p1, n2 p2}) from the phone
example in the previous section is 

 () (n0n1)(p0p1) (n0n2)(p0p2) (n1n2)(p1p2)
(n0n1n2)(p0p1p2) (n0n2n1)(p0p2p1)

Using the orbit coloring relation, the vector representing this automorphism group is

 p0 p1 p2 n0 n1 n2    
 0 0 0  1  1  1

Clearly, the orbital coloring includes all permutations in the automorphism group. However, the
approximation is not conservative; the orbital coloring describes some permutations that are not
part of the original automorphism group. In this example, the simple swap (n0n1) is described by
the coloring vector, but is not an element of the automorphism group. For the search to be sound,
the approximation must be conservative.

The other obvious coloring relation is the atomic coloring relation. For atomic coloring, two
elements are colored the same if the swap exchanging the two elements is a member of the auto-
morphism group. As a reminder, a swap is a permutation that exchanges only two elements, leav-
ing all other elements unchanged.

Definition 6.2 (Atomic Coloring Relation)    

 The atomic coloring relation ac of the permutation group G is defined as
x,y  U. x ac y  (xy)  G.

Using the atomic coloring relation, the vector representing the automorphism group of the value
of the variable net is

 p0 p1 p2 n0 n1 n2    
 0 1 2  3 4  5

This coloring vector defines the group that includes only the identity permutation. Clearly, this
approximation is conservative, but it is also not very accurate, including only one of the six per-
mutations in the original automorphism group.

Fortunately, atomic coloring is unusually inaccurate for this automorphism group. Table 6.2
shows the inaccuracy of the atomic coloring at representing automorphism groups for relations
and shows the equivalent information limited just to functions. For each combination of domain
and range size, these tables show the percent of values whose automorphism group cannot be rep-
resented by atomic coloring, the percent of permutations lost in those automorphism groups not
exactly represented by the atomic coloring, and the percent of all permutations across all automor-
phism groups that lost by the atomic coloring approximation. Note that Table 6.2 only lists
domains that are larger than or equal to the size of range, because the smaller domains are sym-
metric to (and therefore equivalent to) the larger domain cases. Table 6.3, on the other hand,
includes both cases, because the smaller domain functions are a distinct set of values from the
larger domain functions.          

Although atomic coloring loses between half and two thirds of all permutations in the affected
automorphism groups, the overall effect is not as severe. This improvement obviously comes from
the automorphism groups that can be represented exactly by the atomic coloring (i.e., the groups
that are exactly the product of symmetry groups). The improvement is more significant than
would be expected because the unaffected automorphism groups are, on the average, significantly
larger than the affected automorphism groups.
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As an example of the atomic coloring, I return to the phone search described in the previous
section. Table 6.4 lists the atomic coloring vectors used to represent the automorphism groups
described in Table 6.1.The first column in Table 6.4 lists each variable that is enumerated in the
search, the second column presents the coloring vector for the automorphism group of the initial
assignment, the third column gives the value bound to the variable in the search path, and the
fourth column gives the atomic coloring vector representing the automorphism group of that
value. Although this fourth column is never actually computed during the search, examining the
atomic colorings for these values is instructive. The atomic coloring relation exactly represents the
automorphism group for three of the four values used, with the previously noted value of net
being the one exception.   

Given only the new value and the coloring vector for the initial assignment, computing the
coloring vector for the new assignment is straightforward and efficient. The algorithm for comput-
ing the coloring depends on the type of the variable being bound, but is similar in all cases. The
algorithm only considers swaps that are allowed by the previous coloring. Therefore, any two ele-
ments with distinct colors in the previous coloring will have distinct colors in the resultant color-
ing. If the two elements have the same color in the previous coloring but can not be swapped in
the new value, they have different colors in the resultant coloring. Otherwise they share the same
color in the resultant coloring. Figure 6.2 presents an algorithm for computing the atomic coloring
relation given an earlier coloring and a value.   

#domain #range
% Values 
affected

%π lost for 
affected

% π lost for 
all

3 3 23% 58% 13%

4 3 26% 56% 15%

4 4 27% 56% 18%

5 4 26% 54% 17%

5 5 22% 54% 17%

Table 6.2: Effects of approximating the automorphism groups of varying sized
bipartite relations using the atomic coloring relation.

#domain #range
% Values 
affected

%π lost for 
affected

% π lost for 
all

3 3 38% 67% 19%

3 4 48% 67% 19%

4 3 45% 58% 21%

4 4 60% 66% 27%

4 5 69% 66% 27%

5 4 71% 64% 28%

5 5 81% 68% 32%

Table 6.3: Effects of approximating the automorphism groups of varying sized
bipartite functions using the atomic coloring relation.
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The code in Figure 6.2 is presented in a stylized Java-like language that will be used through-
out this chapter. The update function returns a new coloring vector that represents a subgroup of
the intersection of the permutation group described by the coloring vector colors and the automor-
phism group of the value v. The function swappable discovers relevant permutations from the auto-
morphism group of v. This function is called to differentiate consecutive elements in the domain
that are initially colored the same. The update function requires all coloring vectors to allow only
contiguous coloring regions. Although the coloring vectors representing the automorphism
groups of some values may be non-contiguous, as in Table 6.4, the coloring vector for any partial
assignment generated by Ladybug can be represented by contiguous coloring vectors without
introducing any additional inaccuracies.

The update function, along with many other algorithms presented in this chapter, depends on
an ordering of the elements. The choice of an ordering is arbitrary, but the same ordering should

Variable Aut(α) a(vi) Aut(a(vi))

net n0 n1 n2 p0 p1 p2

0 0 0 0 0 0 
{ n0 p0,
   n1 p1,
   n2 p2}

n0 n1 n2 p0 p1 p2

0 1 2 3 4 5 

called n0 n1 n2 p0 p1 p2

0 1 2 3 4 5 
{ p0 n1} n0 n1 n2 p0 p1 p2

0 1 0 2 3 3   

p n0 n1 n2 p0 p1 p2

0 1 2 3 4 5 

p0 n0 n1 n2 p0 p1 p2

0 0 0 1 2 2 

n n0 n1 n2 p0 p1 p2

0 1 2 3 4 5 

n0 n0 n1 n2 p0 p1 p2

0 1 1 2 2 2 

Table 6.4: Coloring vectors representing the domain coloring relations for the
automorphism groups considered in the search example from Section 6.1.

// compute the coloring for domain d considering the value v
// the resultant coloring represents the intersection of the original coloring
// and the automorphism group of v 
// the global variable modified is set to true if the resultant vector is different
//     from the original vector

int[] update(int[] colors, Value v) 

int[] newColors = new  int[colors.size()]
int incr = 0

// check all consecutive pairs in domain
 foreach ei

 if (colors[ei] == colors[ei+1])

 if (!swappable(v,ei,ei+1))  // are they still swappable
 incr = incr +1  // segregate e0..ei from ei+1..ek

modified = true

newColors[ei] = colors[ei] + incr

return newColors

Figure 6.2. The update function.
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be used consistently for all coloring and generation.

The function swappable, presented in Figure 6.3, is the key to computing atomic coloring. The
behavior of this function depends on the kind of value passed to it. For scalar variables, the value
itself is distinct, with all other elements being interchangeable. For set variables, two elements can
be swapped only if both are elements of the set value or neither is an element of the set value. For
relation variables, elements in the domain and range must be considered independently. Two ele-
ments in the domain of a relation value can be swapped only if they map to the same range set.
Two elements in the range can be swapped only if they are mapped by the same set of elements in
the domain.   

If the function swappable returns true for a value and a pair of elements, those elements form a
swap that is in the automorphism group of the value. Therefore, the update function given in Fig-
ure 6.2 will compute an atomic coloring vector representing the intersection of the automorphism
group of the value given and the group represented by the initial atomic coloring vector.

Lemma 6.1 If colors is a coloring vector representing the atomic coloring relation for a permu-
tation group G, then, for any value v, the call update(colors,v) (as given in Figure 6.2) 
returns a coloring vector that represents the atomic coloring relation of a permuta-
tion group G’, where G’  G  Aut(v).

Proof: Consider two elements ei and ej.

// compute whether two elements are swappable in a value 
// based on the type of the value 

boolean swappable(Value v,Element e1,Element e2)

    if (v isa Scalar)  // any elements other than value are swappable
      return v != e1 and v != e2

    if (v isa Set)// swappable elements are both in (or both out of) set
      return (e1 in v) == (e2 in v)

    if (v isa Relation)

// not swappable if different as domain elements 
// domain elements swappable if mapped to same elements

        if (e1 in dom v)
       if (!e2 in dom v) 

return false // only e1 is in domain
          else if v.{e1} != v.{e2}

return false // map different elements
else if (e2 in dom v)

return false // only e2 in domain

// not swappable if different as range elements 
// range elements swappable if mapped by same elements

   if (e1 in ran v)
       if (!e2 in ran v)\

return false // only e1 in range
          else if v~.{e1} != v~.{e2}

return false // mapped by different elements
else if (e2 in ran v)

return false // only e2 in range

return true

Figure 6.3. The swappable function for atomic coloring.
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The function call swappable(v,ei,ej) returns true only if the swap (eiej) is an element 
of Aut(v).

If colors[ei] is equal to colors[ej] initially, the swap (eiej) is an element of G by defi-
nition of the atomic coloring relation.

Therefore, newColors[ei] is equal to newColors[ej] only if (eiej)  G  Aut(v).

Therefore, newColors represents the atomic coloring relation for some G’.  ■

The function update is at worst quadratic in the number of elements. The function swappable is
called at most |U|-1 times and, for relational values, swappable itself is linear in the maximum of
the size of the range or the size of the domain of the relation. If G is the size of the largest given
type, and therefore the size of the largest domain or range considered, update runs in O(G|U|)
time. If there are g given types, the running time of the generation is bounded by O(gG2). With
only a slight complication to the code (and an additional constant time work), the update function
can check only one or two given types. This reduces the runtime to O(G2). In practice, swappable
can be computed in constant time for the size of the relations considered by Ladybug and most
consecutive pairs elements are distinguished when new colorings are computed, so the cost of
computing new atomic coloring vectors is very cheap.

6.3 Domain Coloring

Although the atomic coloring vectors are cheap to compute and provide a conservative approxi-
mation of the desired automorphism groups, the accuracy of the approximation is less than ideal.
For many values, and even most non-trivial sized functions, more than half of the potential per-
mutations are lost. For each variable where two thirds of the permutations are lost, the search
space that must be considered triples. This effect compounds; e.g., four such variables leads to
nearly two orders of magnitude increase in the size of the required search space. This section
describes the domain coloring relation, which provides a more precise approximation of automor-
phism groups than is provided by the atomic coloring relation.

The approximation can be improved because the requirements of the isomorph-eliminating
generators described in Section 6.5 ease the demands on the approximation. These generators can-
not exploit the full automorphism group. Instead, a level i generator only considers projections of
the permutations as they apply to the potential domain (or range) of the value being bound to vi.
Assume, for example, that the permutation (p0p1)(n0n1) is a member of the automorphism group
given to the generator that binds the variable p. The scalar variable p is defined over the domain of
phones, so only the (p0p1) portion of this permutation is relevant. The generator considers the per-
mutation (p0p1)(n0n1) to be identical to both the simpler permutation (p0p1) and the more compli-
cated permutation (p0p1)(n0n1n2).

This simplification means that multiple distinct coloring vectors is a more natural (and effi-
cient) representation of the full automorphism group than the single vector used thus far. Each
vector represents the elements in a single domain. The collection of all domains represented must
be a partitioning of the universe of elements U. More, smaller domains are more efficient to color
than fewer, larger domains, but splitting the actual domain (or range) of any value across multiple
coloring vectors loses possible permutations. While not always the ideal balance between coloring
efficiency and approximation fidelity, the given types provide a reasonable (and simple) partition-
ing of U. For simplicity, I allow the same colors to be re-used between vectors describing distinct
domains; no permutations that swap elements between vectors is ever implied.

The distinct vectors also leads to an obvious equivalence relation for coloring: two elements
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are colored the same only if projecting some permutation to the underlying domain yields a sim-
ple swap of those two elements. I call this equivalence relation the domain coloring relation.

Definition 6.3 (Domain Coloring Relation)    

 The domain coloring relation dc for a permutation group G and a domain d  U 
is defined as x,y  d . x dc y   π  G.πx = y  z  d\{x,y}.πz = z.

The difference between the domain coloring relation and the atomic coloring relation is significant
and can be seen clearly with the automorphism group of the value of net from the phone example.
The domain coloring of the value { n0 p0, n1 p1, n2 p2 } is given by the coloring vectors

n0 n1 n2

0 0 0
p0 p1 p2

0 0 0 

This coloring is clearly more inclusive than the atomic coloring given earlier, which distinguished
every pair of elements. In fact, it appears to be equivalent to the orbital coloring vector given ear-
lier, but a key distinction does exist. This interpretation states unequivocally that because n0 and
n1 have the same color, the automorphism group contains a permutation that exchanges n0 and n1,
while leaving n2 unchanged. The earlier orbital relation cannot guarantee this condition.

This distinction is clear in the automorphism group of the relation illustrated in Figure 6.4.
Assuming that {s0, s1, s2, s3} is the full possible domain of this relation and {t0, t1, t2, t3} is the full
possible range of this relation, the automorphism group of this relation is 

() (s0s1) (s2s3) (s0s1)(s2s3) 
(t0t1) (s0s1)(t0t1) (s2s3)(t0t1) (s0s1)(s2s3)(t0t1) 
(t2t3) (s0s1)(t2t3) (s2s3)(t2t3) (s0s1)(s2s3)(t2t3)
(t0t1)(t2t3) (s0s1)(t0t1)(t2t3) (s2s3)(t0t1)(t2t3) (s0s1)(s2s3)(t0t1)(t2t3)

(s0s2)(s1s3)(t0t2)(t1t3) (s0s3)(s1s2)(t0t2)(t1t3)
(s0s2)(s1s3)(t0t3)(t1t2) (s0s3)(s1s2)(t0t3)(t1t2)
(s0s2)(s1s3)(t0t2t1t3) (s0s3)(s1s2)(t0t2t1t3)
(s0s2)(s1s3)(t0t3t1t2) (s0s3)(s1s2)(t0t3t1t2)
(s0s2s1s3)(t0t2)(t1t3) (s0s3s1s2)(t0t2)(t1t3) 
(s0s2s1s3)(t0t3)(t1t2) (s0s3s1s2)(t0t3)(t1t2) 
(s0s2s1s3)(t0t2t1t3) (s0s3s1s2)(t0t2t1t3) 
(s0s2s1s3)(t0t3t1t2) (s0s3s1s2)(t0t3t1t2)

s0

s1

s2

s3

t0

t1

t2

t3

Figure 6.4. A relation that illustrates the distinction between the orbital and
domain coloring relations.
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The orbital coloring vector for this automorphism group is

s0 s1 s2 s3

0 0 0 0
t0 t1 t2 t3
0 0 0 0 

This representation includes all possible permutations plus some, such as (s1s2), that are not part
of the automorphism group.

The domain coloring, on the other hand, is

s0 s1 s2 s3

0 0 1 1
t0 t1 t2 t3
0 0 1 1 

This coloring excludes the final sixteen permutations of the full automorphism group. How-
ever, it does not include any permutations not found in the projections of the automorphism
group over the given types S and T.     

Although the domain coloring does exclude some permutations found in the full automor-
phism group, the total number excluded across all values is relatively small. Tables 6.5 and 6.6

#domain #range
% Values 
affected

%π lost for 
affected

% π lost for 
all

3 3 0% 0% 0%

4 3 3% 50% 2%

4 4 4% 52% 3%

5 4 5% 51% 3%

5 5 5% 52% 3%

Table 6.5: Effects of approximating the automorphism groups of varying sized
bipartite relations using the domain coloring relation.

#domain #range
% Values 
affected

%π lost for 
affected

% π lost for 
all

3 3 0% 0% 0%

3 4 0% 0% 0%

4 3 7% 50% 5%

4 4 6% 50% 4%

4 5 5% 50% 4%

5 4 17% 50% 6%

5 5 15% 50% 5%

Table 6.6: Effects of approximating the automorphism groups of varying sized
bipartite functions using the domain coloring relation.
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show the effect of this approximation on the total number of automorphisms discovered. As is
obvious when comparing these tables to Tables 6.2 and 6.3, domain coloring provides a signifi-
cantly more exact approximation of the automorphism groups than is provided by atomic color-
ing. For the small scopes that are commonly used, the domain coloring relation perfectly
represents the automorphism groups of all values. Although the domain coloring vectors still lose
at least half of the permutations in the automorphism groups that cannot be exactly represented,
the number of automorphism groups not exactly represented has shrunk significantly. This reduc-
tion in turn reduces the overall effect to a relatively minor one.

Unlike the atomic coloring relation, the domain coloring relation cannot be computed effi-
ciently. On the other hand, the atomic coloring relation loses many more permutations in its
approximation than does the domain coloring relation. Fortunately, there is a middle ground,
which can be computed efficiently and fully describes most automorphism groups. The functional
coloring relation equates two elements if there exists a permutation that swaps only those elements
in the domain containing them and swaps at most one pair of elements in each other domain.  

Definition 6.4 (Functional Coloring Relation)    

 The functional coloring relation fc for a permutation group G and a set of sets D, 
which forms a partitioning of U, is defined as 

d  D . x,y  d .  x fc y  

π  G. πx = y  z  d\{x,y} . πz = z   
d’  D . x’,y’  d’. z’  d’\{x’,y’} . πz’ = z’.

With the atomic coloring, two elements are colored the same iff the atomic elements can be
swapped independently of all other swaps. With the functional coloring, however, two elements
are also colored the same if they can be swapped along with two associated elements in a different
domain. This swap can be though of as swapping two edges in a function. Domain coloring allows
the swap of the colored elements to involve more than two elements from another domain. Fol-
lowing the analogy, this swap can be thought of as swapping the relational image of two elements,
implying that domain coloring could also be called relational coloring. Figure 6.5 illustrates this
way of considering the different coloring schemes. 

For all automorphism groups considered thus far in this chapter, the functional coloring and

(a) (b) (c)

Figure 6.5. The three basic domain-based coloring schemes. Atomic coloring
(a) allows only swaps of atomic elements. Functional coloring (b) also allows
exchanges of edges in a function. Full domain coloring (c) also allows
exchanges of relational images or sets of edges.
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the domain coloring are indistinguishable. To understand where they differ, consider the automor-
phism group for the relation illustrated in Figure 6.6:  

() (t0t1) (t2t3) (t0t1)(t2t3) 
(s0s1)(t0t2)(t1t3) (t0s1)(t0t3)(t1t2)
(s0s1)(t0t2t1t3) (s0s1)(t0t3t1t2)

The domain coloring for this automorphism group

s0 s1

0 0
t0 t1 t2 t3
0 0 1 1 

at least partially represents all the permutations, whereas the functional coloring

s0 s1

0 1
t0 t1 t2 t3
0 0 1 1 

excludes the final four permutations. These four permutations are only represented by the domain
coloring for the domain containing s0 and s1. The permutations described by the domain coloring
vector do not include any permutations that exchange t0 and t3, although the final permutation in
the full automorphism group allows this transposition.

The approximations underlying the domain coloring relation and the functional coloring rela-
tion affect the same permutations. For scalars, sets and the domain of functions, these approxima-
tions yield the same coloring vectors. For relations and the range of non-injective functions, the
coloring vectors yielded by the two relations may differ. The domain coloring relation considers
each permutation as projected for the domain of a relation independently from that permutation
projected for the range of a relation, requiring a single swap only on one side or the other. The
functional coloring makes a symmetric interpretation, requiring a single swap on each side of each
permutation considered. This symmetric interpretation makes the functional coloring relation
more efficient to compute than the full domain coloring, but introduces additional losses in the
approximation.

Tables 6.7 and 6.8 show the percentage of permutations lost in the domain and range coloring
vectors due to the approximation in an atomic coloring relation and a functional coloring relation.
Table 6.7 shows the effects of the different coloring relations on relations, whereas Table 6.8 shows
the effects of the coloring relations on functions. The first column of each table lists the scope
(domain x range) considered. The second and third columns show the average number of permu-
tations allowed by the domain coloring vector for the domain and range for all relation values of

s0

s1

t0

t1

t2

t3

Figure 6.6. A relation that illustrates the distinction between domain and func-
tional coloring.
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the indicated size. The fourth column gives the product of these numbers, showing the effective
number of permutations considered when using the domain coloring relation. The next two col-
umns show the corresponding numbers of permutations for the atomic coloring relation and the
percentage of the domain coloring permutations that this represents. The final two columns show
the corresponding numbers obtained with the functional coloring relation. I have boldfaced the
columns indicating the percentages of effective domain colored permutations allowed by the
atomic coloring and the functional coloring.       

As seen in Table 6.8, the functional coloring relation includes nearly all the permutations in the
automorphism groups of functions allowed by the domain coloring relation, whereas the atomic
coloring relation includes only a small percentage of those permutations.

6.4 Computing Functional Coloring

Both the atomic coloring relation and the functional coloring relation are subsets of the
domain coloring relation that can be computed much more cheaply than the full domain coloring.
Although the generation algorithms given in the next two sections expect a domain coloring,

DxR
avg dc 

dom π
avg dc 

ran π

avg dc 

dom∗ 
ran π

avg ac 

dom∗ 
ran π

avg ac 

% dc π

avg fc 

dom∗ 
ran π

avg fc 

% dc π

3x3 1.73 1.73 3.0 2.0 67% 3.0 100%

3x4 1.55 2.33 3.6 2.3 64% 3.5 98%

4x4 1.80 1.80 3.2 2.0 62% 3.2 99%

5x4 2.16 1.53 3.3 2.2 64% 3.2 96%

5x5 1.64 1.64 2.7 1.8 68% 2.6 96%

Table 6.7: The number of permutations allowed by the coloring vectors for relations using
the domain, atomic and functional coloring relations.

DxR
avg dc 

dom π
avg dc 

ran π

avg dc 

dom∗ 
ran π

avg ac 

dom∗ 
ran π

avg ac 

% dc π

avg fc 

dom∗ 
ran π

avg fc 

% dc π

3x3 2.63 2.16 5.7 2.7 46% 5.7 100%

3x4 2.93 4.42 13.0 4.8 37% 13.0 100%

4x3 4.31 2.02 8.7 3.9 45% 8.4 97%

4x4 5.03 4.22 21.2 5.4 25% 20.7 97%

4x5 6.13 10.19 62.5 11.2 18% 60.7 97%

5x4 8.41 3.82 32.1 7.5 23% 30.2 94%

5x5 10.90 9.52 103.8 12.2 12% 98.8 95%

Table 6.8: The number of permutations allowed by the coloring vectors for functions
using the domain, atomic and functional coloring relations.
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either subset may be substituted safely. This section describes how to efficiently compute the func-
tional coloring relation.

 For scalar- and set-values, the functional coloring is equivalent to the atomic coloring and is
computed identically. For relations and functions, the definition of swappable must change. As
will be seen later in this section, the coloring vectors for different values are no longer indepen-
dent, so the update function must also be modified to employ a work-list approach.

For functions, two elements in the domain may be swapped if they map to elements that have
the same color. Two elements in the range of a function (or any other relation) are colored the same
if they are mapped by the same number of domain elements, with at most one element differing.
These distinct domain elements, if any, must have the same color. Two elements in the domain of a
relation are swappable under similar conditions, with the only allowed difference in their image
being a single pair of range elements of the same color. As with the original swappable function, the
run time of the new function is linear in the size of the largest given type. The algorithm in Figure
6.7 shows the func_swappable function used in computing the functional coloring of functions and
relations.  

As an example, consider computing the level 1 coloring (immediately after binding the vari-
able net) for the search path examined in the previous section. Table 6.9 lists the functional coloring
vectors for this search path. The initial coloring colors all elements in each given type the same,
representing the full S3  S3 automorphism group. Each element in the domain of the function
bound to net maps a number to a unique phone and each of these phones is colored the same, so
func_swappable will return true for any pair of numbers. Similarly, each phone is mapped by
exactly one number and all the numbers are colored the same, so any given pair of phones can still
be swapped. The coloring is therefore unchanged.

However, computing the level 2 coloring (immediately after binding the variable called) does

Variable Aut(α) a(vi) Aut(a(vi))

net n0 n1 n2

0 0 0
p0 p1 p2

0 0 0  

{ n0 p0,
   n1 p1,
   n2 p2}

n0 n1 n2

0 0 0
p0 p1 p2

0 0 0  

called n0 n1 n2

0 0 0
p0 p1 p2

0 0 0  

{ p0 n1} n0 n1 n2

0 1 0
p0 p1 p2

0 1 1 

p n0 n1 n2

0 1 2
p0 p1 p2

0 1 2 

p0 n0 n1 n2

0 0 0
p0 p1 p2

0 1 1 

n n0 n1 n2

0 1 2
p0 p1 p2

0 1 2 

n0 n0 n1 n2

0 0 1
p0 p1 p2

0 0 0 

Table 6.9: Coloring vectors representing the functional coloring relations for the
automorphism groups considered in the search example from Section 6.1.
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begin to distinguish elements. Because p0 is in the domain of called and p1 and p2 are not, the latter
elements must be distinguished from p0. However, this means that the element n0 can no longer be
swapped with n1 or n2 for net, because the two elements no longer map to range elements of the
same color. Similarly, n1 must now be distinguished from n2 because n1 is in the range of called.

Introducing the coloring for the variable called changes the coloring for the variable net. The
full algorithm for functional coloring is therefore a work-list algorithm, computing the effects of
each value in its work-list on the current coloring. If a value changes the coloring, the coloring for
any values whose coloring depended on the colors changed must be recomputed. Figure 6.8 pre-
sents this algorithm. Because each consecutive pair of elements can only be separated once, the
update function can only be called O(v|U|) times, where v is the number of relational-valued vari-
ables bound thus far. Because update itself runs in O(G2) time, where G is the size of the largest
given type, the overall complexity of computing the functional coloring isO(vG2|U|). If all g given

// determine if two elements are equivalent in the functional coloring relation for value v

boolean func_swappable(Value v,Element e1,Element e2,int[] colors)

    if (v isa function)

    if e1 in dom v and e2 in dom v
       if colors[v.e1] != colors[v.e2]

return false
else if e1 in dom v or e2 in dom v

return false

    if e1 in ran v and e2 in ran v
       if (v~.{e1} == v~.{e2})
         return true
       return (#(v~.{e1}\v~.{e2}) == 1 and #(v~.{e2}\v~.{e1}) == 1 and
       colors[v~.{e1}\v~.{e2}] == colors[v~.{e2}\v~.{e1}])

else if e1 in ran v or e2 in ran v
return false

    return true

    if (v isa relation)
    if e1 in dom v and e2 in dom v
       if (v.{e1} != v.{e2})
         return false
       if (#(v.{e1}\v.{e2}) != 1 or #(v.{e2}\v.{e1}) != 1 or
       colors[v.{e1}\v.{e2}] != colors[v.{e2}\v.{e1}])

return false
 else if e1 in dom v or e2 in dom v

return false

   if e1 in ran v and e2 in ran v
       if (v~.{e1} == v~.{e2})
         return true
       return (#(v~.{e1}\v~.{e2}) == 1 and #(v~.{e2}\v~.{e1}) == 1 and
       colors[v~.{e1}\v~.{e2}] == colors[v~.{e2}\v~.{e1}])

else if e1 in ran v or e2 in ran v
return false

    return true

return swappable(v,e1,e2)    

Figure 6.7. The func_swappable function for functional coloring to determine if two elements are
equivalent in the functional coloring relation for a function or relation. This function relies on
the atomic coloring swappable function for sets and scalars.
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types are the same size, the runtime is bound by O(vgG3). As v and g are constant for a given prob-
lem1, the complexity of computing the functional coloring is cubic in the scope. In practice, once
again, the expected runtime is much smaller, as extremely few assignments would differentiate all
pairs one at a time, instead requiring only one or two passes through the variables.   

Considering another possible binding for called raises another issue for functional coloring.
Assume called had been bound to {p0 n1, p1 n2, p2 n0 }. The func-swappable function would still
consider each pair of numbers swappable because each maps by a single phone and all phones are
colored the same. Although there are permutations in the automorphism group exchanging any
pair of phones or numbers, none of these permutations project to simple swaps in either the phone
or number coloring domains.

The problem arises because two variables bound thus far, called and net, connect the same two
coloring domains. Although swapping n0 and n1 requires swapping only a single pair of phones in
each variable, the pair of phones swapped in the two cases is different ( (p0p1) for net versus (p1p2)
for called). Any permutation in the combined automorphism group will contain both swaps and
thus is excluded from consideration in the functional coloring relation. Furthermore, these swaps
require a second swap of numbers, (n1n2), to complete the permutation found in the automor-
phism group. The resulting coloring vector reflects the orbital coloring relation, which is unsuit-
able for use by the generators.

The domain and range of net are dependent on the coloring built from called. Formally, two sets
are dependent on a coloring if swapping some pair in one set requires swapping a pair in the other
set. Obviously, two sets that overlap are dependent on a coloring if any swaps are allowed in the
overlap.

Definition 6.5 (Dependent coloring)    

Two sets S and T are independent on the domain coloring C that represents the 
permutation group G iff

si,sj  S . C[si] = C[sj]  π  G. πsi = sj  t  T. πt = t.

Otherwise, the S and T are dependent on C.

1. Section 6.6 examines increasing the number of given types in the problem. This increase, there-
fore, significantly increases the cost of computing the colorings.

// return an updated coloring vector for a new value using functional coloring

int[] func_update(int[] colors, Value v)

int[] newColors = colors

List todo = new List
todo.insert(v)

while ( !todo.empty() )

Value x = todo.extract()

modified = false
newColors = update(newColors,x)
if (modified)

todo.insert(dependents(x))

return newColors

Figure 6.8. Worklist algorithm for updating functional coloring for a new value.
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If two sets are dependent on a coloring, then swapping a pair of elements in one of those sets
requires also swapping some elements in the other set. Each swap involving one element and any
other element of the same color requires a possibly unique set of swaps in the other set. I call the
common elements swapped in the other set in all cases the mirror set of the first element. If the col-
oring represents the automorphism group of a function, the mirror set of an element in the domain
will always be the mapping of that element in the range. If the two sets are dependent because
they overlap, the mirror set for any element in the overlap is always exactly that element itself.

Definition 6.6 (Mirror Set)    

For any domain coloring C representing a permutation group G and for any two 
sets S and T that are dependent on C, Mirror(x,C,T) is the mirror set of an element 
x in S for T iff Mirror(x,C,T) is a minimal set such that

Mirror(x,C,T)  T  y  S. π  G. πx = y  z  Mirror(x,C,T). πz ≠ z.

The mirror set contains at most one element if the domain coloring is a functional coloring. Where
the coloring and given types are clear from context, I refer to this single element as the mirror of an
element.

To accurately compute the functional coloring relation when the domain and range of a rela-
tion are dependent on the previous coloring, the full automorphism group of each value must be
computed and intersected. The correct functional coloring relation is embedded in this combined
automorphism group. However, as I noted earlier, computing these exact automorphism groups is
expensive.

To avoid this expense, I only allow functional coloring to be used if the domain and range are
independent of the initial coloring. Ladybug reverts to atomic coloring when the domain and
range are dependent. With this restriction, the func-update algorithm presented in Figure 6.8 gener-
ates a functional-coloring equivalence relation.

Theorem 6.2 If colors is a domain coloring for a permutation group G and r is a relation whose 
domain and range are independent of colors, then the function func-update(colors,r), 
returns a functional coloring vector that represents a permutation group G’  G  
Aut(r).

Proof: Similar to proof of Lemma 6.1.

The function func_swappable(r,e1,e2,colors) returns true only if there exists a permu-
tation in Aut(r) that swaps e1 and e2 and there exists a permutation in G that swaps 
e1 and e2.

Because update will return true for each value only when colors represents G’, 
func_update terminates only if colors has been updated to represent G’.

Each call to update that returns false will differentiate at least one pair of elements 
that are previously colored the same in colors.

As each pair can only be distinguished at most once, the call to func_update will 
always terminate.  ■

6.5 Isomorph-Eliminating Generators

This section describes algorithms that use the coloring vectors to implement isomorph-eliminating
generators. The bulk of this section presents a simpler algorithm than the one used in Ladybug.
The end of this section provides a brief description of the more efficient algorithm implemented in
Ladybug.
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To further simplify the presentation, this section presents these generators as value generators.
As opposed to the set of assignments returned by the generators described in Chapter 2, value
generators return a set of values. A value generator takes two arguments: a permutation group
and a universe of values to consider. The permutation group replaces the initial assignment argu-
ment passed to a generator; it is typically the automorphism group of the initial assignment. A
value generator can be transformed into a generator with a simple wrapper, allowing the frame-
work of Chapters 2 and 4 to be applied. The notion of value generator more closely matches the
actual implementation of Ladybug that was described in the previous chapter, while retaining the
simplicity, but inefficiency, of returning an entire set at once.

Ladybug includes isomorph-eliminating generators for four types of values: scalars, sets, rela-
tions, and functions. The generators for the first two types of values are straightforward and
achieve an efficiency of 1.0, meaning that they never generate any duplicates. The relation and
function generators are much more complicated and do generate some duplicates for some scopes
and coloring vectors. These two generators take similar approaches to isomorph elimination. Most
of this section focuses on the function generator, introducing the relation generator only as it dif-
fers from the function generator. This section presents a simple, relatively inefficient version, with
the next section presenting the more complicated (and efficient) variants that are used by Lady-
bug.

I begin, however, with the simplest isomorph-eliminating generator, which generates scalar
values. A scalar-value isomorph-eliminating generator yields at least one element from each color-
ing class. The generator used by Ladybug selects the first element and each subsequent element
whose color differs from the color of the previous element. Figure 6.9 illustrates the effect of this
approach on a domain of six elements, with an initial coloring vector of <0 0 1 1 2 2>. In Figure 6.9,
each boxed row of circles represents the elements in the given type, with the darkened circle repre-
senting the element chosen to be returned. Figure 6.10 lists the scalar-valued isomorph-eliminat-
ing value generator (in stylized Java).      

 For a search to be sound, this algorithm must implement a valid isomorph-eliminating gener-
ator. Definition 4.11 requires that an isomorph-eliminating generator must guarantee that any
well-typed value is represented in the set of values generated. A value is represented if it is the
product of a permutation in the automorphism group and a value generated by the generator. This
simple approach to generating scalar values clearly satisfies this requirement. Two elements are
colored the same only if there exists a permutation in the automorphism group that swaps them.
Because this approach yields at least one element of each color, any element not yielded is the
same color as one that is yielded and therefore is related by a permutation to one that is yielded.

Lemma 6.3 For any scalar variable v, initial assignment α, domain coloring C representing 
Aut(α), and set of values υ, the value generator scg for v guarantees that 

x  υ  Typing(v). y  scg(C,υ). π  Aut(α). πx = y.

Proof: Assume x  υ  Typing(v) such that x  scg(C,υ).

Therefore, by definition of scg, x is not the first element and is colored the same as 
the previous element.

0 0 1 1 2 2 0 0 1 1 2 2 0 0 1 1 2 2

Figure 6.9. Results of the scalar-valued isomorph-reducing generator applied to a domain
of six elements colored <0 0 1 1 2 2>.
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Obviously, there must be a first element y of the equivalence class containing x.

Because C represents a domain coloring of Aut(α), 
C[x] = C[y]  π  Aut(α). x = π y.

By definition of scg, y  scg(C,υ).  ■

If all the coloring classes in the coloring vector are contiguous, this approach will return exactly
one element from each coloring class. All the coloring classes in coloring vectors generated by
Ladybug are contiguous. Therefore, this generator fully utilizes every possible permutation
encoded in the coloring vector.     

The generator used for set values is slightly more complicated. Instead of yielding the first ele-
ment of each coloring class, this generator yields every combination of initial sequences of color-
ing classes. Figure 6.11 lists the set-valued generator.       

Figure 6.12 illustrates the execution of this function for four elements with a coloring vector of
<0 0 1 1 >. The figure shows the value of elem for each iteration through the main (outer) loop
along with the new sets added to result during the corresponding execution of the loop body. The
first row indicates the empty set that is initially placed in result. The second row describes the pro-
cessing of the first element. Because first is true, the element represents the beginning of a coloring
class and is added to each set already in result. In this case, only the empty set is in result and only
a singleton set is added to result.

The third row demonstrates the handling of the second element, an element that is not the first
element in a coloring class. For any set already in result that contains the preceding element (the
first element), sg adds a corresponding new set with the second element inserted. In this case, only
the singleton set contains the preceding element, so one additional set is added to result.

The fourth row illustrates the behavior on the third element, an element representing the first
element in a coloring class. For each set already in result, sg adds a corresponding set with the
addition of the third element. This processing adds three new sets to result. The fifth row indicates
that sg adds a new set for each set in result that contains the third element, namely the three sets

Figure 6.10.  The scalar-value isomorph-eliminating generator scg.

// return a subset of elems that are unique up to the permutations described by coloring
// return the first element, plus each one that is colored differently from its predecessor

Set<Element> scg(int[] colos, Set<Element> elems)

Set result = new Set
boolean first = true
int prevColor

foreach elem in elems

if first
result = result.insert(elem)
first = false

else if prevColor != colors[elem]
result = result.insert(elem)

prevColor = colors[elem]

return result
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added in the previous row.

This generator is also obviously an isomorph-eliminating generator. For any possible set value
in the universe of values and the typing of the variable, it must contain some number of elements

Figure 6.11. The set-valued isomorph-eliminating value generator sg.

// return a set of sets that is a subset of the powerset of the set of elements given
// only return one set for each class of sets related by permutations in thepermutation group
// represented by colors

Set<Set> sg(int[] colors,Set<Element> elems)

 // start with just the empty set
Set<Set> result = new Set.insert(new Set)
Element prev
boolean first = true

foreach elem in elems
// copy forward all previously generated sets plus
// extend any consecutive sequence or start a new sequence

Set<Set> nresult = result.copy()

foreach s in result
if first || colors[elem] != colors[prev] 

// if elem starts a new class, add a set with the sequence
nresult = nresult.insert(s.insert(elem))

else if s.contains(prev) // extend the sequence already started
nresult = nresult.insert(s.insert(elem))

first = false
prev = elem
result = nresult

return result

Figure 6.12. The sets added to result for each element considered in the main loop of sg with
four initial elements colored as <0 0 1 1 >. 

elem

<initial>

0    0   1   1
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(possibly zero) from each coloring class. Clearly, the first n elements in a coloring class can be per-
muted to any other n elements of the same coloring class. Combining these permutations for each
coloring class gives a permutation in the automorphism group that relates the desired set to a set
bound to an assignment yielded by the generator.

Lemma 6.4 For any set variable v, initial assignment α, domain coloring C representing Aut(α), 
and set of values υ, the value generator sg for v guarantees that

X  υ  Typing(v). Y  sg(C,υ). π  Aut(α). πX = Y.

Proof: Let D be the union of all set values in the intersection of Typing(v) and υ. Let X  υ 
 Typing(v) such that X  sg(C,υ).

For each color i used in C, let si(S) be the number of elements in S colored i, i.e.
si(S) = | { x  S | C[x] = i } |. Let sij(S) be the jth element of S colored i.

Obviously, sg yields a set with any possible number of elements in each coloring 
equivalence class.

Therefore, Y  sg(C,υ). i . si(X) = si(Y).

By definition of domain coloring, i . j . πij  Aut(α). πsij(X) = sij(Y).

Let π be the product of the permutations πij.. Clearly, πX = Y.

Because Aut(α) is a group, π  Aut(α).

Therefore, Y  sg(C,υ). π  Aut(α). πX = Y  ■

As with the scalar isomorph-eliminating generator, this isomorph-eliminating generator generates
no duplicates if the coloring classes are contiguous.  

The isomorph-eliminating generator used by Ladybug for functions is significantly more com-
plicated than the ones used for scalars or sets. The basic approach includes two phases. In the first
phase, all isomorphically distinct domains are determined. The second phase builds all interesting
functions for each domain, adding the edges one at a time.

Figure 6.13 shows the two functions that make up the simple function-valued isomorph-elim-
inating generator. The top level function, fg, selects all necessary domains using the set-valued
generator sg defined earlier. Obviously, because a permutation exists that maps any possible sub-
set of the potential domain to one of these sets, the same permutation can map the domain of any
possible function to one of the these domains chosen. 

The recursive function, fdomg, performs the bulk of the work. Each invocation returns an iso-
morphically complete set of functions with the given domain. The function chooses one element
from the domain, and recurses with a smaller domain, yielding a seed set of functions. The base
case of the recursion comes with the empty domain, which returns the set containing only the
empty function.

Every other invocation builds larger functions from each function in the seed set. For each
seed function, fdomg builds one or more new functions by adding a single edge, binding the cho-
sen domain element to each isomorphically distinct range element, as determined by the scalar-
value generator scg. As will be seen later, the coloring vector must be updated to reflect the addi-
tional constraints on the permutation group.

At this point, working through a detailed example is worthwhile. Assume that the scope
defines that the potential domain and range contain three elements apiece. Where necessary, I
refer to the three elements of the domain as s0, s1, and s2 and the three elements of the range as t0,
t1, and t2. Further assume that the initial assignment is empty, meaning that this is the first vari-
able and no elements are distinguished in the coloring vectors.    
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Figure 6.14 illustrates this example. The top row of boxes shows the domains generated by the
call to sg. Below each domain, Figure 6.14 illustrates the execution of the recursive calls to fdomg
for each domain. The set-valued isomorph-eliminating generator discovers four interesting
domains: { },  { s0 }, { s0, s1 }, and { s0, s1, s2 }. 

For the domain on the left of the figure, which is the empty domain, the call to fdomg is the
base case, returning the set containing only the empty function. For the single-valued domain, the
first level chooses the element s0 and recurses with the domain being empty. This call returns the
empty function as the only seed function. The call to scg returns only the single range element t0 to
consider. Therefore, fdomg generates only one single edge function, { s0 t0 }.

The top level call to fdomg with the third domain chooses the element s1, with the recursive
call yielding the same single edge function. After updating the coloring vector to consider the seed
function, the range elements are colored <0 1 1>. The call to scg now yields two range elements, t0
and t1. The function fdomg therefore creates two functions, each adding an edge binding s1 to one
of these range elements to the seed function.

The call to fdomg with the fourth domain uses these two functions as its seed functions. Each
of these functions updates the coloring vector to include two colors, requiring two range elements

// return the set of functions drawn from the potential domain and range
// functions can be ignored that are related to a function that is returned by
// a permutation represented by color
// this function chooses the domains

Set<Function> fg(int[] colors, Set<Element> dElems,Set<Element> rElems)

Set<Function> result = new Set

foreach dom in sg(colors,dElems)
result = result.union(fdomg(update(colors,dom),dom,rElems))

return result

// recursively generate a set of functions with a given domain
// reach level of the recursion adds an edge for one element of the domain

Set<Function> fdomg(int[] colors,Set<Element> dom,Set<Element> rElems)

Set<Function> result = new Set

// terminate the recursion by returning just the empty function
if dom.isEmpty()

return result.insert(new Function)

Element d = dom.last() // choose the last element from domain

// recurse to generate functions with a smaller domain
Set<Function> seeds = fdomg(colors,dom.remove(d),rElems

colors = update(colors,d)) // distinguish the element in the coloring

// add all appropriate edges to previously generated functions
foreach func in seeds

foreach r in scg(update(colors,func)),rElems)
result = result.insert(func.addEdge(d,r))

return result

Figure 6.13. The two functions that make up the simple function-valued isomorph-
eliminating generator.
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for each seed. These four functions bring the total number of functions generated to eight.

In this example, I ignored the updating of the coloring based on the domain set and the chosen
domain element. Strictly speaking, these steps are only necessary if the domain and the range of
the function are dependent on the coloring. This dependency occurs when the domain and range
coincide or when a previous variable related the domain in range. Figure 6.15 illustrates these two
cases, with the shaded circles representing the chosen domain and the necessary edges shown for
the first element of the domain.

Consider the case where a function is typed as mapping the elements { s0, s1, s2 } to the same
three elements. When constructing the possible edges for s0 in the two-element domain set
{ s0, s1 }, all three range elements must be considered distinct. Clearly a self-edge, obtained by
mapping s0 back to itself, is different from any other edge starting at s0. Also clearly, an edge
mapped to an element not in the domain (s2) of the function is distinct from any edge mapped to
an element in the domain. Therefore, the coloring used by the scalar-valued generator must color
these three cases differently. Formally, these concerns arise because the permutations used to
determine the domain sets also affect the range of the functions and must be removed from the
group of permutations considered by the scalar-valued generator.

When a functional coloring of a function or relation influences the coloring vectors used by the
generators, a similar situation arises. Consider the case of a second function mapping from S to T
where the first function chosen is the last one generated in the example above: { s0 t0, s1 t1,
s2 t2 }. Once again, generating edges for s0 in the two-element domain set { s0, s1 } must consider
all three range elements as distinct. Because functional coloring considers permutations which
may swap elements in other domains, permutations considered by the scalar-valued might swap
mapped elements out of the domain set. The coloring adjustments remove these permutations
from the group considered by the scalar-valued generator.  

With these coloring adjustments, the generator is always a sound isomorph-eliminating gen-

Figure 6.14. The execution of the simple function-valued isomorph-eliminating generator.
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erator. A permutation relating any possible function in the universe of values to a function gener-
ated can be constructed from the permutations assumed by the underlying scalar- and set-valued
generators.

Lemma 6.5 For any function variable v, initial assignment α, domain coloring C representing 
Aut(α), and set of values υ, the value generator fg for v guarantees that f  υ  Typ-
ing(v). f'  fg(C,υ). π  Aut(α). πf = f'.

Proof: By construction of the permutation.

Let f  Typing(v)  υ. f  fg(C,υ).

Because the domains are generated by the set-valued isomorph-eliminating gener-
ator, by Lemma 6.4, f'  fg(C,υ) . π0  Aut(α). π0dom f = dom f'.

Let d1, d2, ... dk be the elements in dom f.

Therefore, π0d1, π0d2, ... π0dk are the elements in dom f'.

Because the range elements for this domain are generated by the scalar-valued iso-
morph-eliminating value generator scg, by Lemma 6.3, 

i  1..|dom f|. f'  fg(C,υ) .
πi  Aut(α)  Aut(dom a)  Aut(di)  Aut({d1..di-1}  f). 

πi f(di) = f'(π0di).

Because each πi  Aut({d1..di-1}  f), {d1..di-1}  f = πi ({d1..di-1}  f).

Therefore, f'  fg(C,υ).  (π0 π1 ... πk)f = f'.  ■

The dominant cost in this generation is the updating of the coloring, which can occur as often as G-
1 times in generating a single function with G elements in the domain. The runtime of updating
the colorings is bound by O(vgG3), where v is the number of function variables (counting this one)
and g is the number of given types. The natural assumption is that the runtime of the function gen-
erator is O(vgG4) per function generated. However, each consecutive pair of elements can still only
be distinguished once, so the runtime for fg is bound by O(vgG3).

Although this approach is sound and reasonably fast, it can generate many duplicate values.
The eight functions yielded in the earlier example include one duplicate function; the seventh
function { s0 t0, s1 t1, s2 t0 } can be permuted to the sixth function { s0 t0, s1 t0, s2 t1 } by
the permutation ( s1s2 ). Only one of these functions needs to be generated. Most of the duplicates
yielded by this simpler generator are removed by the refinement discussed in the next section. 

Without the refinement, the simple function performs adequately to poorly over the size prob-
lems typically handled by Ladybug. Table 6.10 shows the efficiency of this generator for several

a) b)

Figure 6.15.  The black lines represent edges to consider when gen-
erating a function a) with an overlapping domain and range and
b) with a previous functional coloring being considered (defined
by the function shown in gray). In both cases, the shaded circles
represent the domain of the function being constructed.
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common scopes across all possible coloring vectors. The first column gives the scope (as #domain
x #range) and indicates whether the domain and the range are the same type or not. The second
column gives the number of distinct coloring vectors that are possible for the indicated scope. The
third column gives the number of functions that would be generated by a perfect generator across
all coloring vectors. The fourth column gives the number of functions generated by this generator
across all colorings. The fifth column indicates the average efficiency of the generator (column 3
divided by column 4). The sixth column indicates the efficiency of this generator for the worst col-
oring vector.     

The results indicate that this approach generates far too many values, ranging from 20% to
100% additional values across all colorings. Although not ascertainable from this table, the worst
performance of the approach is with colorings that offer little or no differentiation. In these color-

Size
Number of 

Colorings

Number of 

Functions 

Required 

Number of 

Functions 

Generated

Efficiency
Minimum 

Efficiency

3x3 same 4 152 186 0.82 0.53

4x4 same 8 2,120 2,953 0.72 0.29

5x5 same 16 37,707 60,058 0.63 0.13

3x3 16 402 482 0.83 0.50

3x4 32 1,265 1,596 0.79 0.41

4x3 32 2,407 3,270 0.74 0.29

4x4 64 8,948 13,208 0.68 0.26

4x5 128 29,897 46,848 0.64 0.16

5x4 128 65,113 113,396 0.57 0.09

5x5 256 249,906 472,488 0.53 0.06

Table 6.10: Effectiveness of the simple function-valued isomorph-eliminating generator at actually
eliminating isomorphs.

Size
Number of 

Colorings

Number of 

Functions 

Required 

Number of 

Functions 

Generated

Efficiency
Minimum 

Efficiency

3x3 same 4 1,160 1,612 0.72 0.35

4x4 same 8 208,292 338,506 0.62 0.27

3x3 16 2,908 4,248 0.68 0.30

3x4 32 33,452 54,200 0.62 0.23

4x3 32 33,452 61,104 0.55 0.12

4x4 64 737,425 1,573,962 0.47 0.07

Table 6.11: Efficiency of the simple relation-valued isomorph-eliminating generator in eliminating
isomorphs.
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ings, the functions may generate as many as 16 duplicate functions for every interesting one. 

The relation-valued isomorph-eliminating generator is very similar. Instead of using the sca-
lar-valued generator to generate the range element for each domain element, the relation-valued
generator uses the set-valued isomorph-eliminating generator to yield every interesting set of
range elements for each domain element. The domain generation and coloring adjustments
remain the same. 

Table 6.11 shows the efficiency of the simple relation-valued isomorph-eliminating generator.
The results for relations are similarly disappointing to those found with the function generation. If
it was feasible to exhaustively check the results to scopes of five, as was done for functions, the
results would presumably look even worse. The efficiency of this approach obviously decays
quickly as the size of the scope grows.

The relation-valued generator is always sound for isomorph elimination. As with the func-
tion-valued generator, a permutation can be constructed from the permutations assumed by the
invocations of the underlying isomorph-eliminating generator.

// return the set of relations drawn from the potential domain and range
// relations can be ignored that are related to a function that is returned by
// a permutation represented by color
// this function chooses the domains

Set<Relation> rg(int[] colors, Set<Element> dElems,Set<Element> rElems)

Set<Relation> result = new Set

foreach dom in sg(colors,dElems)
result = result.union(fdomg(update(colors,dom),dom,rElems))

return result

// recursively generate a set of relations with a given domain
// reach level of the recursion adds a set of edge mapping one element of the domain

Set<Relation> rdomg(int[] colors,Set<Element> dom,Set<Element> rElems)

Set<Relation> result = new Set

// terminate the recursion by returning just the empty relation
if dom.isEmpty()

return result.insert(new Relation)

Element d = dom.last() // choose the last element from domain

// recurse to generate relations with a smaller domain
Set<Function> seeds = rdomg(colors,dom.remove(d),rElems

colors = update(colors,d)) // distinguish the element in the coloring

// add all appropriate edges to previously generated relations
foreach rel in seeds

foreach s in sg(update(colors,rel)),rElems)
foreach r in s

result = result.insert(rel.addEdge(d,r))

return result

Figure 6.16. The simple relation-valued isomorph-eliminating generator.
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Lemma 6.6 For any relation variable v, ordering OrdC, initial assignment α, domain coloring C 
representing Aut(α), and set of values υ, the value generator rg for v guarantees that 

r  υ  Typing(v). r’  rg(Aut(α),υ). π  Aut(α). πr = r’.

Proof: Equivalent to the proof for Lemma 6.5.

Although the simple function- and relation-valued generators are sound, they generate more
values than necessary, many more for some coloring vectors. For the remainder of this section, I
briefly describe a refinement of the basic approach that excludes the majority of these duplicates.
A full description of this approach and a proof of the soundness are work remaining to be com-
pleted.

Conceptually, the refinement chooses a canonical function from each isomorphic equivalence
class. In a canonical function, no two edges can “cross” if they originate from domain elements of
the same color. As a reminder, the simple function-valued generator yielded two isomorphic func-
tions: { s0 t0, s1 t0, s2 t1 } and { s0 t0, s1 t1, s2 t0 }. The second of these functions is not
canonical; preventing the generation of this function makes the function generator perfect for this
scope and coloring.

The advantage of this definition of a canonical function is that the generator can easily gener-
ate only canonical functions, with no need to generate and throw away functions that are not
canonical. This canonical-only generation is implemented by reducing the set of range elements
considered for edges beginning with the second or later element of a color in the domain.

This definition of canonical has two disadvantages: some equivalence classes contain more
than one canonical function and some equivalence classes have no canonical function. The multi-
canonical equivalence classes offer no real problem, only introducing duplicates into the set of
generated functions.

The equivalence classes with no canonical function, on the other hand, present a possible
unsoundness. These situations arise only when the domain and range are dependent on the color-
ing and a cycle exists in the generated functions and the mirror edges. Ladybug uses a simple test
to check for possible cycles before reducing the potential range set. This restriction adds duplicates
to the set of generated functions, but guarantees the soundness of the approach.

The results of the refined generators are significantly better than provided by the simple gen-
erators. Table 6.12 shows this improved effectiveness. The approach is particularly effective when
the domain and range are independent of the coloring, as in the final seven rows of Table 6.12. The
approach is also very stable in the size of the scope, with no change to two decimal places for any
of the scopes checked. Table 6.13 shows the effectiveness for the refined generator for relations.
Although the canonical approach is not as effective for relations as for functions, it still signifi-
cantly improves the efficiency of the generation.      

6.6 Rewriting Types

This section describes how rewriting the typing for the formula can improve the reduction gained
from isomorph elimination. The idea of type rewriting to improve the performance of isomorph
elimination is due to Jackson [JJD98]. As I noted earlier, I present the technique here for complete-
ness, to explain its implications, and as an example of a fundamentally different technique. This
section focuses on the impact type rewriting has on isomorph elimination.

The differences presented by type rewriting are also worth noting. Whereas the other tech-
niques reduce the number of assignments that the search must consider for the formula being
solved, type rewriting changes the formula itself. As I will show, solutions to this new formula can
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easily be projected to solutions to the original formula. 

For any problem domain, there may be opportunities to transform the formula being solved
into one or more related formulae. To be sound, it must be shown that every solution to the origi-
nal formula has a corresponding solution to one or more of the transformed formulae. Ladybug
also uses this approach in independently solving each clause of the normalized formula. 

Type rewriting transforms the formula by changing the typing rather than the text of the for-
mula. This change adds additional values to the universe of values U by splitting given types into
two or more equally sized, independent sets. This fission of a given type is based on usage within
the formula; if two usages of a given type can never interact, they are split into two distinct given
types.

Size
Number of 

Colorings

Number of 

Functions 

Required 

Number of 

Functions 

Generated

Efficiency
Minimum 

Efficiency

3x3 same 4 152 170 0.89 0.62

4x4 same 8 2,120 2,394 0.89 0.42

5x5 same 16 37,707 42,576 0.89 0.26

3x3 16 402 402 1.00 1.00

3x4 32 1,265 1,265 1.00 1.00

4x3 32 2,407 2,407 1.00 1.00

4x4 64 8,948 8,948 1.00 1.00

4x5 128 29,897 29,897 1.00 1.00

5x4 128 65,113 65,145 1.00 0.95

5x5 256 249,906 249,986 1.00 0.95

Table 6.12: Effectiveness of the refined function-valued isomorph-eliminating generator at actually
eliminating isomorphs.

Size
Number of 

Colorings

Number of 

Relations 

Required 

Number of 

Relations 

Generated

Efficiency
Minimum 

Efficiency

3x3 same 4 1,160 1,312 0.88 0.56

4x4 same 8 208,292 256,742 0.81 0.24

3x3 16 2,908 2,908 1.00 1.00

3x4 32 33,452 33,537 1.00 0.95

4x3 32 33,452 33,452 1.00 1.00

4x4 64 737,425 739,774 1.00 0.93

Table 6.13: Effectiveness of the refined relation-valued isomorph-eliminating generator at actually
eliminating isomorphs.
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As an example, consider the claim NoTwoCallersPreserved. Phones either originate a call or
answer a call, but never both. The given type Phone can be split into two given types: OrigPhone
and AnsPhone. The types of any variables that referenced the given type Phone must be rewritten
to use the new given types. The types become

Called: OrigPhone <-> Number
Conns : OrigPhone <-> AnsPhone
Net : Number -> AnsPhone
p : OrigPhone

Ladybug begins rewriting types by assuming that each domain and range of each variable is a
distinct given type. The formula, however, requires some given types to be in common. Each oper-
ator in the formula language places restrictions on the typing system. In the phone system, the
union operator in called' = called U { p -> n } requires that the given type of p is the same given type
used as the domain of called and that the given type of n is the same given type used as the range
of called. The equality operator requires these same two given types to be used as the domain and
range of called'. Similarly, the composition operator in conns = called; net requires the range of called
to be the same given type as the domain of net. This formula also imposes the only other signifi-
cant constraint on the typing: the domains of conns and called must be common and the range of
conns and net must be common. Therefore, a single number type must be shared among all vari-
ables, but the phone given type can be split into two given types.

The complete set of typing constraints can be expressed by parameterizing the types required
for each operator. Figure 6.17 lists the complete set of type constraints for the formula language
given in Chapter 2. Any typing that allows a consistent application of these constraints is legal and
will not change the meaning of any formula in the formula language.

Lemma 6.7 Formula interpretation independent of typing
For any formula φ:Wff, any assignment α, and any set of values υ, the value of 
M[φ,α,υ] is independent of the typing relation chosen, as long as the typing relation 
satisfies the constraints given in Figure 6.17 for φ.

Proof:  Obvious

Therefore, Ladybug is free to chose a typing relation that incorporates more given types. By
mapping each element of the newly spawned given types back to an element of the original given
type, Ladybug can generate counterexamples for the typing expressed by the user.

For this transformation to be sound, the mapping must guarantee a one-to-one correspon-
dence between counterexamples in the two systems. 

Lemma 6.8 For any formula φ:Wff, any assignment α, any set of values υ, and any two typing 
relations T1 and T2 that each satisfy the constraints given in Figure 6.17 for φ, there 
exists a one-to-one mapping TM of assignments well typed under T1 to assign-
ments well typed under T2 such that for all assignments α1 well typed under T1, 
M[φ,α1,υ] = M[φ,TM(α1),υ] 

Proof: From Lemma 6.7.

In Chapter 4, I showed that the reduction from isomorph elimination is limited by the product of
the factorial of the size of each given type. The introduction of a single given type should reduce
the number of assignments considered by a factor approaching the factorial of the size of the new
given type set. If Phone contains three elements, Ladybug forms two new given types with three
elements apiece. From this fission, Ladybug expects an additional reduction of almost 6. With
short circuiting and bounded generation both disabled, this new typing actually reduces the num-
ber of full assignments generated from 9,226 to 1,548. This reduction is a factor of 5.96, approach-
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ing the theoretical limit.

When increasing the scope to four phones and four numbers, however, the results are more
surprising. The new typing reduces the number of full assignments generated from 1,790,784 to
62,539. This reduction is a factor of 28.6, exceeding the theoretical limit of 4! or 24. Clearly, a second
factor must also be contributing to this larger reduction. The additional reduction is a result of the
restriction on the use of functional coloring. With the original typing, the domain (the given type
Number) and range (the given type Phone) of the function Net are dependent on the initial coloring,
because this coloring is based on the relation Called, which maps Phones to Numbers. On the other
hand, with Phone split into two given types, the domain and range of Net are independent of the
coloring for Called, allowing a functional coloring to be used in generating Net as well. With func-
tional coloring disabled, the type rewriting reduces the number of assignments from 2,364,412 to
204,989. This reduction of 11.5 falls well within the theoretical bounds.

The type systems for many, but not all claims can be rewritten to improve the reductions from
isomorph elimination. Table 6.14 lists the opportunities for type rewriting to improve the searches
required by the benchmark suite and the gain that is expected from type rewriting in these
searches. The first two columns indicate the specification and claim under consideration in that
row. The third row indicates the number of given types that appear in the specification. The fourth
column lists the number of given types used in the typing after type rewriting has been applied.
The fifth column indicates the theoretical additional reduction for the smallest scope used in the
benchmarks for testing that claim. For the digicash specification, the clauses obtained from normal-
ization yielded different numbers of given types after normalization. The results shown are the
means across all clauses.     

Type rewriting offers an improvement in the search space for almost half of the benchmark
claims (9 of 20). Although the median additional reduction from type rewriting is fairly small, the
expected reduction is very large for some claims. For the largest case, the AttrDivNot claim of the hla
specification, short circuiting and bounded generation removes most of the additional gain; no
counterexamples exist and the last variable is never generated. Type rewriting does deliver a
reduction of almost 200 for AttrAcqNot, another HLA owners  claim. The exact degree of reduction

Figure 6.17. The type constraints required by the formula language.

Set Terms

{ α } :  set α 
set α U set α :  set α
set α & set α :  set α 
set α \ set α :  set α 
α<->β ( set α ) :  set β 
dom α<->β :  set α
ran α<->β :  set β

Relation Terms

set α <: α<->β :  α<->β
α<->β U α<->β :  α<->β
α<->β & α<->β :  α<->β
α<->β \ α<->β :  α<->β
α<->γ ; γ<->β :  α<->β
α<->α+ :  α<->α
α<->α~ :  α<->α
{ α -> set β } :  α<->β

Atomic Formulae

α in set α
α = α
set α = set α
set α <= set α
α<->β = α<->β
α<->β <= α<->β
func α<->β
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cannot be measured because the complete search still requires multiple days after the type rewrit-
ing reduction. The actual reduction gained for the claim C4 in the specification math is 576.5, signif-
icantly exceeding the expected reduction of 216, demonstrating the additional gain available from
increased usage of functional coloring. Type rewriting also changes each relation from having a
common domain and range to having a separate domain and range; the approximation for the
automorphism group is therefore more precise with the rewritten typing.

The opportunities for type rewriting are largely independent of the overall problem domain
or even the large scale structure of the specification. For two of the four specifications considered
with multiple claims, some of the claims benefited from type rewriting and others did not.

Specification Claim
Original 

Given Types

Rewritten 

Given Types

Expected 

Reduction

alloc UniqueAddrAlloc 2 2 1

coda RCreate 5 7 36

RSDefRen 5 7 36

digicash SpendOnce 3 3.6 1.3

faa X1a_check 1 1 1

X1b_ok 1 1 1

finder Move 1 1 1

TrashingWorks 1 1 1

HLA owners AttrDivNot 5 9 2,073,600

AttrAcqNot 5 7 1,440

CompOwners 5 5 1

HLA bridge ObjMapping 8 8 1

math connex 1 1 1

comp 1 4 216

shroder 1 1 1

closure 1 3 36

functions 1 3 36

mobileIP loc_update_ok 3 4 6

phone CallersCalledP 3 3 1

styles FomattingP 2 2 1

Table 6.14: Effects of type rewriting on the benchmark suite. For formulae that were
normalized into multiple clauses, results are averaged across all clauses. Only the C3 claim of
digicash had a variance between clauses.
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6.7 Related Work

The group theoretic model of isomorph testing has been investigated heavily [Mil79;Hof81]. These
approaches focus on efficiently and precisely testing whether two graphs of particular classes are
isomorphic. As noted earlier, Ladybug requires isomorph-reduced generation, rather than testing,
and this reduction must be sound, but not necessarily complete. Babai and Kucera [BK79] address
half of this discrepancy, by developing an incomplete, but sound, polynomial isomorphism test
algorithm.

If a compact, exact representation of the permutation group, such as its generators, is avail-
able, many problems in isomorphism are solvable in polynomial time [FHL80]. However, discov-
ering the generators of a permutation group is an isomorphism-complete problem [Hof81],
meaning that no polynomial solution is expected.

Beyond the standard orbital and atomic coloring schemes, little work has been done on effi-
cient means of finding good approximations to a permutation group. Jerrum [Jer86] describes an
algorithm, but the algorithm has running time of O(n5), where n is the number of  atomic elements
in the universe. Brown et al [BFP88] provide an improvement to Jerrum with a running time of
O(n4). Babai et al provide a different algorithm with running time of O(n4log(n)).

Nauty [McK94], the current standard utility for generating isomorph-free sets of graphs, has
two problems for incorporation into Ladybug. The approach used in Nauty cannot easily accom-
modate the approximate automorphism groups described by a domain coloring. Nauty also
requires exponential time for some inputs [Miy95]. These costs would only be partially offset by
the perfect isomorph reduction that Nauty provides.

Isomorph-free graph generation is an area of ongoing research. A common element to all the
approaches is the isomorph-free generation of some special case of graphs for a general permuta-
tion group. Few attempt the generation of graphs for an arbitrary subgroup of the full permuta-
tion group. McKay [McK98] categorizes the efforts into three categories: generation of canonical
graphs [CR79;Rea81;Gol92;DGM94], generation by canonical path [Avi96;McK98], and the
“method of homomorphisms” [GLM95]. None of these approaches offer sound but incomplete
isomorph-free generation.

The canonical graph approach involves generation and then rejection of non-canonical values.
The initial approaches, such as [CR79], required non-polynomial time to generate each value.
Goldberg improves this generation to O(n4). The approach described here requires only O(n3) time
to generate a value.

Avis [Avi96], in the approach most similar to the one described here, adds edges one at a time
to avoid generating isomorphs. His approach guarantees the removal of all isomorphs using lim-
ited classes of permutation groups, but requires a search to find each next edge, yielding a precise,
but more expensive generation algorithm. McKay [McK98] describes a general framework for
canonical-path generation techniques, providing an example instantiation. This framework
always generates isomorph-free sets of values drawing on an arbitrary permutation group, but
requires a more expensive mapping step than taken in the generation described in this chapter.

 The approach described in this section combines the first two approaches; the simple relation
generator defines a canonical path for isomorph-reduced generation and the refinement takes a
canonical element approach. In McKay’s terminology, the simple relation generator uses an
approximate mapping to lower objects, yielding a sound result that may include isomorphs. The
refinement adds an approximate canonicalization, much of which can be implemented as enumer-
ation prevention rather than as the more expensive generate-and-test approach. These factors lead
to the approach being faster than any canonical generation technique implemented previously.
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Chapter 7

Empirical Data

This chapter provides additional empirical data to help understand the effectiveness of selective
enumeration at reducing the cost of search. The first section describes the benchmark suite of spec-
ifications from which the data is drawn. The second section details the behavior of Ladybug when
analyzing these specifications with all standard techniques enabled. Section 7.3 considers the
behavior of each partial-assignment reduction in isolation and collectively. Section 7.4 considers
the behavior of isomorph elimination by itself. Section 7.5 concludes the chapter.

7.1 The Benchmark Suite

I have accumulated a suite of NP specifications to measure the overall effectiveness of selective
enumeration for Ladybug as well as the effectiveness of each of the four techniques employed by
Ladybug.

Some of these specifications are small, a few with little original purpose other than demon-
strating some capability of the analysis. I use these small specifications to demonstrate scaling
problems when increasing the size of the scope. Other specifications were developed to analyze
real systems and are generally large. These specifications provide a more appropriate measure-
ment of expected real usage and demonstrate issues of scale in number of variables and overall
size of specification.

Table 7.1 summarizes the specifications and claims included in the benchmark suite. The first
two columns list the specifications and claims checked. The next three columns indicate the num-
ber of variables involved in the claim, the number of disjunctive clauses in the claim (after normal-
ization), and the average number of atomic formulae per clause. The different clauses for a single
formula are much more similar than different and never vary in number of atomic formulae by
more than two. Together, these measures give some sense of the relative sizes of the claims. The
final column contains a “Yes” if there are any counterexamples to the claim (or execution of the
operation). In any realistic usage, many claims checked will be correct; measuring how a tool han-
dles these valid claims is as important as measuring how well it discovers counterexamples.     

The remainder of this section presents, reference style, the details of these specifications.
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Specification Claim/Operation Variables Clauses
Atomic 

Formulae
Satisfiable

alloc UniqueAddr 5 1 5 Yes

coda RCreate 33 4 59 No

RSDRefRen 33 6 60 No

digicash SpendOnce 7 5 4.4 Yes

faa X1b_OK 10 16 13.75 Yes

finder Move 14 1 19 Yes

TrashingWorks 14 1 21 Yes

HLA owners AttrDivNot 27 4 28 No

AttrAcqNot 27 4 29 Yes

CompOwners 66 1 95 No

HLA bridge ObjMapping 16 17 17 Yes

AcyclicObjMaps 1 18 18 No

math connex 1 2 2 No

comp 3 1 1 No

shroder 3 2 2 Yes

closure 2 1 1 No

functions 3 1 1 No

mobile IP loc_update_ok 28 1 40 Yes

phone CallersCalledP 7 1 7 Yes

styles FormattingP 14 3 25 Yes

Table 7.1: Summary of the specifications and claims used in the benchmark suite.
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alloc - description

The specification entitled alloc has been used extensively throughout this dissertation to provide
examples. It is a simplistic description of a memory allocation scheme, such as malloc. I wrote this
example. I include alloc in the suite to provide a simple specification that can be understood thor-
oughly.

Given Types

Addr Addresses in the memory system

Value Values stored in the memory system

Schema Heap

Heap defines the basic structure of the memory heap: usage, a partial function indicating
the current state of defined memory and inUse, a set of addresses describing the currently
allocated memory. Exactly the addresses that are currently allocated are mapped by usage.

Operation Alloc(a : Addr)

The operation Alloc allocates given by its parameter a. The contents of all previously mem-
ory is unchanged after the operation and the address a is now recognized as allocated. 

Claim uniqueAddrAlloc

The claim uniqueAddrAlloc states that only currently unallocated addresses are ever allo-
cated. This claim is invalid in all scopes tested. This claim is referred to as uniqueAddr in
the tables.

Tested with #Addr = 3 #Value = 3
Tested with #Addr = 4 #Value = 4
Tested with #Addr = 5 #Value = 5
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alloc - text

[Addr, Data]

Heap =
[ 
  usage : Addr -> Data
  used : set Addr

|

  /* all currently mapped addresses are used */
  used = dom usage
]

Alloc(addr : Addr) = 
[ 
  Heap

|

  /* Allocating a new address does not change the current allocation */
  used <: usage' = usage

  /* But addr is now mapped (to some unknown data element) */
  used' = used U {addr}
 ]

uniqueAddrAlloc::
[
  Heap
  newAddr : Addr

|

  /* A newly allocated address should not have been in use */
  Alloc(newAddr) => newAddr not in used
]
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coda - description

The coda specification models an early version of the Coda distributed file system [??]. The origi-
nal goal of this specification was to demonstrate that the implementation choices made for Coda
met the expectations of the abstract model of the distributed file system.  This specification is a
fragment of one developed by Josh Raiff while working on the project. The complete specification,
consisting of over one thousand lines of NP, is the largest specification analyzed by Nitpick or
Ladybug. This smaller excerpt includes the second largest claims (by number of variables and
number of atomic formulae) checked in the suite.

Given Types

VOL Volumes in the volume package (concrete only).

INODE Standard Inodes for file system.

VNODE Coda Vnodes, representatives for volumes. 

NAME The name of the entry. dot and dotdot are reserved as special names.

ENTRY Directory entries, mapped by inodes, references a name and a vnode.

Schema VOL_C

This schema, giving the concrete model of the volume management, models the variables
implemented in Coda. 

Operation ViceCreate(v:VOL,dvn:VNODE,cvn:VNODE,n:NAME, e:ENTRY)

This operation models the concrete action of creating a new volume v named n with vnode
cvn in the parent volume indicated by the vnode dvn.

Operation ViceRenameCommon(old_dir:VNODE,new_dir:VNODE,s_vn:VNODE,t_vn:VNODE,
old_name:NAME,new_name:NAME, e:ENTRY)

This operation implements the common portion of the concrete renaming action. In the
full Coda specification, this operation was shared between several specific renaming oper-
ations. This operation renames an item named old_name having entry e and vnode s_vn in
old_dir to new_name having vnode t_vn in new_dir.

Operation RenameSameDir(dir:VNODE, s_vn:VNODE, t_vn:VNODE, old_name:NAME,
 new_name:NAME, e:ENTRY)

This operation models the concrete action of  renaming item old_name to new_name, leav-
ing it in the same directory. Uses ViceRenameCommon to implement the actual renaming.

Schema VOL_A

This schema is the abstract model of Coda volume management, representing an ideal-
ized view of the system.

Operation Create(dir:ENTRY,file:ENTRY,vn:VNODE)

This abstract operation creates the item file with vnode vn in directory dir.

Operation Rename(old_dir:ENTRY, new_dir:ENTRY, object:ENTRY)

This operation models the abstract action of renaming (moving) the item object from the
directory old_dir to the directory new_dir.

Schema AF

This schema is the abstraction function that maps from the concrete to the abstract model.

Claim RCreate

Does the concrete create operation implement the abstract model? This claim is valid.

Tested with #ENTRY=3 #INODE=3 #VNODE=3 #VOL=3 #NAME=3

Claim RSDRefineRename

Does RenameSameDir implement Rename? This claim, referred to as RSDRefRen, is valid.

Tested with #ENTRY=3 #INODE=3 #VNODE=3 #VOL=3 #NAME=3
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coda - text

[VOL, VNODE, INODE,  ENTRY]

/* VOL - Volumes in the volume package. (concrete model only)
 * VNODE - Coda Vnodes, objects in the abtract model.
 * INODE- Inode's.  Note that there are two types of inodes.  Directory inodes
 *   and file inodes.  Directory inodes are stored in the volume package's
 *   RVM space and file inodes are part of the file system on the server.
 *   I model directory inodes and keep track of file inodes. (concrete model only)
 * ENTRY- Directory entries in the concrete model, Directory structure in the the
 *   abstract model.
 */

NAME == {dot, dotdot, ...}

/*****************************************************************************************

 * CONCRETE MODEL

 *****************************************************************************************/

VOL_C = [
    /* vnodes correspond to files or directories
        all vnodes are kept in the RVM area.
        this syntax says files and dirs are
        sets of VNODEs, and they are disjoint and
        exclusive, and their values don't change
  */
  const symlinks, files, dirs: kind part VNODE

  /* A directory vnode points to an inode.
   */
  inode: inj VNODE -> INODE

  /* vnodes are partitioned into volumes */
  vol: VNODE -> VOL

  /* not all vnodes are in use */
  alloc_vn: set VNODE

  /* not all volumes are in use */
  alloc_vol: set VOL

  /* Not all inodes are in use */
  alloc_inode: set INODE

  /* Directory entries.  A file vnode that has that more than 1 entry pointing to it
   * has hard links to it. */
  /* dir_ent :  INODE ->  P(NAME x VNODE)*/
  entry :  ENTRY -> INODE
  ent_name: ENTRY -> NAME
  ent_vn:  ENTRY -> VNODE
  alloc_ent : set ENTRY

  /* Define a vnode parent function for conveinence.  This is a derived function. */
  vparent: VNODE -> VNODE
|
  /* any vnode assigned to a volume is in use */
  dom vol = alloc_vn
  ran vol = alloc_vol
  dom inode = alloc_vn & dirs
  ran inode = alloc_inode

  /* Allocated entries must be complete */
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  dom entry = alloc_ent
  dom ent_name = alloc_ent

  /* If it doesnt have a vn, then it better be a volume root */
  dom ent_vn <= alloc_ent
  ran entry <= inode.dirs
  ran ent_vn <= alloc_vn

  /* dot and dotdot are always directories */
  ran (dom (ent_name :> {dot, dotdot}) <: ent_vn) <= dirs

  /* No directory has duplicate name, for do I say this? */

  /* define parent function on vnodes, this is derived for convienience.  */
  vparent = ent_vn~ ; (dom (ent_name ;> {dot, dotdot}) <: entry) ; inode~

  /* Vnodes that are related to each other are on the same volume */
  vol~ ; ent_vn~ ; entry ; inode~ ; vol <= Id

  vparent+ & Id = {}
]

ViceCreate(v:VOL; dvn:VNODE; cvn:VNODE; n:NAME; e:ENTRY) = [
  VOL_C
|
  /* The Volume is allocated */

  /* v: alloc_vol */   /* not nec, cos of invariant */

  /* The directory is in the volume */
  vol.dvn = v

  /* Parent is a directory */
  dvn : dirs

  /* The parent is allocated */
  dvn : alloc_vn

  /* Child is a file */
  cvn: files

  /* legal name */
  n !: {dot, dotdot}

  /* The name is not elready in the directory */
  n !: ran (dom (entry :> {inode.dvn}) <: ent_name)

  /* We have a new entry, and vnode */
  e !: alloc_ent
  cvn !: alloc_vn

  /* Create the new entry */

  /* alloc_ent' = alloc_ent U {e} */

  /* why doesn't commenting out this expression generate counters? */
  entry' = entry /* U {e->inode.dvn} */
  ent_name' = ent_name U {e->n}
  ent_vn' = ent_vn U {e->cvn}      

  alloc_vn' = alloc_vn U {cvn}
  vol' = vol U {cvn->v}

  alloc_inode' = alloc_inode
  inode' = inode
]



130 CHAPTER 7.  EMPIRICAL DATA

ViceRenameCommon(old_dir: VNODE; new_dir:VNODE; s_vn:VNODE; t_vn:VNODE;
 old_name:NAME; new_name:NAME; e:ENTRY) = [

  /* old_dirThe directory old_name is in 
   * new_dirWhere to move it to (can = old_dir)
   * s_vn old_name's vnode
   * t_vn new_name's vnode (if it exists, IE is in alloc_vn)
   * old_nameThe name to be renamed
   * new_nameThe name to rename (or move) to
   * e old_name's entry.
   */
  VOL_C
|
  /* We are dealing with allocated vnodes */
  {old_dir, new_dir} <= (alloc_vn & dirs)
  s_vn : alloc_vn

  /* No cross-volume renames, also volumes are allocated */
  vol.old_dir = vol.new_dir

  /* Leave . and .. alone */
  old_name !: {dot, dotdot}
  new_name !: {dot, dotdot}  

  /* A real directory entry, and the one we want */
  e : alloc_ent
  entry.e = inode.old_dir
  ent_name.e = old_name
  ent_vn.e = s_vn

  /* old_dir is s_vn's parent */
  vparent.s_vn = old_dir

  /* Don't create any loops */
  old_dir != t_vn
  new_dir != t_vn
  s_vn != t_vn
  vol' = vol
  inode' = inode
]

/* RenameSameDir - Rename in the same directory */
RenameSameDir(dir: VNODE; s_vn:VNODE; t_vn:VNODE; old_name:NAME;

  new_name:NAME; e:ENTRY) = [
  /* dirThe directory old_name is in 
   * s_vn old_name's vnode
   * t_vn new_name's vnode (if it exists, IE is in alloc_vn)
   * old_nameThe name to be renamed
   * new_nameThe name to rename (or move) to
   * e old_name's entry.
   */
  ViceRenameCommon(dir, dir, s_vn, t_vn, old_name, new_name, e)
|
  /* Target can't exist */
  t_vn !: alloc_vn

  /* New_name is not in the directory */
  new_name !: ran (dom (entry :> {inode.dir}) <: ent_name)

  /* Just change the entry's name, not quite what happens in code */
  ent_name' = ent_name (+) {e->new_name}
  ent_vn' = ent_vn
  entry' = entry
]
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/*****************************************************************************************
 * ABSTRACT MODEL
 *****************************************************************************************/

VOL_A = [
  /* NOTE: The abstract model has no concept of volume.  Is this a problem?  Probably 
   *       if I put mountpoints into the concrete model.
   */

  /* There are 3 types of objects */
  const symlinks, files, dirs : kind part VNODE

  /* Each directory node is associated with a vnode */
  obj : ENTRY -> VNODE

  /* Parent is the directory tree */
  parent : ENTRY->ENTRY

  /* Maybe not needed */
  vparent : VNODE -> VNODE

  /* Not all nodes are in use */
  alloc_ent : set ENTRY

  /* Note all objects are in use */
  alloc_vn: set VNODE
|
  /* Contrain obj to be defined over allocated nodes */
  dom obj = alloc_ent
  ran obj = alloc_vn

  /* Contrain parent to be a subset of allocated directory nodes.  Actually all but the
   * root will have a parent.
   */ 
  dom parent <= alloc_ent
  ran parent <= alloc_ent

  /* Define the parent function on vnodes */
  vparent = (obj~ ; parent ; obj)

  /* You can't be your own parent, there are no loops */
  parent+ & Id = {}
]

Create(dir:ENTRY; file:ENTRY; vn:VNODE) = [
  VOL_A
|

  /* We are creating a new file in an existing directoy */
  dir : alloc_ent
  file !: alloc_ent

  /* Since it's a new file */ 
  vn !: alloc_vn

  /* Make sure we have the right types */
  obj.dir : dirs
  vn : files

  obj' = obj U {file -> vn}
  parent' = parent U {file -> dir}

]
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/* In the abstract world, rename is just move */

Rename(old_dir:ENTRY; new_dir:ENTRY; object:ENTRY) = [
  VOL_A
|
  /* Type checks */
  {old_dir, new_dir, object} <= alloc_ent
  {obj.old_dir, obj.new_dir} <= dirs

  /* Object is in old_dir */
  parent.object = old_dir

  /* Update the state space */
  obj' = obj
  parent' = parent (+) {object -> new_dir}
]

/************************************************************************************
 * Define an Abstraction function
 ************************************************************************************/

AF = [
  VOL_C
  VOL_A
|
  parent = entry ; inode~ ; ent_vn~
  obj = ent_vn
]

RCreate(v:VOL; dvn:VNODE; cvn:VNODE; n:NAME; dir:ENTRY; file:ENTRY) ::
[AF | dvn = obj.dir and ViceCreate(v, dvn, cvn, n, file) => Create(dir, file, cvn)]

/* RenameSameDir Refines Rename */
RSDRefinesRename(dir:VNODE; s_vn:VNODE; t_vn:VNODE; 
       old_name:NAME; new_name:NAME; obj_e:ENTRY; nd_e:ENTRY; od_e:ENTRY) ::
[AF | RenameSameDir(dir, s_vn, t_vn, old_name, new_name, obj_e) => 

  Rename(od_e, nd_e, obj_e)]
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digicash - description

This specification, originally developed by Daniel Jackson, tracks the flow of digital cash in one
model of electronic commerce. This simple model considers only one bank, one merchant, and one
customer. I have included this specification as a real-world based specification that is small
enough to scale in scope.

Given Types

COIN The digital cash that is supplied to the customer.

BCOIN The mirror of the digital cash that the bank maintains.

SIG A key that can be used to validate the digital cash.

Schema Bank

The bank defines the validation function that generates keys for digital cash and the
records of cash that has been issued or used.

Schema Customer

The customer tracks cash currently held (in cholds) and spent (in spent). The coin that the
customer holds maps back to the bank’s version.

Schema Merchant

The merchant records (in mholds) what digital cash it has received along with the authori-
zation keys obtained by the bank for the transaction.

Schema OnlyValidUsed

This schema describes the property that only validated cash is accepted.

Schema NoSecondSpending

This schema describes the property that a given coin is not spent.

Operation issue(c:Coin)

Issue a new digital coin c from the bank to the customer.

Operation spend(c:Coin,s:SIG)

The customer spends the coin c at the merchant, validated with s.

Operation deposit(b:BCOIN)

Deposit the coin into the bank.

Claim SpendOnce

Check that a coin, once deposited, cannot be spent again. This claim is invalid for all
scopes checked

Tested with #COIN = 3 #BCOIN = 3 #SIG = 3
Tested with #COIN = 4 #BCOIN = 4 #SIG = 4
Tested with #COIN = 5 #BCOIN = 5 #SIG = 5
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digicash - text

[COIN, BCOIN, SIG]

Bank = [
  const valid :  BCOIN <-> SIG
  used :  BCOIN <-> SIG
  issued : set COIN
]

OnlyValidUsed = [Bank | used <= valid]

Customer = [
  blind : tot inj COIN -> BCOIN
  cholds, spent : set COIN
  ]

Merchant = [
  mholds : BCOIN -> SIG
]

issue (c : COIN) = [
  Bank
  Customer
  const Merchant
|
  cholds' = cholds U {c}
  not c in issued
  issued' = issued U {c}
  used' = used
]

spend  (c : COIN ; s: SIG) = [
  const Bank
  const Customer
  Merchant
|
  c in cholds
  mholds' = mholds U {blind.c -> s}
]

deposit  (b : BCOIN) = [
  Bank
  const Customer
  const Merchant
|
  used' = used U {b -> mholds.b}
  mholds.b in valid.{b} \ used.{b}
  b not in dom used
]

UsedAreSpent = [Bank Customer |
  blind.spent = dom used 
]

NoSecondSpending (c: COIN) = [Customer | c not in spent]

SpendOnce(b : BCOIN ) :: [Bank Merchant Customer |
   UsedAreSpent and deposit (b) and OnlyValidUsed => NoSecondSpending (blind~.b)
]
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faa - description

This specification is a portion of one that was developed by Daniel Jackson to check the proof
developed to verify the FAA handoff protocol. He simplified the model to consider only the hand-
off between two controllers for a single flight. This specification includes one valid claim and one
invalid claim1. This specification is unique in two ways: every variable is set-valued and no iso-
morph elimination is possible because the two controllers are distinguished.

Given Types

CON Controller — this model has exactly two controllers, named a and b.

Schema State

This schema defines all the variables used in this specification:
ctr : the set of controllers that are currently in charge of the flight.
primary, backup : the set of controllers that have the primary (backup) 

responsibility for the flight.
primary_up, backup_up : the set of the controllers that have responsibility for the

flight if the primary (backup) controller is responsible.

Schema OneController

The important property that exactly one controller has responsibility for the flight at any
time.

Schema OnlyAisController

The property that only a is the controller.

Operation Delta()

Indicates all the possible transitions that are allowed.

Operation Op()

Constrains operations to only allow primary_up and backup_up to shrink (or stay the
same).

Operation X1b()

Indicate that a has failed as a backup.

Operation X1a()

Indicate that a has failed as a primary.

Claim X1a_check

Check that a failure in a as the primary guarantees a valid handoff. This claim is valid.

Claim x1b_OK

Check that a failure in a as the backup guarantees a valid handoff. This claim is invalid.

Tested with #CON = 2

1. Although the safety proof for the handoff protocol was flawed, the protocol itself is safe.
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faa - text

/*
Simplifications: - only consider a single flight
*/

[CON]
CON == {a,b}

/* ctr is the set of controllers who think they have control
primary is the set of controllers X that have X.p set
backup is the set of controllers X that have X.b set
primary_up (backup_up) contains X if X.p (X.b) is up
*/

/*  the body of this schema contains the
abstraction function and an assumption
that only single failures occur
*/

State = [
  ctr : set CON
  primary, backup : set CON
  primary_up, backup_up: set CON
|
  ctr =  (primary_up & primary) U (backup \ primary_up)
  primary_up U backup_up = CON
]

/* at most one controller thinks he has control */
OneController = [State | one ctr]

Pr = [State | a in (primary_up & backup_up) => {a} & primary ={a} & backup ]

OnlyAisController = [State | ctr \ {a} = {}]

/* specifies the allowable transitions */
Delta () = [State | 
  a in ctr => (ctr' = {a} or ctr' = {} or ctr' = {b})
  ctr = {} => (ctr' = {} or ctr' = {b})
  b in ctr => ctr' = {b}
]

Op () = [State | primary_up' <= primary_up and backup_up' <= backup_up]

X1b () = [Op() |
  backup' = backup \ {a}
  primary' = primary
]

X1a () = [Op() |
  backup' = backup
  primary' = primary \ {a}
]

PreX1b = [State | OneController and Pr and OnlyAisContoller and (a in ctr)]

PostX1b = [State | OneController and OnlyAisControllrt and (a in primary)
(not b in ctr) and (a in backup_up => not a in backup)]

FS_1 = [State |  (a in backup_up => not a in backup)]

X1a_check() :: [State | (X1a() and PostX1b) => FS_1']

X1b_OK () :: [State | X1b () and PreX1b => Delta() and PostX1b']
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finder - description

This specification provides a simple model of the Macintosh desktop, focusing on the interaction
of aliases and the trashcan. It was written by Daniel Jackson and originally appeared in [JD95].
Chapter 3 uses this specification to provide additional examples of partial-assignment reductions.

Given Types

OBJ Any object that can appear on the desktop.

Schema Finder

This schema describes the basic desktop, with trash and (hard) drive being distinguished
objects. All objects are partitioned into being files or folders, as denoted by membership in
one of those sets. The dir relationship indicates the folder (or directory) that contains an
object. Some objects are aliases;  an alias links to another object.

Operation Move(x, to : OBJ)

This operation moves any object x into the folder indicated by to. The first constraint pre-
vents a folder from being moved into one of its children. The second constraint describes
how the dir relationship is changed; moving an object into an alias has the effect of moving
the object into the folder to which the alias links. This operation has executions.

Tested with #OBJ = 3
Tested with #OBJ = 4
Tested with #OBJ = 5

Claim TrashingWorks

This claim states that moving an object x into an object to that is in the trash has the effect
of throwing away x. This claim is invalid with four or more objects, demonstrated by a
counterexample when to is an alias for a folder that is not in the trash. The Macintosh
finder warns a user who attempts this action. 

Tested with #OBJ = 3
Tested with #OBJ = 4
Tested with #OBJ = 5



138 CHAPTER 7.  EMPIRICAL DATA

finder - text

[OBJ]

Finder = [
  const drive, trash: OBJ
  const files, folders: set OBJ 
  dir, links: OBJ -> OBJ
  trashed, aliases: set OBJ
 |

  {drive, trash} <= folders \ dom dir 
  ran dir <= folders
  trashed = dir~+.{trash}
  not drive in trashed U {trash}
  aliases <= files
  aliases = dom links
  links+ & Id = {}
  files & folders = {}
  files U folders = OBJ
]

Move (x, to: OBJ) = [
  Finder
|

  x not in dir*.{to}
  dir' = dir (+) {x -> ((links* ;> aliases).to)}
  links' = links
]

TrashingWorks (x, to: OBJ) :: 
[Finder |  Move (x, to) and to in trashed U {trash} => x in trashed']
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hla - description

The High Level Architecture (or HLA) is a protocol developed by the Defense Modeling and Sim-
ulation Office (DMSO) of the U.S. Department of Defense to describe an anticpated worldwide
simulation system. Numerous people at Carnegie Mellon University, including myself, have been
analyzing portions of the specification to improve the likelihood of smooth interactions between
components developed by different vendors. Chapter 8 describes the portion of this work that was
done with Ladybug. This specification models the ownership of object attributes by components
(or federates) in the simulation and how ownership can be transferred between federates. A more
complete description of the pieces of this specification can be found in Chapter 8. This example
offers the largest search space of any benchmark specification and is indicative of the kinds of
workout that I expect Ladybug to recieve in the “real” world.

Given Types

Attr An attribute that is maintained by the simulation. In the HLA, attributes are 
the desription of actual values, not the placeholders for the actual values.

Class The type of an object in HLA.

Fed A federate, the HLA term for a discrete portion of the simulation.

OAttr An object attribute, the placeholder for values associated with an object in the 
simulation. The constraints require that #Attr * #Obj = #OAttr.

Obj An object being simulated.

Schema ObjectCollection

The variables that model the basic HLA state.

Schema SoundOwners

A collection of properties that describes a sound ownership state.

Claim AttrDivNotSoundOwns

Check that the attribute divestiture notification operation preserves the sound ownership
properties. This claim is valid. Referenced in the tables as AttrDivNot.

Tested with #Attr = 2 #Class = 1 #Fed = 2 #OAttr = 6 #Obj = 3

Claim AttrAcqNotSoundOwns

Check that the attribute acquisition notification operations preserves the sound owner-
ship properties. This claim is invalid. Referenced in the tables as AttrAcqNot.

Tested with #Attr = 2 #Class = 1 #Fed = 2 #OAttr = 6 #Obj = 3

Claim ConditionaCompleteOwners

Check that an execution of an entire protocol does not lose any object ownership. This
claim is valid. Referenced in the tables as CompOwners.

Tested with #Attr = 2 #Class = 1 #Fed = 2 #OAttr = 6 #Obj = 3
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hla - text

/* Define the basic kinds of entities to consider */
[CLASS, ATTR, FED, OATTR, OBJECT]

/* Define the basic universe */
ObjectCollection = [
Objects: set OBJECT
Object_Attrs: set OATTR
ObjectToClass: tot OBJECT -> CLASS
ClassAttrsToClass: tot ATTR -> CLASS
ObjAttrsToClassAttrs: tot OATTR -> ATTR
ObjAttrsToObject: tot OATTR -> OBJECT
 |
   /* Only object attributes about known objects are of interest */
   Object_Attrs = dom (ObjAttrsToObject :> Objects)
 ]

GoodObjColl = [ ObjectCollection |

ObjectToClass;ClassAttrsToClass~ = ObjAttrsToObject~;ObjAttrsToClassAttrs

(ObjAttrsToObject;ObjAttrsToObject~ & ObjAttrsToClassAttrs;ObjAttrsToClassAttrs~) <= Id

/*  First invariant says that each instance has the attributes
specified by its class (or has the right number of attributes

2nd invariant states that the intersection of the
two equivalence relations on AttrTo Object and ObjAttrsTo
ClassAttributes intersect only when the same object attributes
are the subject, i.e., two object attributes can’t be of the
same type and belong to the same object instance  */
]

/* Explicitly defined state */
SimState = [
GoodObjColl
Federates: set FED
Publishing: FED <-> ATTR
Owns: FED <-> OATTR
]

/* Implicitly defined state */
OwnershipInternalState = [
WillingToDivest:FED <-> OATTR
WillingToAccept: FED <-> OATTR
TargetOwners : FED <-> OATTR
]

/* Total state to consider */
ExecutionState =
[SimState
OwnershipInternalState]
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RequestAttrOwnDivestiture(fed?:FED, obj?:OBJECT, targets?:set FED,  
oattrs?:set OATTR) =

[
  ExecutionState
  const SimState
|
  fed? in Federates
  ObjAttrsToObject.oattrs? = {obj?}
  obj? in Objects
  /* ({fed?} <: Un :> oattrs?) is the same as {fed?} x oattrs? */
  ({fed?} <: Un :> oattrs?) <= Owns

  WillingToDivest' = WillingToDivest U ({fed?} <: Un :> oattrs?)
  WillingToAccept' = WillingToAccept
  TargetOwners' = TargetOwners U (targets? <: Un :> oattrs?)
]

RequestAttrOwnAssumption(fed?:FED, obj?:OBJECT, oattrs?:set OATTR) =
[
  const ExecutionState
|
  fed? in Federates
  ObjAttrsToObject.oattrs? = {obj?}
  obj? in Objects
  ({fed?} <: Un :> oattrs?);ObjAttrsToClassAttrs <= Publishing
  ({fed?} <: Un :> oattrs?) & Owns = {}
] 

RequestAttrOwnAcquisition(fed?:FED, obj?:OBJECT, oattrs?:set OATTR) =
[
  ExecutionState
  const SimState
|
  fed? in Federates
  ObjAttrsToObject.oattrs? = {obj?}
  obj? in Objects
  ({fed?} <: Un :> oattrs?);ObjAttrsToClassAttrs <= Publishing
  ({fed?} <: Un :> oattrs?) & Owns = {}

  WillingToDivest' = WillingToDivest 
  WillingToAccept' = WillingToAccept U ({fed?} <: Un :> oattrs?)
  TargetOwners' = TargetOwners
] 

AttrOwnDivestNotify(fed?:FED, obj?:OBJECT, oattrs?:set OATTR) =
[
  ExecutionState
  const ObjectCollection
|
  fed? in Federates
  ObjAttrsToObject.oattrs? = {obj?}
  obj? in Objects
  ({fed?} <: Un :> oattrs?) <= Owns
  ({fed?} <: Un :> oattrs?) <= WillingToDivest

  Owns' = Owns \ ({fed?} <: Un :> oattrs?)
  Federates' = Federates
  Publishing' = Publishing
  WillingToDivest' = WillingToDivest \ ({fed?} <: Un :> oattrs?)
  WillingToAccept' = WillingToAccept
  TargetOwners' = TargetOwners
]
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AttrOwnAcquisitionNotify(fed?:FED, obj?:OBJECT, oattrs?:set OATTR) =
[
  ExecutionState
  const ObjectCollection
|

  fed? in Federates
  ObjAttrsToObject.oattrs? = {obj?}
  Owns~.oattrs? = {}
  /* Only look for owners amongst the target owners */
  obj? in Objects
  oattrs? <= TargetOwners.{fed?}
  ({fed?} <: Un :> oattrs?) <= WillingToAccept

  Owns' = Owns U ({fed?} <: Un :> oattrs?)
  Federates' = Federates
  Publishing' = Publishing

  WillingToAccept' = WillingToAccept \ ({fed?} <: Un :> oattrs?)
  WillingToDivest' = WillingToDivest
  TargetOwners' = TargetOwners ;> oattrs?
]

/* Force a non-empty state */
NonEmpty =  [SimState |
Publishing  != {}
Owns != {}
Federates != {}
]

/* Define any properties of the state */
 NoTwoOwners = [ SimState | fun Owns~ ]

/* Check that the non-empty state allows two owners */
NoTwoOwnersForced = [NonEmpty | fun Owns~]  

NoBadOwnedAttrs  =  [SimState | ran Owns <= Object_Attrs  ]

NoBadOwners = [SimState | dom Owns <= Federates]

OwnsOnlyIfPublishes = [SimState | Owns;ObjAttrsToClassAttrs <= Publishing ]

SoundOwners = [
NoTwoOwners
NoBadOwnedAttrs
NoBadOwners
OwnsOnlyIfPublishes]

CompleteOwners  = [SimState | ran Owns = Object_Attrs]

/* Now construct the claims to test */

/* Check that each modifying operation maintains sound ownership */ 

AttrDivNotSoundOwns(fed:FED, obj:OBJECT, oattrs:set OATTR)::
   SoundOwners and AttrOwnDivestNotify(fed,obj,oattrs) => SoundOwners'

AttrAcqNotSoundOwns(fed:FED, obj:OBJECT, oattrs:set OATTR)::
   SoundOwners and AttrOwnAcquisitionNotify(fed,obj,oattrs) => SoundOwners'
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/***********************************************************************************/
/* Check against protocol executions, not just single operations                */
/***********************************************************************************/
/* Check for complete ownership after a simple conditional divestiture */
ConditionalCompleteOwners(fed1:FED, fed2:FED, targets : set FED, obj:OBJECT,

 oattrs1:set OATTR, oattrs2:set OATTR)::
[
  ExecutionState
|

  /* require the case we are interested in */
  not fed2 = fed1 and
  fed2 in targets and
  oattrs2 <= oattrs1 and
  SoundOwners and

  CompleteOwners and
  /* the conditional divestiture of oattrs1, actually divesting oattrs2 */
     (RequestAttrOwnDivestiture(fed1,obj,targets,oattrs1);
      RequestAttrOwnAssumption(fed2,obj,oattrs1);
      RequestAttrOwnAcquisition(fed2,obj,oattrs2);
      AttrOwnDivestNotify(fed1,obj,oattrs2);
      AttrOwnAcquisitionNotify(fed2,obj,oattrs2)) =>
  CompleteOwners'
]
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hla bridge - description

This specification adds one complication to the ownership properties checked in the previous sec-
tion: bridges that link two complete simulations (called federations). Chapter 8 presents a more
complete description of this specification. I wrote this specification to check the effect of varying
topologies of bridges and federations on valid maintenance of the ownership properties. It repre-
sents another large, real-world example to test. This test also provides the largest scope considered
for any given type in any test in the suite (7 for FED).

Given Types

Attr An attribute that is maintained by the simulation. In the HLA, attributes are 
the desription of actual values, not the placeholders for the actual values.

Class The type of an object in HLA.

Fed A federate, the HLA term for a discrete portion of the simulation.

Federation A federation is a collection of federates that provide a simulation. Bridges can 
join multiple federations into a single larger simulation.

Bridge A bridge is a special federate that can join two federations.

Map The mapping used by a bridge federate to map objects from one federation to 
the other. 

OAttr An object attribute, the placeholder for values associated with an object in the 
simulation. The constraints require that #Attr * #Obj = #OAttr.

Obj An object being simulated.

Schema ObjectCollection

This schema extends the ObjectCollection schema from the previous hla specification to
define objects to belong in federation.

Schema BridgeState

This schema defines the state necessary to describe the bridges that connect two or more
federations.

Claim CheckObjectMapping

Do the constraints placed on bridges require that an object only appears in one in a feder-
ation? This claim is invalid. The tables refer to this claim as ObjMapping.

Tested with #FED=4   #FEDERATION=2   #OBJECT=3    #BRIDGE=2   #MAP=2   #ATTR=1
#OATTR=3    #CLASS =1

Claim CheckAcyclicObjMaps

Does requiring acyclic bridges require that an object only appears in one in a federation?
This claim is valid. The tables refer to this claim as AcyclicObjMaps.

Tested with #FED=4   #FEDERATION=2   #OBJECT=3    #BRIDGE=2   #MAP=2   #ATTR=1
#OATTR=3    #CLASS =1

Tested with #FED=7   #FEDERATION=3   #OBJECT=4    #BRIDGE=3   #MAP=3   #ATTR=1
#OATTR=4    #CLASS =1
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hla bridge - text

/* Define the basic kinds of entities to consider */
[CLASS, ATTR, FED, OATTR, OBJECT,BRIDGE,FEDERATION,MAP]

/* Define the basic universe */

ObjectCollection = [
  Objects: set OBJECT
  FederationObjects : OBJECT -> FEDERATION
  Object_Attrs: set OATTR
  ObjectToClass: tot OBJECT -> CLASS
  ClassAttrsToClass: tot ATTR -> CLASS
  ObjAttrsToClassAttrs: tot OATTR -> ATTR
  ObjAttrsToObject: tot OATTR -> OBJECT
|
   /* Only object attributes about known objects are of interest */
   Object_Attrs = dom (ObjAttrsToObject :> Objects)
   Objects = dom FederationObjects
 ]

GoodObjColl = [
  ObjectCollection
|
  ObjectToClass;ClassAttrsToClass~ = ObjAttrsToObject~;ObjAttrsToClassAttrs 
 (ObjAttrsToObject;ObjAttrsToObject~ & ObjAttrsToClassAttrs;ObjAttrsToClassAttrs~) <= Id

/*  First invariant says that each instance has the attributes
specified by its class (or has the right number of attributes

2nd invariant states that the intersection of the
two equivalence relations on AttrTo Object and ObjAttrsTo
ClassAttributes intersect only when the same object attributes
are the subject, i.e., two object attributes can’t be of the
same type and belong to the same object instance  */
]

/* Explicitly defined state */
SimState = [
  GoodObjColl
  Federates: set FED
  Federations : FED -> FEDERATION
  Publishing: FED <-> ATTR
  Owns: FED <-> OATTR
|
  Federates = dom Federations
]

/* Implicitly defined state */
OwnershipInternalState = [
  WillingToDivest:FED <-> OATTR
  WillingToAccept: FED <-> OATTR
  TargetOwners : FED <-> OATTR
]

/* Total state to consider */

ExecutionState =
[SimState
OwnershipInternalState]
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/* Allow bridges between federations */

BridgeState =
[
  SimState
  Bridges : set BRIDGE
  Maps : set MAP
  SurrogateFor : FED -> BRIDGE
  MapsFromObject : MAP -> OBJECT
  MapsToObject : MAP -> OBJECT
  ObjectMapping : OBJECT <-> OBJECT
  MapsForBridge : MAP -> BRIDGE 
|
  ran SurrogateFor = Bridges
  ran MapsForBridge = Bridges
  dom MapsForBridge = Maps
  dom MapsToObject = Maps
  dom MapsFromObject = Maps

  ObjectMapping = 
(MapsFromObject~ ; MapsToObject) U (MapsToObject~ ; MapsFromObject)

  dom ObjectMapping <= Objects

  /* limitation -- allow only binary bridges, meaning each object mapped only once */
  ((MapsToObject U MapsFromObject);((MapsToObject U MapsFromObject)~)) & 

(MapsForBridge;(MapsForBridge~)) <= Id

  /* A bridge has one surrogate for each federation it participates in */
  SurrogateFor;SurrogateFor~ & Federations;Federations~ <= Id

  /* A bridge only maps objects into/out of a federation in which it has a surrogate */
  MapsForBridge~; (MapsFromObject U MapsToObject);FederationObjects <= 

SurrogateFor~;Federations

  /* Each object mapping must be across different  federations */
  (FederationObjects~;MapsFromObject~;MapsToObject;FederationObjects) & Id = {}
]

/* Properties about bridges */
ObjectMappedOncePerFederation =
[
  BridgeState
|
  (FederationObjects~ ; (ObjectMapping+\Id) ; FederationObjects) & Id = {}
 ]

 NoBridgeCycles =
 [
   BridgeState
 |
   (((SurrogateFor;SurrogateFor~)\Id);((Federations;Federations~)\Id))+ & Id = {}
 ]

   

/* Check the bridge properties */

CheckObjectMapping:: BridgeState => ObjectMappedOncePerFederation

CheckAcyclicObjMaps:: NoBridgeCycles => ObjectMappedOncePerFederation
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math - description

These claims, part of a larger collection originally encoded by Daniel Jackson, transcribe some
mathematical theorems into NP. An incorrect initial encoding of the shroder equivalence has been
retained in the specification to include a claim with counterexamples. This specification extends
the suite by incorporating some minimally specified problems. These claims allow little or no par-
tial-assignment reductions, depending almost completely on isomorph elimination to make the
search tractable.

Given Types

T the basic element type in all the formulae

Claim connex

Check the behavior of universal relations.

Tested with #T = 3
Tested with #T = 4
Tested with #T = 5

Claim comp

Check the behavior of composition. This claim is valid.

Tested with #T = 3
Tested with #T = 4
Tested with #T = 5

Claim closure

Check the behavior of closure. This claim is valid.

Tested with #T = 3
Tested with #T = 4
Tested with #T = 5

Claim shroder

An erroneous encoding of one of the Shröder equivalences. The corrected equivalence
replaces the first equality with a less than or equal to. This claim is invalid.

Tested with #T = 3
Tested with #T = 4
Tested with #T = 5

Claim functions

Check the behavior of functions. This claim is valid.

Tested with #T = 3
Tested with #T = 4
Tested with #T = 5
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math - text

[T]

/* connex */
connex :: [r : T <-> T | Un <= (r U r~) <=> (Un \ r) <= r~]

/* assoc of composition */
comp :: [p, q, r: T <-> T | p ; (q ; r) = (p ; q) ; r]

/* check a property of closure */
closure :: [ p, q: T <-> T | (p U q)* = (p* ; q)* ; p*]

/* schroder equivalence - incorrect formulation */
schroder :: [p, q, r: T <-> T  | p ; q= r <=> p~ ; (Un \ r) <= (Un \ q)]

/* property of functions */
functions :: [f, g, h: T -> T | f ; g & h = (f & (h ; g~)) ; g]
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mobile IP - description

This specification, which is described more  fully in [JNW99], describes parts of the 1996 version of
the mobile IPv6 specification, focusing on checking for acyclicity in the forwarding tables.
Yuchung Ng wrote this specification under the guidance of Jeannette Wing. This specification is
another “real-world” specification.

Given Types

HOST Hosts are the computing elements that host the mobile computers.

MSG Messages describing updates to the routing table are sent to the hosts.

TS Timestamps allow the messages to be sequenced and expire.

Schema net

This schema describes the basic state of the network.

Operation mh_arrive(h:HOST; m:MSG; t:TS)

This operation models the docking of the mobile computer at host h. The message m is
sent to the previous router to notify the change of location and t is the expiration time of m.

Operation update_arrival (m:MSG; keeps: set HOST)

This operation describes the behavior when the message m arrives to update the set of
hosts, retaining only keeps.

Schema acyclic_caches

This property describes that no cycles exist in the forwarding caches

Claim loc_update_OK_1 (m:MSG; ks: set HOST)

This claim asserts that the update_arrival operation maintains the acyclic_caches property.
This claim is invalid.

Tested with #HOST=3 #MSG=3 #TS=3
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mobile IP - text

[HOST, MSG, TS]

net = [
  router: HOST
  caching: set HOST
  clock: TS
  caches: HOST -> HOST
  cache_exp_time: HOST -> TS
  updates: set MSG
  from,to,where: MSG -> HOST
  send_time, exp_time: MSG -> TS
  timeorder: tot seq TS
  before: TS -> TS
|
  updates = dom to
  updates = dom from
  updates = dom where
  updates = dom send_time
  updates = dom exp_time
  dom cache_exp_time = dom caches
  exp_time <= send_time; before+
  before = {last timeorder} <; timeorder
  not before = {}
  caches & Id = {}
  (from; from~) & (to; to~) & (send_time; send_time~) <= Id (from~; to) & Id = {}
]

mh_arrive (h:HOST; m:MSG; t:TS) = [net | 
  not router = h
  router' = h
  not m in updates
  t in before+.{clock}
  clock' in before+.{clock}
  caching' <= caching
  cache_exp_time' = caching' <: cache_exp_time :> (before+).{clock'}
  caches' = dom(cache_exp_time') <: caches updates' = updates U {m}
  send_time' = send_time U {m -> clock}
  exp_time' = exp_time U {m -> t}
  to' = to U {m -> router}
  from' = from U {m -> h}
  where' = where U {m -> h}
]

update_arrival (m:MSG; keeps: set HOST) = [net | 
  clock' in before+.{clock}
  keeps <= caching
  caching' = {to.m} U keeps
  cache_exp_time' = 

caching' <: (cache_exp_time (+) {to.m -> exp_time.m}) :> (before+.{clock'})
  caches' = dom (cache_exp_time') <: (caches (+) {to.m -> where.m}) router' = router
  updates' = updates
  to' = to
  from' = from
  where' = where
  send_time' = send_time
  exp_time' = exp_time
  timeorder = timeorder'
  before = before'
]
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acyclic_caches = [net | caches+ & Id = {} ]

host_move_OK_1 (h:HOST; m:MSG; t:TS) :: [ net | acyclic_caches and mh_arrive (h, m, t) 
=> acyclic_caches' ]

loc_update_OK_1 (m:MSG; ks: set HOST) :: [ net | acyclic_caches and update_arrival (m, 
ks) => acyclic_caches' ]
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phone - description

This specification describes a simple model of a phone system, as presented in Chapter 6, and was
originally developed by Daniel Jackson. It offers relatively few opportunities for part-assignment
reductions, allowing more detailed consideration of isomorph elimination.

Given Types

Number A phone number.

Phone A phone.

Schema Switch

The basic model of the phone system, allowing conference calls.

Operation Join(p : Phone, n : Number )

Add the phone at number n to the call originated by p.

Schema NoTwoCallers

The property that every phone call was originated by exactly one phone.

Schema NoCallersCalled

The property that no phone both originated and answered a phone call.

Claim NoTwoCallersPreserved

Check that Join preserves the NoTwoCallers property. This claim behaves similarly to
NoCallersCalledPreserved and is not tested in the benchmark suite.

Claim NoCallersCalledPreserved

Check that Join preserves the NoCallersCalled property. Referenced in the tables as Caller-
sCalledP. This claim is invalid for all scopes checked.

Tested with #Number = 3  #Phone = 3
Tested with #Number = 4  #Phone = 4
Tested with #Number = 5  #Phone = 5
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phone - text

[Phone, Number ]

Switch = 
[
   called : Phone <-> Number
   net : Number <-> Phone
   conns : Phone <-> Phone
|
   func net  
   conns = called ; net
]

Join(p : Phone, n : Number ) = 
[
    Switch 
|
    net' = net
    p in dom called
    not n in ran called
    called' = called U { p -> n } 
]

NoTwoCallers = 
[
 Switch  
|
 fun conns~ 
]

NoCallersCalled = 
[
  Switch 
| 
  dom conns & ran conns  = {}
]

NoTwoCallersPreserved(p: Phone, n : Number):: 
[ |   (Join(p,n) and NoTwoCallers) => NoTwoCallers' ]

NoCallersCalledPreserved(p: Phone, n : Number):: 
[ |   (Join(p,n) and NoCallersCalled) => NoCallersCalled' ]
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styles - description

This description, which appeared originally in [JD96b] models the attribute inheritance in
Microsoft Word. The model is simplified to consider a style sheet with a single attribute. This test
gives another opportunity to test the ability of Ladybug to scale with scope.

Given Types

Style A  style sheet. Style sheets form a hierarchy; each style sheet may inherit 
attributes from its parent. The style sheet denoted by the variable normal is the top 
of the hierarchy.

Format An attribute maintained by the style sheet. For example, this element could 
represent different fonts, styles, or sizes.

Schema StyleSheet

This schema describes the model of a style sheet. The function based is the parent relation
on style sheets. The function assoc describes what formatting attribute is associated with
each style sheet. The function delta describes how this style sheet varies from its parent.

Operation ChangeParent(s,to: Style)

Change the parent of style sheet s to become to.

Schema XiStyleSheet

The property that the style sheet is unchanged.

Claim FormattingPreserved

Check that changing the parent of a style sheet to a third sheet, then back again leaves the
forwarding unchanged. This claim is referred to in the tables as FormattingP and is
invalid for all scopes. The counterexample occurs when the child has the same attribute as
the third sheet but differs from the parent style sheet. The delta is lost when the child is
reparented to the third sheet, with the description now noting that the child and parent
agree on the attribute. Reparenting the child back to the original parent maintains this
commonality, changing the value of the attribute to that of the parent.

Tested with #Style = 3 #Format = 3
Tested with #Style = 4 #Format = 4
Tested with #Style = 5 #Format = 5
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styles - text

[Style, Format]

StyleSheet = [
  based: Style -> Style
  const normal: Style
  assoc, delta: Style -> Format
|
  normal not in dom based
  ran based \ {normal} <= dom based
  based+ & Id = {}
 {normal} <: assoc = {normal} <: delta
 {normal} <; assoc = normal} <; (based ; assoc) (+) delta
]

ChangeParent (s,to: Style) = [
  StyleSheet
|
  s in dom based
  based' = based (+) {s -> to}
  assoc' = assoc
  {s} <; delta' = {s} <; delta
]

XiStyleSheet() = [const StyleSheet]

FormattingPreserved (s, from, to: Style) :: [
  StyleSheet
|
  ({s -> from} <= based and ChangeParent (s, to)  ;  ChangeParent (s, from))
              => XiStyleSheet()
]



156 CHAPTER 7.  EMPIRICAL DATA

7.2 Overall Results

This section presents the results of using Ladybug to analyze the claims and operations indicated
in the previous section. For these results in general, the small scope indicates that three elements
of each given type were considered, the medium scope indicates four elements, whereas the large
scopes indicates five elements. The fourth column inTable 7.2 indicates the exceptions to this gen-
eral rule.        

For each claim or operation analyzed, Table 7.3 lists the number of full assignments in the
complete search tree, the number of full assignments checked by Ladybug to cover the complete
search space, the number of values in the full search tree, the number of values generated by Lady-

Specification Scope Given Type # Elements

faa small CON 2

HLA owners small FED 2

OBJECT 3

ATTR 2

OATTR 6

CLASS 1

HLA bridge small FED 4

FEDERATION 2

OBJECT 3

BRIDGE 2

MAP 2

ATR 1

OATTR 3

CLASS 1

med FED 7

FEDERATION 4

OBJECT 5

BRIDGE 3

MAP 4

ATR 1

OATTR 5

CLASS 1

Table 7.2: Number of elements by given type for selected claims and scope sizes.
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Specification
Claim/
Operation

Scope
# Full 

Assigns
 Assigns 
Checked

# Values
Values 

Generated
Time to 

first 
Time to 

cover 

alloc UniqueAddr small 786,432 18 1,053,192 25 0 0

med 4 108 39 5 108 48 0 0

large 3 1011 77 4 1011 88 0 0

coda RCreate small 9 1041 0 1 1042 8,788 — 1

RSDRefRen small 9 1040 0 1 1041 17,842 — 1

digicash SpendOnce small 1 1012 221,598 1 1012 288,323 0 4

med 3 1020 2 108 3 1020 2 108 10:52 2:22:12

large 3 1030 ?? 6 1030 ?? 1 ??

faa X1b_OK small* 2 107 560 2 107 1,327 0 0

finder Move small 4 1014 70 5 1014 215 0 0

med 7 1020 1,683 9 1020 2,964 0 0

large 2 1027 37,066 3 1027 52,452 0 0

TrashingWorks small 4 1014 30 5 1014 174 — 0

med 7 1020 658 9 1020 1,824 0 0

large 2 1027 13,645 3 1027 26,965 0 0.

HLA owners AttrDivNot small* 3 1050 0 3 1050 240,614 — 3

AttrAcqNot small* 3 1050 — 3 1050 — 2 —

CompOwners small* 3 10123 0 3 10123 252,330 — 3

HLA bridge ObjMapping small* 2 1018 20,595 2 1018 42,937 0.0 1.0

AcylicObjMaps small* 2 1018 20,389 2 1018 42,643 — 1.0

AcylicObjMaps med* 5 1040 2 109 5 1040 2 109 — 21:15:08

math connex small 1,024 372 1,024 372 — 0

med 131,072 25,130 131,072 25,130 — 0

large 7 107 5,538,962 7 107 5,538,962 — 29

comp small 1 108 281,264 1 108 284,467 — 4

med 3 1014 3 109 3 1014 3 109 — 8:02:19

large 4 1022 — 4 1022 — — —

closure small 262,144 91,300 262,656 91,486 — 1

med 4 109 8 108 4 109 8 108 — 4:27:03

large 1 1015 — 1 1015 — — —

shroder small 3 108 254,616 3 108 257,766 0 6

med 6 1014 5 109 6 1014 5 109 0 21:31:52

large 8 1022 — 8 1022 — 0 —

functions small 262,144 2,189 266,304 2,285 — 1

med 2 108 58,192 2 108 58,667 — 1

large 5 1011 1,843,429 5 1011 1,845,962 — 54

mobile IP loc_update_ok small 2 1037 605,901 3 1037 2 108 2 1:34:12

phone CallersCalledP small 4 1013 804 6 1013 974 0 0

med 2 1023 65,830 2 1023 68,648 0 1

large 2 1035 1 107 3 1035 1 107 0 2:19

styles FormattingP small 4 1018 57 6 1018 2,610 0 0

med 1 1028 1,160 1 1028 63,686 2 4

large 2 1038 24,837 2 1038 1,850,891 1:00 1:49

Table 7.3: Results of Ladybug checking the claims in the benchmark suite with all techniques enabled. 
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bug in covering the complete search space, the time required to find the first counterexample (or
execution for an operation) if any, and the time to cover the complete search space. For some
claims, where the time required to cover the entire search space exceeded 24 hours, no results are
given for the complete search space numbers. These claims are AttrAcqNotSoundOwns in hla, the
large scope run of SpendOnce in digicash, and the large scope runs of comp, closure, and shroder, all
in math.

Three questions can be answered by examining these results:
• How well does selective enumeration work and how much does each of the techniques con-

tribute?
• How well does selective enumeration scale?
• When does selective enumeration insufficiently reduce the search space and why?

The remainder of this section focuses on answering these questions.

An underlying question is how to measure and describe the effectiveness. Chapter 2 defines
the reduction in the search space in terms of full assignments. The equivalent sense of reduction in
terms of values is less elegant, but more indicative of the actual performance of the search. I use
this reduction (the total number of values in the search tree divided by the number of values gen-
erated) as the basic metric for evaluating the techniques. However, this number is only meaningful
in the context of the search; a reduction of a billion would be very good if the search tree contains
only a few billion nodes, but would be practically useless for a search tree containing 10100 nodes.
To account for the context and the exponential nature of the problem, I use the ratio of the loga-
rithm of the reduction to the logarithm of the total number of values in the complete search tree. A
ratio of 1.0 indicates that the search space is reduced to a single value, the limit on search effective-
ness. A ratio of 0.0 indicates that no reduction occurred.  

As an example, Ladybug must generate 8,788 values of the 1042 values in the complete search
tree for the RCreate claim in the Coda specification. Selective enumeration therefore reduces this
search by a factor of 1.1x1038 (1042 divided by 8,788). The log (base ten) of this reduction is 38.1.The
log of number of values is 42.0, yielding a ratio of 0.91 (38.1/42.0). If this ratio is relatively constant
across different scopes, the actual reduction is growing exponentially with the size of the problem.
The problem is NP-complete, so no polynomial solution is expected. A constant ratio indicates a
constant reduction in the exponent; for the case of RCreate, the exponent is approximately divided
by 11. This reduction does not remove the ultimate cliff beyond which analysis is intractable, but it
does shift the cliff to a larger scope. The divisor determines the size of the total search space that is
tractable. Depending on the user’s patience, enumerating about one hundred million values is the
limit of practical usage for Ladybug. For the ratio for the RCreate claim, this corresponds to a trac-
table total search tree containing about 1090 values (1090/11 = 108.2). 

Returning to the first question, selective enumeration clearly works well for almost every test
in the benchmark suite. Within seconds, Ladybug either returns a counterexample or validates the
claim for the initial scope for every test. For a few tests, especially the claims from the math speci-
fication, the larger scopes pushes Ladybug into minutes or even days. The third question in this
section focuses on those specifications where the analysis becomes intractable. 

The ratio described above provides a more concrete measure of effectiveness. Figure 7.1 shows
the reduction ratios for each benchmark test. The total length of each line represents the ratio for
Ladybug when checking the full state space. Most of the bars consist of two bars, one solid and
one filled with slashes. The solid bar is the reduction ratio for Ladybug with only the partial-
assignment techniques enabled. The slashed bar is the reduction ratio for Ladybug with only iso-
morph-elimination enabled, shifted to the right of the full reduction bar. Some of these slashed
bars are estimates, as the full run with only isomorph elimination is infeasible.2 If neither the iso-
morph elimination or the partial-assignment techniques reduces the search to feasible levels, a sin-
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gle unfilled bar represents the full ratio only. The number at the right of each bar is the reduction
ratio achieved by the combination of all techniques. 

 Excluding the math claims, which have no reduction from partial-assignment techniques,
Ladybug has a reduction ratio between 0.75 and 0.90 for most of the tests. This ratio means that
Ladybug usually reduces the exponent of the number of values generated by a factor between
four and ten. Reducing the exponent allows Ladybug to successfully analyze most searches of
state spaces of 1032 to 1080, including most of the benchmark suite.

Figure 7.1 shows that the partial-assignment reductions provide most of the reductions gained
in Ladybug. At one extreme, the claims from the math specification have few constraints, all of
which involve every variable, and offer no opportunities for the partial-assignment techniques. At
the other extreme, the faa specification distinguishes the two controllers considered, allowing no
isomorph elimination. Ladybug exploits both duplications to reduce all other tests. For most tests,
the reduction ratio for the partial-assignment techniques ranges from six to eight times larger than
the reduction ratio from isomorph elimination.

If the reduction gained from the partial-assignment techniques is orthogonal to the reduction
gained from isomorph elimination, the slashed bar and the solid bar would exactly meet. In most
cases, the slashed bar and the solid bar overlaps. This overlap represents the additional reduction
gained by the partial-assignment techniques or isomorph-elimination on the entire space of
assignments instead of considering only the reduced space of assignments produced by the other
approach. This overlap is significant in only a few of the tests, indicating that the two approaches
interact well. In a few cases, the full reduction bar has a gap between the solid and slashed bars.
This gap indicates that the isomorph-elimination reduction performs noticeably better for the val-
ues generated by the partial-assignment reductions than for those values removed by them.

Figure 7.1 also gives a first answer to the scaling question. For the tests with varying scopes,
the reduction ratio remains roughly constant as the scope grows. In many of these cases, the
reduction ratio actually grows slightly as the scope grows. The behavior of isomorph elimination
can be seen most easily in the math claims. For relation values, the number of values grows expo-
nentially with the square of the scope, whereas the reduction grows with the factorial of the scope.
The actual reduction depends on the number of given types used in the search, but factorial grows
more slowly than two to the square of the scope, so usage of relational values will generally grow
poorly with scope. Function values, on the other hand, grow exponentially with the size of the
scope. If multiple given types are available, the number of functions grows more slowly than the
factorial growth of the isomorph-elimination reduction, leading to an improved reduction with
the size of scope. 

The success of the partial-assignment techniques depends on the filter formulae available and
the variables being constrained. The reduction ratio provided by some filter formulae grows
quickly as the scope grows, whereas the ratio declines for other formulae. Likewise, more values
can be reduced for some variables, such as relation-valued variables, than other variables, such as
scalar-valued variables. These two factors determine the reduction ratio for bounded generation
and derived variables.

 Short circuiting introduces another complication. It does not prune values of the variable
being constrained, but instead prunes subtrees rooted at those values; thus short circuiting is more
effective for variables high in the search tree. This dependence on variable ordering may explain
why other tools based purely on backtracking scale poorly with scope.

2. I confirmed the accuracy of the estimates against the feasible searches. In every case, the estimate
was within .01 of the reduction ratio measured.
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Figure 7.1.  The reduction ratios for the benchmark suite. The solid bars represent the reduction
from partial assignment techniques, the slash bars represent the reduction from isomorph elimi-
nation and the empty boxes are the total reduction where no breakdown is feasible.
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Whereas the ratio is nearly constant across changing scopes for a given problem, the ratio gen-
erally rises with the size of the problem. Figure 7.2 lists the reduction ratios of the specifications
that are drawn from real-world problems, listed in order of the size of the total search space. The
upward trend in the ratio as the problem size grows is obvious in this figure. Two factors contrib-
ute to this positive relationship: more variables and more constraints. Although not necessary to
increase the search space size, more variables are typically a major factor in the increased search
space. Each additional variable gives additional chances for partial-assignment reductions. The
second factor may be more psychological than causal; people appear to add more constraints to
specifications with more variables. Each additional constraint adds additional opportunities for
partial-assignment reductions.

Ladybug cannot fully analyze every test in the suite in its entirety. The tests exceeding Lady-
bug’s abilities fall into two categories: the math claims and some claims from “real-world” specifi-
cations. As noted previously, the math claims allow no reduction from the partial-assignment
techniques, losing the most powerful techniques. The lack of constraints is an unrealistic part of
the math claims; “real-world” software specifications generally include strong constraints. 

Most of the “real-world” claims that are expensive or intractable to fully analyze return a
counterexample quickly. In these cases, the full search discovers an enormous number of counter-
examples. For the HLA AttrAcqNotSound claim, more than 95% of the values generated contribute
to a counterexample that is generated. These counterexamples are nearly isomorph free, so Lady-
bug must generate a huge number of these values.

The notable exception to the quick analyses is the HLA bridge claims with the medium scope.
The bridge claims exhibit a unique problem. Bounded generation cannot currently take advantage
of the composition or transitive closure operations; most of the constraints in the bridge claims
involve one or both of these operations. The other operations generally use subset or intersection,
both involving the identity function. The domain and range of the identity function is the entire
given type, so no bounded generation reductions can use these constraints either.  

An oddity worth noting occurs with the SpendOnce claim in digicash. Although Ladybug can
discover a counterexample to the claim for the large scope in one second, it takes almost eleven
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Figure 7.2.  Reduction ratios for the “real-world” specifications, sorted by size.
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minutes to find the corresponding counterexample for the medium scope. This anomaly is a result
of the inaccuracy of the variable ordering heuristic. For the first clause of the normalized formula,
Ladybug chooses a poor ordering for the medium scope, while choosing the same good ordering
for both the small and large scopes. This clause, which is unsatisfiable, is expensive to analyze
with the poor ordering.

Specification
Claim/
Operation

Scope
# Full 

Assigns
 Assigns 
Checked

# Values
Values 

Generated
Time to 

cover 

alloc UniqueAddr small 786,432 300 1,053,192 320 0

med 4 108 4,320 5 108 4,368 0

large 3 1011 72,030 4 1011 72,134 0

coda RCreate small 9 1041 0 1 1042 6,493,752 6:24

RSDRefRen small 7 1041 0 1 1042 1 107 13:33

digicash SpendOnce small 1 1012 1 109 1 1012 1 109 37:01

med 3 1020 — 3 1020 — —

large 3 1030 — 6 1030 — —

faa X1b_OK small* 2 107 560 2 107 1,327 0

finder Move small 4 1014 420 5 1014 1,149 0

med 7 1020 36,792 9 1020 60,541 1

large 2 1027 3,419,760 3 1027 4,704,813 1:04

TrashingWorks small 4 1014 180 5 1014 903 0.

med 7 1020 14,424 9 1020 35,869 0

large 2 1027 1,262,700 3 1027 2,375,053 34

HLA owners AttrDivNot med* 3 1050 — 3 1050 — —

AttrAcqNot med* 3 1050 — 3 1050 — —

CompOwners med* 3 10123 0 3 10123 5 108 1:11:29

HLA bridge ObjMapping small* 2 1018 4 107 2 1018 7 107 12:25

AcylicObjMaps small* 2 1018 7,478,859 2 1018 1 107 2:28

AcylicObjMaps med* 5 1040 — 5 1040 — —

mobile IP loc_update_ok small* 2 1037 3 108 3 1037 2 1010 24:23:26

phone CallersCalledP small 4 1013 27,648 6 1013 32,268 0

med 2 1023 4 107 2 1023 4 107 2:54

large 2 1035 — 3 1035 — —

styles FormattingP small 4 1018 1,368 6 1018 69,354 1

med 1 1028 266,268 1 1028 1 107 6:12

large 2 1038 — 2 1038 — —

Table 7.4: Results of Ladybug checking the claims in the benchmark suite with all partial 
assignment techniques enabled and isomorph elimination disabled. The number of cases and 
values generated is the number required to cover the entire space. The claims from the math 

specification offer no opportunities for partial assignment reduction and have been omitted from 
this table.
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7.3 Partial Assignment Results

This section considers the effectiveness of the partial-assignment techniques in more detail. The
techniques are considered both in unison and separately. Two questions underlie this section:    

• How effective is each technique in isolation?
• How much overlap exists between the values removed by the three techniques?

Table 7.4 shows the effectiveness of the combination of all partial-assignment techniques at
reducing the search space. The claims from the math specification have been omitted, as none of

Specification
Claim/
Operation

Scope
# Full 

Assigns
 Assigns 
Checked

# Values
Values 

Generated

alloc UniqueAddr small 786,432 9,216 1,053,192 10,107

med 4 108 1,250,000 5 108 1,270,580

large 3 1011 3 108 4 1011 3 108

coda RCreate small 9 1041 0 1 1042 3 109

RSDRefRen small 7 1041 0 1 1042 6 108

digicash SpendOnce small 1 1012 2 1010 1 1012 2 1010

med 3 1020 — 3 1020 —

large 3 1030 — 6 1030 —

faa X1b_OK small* 2 107 280 2 107 12,988

finder Move small 4 1014 2,322 5 1014 404,264

med 7 1020 746,496 9 1020 4 107

large 2 1027 3 108 3 1027 4 1010

TrashingWorks small 4 1014 0 5 1014 997,376

med 7 1020 5 107 9 1020 2 108

large 2 1027 — 3 1027 —

HLA owners AttrDivNot small* 3 1050 — 3 1050 —

AttrAcqNot small* 3 1050 — 3 1050 —

CompOwners small* 3 10123 0 3 10123 729

HLA bridge ObjMapping small* 2 1018 1 109 2 1018 2 109

AcylicObjMaps small* 2 1018 278,016 2 1018 1,492925

AcylicObjMaps med* 5 1040 — 5 1040 —

mobile IP loc_update_ok small* 2 1037 — 3 1037 —

phone CallersCalledP small 4 1013 4,018,176 6 1013 4,757,196

med 2 1023 — 2 1023 —

large 2 1035 — 3 1035 —

styles FormattingP small 4 1018 216,576 6 1018 1,794,815

med 1 1028 4 108 1 1028 3 109

large 2 1038 — 2 1038 —

Table 7.5: Results of Ladybug checking the claims in the benchmark suite with only short circuiting 
enabled. The number of cases and values generated is the number required to cover the entire 

space.
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those claims provide any opportunities for partial-assignment reduction.

The importance of isomorph elimination is immediately obvious when examining Table 7.4;
even with the math claims omitted, the complete analysis of many claims is now intractable. If the
search could not be completed within approximately 24 hours, the entry in the table is noted with
a —. With the notable exception of the math specification, the partial-assignment techniques
achieve a substantial reduction of their own, indicating that both approaches in combination are
needed to make the searches tractable.

Partial-assignment reductions are directly tied to the opportunities for reductions presented
by the atomic formulae. As shown in Figure 7.3, a clear correlation exists between the number of
atomic formulae available per clause and the log of the reduction offered by short circuiting.   

These atomic formulae represent the “ammunition” used by short circuiting, so a positive cor-
relation is to be expected. The logarithmic relationship, however, provides evidence as to why
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Figure 7.3.  The reduction gained from short circuiting as related to the number of atomic
formulae in the formula being solved.
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selective enumeration scales well to handle real specifications; the search time, while exponen-
tially related to the complexity of the number of variables, is inversely exponentially related to the
complexity of the specification. The relational search problem is NP-complete, so no approach can
be expected to provide a polynomial time solution for all formulae. Tricks like short circuiting,
however, can reduce the exponent to make solvers tractable for many problems.     

For derived variables, not all atomic formulae lead to increased reductions; only formulae that
constrain the ith variable to a single value support derived variables. Ladybug considers related
formulae for derived variables only if they equate the ith variable to a term involving only vari-
ables from Vari-1.      

Table 7.6 shows the number of variables that Ladybug derives for each claim in the bench-
mark suite. Most claims allow about half of the variables to be derived. The math claims are a
notable exception; they are sufficiently succinct to disallow any derived variables. On the other
hand, the CompleteOwners claim of the HLA owners specification allows nearly two thirds of its
variables to be derived. This abundance of derived variables is common of claims, such as this
one, that are built by composing a number of operations in sequence.

Specification Claim Vars / Clause
Derived / 

Clause

alloc UniqueAddrAlloc 5 2

coda RCreate 33 22

RSDRefRename 33 22

digicash SpendOnce 6.6 0.2

faa X1b_OK 10 4

finder Move 14 6

TrashingWorks 14 6

HLA owners AttrDivNot 27 13

AttrAcqNot 27 13

CompleteOwners 65 44

HLA bridge Object Mapping 16 6

AcyclicObjMaps 16 6

math connex 1 0

comp 3 0

closure 3 0

schroder 2 0

functions 3 0

mobile IP loc_update_ok 28 14

phone CallersCalledP 7 3

styles FormattingP 13 4

Table 7.6: Availability of derived variables by claim. 
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The reduction for the derived-variable technique is easily predicted: it is always the product of
the number of values possible for each variable that can be derived. Although the reductions are
significant in most cases, the analysis of many claims remains intractable, including most from the
realistically sized specifications. Derived variable generation helps, but by itself it is insufficient to
allow the analysis of interesting claims. Table 7.7 shows the computed results of using only
derived variable reduction in performing the searches entailed by the benchmark suite. Most of
these searches are infeasible to perform.

 Table 7.8 gives the results of using only bounded generation to reduce the size of the search
for the benchmark suite. Comparing Table 7.8 to Table 7.5, fewer of the bounded-generation

Specification
Claim/
Operation

Scope
# Full 

Assigns
 Assigns 
Checked

# Values
Values 

Generated

alloc UniqueAddr small 786,432 1,536 1,053,192 2,056

med 4 108 40,000 5 108 50,016

large 3 1011 1,244,160 4 1011 1,493,024

coda RCreate small 9 1041 1 1015 1 1042 2 1015

RSDRefRen small 7 1041 6 1014 1 1042 9 1014

digicash SpendOnce small 1 1012 2 1011 1 1012 2 1011

med 3 1020 3 1018 3 1020 3 1018

large 3 1030 1 1027 6 1030 1 1027

faa X1b_OK small* 2 107 4,096 2 107 5,460

finder Move small 4 1014 2 107 5 1014 3 107

med 7 1020 3 1010 9 1020 3 1010

large 2 1027 4 1013 3 1027 5 1013

TrashingWorks small 4 1014 2 107 5 1014 3 107

med 7 1020 3 1010 9 1020 3 1010

large 2 1027 4 1013 3 1027 5 1013

HLA owners AttrDivNot small* 3 1050 2 1022 3 1050 2 1022

AttrAcqNot small* 3 1050 2 1022 3 1050 2 1022

CompOwners small* 3 10123 5 1038 3 10123 5 1038

HLA bridge ObjMapping small* 2 1018 2 1011 2 1018 2 1011

AcylicObjMaps small* 2 1018 2 1011 2 1018 2 1011

AcylicObjMaps med* 5 1040 1 1031 5 1040 1 1031

mobile IP loc_update_ok small* 2 1037 1 1017 3 1037 2 1017

phone CallersCalledP small 4 1013 294,912 6 1013 295,500

med 2 1023 7 108 2 1023 7 108

large 2 1035 1 1012 3 1035 1 1012

styles FormattingP small 4 1018 9 1010 6 1018 9 1010

med 1 1028 2 1016 1 1028 2 1016

large 2 1038 2 1022 2 1038 2 1022

Table 7.7: The computed results of Ladybug checking the claims in the benchmark suite with only 
derived variables enabled. The number of cases and values generated is the number required to 

cover the entire space.
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searches are feasible than are feasible using only short circuiting. Short circuiting has an advantage
in that in can take advantage of more atomic formulae and is thus successfully applicable to a
larger set of searches.

 On the other hand, bounded generation by itself requires fewer assignments to be generated
than short circuiting for most of the tractable searches. Because it can exploit the same atomic for-
mulae, for any ordering of the variables, short circuiting by itself will yield no more assignments
at any level (below N) than bounded generation, and generally fewer. But short circuiting will gen-
erate at least as many values and generally more.             

Specification
Claim/
Operation

Scope
# Full 

Assigns
 Assigns 
Checked

# Values
Values 

Generated

alloc UniqueAddr small 786,432 972 1,053,192 2,006

med 4 108 26,620 5 108 53,445

large 3 1011 856,830 4 1011 1,714,340

coda RCreate small 9 1041 — 1 1042 —

RSDRefRen small 7 1041 — 1 1042 —

digicash SpendOnce small 1 1012 — 1 1012 —

med 3 1020 — 3 1020 —

large 3 1030 — 6 1030 —

faa X1b_OK small* 2 107 1,920 2 107 21,682

finder Move small 4 1014 37,248 5 1014 71,984

med 7 1020 7 107 9 1020 1 108

large 2 1027 — 3 1027 —

TrashingWorks small 4 1014 20,160 5 1014 45,998

med 7 1020 3 107 9 1020 3 107

large 2 1027 — 3 1027 —

HLA owners AttrDivNot small* 3 1050 — 3 1050 —

AttrAcqNot small* 3 1050 — 3 1050 —

CompOwners small* 3 10123 — 3 10123 —

HLA bridge ObjMapping small* 2 1018 — 2 1018 —

AcylicObjMaps small* 2 1018 — 2 1018 —

AcylicObjMaps med* 5 1040 — 5 1040 —

mobile IP loc_update_ok small* 2 1037 — 3 1037 —

phone CallersCalledP small 4 1013 — 6 1013 —

med 2 1023 — 2 1023 —

large 2 1035 — 3 1035 —

styles FormattingP small 4 1018 1 108 6 1018 2 108

med 1 1028 — 1 1028 —

large 2 1038 — 2 1038 —

Table 7.8: Results of Ladybug checking the claims in the benchmark suite with only bounded 
generation enabled. The number of cases and values generated is the number required to cover the 

entire space.
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All three techniques largely remove the same assignments from the search space. Short circuit-
ing removes every full assignment removed by the other two techniques and generally removes
full assignments not removed by the others. The other techniques, on the other hand, remove
many partial assignments left by short circuiting.

Table 7.9 lists the reduction ratios for the claims in the benchmarks that were tractable (or pre-
dictable) for at least two of the partial-assignment techniques in isolation. With two exceptions,
the combination of the techniques outperformed any technique individually, significantly in
almost every case. However, the combination is far less effective than would be expected if the
techniques were independent. This observation indicates the expected interaction: all three tech-
niques remove many of the same cases.

The generally significant improvement from the combination is also to be expected. Derived
variables and bounded generation prevent the generation of values that the others will require.
Short circuiting can take advantage of atomic formulae that the other two cannot. A second feature
of the techniques is also notable in this table; each technique in isolation is the “best” technique of
at least two tests and is the “worst” technique on at least one test. This contrast allows the combi-
nation to perform acceptably over a larger range of formulae.

Specification Claim Scope

Derived 

Variable 

Reduction

Short 

Circuiting 

Reduction

Bounded 

Gen 

Reduction

Partial 

Assgnmnt 

Reduction

alloc UniqueAddr small 0.45 0.36 0.45 0.58

med 0.46 0.30 0.46 0.58

large 0.47 0.27 0.47 0.58

coda RCreate small 0.64 0.77 — 0.84

RSDRefRen small 0.64 0.79 — 0.83

digicash SpendOnce small 0.06 0.14 — 0.25

faa X1b_OK small 0.49 0.44 0.41 0.57

finder Move small 0.49 0.62 0.67 0.79

med 0.5 0.64 0.62 0.77

TrashingWorks small 0.49 0.59 0.68 0.80

med 0.5 0.60 0.64 0.78

HLA owners CompOwners small 0.69 0.98 — 0.93

HLA bridge ObjMapping small 0.38 0.49 — 0.57

AcyclicObjMaps small 0.38 0.66 — 0.62

phone CallersCalledP small 0.60 0.48 — 0.67

styles FormattingP small 0.42 0.67 0.56 0.74

med 0.61 0.66 — 0.75

Table 7.9: The reduction ratios for selected searches from the benchmark suite with the partial-
assignment techniques enabled individually or in combination.
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The oddity of having short circuiting alone outperform the combination for two tests (Comp-
Owners and AcyclicObjMaps) is again the result of inaccuracies in the ordering heuristic. 

7.4 Isomorph Elimination

The previous sections make it clear that isomorph elimination is an important reduction for Lady-
bug. The traditional problem with isomorph elimination is its cost; most search implementations
have a high cost for isomorph elimination that grows quickly with the size of the scope. This sec-
tion focuses on the cost of the isomorph-eliminating generators. The first comparison is between
the time per value generated for isomorph-eliminating generators and for exhaustive generators.
The second comparison looks at the change in the cost of isomorph-eliminating generators as the
scope grows.   

In Ladybug, the cost of the generators cannot easily be separated from the cost for the tests, as
each value is both generated and tested. However, the test costs are independent of the generator

Specification
Claim/
Operation

Scope
 Values W 
Isomorph

 Time W 
Isomorph

µs per 
Value

 Vals W/O 
Isomorph

 Time W/O 
Isomorph

µs per 
Value

coda RCreate small 8,788 1 113 6,493,752 6:24 59

RSDRefRen small 17,842 1 56 1 107 13:33 81

digicash SpendOnce small 288,323 4 14 1 109 36:28 2

med 3 108 1:47:14 21 — — —

HLA owners AttrDivNot med* 240,614 3 12 — — —

CompOwners med* 252,330 3 12 5 108 1:11:29 9

HLA bridge ObjMapping small* 42,937 1 23 7 107 12:25 11

AcyclicObjMaps small* 42,643 1 23 1 107 2:28 15

med* 2 109 21:15:08 38 — — —

math connex large 5,538,962 29 5 7 107 3:19 3

comp small 284,467 4 14 — — —

med 3 109 8:02:19 10 — — —

closure small 91,486 1 11 — — —

med 8 108 4:27:03 20 — — —

shroder small 257,766 6 23 — — —

med 5 109 21:31:52 16 — — —

functions small 2,285 1 438 — — —

med 58,667 1 17 — — —

large 1,845,962 54 29 — — —

mobile IP loc_update_ok small* 2 108 1:34:12 28 3 1011 24:23:26 0.3

phone CallersCalledP med 68,648 1 15 4 107 2:54 4

large 1 107 2:19 14 — — —

styles FormattingP med 63,686 4 63 1 107 6:12 37

large 1,850,891 1:49 59 — — —

Table 7.10: Results of Ladybug checking selected claims in the benchmark suite with only isomorph 
elimination enabled. The number of cases and values generated is the number required to cover the 

entire space.



170 CHAPTER 7.  EMPIRICAL DATA

used. Limited investigations also indicate that the tests are slightly less than half of the total cost of
the search.

Table 7.10 compares the search times using isomorph-eliminating and exhaustive generators
for all tractable searches that required at least one second to complete. A few of the numbers for
the searches requiring only a second appear to be skewed; I expect a small, more constant factor
becomes dominant in some cases.

Considering the first question, the cost of the isomorph-eliminating generators appears to be
relatively minor, roughly doubling the cost per value for the typical test. This increase in the cost is
more than compensated for by the decrease in the number of values being generated. 

The second question is the growth in the cost of generation as the scope grows. Chapter 6 lim-
its the growth to no worse than cubic in the scope, but cubic growth would present problems for
even moderate scopes. Although the cost of generation frequently does grow with the scope, the
growth is moderate. In several cases, the cost of generation per value actually drops as the scope
grows. For at least the moderate-sized scopes considered in Ladybug, the algorithms imple-
mented for Ladybug’s isomorph-eliminating generators are well-behaved and do not become
exceedingly expensive.

7.5 Conclusions

The empirical data presented in this chapter supports two broad conclusions about selective enu-
meration, as implemented in Ladybug. Selective enumeration performs well enough across a vari-
ety of claims and specifications to make those claims checkable. Although still exponential in the
size of the scope, selective enumeration scales well in scope and size of specification.

However, several caveats can also be gained from the data. Ladybug requires a rich specifica-
tion with a broad set of constraints for large searches to be reduced to a tractable size. The math
claims are the most notable example of a specification that lacks these constraints.

Several anomalies occured due to the approximations used by the variable ordering heuristic
causes. This opens the questions as to whether some of the intractable searches may have been
possible with a better variable ordering. Revisiting the variable ordering heuristic is probably war-
ranted.

Finally, some operators disallow bounded generation, significantly harming the potential for
reducing the size of the search. This restriction was most notable in hla bridge claims, where the
primary tests involved testing for cycles in composed relations. Finding ways to improve the
reductions for these operators is also a worthy target for future consideration.
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Chapter 8

Analyzing HLA

This chapter develops a case study that shows how Ladybug discovered flaws in a significant
“real-world” specification. The High Level Architecture (HLA) specification describes a set of pro-
tocols for a distributed simulation environment. Ladybug, with its strengths in analyzing struc-
tural properties, is the appropriate tool for analyzing some of the properties of the HLA, notably
properties about the data structures maintained in the environment. Other tools, such as model
checkers, are more appropriate for other properties, such as potential dead-locks or critical races.

Regardless of the tool chosen, formal analysis of a specification requires three basic steps:
choosing the facets of the system to be analyzed, modeling the appropriate portions of the system,
and analyzing that model with the chosen tool. This case study analyzes two portions of the com-
plete HLA specification: the ownership management services and the topologies of federations
allowed with bridges. Several people, including myself, worked on modeling and analyzing the
ownership management services; the work is originally reported in [DM+99].

The first section of this chapter provides background information on the HLA specification.
Section 8.2 describes the formal model of the HLA, expressed in the specification language Z. Sec-
tion 8.3 describes the analysis of this model, including both the translation to NP and the usage of
Ladybug. Section 8.4 discusses what was learned in this case study.

8.1 Overview of HLA

Beginning in 1996, the Defense Modeling and Simulation Office (DMSO) of the United States
Department of Defense developed a component integration standard for distributed simulation
called the “High Level Architecture” (HLA). Informally, the HLA prescribes a kind of “simulation
bus” into which simulations can be “plugged” to produce a joint (distributed) simulation. A goal
of the standard was to allow independent vendors to develop simulations that can be combined
for use in a unified simulation with minimal complications.

In the HLA design, members of a federation — the HLA term for a distributed simulation —
coordinate their models of parts of the world by sharing objects of interest and the attributes that
define them. Each member of the federation is called a federate. A federate is responsible for calcu-
lating some part of the larger simulation and broadcasting updates using the facilities of the runt-
ime infrastructure, termed the RTI.     

The “Interface Specification” document or IFSpec [DoD97] defines routines that support com-
munication both from the federates (e.g., to indicate new values) and to the federates (e.g., to
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5.1 Request Attribute Ownership Divestiture
    Federate Initiated

Notifies the RTI that the federate no longer wants to own the specified attributes of the specified object. The federate supplies 
an object ID and set of attribute designators.

Options:

    1. The federate can specify which federate(s) can take ownership of the released attributes, otherwise any federate may 
own them.

   2. The federate can indicate if the requested ownership divestiture is to be negotiated or unconditional. If the 
divestiture is negotiated, ownership will be transferred only if some federate(s) accepts. An unconditional transfer 
will relieve the divesting federate of the ownership, causing the attribute(s) to go into (possibly temporarily) the 
unowned state, without regard to the existence of an accepting federate.

The federate must continue its publication responsibility for the specified attributes until it receives permission to stop via the 
Attribute Ownership Divestiture Notification service. The federate may receive one or more Attribute Ownership Divestiture 
Notification invocations for each invocation of this service.

Supplied Parameters
An object ID designator

A set of attribute designators

Ownership divestiture condition (negotiated or unconditional)

A user-supplied tag

Optional set of federates

Returned Parameters
None

Pre-conditions
The federation execution exists

The federate is joined to that federation execution

An object instance with the specified ID exists

The federate owns the specified attributes

Post-conditions
No change in attribute ownership

The federate has informed the RTI of its request to divest ownership of the specified attributes

Exceptions
Object not known

Attributes not defined in the FED

Federate does not own attribute

Invalid divestiture condition

Invalid candidate federate

Federate is not a federation execution member

Save in progress

Restore in progress

RTI internal error

Related Services
Request Attribute Ownership Assumption

Attribute Ownership Divestiture Notification

Attribute Ownership Acquistion Notification

Figure 8.1. The Request Attribute Ownership Divestiture service of the RTI, as specified in the IFSpec
[DoD97] (version 1.2).
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request updates for a particular attribute). The IFSpec defines routines, or “services”, by a name,
the initiator (either a federate or the RTI), a set of parameters, a possible return value, pre- and
post-conditions, and a list of exceptions that may occur as a result of executing the service.

Figure 8.1 (taken from [DoD97]) shows an example of a typical RTI service. A federate initiates
this service when it wants to relinquish ownership of some attributes of a particular object being
simulated by the federate. The federate relinquishes ownership, however, only when informed by
the RTI using the Attribute Divestiture Notification service.

The HLA is a complex integration framework. The current IFSpec includes over 125 different
services, and the full document is over 400 pages of description. While the part of the HLA design
that deals with attribute broadcast is relatively straightforward, the overall framework is compli-
cated significantly by the need to deal with issues such as starting, stopping, and pausing; allow-
ing one federate to transfer object ownership to another; and distributed clock management and
time-ordered message sequencing.

To make the integration framework manageable, the IFSpec is divided into six chapters: feder-
ation management, declaration management, object management, ownership management, time
management, and data distribution management. Federates use the federation management ser-
vices to initiate a federation execution, to join or leave an execution in progress, to pause and
resume, and to save execution state. Declaration management services communicate what kinds
of object attributes are available and of interest, whereas object management services communi-
cate actual object values. Ownership management services allow responsibility for calculating the
value of an attribute to be transferred from one federate to another. Time management services
coordinate the logical time advancements of federates and ensure that messages are delivered in
time-stamp order. Data distribution management services filter attribute updates for each federate
based on defined criteria, reducing message traffic and processing requirements.

8.1.1 The HLA Model of Attribute Ownership

Much of this case study focuses on the ownership management services, which control the trans-
fer of ownership of attributes. The HLA adopts an object view of a distributed simulation; the sim-
ulation universe consists of a collection of objects, each of which has a set of attributes. The job of
the overall simulation is to calculate and update values of these attributes over time. Different fed-
erates can calculate values of different attributes of the same underlying object.

Every object in an HLA simulation is an instance of some object class.1 These classes define the
attributes for their instances; the IFSpec defines an attribute to be “a distinct, identifiable portion
of the object state”. Version 1.2 of the IFSpec is at times inconsistent in its usage of the term
attribute, sometimes meaning a value associated with a single object and at other times meaning
the description of the state of all objects of a particular class. I use the phrase object attribute to
describe the former case and class attribute to describe the latter case.2

The IFSpec defines the object classes to support inheritance, which introduces some additional
complexity. None of the properties I model depend in any way upon this inheritance, so I drop
consideration of inheritance. The choice of which portions of the model to consider and which to
ignore is an important aspect of modeling a system for analysis. 

The HLA propagates object attribute updates using a publish and subscribe system, although

1. The IFSpec discusses two kinds of classes: object classes and interaction classes. Interaction
classes are irrelevant to the work presented here, so I use the word class to refer to object classes.

2. Partially in response to our concerns about this distinction, later versions of the IFSpec consis-
tently distinguish object attributes from class attributes. They chose, however, to use the term
instance attribute rather than object attribute.
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the IFSpec uses the standard terminology in a somewhat non-standard way. Figure 8.2 presents a
brief glossary of the terminology (as used in the IFSpec).

As an overview, an object attribute of a given object is updated only if some federate
• publishes the corresponding class attribute, 
• owns the object attribute for that object, and
• updates the value

Another federates “sees” the updated value for the object attribute only if it subscribes to the corre-
sponding class attribute. The receipt of this new value is known as a reflection.

A federate may own an object attribute only if it publishes the corresponding class attribute
and no other federate owns that object attribute. A federate begins the acquisition of ownership of
an object attribute by requesting ownership from the RTI using the Request Attribute Ownership Acqui-

sition service. The RTI will respond, if possible, by granting ownership using the Attribute Ownership

Acquisition Notification service.

A federate can similarly disown an object attribute by initiating the Request Attribute Ownership

Divestiture service and waiting for the corresponding Attribute Ownership Divestiture Notification service
invocation from the RTI. The divestiture request can either be unconditional, leading to a possibly
unowned object attribute (which will therefore not be updated until another federate claims own-
ership), or it can be negotiated, with the federate maintaining ownership until the RTI can locate
another federate willing to own the object attribute.

The RTI searches for possible owners of an object attribute that is being divested by invoking
the Request Attribute Ownership Assumption service on federates that are currently publishing the corre-
sponding class attributes. An interested federate may then be granted ownership of the object
attribute by the RTI.

8.1.2 The HLA Bridge Concept  

After the basic HLA system had begun to stabilize, members of the HLA community advanced
the concept of bridging multiple federations as a way to improve the distribution opportunities
[SB+98]. Two or more federations can be joined by a special entity, called a bridge federate. A bridge
federate consists of three kinds of components: two or more surrogate federates, a transformation
manager, and a federation object management mapping/transformation specification (FOMAT).
Surrogate federates join each federation being linked, appearing as normal federates to the other

Updates A federate updates an object attribute when it sends out a new value for the attribute. An 
update is an event, not a state.

Reflects A federate reflects an object attribute when it receives a new value for the attribute. A 
reflection is also an event, not a state.

Owns A federate owns an object attribute if it has the privilege to update values for that 
attribute. An object attribute should have no more than one owner at a time. Ownership is a state.

Publishes A federate publishes a class attribute if it could provide updates for that kind of attribute, 
whether or not it currently has the privilege to do so for any particular object. Publishing is a state, 
not a point event. Multiple federates may publish the same class attribute at the same time.

Subscribes A federate subscribes to a class attribute if it wants to receive updates to that kind of 
attribute. Subscribing is a state.

Figure 8.2. Brief glossary of IFSpec terms
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2.4.2 Attribute Ownership Acquisition Across the Bridge Federate

Federate A1 in Federation FEDEX A requests an Attribute Ownership Acquisition, which will be
transmitted to each federation linked to the Bridge Federate.

Fed FEDEX A Sur A Trans Mgr Sur B FEDEX B Fed

Attr. Owner.
Acquisition (A0)

Req. Attr. Owner.
Release (A0)

Req. Attr. Owner.
Release MSG (A0) Attr. Owner.

Ownership
MSG (B0) Attr. Owner.

Acquisition 
(B0) Req. Attr. Owner.

Release (B0)

Attr. Owner.
Release
Response (B0)

Attr. Owner.
Acquisition
Notif. (B0)Attr. Owner. Acq.

Notification
MSG (A0)

Attr. Owner.
Release Resp.
MSG (A0)Attr. Owner.

Release Response 
(A0)Attr. Owner.

Acquisition
Notif.  (A0)

1. Federate A1 issues an Attribute Ownership Acquisition for object A0 attribute A0.

2. SUR A receives a Request Attribute Ownership Release from FEDEX A for the object A0
attribute A0.

3. SUR A issues a Request Attribute Ownership Release message to the Transformation 
Manager.

4. The Transformation Manager issues an Attribute Ownership Acquisition  message to SUR
B for object B0 attribute B0 corresponding to the object A0 attribute A0 according to the
FOMAT.

5. SUR B issues an Attribute Ownership Acquisition for object B0 attribute B0.

6. Federate B1 receives a Request Attribute Ownership Release for object B0 attribute B0.

7. Federate B1 issues an Attribute Ownership Release Response for object B0 attribute B0.

8. SUR B receives an Attribute Ownership Acquisition Notification indicating the object
attributes that has been released.

(remaining steps elided)

Figure 8.3. The description of the attribute ownership aquisition protocol across a bridge, as
given by Shen et.al. in [SB+98].
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participants in the federation. The FOMAT contains the mappings of objects, classes, and
attributes between the different federations. The object, attribute, and class identities are inconsis-
tent across federations; the transformation manager is responsible for mapping these identities as
it transforms services forwarded by one surrogate into the appropriate outgoing messages for the
other surrogates.

The goal of the bridge concept is to allow multiple federations (sometimes called federation
executions or FEDEX’s) to interact without adding any new services to the HLA framework.
Unlike the IFSpec, the bridge documentation does not define services. Instead, it provides mes-
sage sequence charts [ITU93] for possible executions of many interesting protocols. Figure 8.3
shows the message sequence chart for the attribute ownership acquisition protocol across a bridge
along with the beginning of the accompanying text. The remaining text, which is not included in
Figure 8.3, describes the last few messages at a similar level of detail.

In every protocol, the processing is basically the same. The RTI believes that the surrogate that
represents the true target federate is actually the target. The surrogate passes the service request to
the appropriate surrogate, after being transformed by the transformation manager according to
the mappings in the FOMAT. The second surrogate then behaves as the original requestor in the
other federation, requesting the desired service from the RTI, which in turn makes the appropriate
request to the eventual target. Nothing prevents this target federate from itself being a surrogate
for a federate in yet another federation.

8.1.3 An Overview of the Analysis

Identifying the questions of the system to be studied is the first issue. For the ownership manage-
ment services, several questions are worth considering: 
• Can more than one federate gain ownership of a single object attribute at the same time?
• Can a federate gain ownership of an object attribute without publishing the corresponding 

class attribute?
• Does the negotiated divestiture protocol guarantee that all object attributes remain owned?

Several more questions relate to the nature of bridges:
• Can an object appear more than once in a single federation?
• Can cycles arise in the mapping of objects?

Next, I describe the requirements of the ownership management section of the HLA specifica-
tion using Z [Spi92]. I model only those portions of the ownership management that relate to the
questions above. I similarly describe an extended model of the HLA that includes bridges, also
using Z.

Special care must be taken when formalizing a specification for analysis. The simplest transla-
tion may prevent the discovery of some interesting flaws. To be checkable, the specification must
clearly delineate those properties that are guaranteed to be true from those properties that are
desired to be true.

Consider the ownership relationship from HLA as an example. We can model this relationship
in Z as a relation mapping federates to object attributes, with each federate-attribute pair describ-
ing the ownership of a single object attribute by a federate. However, only a single federate is
allowed to own a given object attribute at a time. We can encode this constraint in the Z descrip-
tion by making the relation injective. However, placing this encoding on the basic description of
the system prevents Ladybug from discovering possible corruptions of the system involving mul-
tiple simultaneous owners. Instead, we encode this constraint as a separate property, allowing it to
be checked. (See the description of NoTwoOwners in the next section for more details.)

Checking that the Attribute Ownership Divestiture Notification service maintains this property
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requires checking the claim

NoTwoOwners  AttrOwnDivestNotify  NoTwoOwners

This formula says that if NoTwoOwners holds initially and AttrOwnDivestNotify is executed, then NoT-
woOwners will still hold afterwards. If NoTwoOwners is not invariant across AttrOwnDivestNotify,
Ladybug will provide concrete counterexamples demonstrating the violation of NoTwoOwners.

I then translate the Z notation to NP [JD96a], the input language used by Ladybug. NP is
essentially a first-order subset of Z with the many special characters used in Z remapped to ASCII
equivalents. In some instances, I must replace a Z construct that is not directly supported by NP
with a less elegant or more complicated construct that is supported. I also encode the questions
about the specification as claims in NP.

The final step before running Ladybug is to choose a scope. As described in Section 8.3.3, the
formal model makes some requirements about the scope. For example, the number of object
attributes must be exactly the number of object times the number of class attributes. I choose the
scope that requires the fewest number of objects that seems likely to contain an error.

Running Ladybug is the final, and simplest, step. Section 8.3.3  describes the behavior of Lady-
bug on the two portions of this case study.

8.2 The Formal Model

This section describes a formal model of HLA, based on version 1.2 of the IFSpec. To reduce the
burden on the reader, this section details only a representative sampling of properties and opera-
tions. The remaining properties and operations are similar to those described here. Appendix B
gives the complete Z model developed.  

I present the model in two distinct phases. The first phase models the ownership management
services and consists of four major pieces:
• classes, objects, and attributes, which are global to all of HLA
• the state required (explicitly or implicitly) by the ownership management specification
• properties about the state
• operations on the state

The second phase extends the first two pieces of this model to consider multiple federations
and bridges. Only minimal changes are required to the properties and operations. This phase also
describes two additional properties.

8.2.1 Classes, Objects, and Attributes

Figure 8.4 gives the Z model of HLA classes and class attributes that will be used as the basis for
all further descriptions. The first line introduces two basic kinds of entities: classes and class
attributes. The axiomatic definition describes two functions and a constraint between them that

CLASS, CLASSATTR]

AttributesToClass : CLASSATTR  CLASS
privToDeleteObject : CLASS  CLASSATTR

privToDeleteObject   AttributesToClass

Figure 8.4. Z model of classes and class attributes
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must always be maintained. The AttributesToClass function maps every class attribute to a single
class.

Within the HLA, the authority to delete an object is obtained by becoming the owner of the
special attribute, called the privilegeToDeleteObject attribute, for that object. Although privilegeTo-

DeleteObject is a fully defined class attribute, it is expected that federates will rarely, if ever, associate
a value with it. This special attribute, which must be defined for every class, is modeled by the priv-

ToDeleteObject function in the Z model. The constraint requires that the privilege to delete attribute
that is specially denoted for a class must be a class attribute for that class.

Figure 8.5 gives the initial description of objects in HLA. The schema ObjectCollection introduces
two variables describing HLA objects: Objects, the set of objects currently recognized by the RTI,
and ObjectsToClass, the mapping that identifies the class associated with each object. The set Object-

Attrs contains all the object attributes related to the currently known objects, as required by the first
state invariant. The two projection functions, ObjectAttrToObject and ObjectAttrToClassAttr, relate object
attributes back to the corresponding objects and class attributes. As indicated by its double-
headed arrow, ObjectAttrToObject is a function that maps onto its range: that is, every object has at
least one object attribute, the one associated with the privToDeleteObject class attribute.  

The final two state invariants define the required correspondence between object attributes,
objects, and class attributes. The first of these constraints specifies that for any object and any class
attribute defined by that object’s class, a corresponding object attribute relates the object and the
class attribute. The final constraint specifies that no two object attributes relate the same object and
class attribute.

There is an alternative formulation of the object attribute construct. As shown in Figure 8.6,
each object attribute could be viewed as an ordered pair, with the complete collection of object
attributes constructed directly from the existing variables. However, NP does not support denot-
ing a particular object attribute in this formulation, so I chose to use the otherwise more cumber-
some representation shown in Figure 8.5.   

OBJECT, OBJECTATTR]

ObjectCollection
Objects :  OBJECT
ObjectsToClass : OBJECT  CLASS
ObjectAttrs :  OBJECTATTR
ObjectAttrToObject: OBJECTATTR  OBJECT
ObjectAttrToClassAttr : OBJECTATTR  CLASSATTR

ObjectAttrs = dom (ObjectAttrToObject  Objects)
ObjectToClass AttributesToClass  = ObjectAttrToObject   ObjectAttrToClassAttr
( ObjectAttrToObject  ObjectAttrToObject )  

( ObjectAttrToClassAttr  ObjectAttrToClassAttr ) 
 id OBJECTATTR

Figure 8.5. Z model of objects and object attributes

ObjectAttrs :  (OBJECT  CLASSATTR)

ObjectAttrs = Objects  ObjectToClass  AttributesToClass

Figure 8.6. Alternative model of object attributes
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8.2.2 Required State

The simulation state, as shown in Figure 8.7, describes the state of the simulation that is explicitly
described in the IFSpec. I chose to separate the explicit state from the implicit state (represented by
the internal state given in Figure 8.8) for three reasons:  
• Ease of validation. Because the simulation state is explicitly described in the IFSpec, it is easily 

checked against the informal specification (the IFSpec). The implicit state, on the other hand, 
requires significantly more effort to check against the original specification. By culling it out 
separately, the original specification writers are likely to pay closer attention to the implicit 
state.

• Isolation for analysis. Some claims require only the explicit state. By separating the implicit 
state, Ladybug can check claims by examining fewer cases.

• Implementation freedom. The simulation state must be faithfully implemented in any actual 
code. Although the behavior of the implicit state is required in some form, the implementors 
have more freedom to choose an alternative structuring of this information in the final design. 

The SimulationState schema introduces three new variables, but no new constraints. Federates is the
set of federates currently joined in the simulation. Publishing and Owns describe the attributes pub-
lished and owned by each federate, as described in the IFSpec. A full model would also introduce
a variable describing the subscribe relations, but subscribing is irrelevant to the properties being
checked and has been omitted.

Figure 8.8 lists the schema OwnershipInternalState, which models the implicitly described state.
This schema includes two variables that indicate each federate’s willingness to accept or divest
ownership of a specific object attribute. These variables were introduced based on statements in
the IFSpec such as 

The federate has informed the RTI of its intent to divest ownership of the specified 
attributes.

that appears in the post-condition of the description of the Request Attribute Ownership Divestiture ser-
vice (see Figure 8.1). This state also records the set of federates that may gain ownership of an
object attribute as indicated by the Request Attribute Ownership Divestiture service.  

For convenience, I combine the explicit state and the implicit state into a single schema, Execution-

State.  

Figure 8.7. Model of (explicit) simulation state.

FEDERATE]

SimulationState
ObjectCollection
Federates :  FEDERATE
Publishing: FEDERATE  CLASSATTR
Owns : FEDERATE  OBJECTATTR

OwnershipInternalState
WillingToDivest: FEDERATE  OBJECTATTR
WillingToAccept : FEDERATE  OBJECTATTR
TargetOwners : FEDERATE  OBJECTATTR

Figure 8.8. Model of (implicit) internal state.
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8.2.3 Two Properties: NoTwoOwners and CompleteOwners

In the full model, I specify eight properties about the basic HLA system. In this section, I describe
the two most significant of these properties in detail, NoTwoOwners and CompleteOwners. The remain-
ing properties follow the same structure as the two presented here and can be seen in Appendix B.

I model all the properties as constraints on the state, including either the explicit state or the
implicit state, or both. By describing the properties separately from the base description, I can pose
questions about whether the system does or does not imply a specified property. Ladybug can also
check whether operations (or sequences of operations) maintain these properties.  

The schema NoTwoOwners, given in Figure 8.10, is based on the IFSpec statement 

The privilege to update a value for an attribute is uniquely held by a single federate at any 
given time during a federation execution. 

This property depends only on the explicit state that is described by the schema SimulationState. The
condition on this property requires the inverse of Owns to be a function from OBJECTATTR to FEDER-

ATE, implying that Owns itself is injective. This, in turn, implies that every object attribute is owned
by no more than one federate. The designers of the HLA view this property as an invariant. 

The second property detailed here, CompleteOwners, requires that every object attribute be
owned by some federate. Figure 8.11 lists the model of CompleteOwners. Unlike most of the proper-
ties modeled, CompleteOwners is not required by the IFSpec and is not an invariant, as some services
(including unconditional divestitures, unpublishing class attributes, and resigning from the feder-
ation) may leave object attributes unowned. However, this property is still worth considering as it
should be invariant across some complete protocols, such as negotiated divestiture and acquisi-
tion. This property is checked by verifying that if every attribute is owned when a protocol begins
(and there are no other concurrent services), then every attribute is owned when the protocol fin-
ishes.  

ExecutionState
SimulationState
OwnershipInternalState

Figure 8.9. Model of complete required state.

NoTwoOwners
SimulationState

Owns   OBJECTATTR  FEDERATE

Figure 8.10. Z model of unique ownership property.

CompleteOwners
SimulationState

ran Owns  ObjectAttrs

Figure 8.11. Z model of universal ownership property.
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8.2.4 Two Operations: RequestAttrOwnDivestiture and AttrOwnDivestNotify

Of the ten total operations specified in the full model of ownership management, I detail two
operations, RequestAttrOwnDivestiture and AttrOwnDivestNotify. These operations combine to implement
the simplest unconditional divestiture protocol execution.

The description of these operations, as with all others, consists of three pieces: the arguments,
the pre-conditions, and the post-conditions. I follow the Z convention, appending a question mark
(?) to the end of the name of each input parameter. As detailed below, I chose to model only the
subset of the parameters that is relevant to the analysis. I translate the pre-conditions into state
invariants on the pre-state, again ignoring pre-conditions irrelevant to the needs. I similarly trans-
late the post-conditions as state invariants of the post-state (as indicated by the primed variables). 

The Request Attribute Ownership Divestiture service, which is described informally in Figure 8.1,
allows a federate to notify the RTI that it (the federate) no longer wishes to be responsible for
updating any of a set of object attributes. When the RTI responds with an invocation of the Attribute

Ownership Divestiture Notification, the originating federate is no longer responsible for the object
attributes in question. 

Figure 8.12 shows the model of the Request Attribute Ownership Divestiture service. This operation
requires all the execution state, including the implicit state described by OwnershipInternalState. The
operation takes four inputs, fed?, the federate seeking to relinquish ownership, targets?, the set of
potential new owners, obj?, the object whose attributes are being disowned, and cattrs?, a set of
class attributes describing the object attributes to be disowned.

The IFSpec states that the targets? parameter is optional, but Z does not directly support
optional parameters. To handle this complication, I assume that the set of all Federates is passed
when no constraint is requested. I also choose to ignore two arguments specified in the IFSpec.
The user-supplied tag, although important in any actual implementation, does not affect any
interesting properties. The conditional divestiture flag is ignored here because it represents control
flow, rather than the resulting structure. The model does not require divestiture (or disallow con-
ditional divestiture), so the analysis will consider both cases of the flag.

The first four conditions capture the relevant pre-conditions, whereas the final four conditions
capture the post-conditions. The first two conditions assert that the set of object attributes, referred

RequestAttrOwnDivestiture
ExecutionState

fed? : FEDERATE
targets? : FEDERATE
obj? : Object
cattrs? :  CLASSATTR
oattrs :  OBJECTATTR

ObjectAttrToClassAtttr oattrs  = cattrs?
ObjectAttrToObject oattrs  = {obj?}
fed?  Federates
{fed?   oattrs  Owns

WillingToDivest  = WillingToDivest  ( {fed?   oattrs)
WillingToAccept  = WillingToAccept
TargetOwners  = TargetOwners  (targets?  oattrs)

SimulationState  = SimulationState 

Figure 8.12. The Z model of the Request Attribute Ownership Divestiture service.
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to by oattrs, matches the object referred to by obj?, and the class attributes referred to by the set cat-

trs?. The third condition, fed?  Federates, enforces the second pre-condition in the IFSpec

The federate has joined the federation execution.

The fourth condition, {fed?}  oattrs  Owns, enforces the IFSpec pre-condition

The federate owns the specified attributes.

The next three conditions describe the change to the internal state. After the request, the federate is
willing to divest the indicated object attributes, but there is no change in any federate’s willing-
ness to accept new ownership. This change, modeled by the fifth condition, is required by the
IFSpec post-condition

The federate has informed the RTI of its request to divest ownership of the specified 
attributes.

I assume that the willingness to accept ownership does not change due to this operation, as mod-
eled by the next condition. This assumption, although reasonable and the likely intent of the spec-
ifiers, indicates that smething is missing in the original specification; it is closely related to other
assumptions described later in this section.

The target owners to consider, as described by the targets? parameter, are recorded, supporting
option 1 in the IFSpec.

The federate can specify which federate(s) can take ownership of the released attributes, 
otherwise any federate may own them.

The final condition, SimulationState' = SimulationState, captures the IFSpec post-condition 

No change in attribute ownership.

Figure 8.13 shows the response service from the RTI. The AttrOwnDivestNotify operation takes
four arguments, similar to those used as inputs to ReqAttrOwnDivest operation. The operation
requires that the federate being notified is currently a member of the federation and owns the
object attributes in question. 

After the operation, the ownership has changed, with the target federate no longer owning the

AttrOwnDivestNotify
ExecutionState

fed? : FEDERATE
obj? : Object
cattrs? :  CLASSATTR
oattrs :  OBJECTATTR

ObjectAttrToClassAtttr oattrs  = cattrs?
ObjectAttrToObject oattrs  = {obj?}
fed?  Federates
{fed?}  oattrs  Owns

Owns  = Owns  ( {fed?}  oattrs)
Objects  = Objects 
Publishing  = Publishing 
ObjectAttrs  = ObjectAttrs 
Federates  = Federates 

WillingToAccept  = WillingToAccept 
WillingToDivest  = WillingToDivest ( {fed?}  oattrs)
TargetOwners  = TargetOwners 

Figure 8.13. The Z model of the Attribute Ownership Divestiture Notify service.
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target object attributes. In addition, the WillingToDivest relation is updated, removing the pending
desire to divest (which has now been fulfilled). This latter change is not specified in the IFSpec. In
fact, version 1.2 of the IFSpec never states when a willingness to divest (or accept) should be can-
celled (or maintained). Based at least partially on our feedback, version 1.3 of the IFSpec [DoD98]
does state when these intentions should be cancelled. To progress in the analysis, I chose to specify
“reasonable” points for cancelling the intentions.

In draft 4 of version 1.2 (no longer available), the IFSpec placed no pre-condition on the
Attribute Ownership Divestiture Notification service requiring that the federate had previously
attempted to divest ownership of the specified attributes. Draft 6 of version 1.2 partially repairs
this flaw with the pre-condition

A federate has previously attempted to divest ownership of the specified attributes

This pre-condition is still flawed. It should require that the federate that currently owns the
attribute has requested to divest ownership, without any subsequent cancellation of its willing-
ness to divest.  

It should not come as a surprise that both of these inconsistencies (as well as other, similar
ones discovered with other services) arise in properties related to the state that has been only
implicitly specified.

I discovered other ambiguities during this formalization. The IFSpec does not indicate if the
RTI is allowed to satisfy the divestiture partially. It is similarly unclear if the RTI may combine
multiple ownership divestiture requests, returning a single divestiture notification. I have
assumed in our model that both possibilities are allowable, but some conforming implementations
may disallow one or both variations.      

8.2.5 Modeling Bridges

The two most notable changes to the model to support bridges is support for multiple federations
and the model of the bridges themselves. Supporting multiple federations requires adding rela-
tions to map objects and federates to federations. A slight change in both ObjectCollection and Simula-

tionState accommodates this difference. Figure 8.14 shows the final version of ObjectCollection, with
one additional variable, FederationObjects, to map objects to the appropriate federation and two con-
straints on valid values of FederationObjects. Figure 8.15 shows the final version of SimulationState; the

OBJECT, OBJECTATTR, FEDERATION]

ObjectCollection
Objects :  OBJECT
ObjectsToClass : OBJECT  CLASS
FederationObjects :  FEDERATION  OBJECT
ObjectAttrs :  OBJECTATTR
ObjectAttrToObject: OBJECTATTR  OBJECT
ObjectAttrToClassAttr : OBJECTATTR  CLASSATTR

ObjectAttrs = dom (ObjectAttrToObject  Objects)
ObjectToClass AttributesToClass  = ObjectAttrToObject   ObjectAttrToClassAttr
( ObjectAttrToObject  ObjectAttrToObject )  

( ObjectAttrToClassAttr  ObjectAttrToClassAttr ) 
 id OBJECTATTR

Objects = ran FederationObjects

Figure 8.14. The ObjectCollection schema modified to consider multiple federations.
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variable Federations, which maps federates to the federations, is new and constrains the set of valid
federates.      

The meat of the change comes with the introduction of the schema BridgeState. Figure 8.16 gives
this new schema. The two key elements in BridgeState are bridges and maps. Each bridge represents
the combination of the transformation manager and the FOMAT. The SurrogateFor relation associ-
ates each surrogate federate with a bridge. Each MAP represents a single distinct mapping in a
FOMAT and generates one pair of objects in the relation ObjectMapping; the two objects are equiva-
lent, but in different federations that are joined by the bridge. The three projection functions, Maps-

FromObject, MapsToObject, and MapsForBridge, describe the behavior of the map. Despite the to and from

naming, the mappings implied are bidirectional, with ObjectMapping mapping to to from as well as
from to to.

The definition of a bridge in [SB+98] is very weak, so I have made assumptions about the
restrictions that should be placed on bridges. The constraints require that every bridge has at least
one surrogate. The constraint      

FEDERATE]

SimulationState
ObjectCollection
Federates :  FEDERATE
Federations : FEDERATE  FEDERATION
Publishing: FEDERATE  CLASSATTR
Owns : FEDERATE  OBJECTATTR

Federates = dom Federations

Figure 8.15. The SimulationState schema modified to support multiple federations.

[ BRIDGE, MAP]

BridgeState
SimulationState
Bridges :  BRIDGE
SurrogateFor : FEDERATE  BRIDGE
ObjectMapping : OBJECT  OBJECT
MapsFromObject : MAP  OBJECT
MapsToObject : MAP  OBJECT
MapsForBridge : MAP  BRIDGE

ran SurrogateFor = Bridges

ObjectMapping = MapsFromObject~ MapsToObject  MapsToObject~ MapsFromObject

SurrogateFor SurrogateFor   Federations Federations   id FEDERATE

(FederationObjects ObjectMapping FederationObjects~)  id FEDERATION = 

MapsForBridge MapsFromObject  MapsToObject FederationObjects  SurrogateFor Federations

Figure 8.16. The BridgeState schema describes the topology of bridges and the object map-
pings.
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SurrogateFor SurrogateFor   Federations Federations   id FEDERATE

limits a bridge to a most one surrogate per federation. The first half of the left hand side of the ine-
quality builds a relation mapping all surrogates to other surrogates supporting the same bridge.
The relation on the right-hand side of the intersection relates any pair of federates that are in the
same federation. The intersection therefore relates federates that are part of the same federation
and serve the same bridge. By limiting this intersection to a subset of the identity function, every
bridge is limited to having at most one surrogate in each federation.

The remaining constraints require that no mapping maps two objects in the same federation
and that the object mappings only map objects in federations for which the bridge has a surrogate.

The final step in supporting bridges is to define an interesting property that may or may not
hold in bridged simulations. The property ObjectMappedOncePerFederation states that no object is
mapped to more than one object (including itself) in any federation. Having the same effective
object appear twice in a simulation could introduce obvious difficulties.   

8.3 Analyzing the Formal Model

The final phase in this process is analyzing the model. This analysis consists of three steps,
detailed in the following sub-sections: translating the Z model to Ladybug’s input language NP,
constructing claims about the model to be checked, and reviewing the results of checking the
claims with Ladybug.  

8.3.1 Translating the Z Model

In order to check the specification, Ladybug requires the specification to be written in the lan-
guage, NP. The translation from Z to NP is generally straightforward, mostly consisting of translit-
erating special Z symbols into the equivalent NP ASCII constructs. Only a few items within the
translation are worth noting specifically. Appendix C gives the complete NP specification for the
ownership management services. Appendix D gives the complete NP specification with bridges
considered.3

Figure 8.18 shows the ObjectCollection schema, translated from the Z schema ObjectCollection

given in Figure 8.5. NP does not support the axiomatic definitions used in Figure 8.4 (only sche-
mas), so the initial definitions have been merged into the ObjectCollection schema. The privToDele-

teObject attribute is never used by any of the properties considered, so I have not introduced any
equivalent of the privToDeleteObject variable into the NP specification.

I separated two of the conditions in ObjectCollection into a separate schema, called GoodObjColl.
As noted earlier, this separation enables these properties to be checked. Because all the later prop-

3. The specifications presented in the appendices include the change required to maintain member-
ship in the federation realized during the analysis and vary slightly from the versions presented
in this section.

ObjectMappedOncePerFederation
BridgeState

o : OBJECT ● FederationObjects  ObjectMapping o   FEDERATION  OBJECT

  

Figure 8.17. A desirable properties for bridged systems.
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erties that I will check assume a sound ObjectCollection, the GoodObjColl schema, rather than the
raw ObjectCollection schema, is imported into SimState. Figure 8.19 shows the NP translation of the
explicit state into the schema SimState, as well as the implicit and total state.      

/* Define the basic universe */
ObjectCollection = [
  Objects: set OBJECT
  Object_Attrs: set OATTR
  ObjectToClass: tot OBJECT -> CLASS
  ClassAttrsToClass: tot ATTR -> CLASS
  ObjAttrsToClassAttrs: tot OATTR -> ATTR
  ObjAttrsToObject: tot suj OATTR -> OBJECT
|
   /* Only object attributes about known objects are of interest */
   Object_Attrs = dom (ObjAttrsToObject :> Objects)
]

GoodObjColl = [
  ObjectCollection
|
  ObjectToClass;ClassAttrsToClass~ =     

ObjAttrsToObject~;ObjAttrsToClassAttrs 
  ObjAttrsToObject;ObjAttrsToObject~ & 
  ObjAttrsToClassAttrs;ObjAttrsToClassAttrs~ <= Id

/*  First invariant says that each instance has the attributes
specified by its class (or has the right number of attributes).
second invariant states that the intersection of the
two equivalence relations on ObjAttrToObject and ObjAttrsToClassAttrs
intersect only when the same object attributes
are the subject, i.e., two object attributes can’t be of the
same type and belong to the same object instance.  */
]

Figure 8.18. The NP schemas ObjectCollection and GoodObjColl

/* Explicitly defined state */
SimState = [
  GoodObjColl
  Federates: set FED
  Publishing: FED <-> ATTR
  Owns: FED <-> OATTR
]

/* Implicitly defined state */
OwnershipInternalState = [
  WillingToDivest:FED <-> OATTR
  WillingToAccept: FED <-> OATTR
  TargetOwners : FED <-> OATTR
]

/* Total state to consider */
ExecutionState =
[SimState
OwnershipInternalState]

Figure 8.19. The NP specification of the explicit, implicit, and total state.
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To simplify the analysis, I model the operations as directly accepting a set of object attributes,
rather than the actual set of class attributes. I feel that explicitly specifying the requirement to
translate from class attributes to object attributes is important in the formal specification, as this
translation could easily be missing or flawed in an actual implementation. However, a faulty
translation from class attributes to object attributes is a flaw in the implementation, not the overall
HLA design. This analysis is attempting to check the design, so this complication is unnecessary in
the NP translation. Removing this complication both makes the NP specification easier to read
and reduces the number of cases to be considered by Ladybug. Figure 8.20 shows the NP opera-
tion RequestAttrOwnDivestiture.     

Because NP does not directly support cross products, some of the conditions within the opera-
tion definitions must be recast slightly. The Z expression

{fed?}  oattrs

can be translated to the NP expression

{fed?} <: Un :> oattrs?

where Un is the universal relation, forced by context to be typed as FEDERATE <-> OATTR.

The bridge extensions introduce another issue in the translation. The property ObjectMapped-

OncePerFederation uses a universal quantifier to require that each object is mapped only once per
federation. This Z constraint is expressed as   

o : OBJECT ● FederationObjects  ObjectMapping o   FEDERATION  OBJECT

NP offers no support for explicit quantifiers. Although no translation approach can convert an
arbitrary quantified formula to an equivalent quantifier-free formula, some formula can be con-
verted. For this property, the NP formula

(FederationObjects~ ; ( ObjectMapping+\Id) ; FederationObjects) & Id = {}

imposes the same constraint. The closure of ObjectMapping is a relation that maps all objects to all
equivalent objects (as mapped by the FOMAT). By removing the identity from this relation, each
object is mapped to every equivalent object except itself. Bracketing this relation with the Federa-
tionObject relation extends it to federations. If this composite relation maps any federation to itself,
an object must be equivalent to another object in the same federation.

RequestAttrOwnDivestiture(fed?:FED, obj?:OBJECT, targets?:set FED, 
oattrs?:set OATTR) =

[
  ExecutionState
  const SimState
|
  fed? in Federates
  ObjAttrsToObject.oattrs? = {obj?}
  /* ({fed?} <: Un :> oattrs?) is the same as Z {fed?} x oattrs */
  ({fed?} <: Un :> oattrs?) <= Owns

  WillingToDivest' = WillingToDivest U ({fed?} <: Un :> oattrs?)
  WillingToAccept' = WillingToAccept
  TargetOwners' = TargetOwners U (targets? <: Un :> oattrs?)
]

Figure 8.20. The NP specification of the Request Attribute Ownership Divestiture service.
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8.3.2 Constructing the Claims  

I constructed two kinds of claims about the ownership management specification. The simpler
claims assert that a property is invariant across any possible invocation on a single operation. The
more complicated claims describe an entire protocol execution, asserting that some property holds
after the entire execution if the property holds prior to the execution.   

Figure 8.22 shows a simple operation invariant claim written in NP. Unlike schemas in NP,
which use an equals sign (=) to separate the header of the schema from its body, claims in NP sep-
arate the header from the body with a double colon (::). The AttrDivNotSoundOwns claim asserts that
the properties described in the schema SoundOwners (which requires unique valid ownership, but

/* Allow bridges between federations */
BridgeState =
[
  SimState
  Bridges : set BRIDGE
  SurrogateFor : FED -> BRIDGE
  ObjectMapsFrom : MAP -> OBJECT
  ObjectMapsTo : MAP -> OBJECT
  ObjectMapping : OBJECT <-> OBJECT
  BridgeMapping : tot MAP -> BRIDGE 
|
  ran SurrogateFor = Bridges
  ObjectMapping = ObjectMapsFrom~ ; ObjectMapsTo

    /* A bridge has one surrogate for each federation it participates in */
  inj SurrogateFor~;Federations

  /* Each object mapping must be across different  federations */
  (FederationObjects;ObjectMapping;FederationObjects~) & Id = {}

    /* Each federation represented must correspond to a surrogate federate */
  BridgeMapping~;ObjectMapsFrom;FederationObjects~ <= SurrogateFor~;Federations
  BridgeMapping~;ObjectMapsTo;FederationObjects~ <= SurrogateFor~;Federations
]

Figure 8.21. The NP BridgeState schema, which was adjusted to remove the set of triples.

/* Check if the non-empty state allows two owners */

NoTwoOwners = [NonEmpty | fun Owns~]  

NoBadOwnedAttrs  =  [SimState | ran Owns = Object_Attrs]

NoBadOwners = [SimState | dom Owns <= Federates]

OwnsOnlyIfPublishes = [SimState | Owns;ObjAttrsToClassAttrs <= Publishing ]

SoundOwners = [
  NoTwoOwners
  NoBadOwnedAttrs
  NoBadOwners
  OwnsOnlyIfPublishes
]

AttrDivNotSoundOwns(fed:FED, obj:OBJECT, oattrs:set OATTR)::
   SoundOwners and AttrOwnDivestNotify(fed,obj,oattrs) => SoundOwners'

Figure 8.22. The NP sound ownership properties and the NP claim that the sound owner-
ship properties are invariant across the Attribute Ownership Divestiture Notify service.
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not universal ownership) is invariant across the Attribute Ownership Divestiture Notify service (as
described in the NP schema AttrOwnDivestNotify). The claim must hold for any federate, object, or
set of object attributes, using the federate, object, and set of object attributes as the arguments to
AttrOwnDivestNotify.     

The remaining claims are more complex, as they check properties that are not invariants, but
should hold at specified points during the protocol. I do not recheck properties that have been
shown invariant across all operations, as they must also hold invariant across any combination of
operations that comprise a complete protocol. Figure 8.23 shows the NP claim that asserts that a
conditional divestiture protocol does not lose ownership of objects.      

The five indented lines near the end of the claim describe one possible sequence of services for
this protocol. A federate ( fed1) initiates the protocol by requesting conditional divestiture of a set
of object attributes (oattrs1). The RTI then requests that a second federate (fed2) assume ownership
of those attributes. The second federate agrees to take ownership of a subset of the attributes
(oattrs2) and requests that ownership from the RTI. The RTI can then respond to the first federate
with a divestiture notification of the subset of attributes. Finally, the RTI grants ownership of a
subset of the object attributes divested to the second federate. 

Because the bridge extensions do not change the definitions of the existing services, any prop-
erty guaranteed by the original definition will hold in the bridge-extended definitions as well.
Rather than rechecking the previous claims, I add a new claim to the bridge specification. Figure
8.24 shows the property ObjectMappedOncePerFederation and the related claim that checks that the
definition of a bridged simulation satisfies this property. This claim is different from those
expressed previously; it tests the definition of bridged simulations, rather than the behavior of any
operation. Unlike previous claims, once verified, this claim will hold for any future operations
introduced as well. However, a counterexample to this claim discovered by Ladybug may not be
realizable; no sequence of operations introducing the erroneous state is demonstrated.

/* Check for complete ownership after a simple conditional divestiture */

ConditionalCompleteOwners(fed1:FED, fed2:FED, targets : set FED,
 obj:OBJECT, oattrs1:set OATTR, 
 oattrs2:set OATTR)::

[
  ExecutionState
|
  /* require the case we are interested in */
  not fed2 = fed1 and
  fed2 in targets and
  oattrs2 <= oattrs1 and
  SoundOwners and

  CompleteOwners and
  /* conditional divestiture of oattrs1, actually divesting oattrs2 */
     (RequestAttrOwnDivestiture(fed1,obj,targets,oattrs1);
      RequestAttrOwnAssumption(fed2,obj,oattrs1);
      RequestAttrOwnAcquisition(fed2,obj,oattrs2);
      AttrOwnDivestNotify(fed1,obj,oattrs2);
      AttrOwnAcquisitionNotify(fed2,obj,oattrs2)) =>
  CompleteOwners'
]

Figure 8.23. The NP claim asserting that all object attributes are owned after a conditional
divestiture.
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8.3.3 The Analysis

Analyzing the claims with Ladybug is nearly automatic. The only significant choice left to the ana-
lyst at this stage is to bound the number of elements to be considered by Ladybug in the analysis.

The default scope assumes three elements of each type, which suffices for many specifications.
For the ownership management specification, however, I chose to vary the scope from the default
for three reasons:

1) to satisfy the requirements of the specification

2) to gain more confidence in the analysis and 

3) to reduce the time required by the search.

For these claims, I limit the number of classes to one, as class distinctions are irrelevant to the
properties being checked. I limit the number of federates and class attributes to two apiece, the
minimum number that allows divided ownership of a single object. I limit the number of objects
to three. These restrictions in turn require the support of six object attributes (three objects with
two object attributes apiece). When choosing the scope, interactions such as this must be carefully
noted if the analysis is to be trusted. Limiting the number of object attributes to fewer than six
would force the analysis to consider fewer than three objects or two class attributes in order to sat-
isfy the other requirements.  

For the bridge claims, the number of object attributes is irrelevant. However, enough bridges,
federates, maps, and objects are required to allow the claims to be violated. Starting with three
federations, I require seven federates to allow two surrogates in each federation plus one federate
that is not a surrogate. Three bridges allow many interesting topologies to be built for these feder-
ations. Note that not all the federations need to be considered in every case. Six objects allow two
objects in each federation, allowing the same object to effectively appear twice. Six maps allows
each bridge to map each pair of objects in the federations bridged.

The Ladybug completed the analysis quickly using both the default and selected scopes. Most
of the checks required a few seconds to complete (when run on a 400Mhz Pentium II using the Sun
JDK 1.1.8).

The first issue arising from the analysis involves the set of federates joined in the federation.
The IFSpec never explicitly states that this set is unchanged by the execution of these operations,
although the clear intent is that the only means that a federate can leave the federation is through
the use of the Resign Federation Execution service. I adjusted the NP specification to capture this
requirement.

With that omission repaired, I again analyzed the specification. As indicated by the output
shown in Figure 8.25, the Ladybug analysis found that the Attribute Ownership Acquisition Notify ser-
vice does not maintain the sound ownership properties invariant. In particular, the RTI may grant
ownership of an object attribute to a federate that is not publishing the corresponding class

/* The bridge property */
ObjectMappedOncePerFederation =
[
  BridgeState
|
  (FederationObjects~ ; (ObjectMapping+\Id) ; FederationObjects) & Id = {}
 ]

CheckObjectMapping:: BridgeState => ObjectMappedOncePerFederation

Figure 8.24. The claim about the bridge state specification.
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Found Counterexample to Claim 
AttrAcqNotSoundOwns:

ClassAttrsToClass : tot ATTR->CLASS = 
{ a0 -> c0,

  a1 -> c0 }

ClassAttrsToClass' : tot ATTR->CLASS = 
{ a0 -> c0,

  a1 -> c0 }

fed : FED = 
f0

Federates : set FED = 
{ f0 }

Federates' : set FED = 
{ f0 }

oattrs : set OATTR =  
{ oa0 }

obj : OBJECT = 
ob0

ObjAttrsToClassAttrs : tot OATTR->ATTR = 
{ oa0 -> a0,
 oa1 -> a1,
 oa2 -> a0,
 oa3 -> a1,
 oa4 -> a0,

  oa5 -> a1 }

ObjAttrsToClassAttrs' : tot OATTR->ATTR = 
{ oa0 -> a0,
 oa1 -> a1,
 oa2 -> a0,

  oa3 -> a1,
 oa4 -> a0,

 oa5 -> a1 }

ObjAttrsToObject : tot OATTR->OBJECT = 
{ oa0 -> ob0,

  oa1 -> ob0,
 oa2 -> ob1,

  oa3 -> ob1,
 oa4 -> ob2,
 oa5 -> ob2 }

ObjAttrsToObject' : tot OATTR->OBJECT = 
{ oa0 -> ob0,
 oa1 -> ob0,
 oa2 -> ob1,
 oa3 -> ob1,
 oa4 -> ob2,
 oa5 -> ob2 }

Object_Attrs : set OATTR = 
{ oa0, oa1 }

Object_Attrs' : set OATTR = 
{ oa0, oa1 }

Objects : set OBJECT = 
{ ob0 }

Objects' : set OBJECT = 
{ ob0 }

ObjectToClass : tot OBJECT->CLASS =
{ ob0 -> c0,
 ob1 -> c0,
 ob2 -> c0 }

ObjectToClass' : tot OBJECT->CLASS = 
{ ob0 -> c0,
 ob1 -> c0,
 ob2 -> c0 }

Owns : FED<->OATTR = 
{  }

Owns' : FED<->OATTR = 
{ f0 -> {oa0 } }

Publishing : FED<->ATTR = 
{  }

Publishing' : FED<->ATTR = 
{  }

TargetOwners : FED<->OATTR = 
{ f0 -> {oa0 } }

TargetOwners' : FED<->OATTR = 
{  }

WillingToAccept : FED<->OATTR = 
{ f0 -> {oa0 } }

WillingToAccept' : FED<->OATTR = 
{  }

WillingToDivest : FED<->OATTR = 
{  }

WillingToDivest' : FED<->OATTR = 
{  }

Figure 8.25. Output demonstrating a counterexample to the claim AttrAcqNotSoundOwn discovered
by Ladybug.
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attribute. This case can most clearly by seen by noticing that the Publishing' relationship is empty,
indicating that no class attributes are being published and therefore no object attributes can be
owned.

Reviewing the IFSpec, the only relevant pre-condition for this service is

The federate has previously attempted to acquire ownership of the attribute.

Publishing the corresponding class attribute is a pre-condition of requesting ownership, so this
combination might be expected to hold the property invariant for any actual protocol execution.
However, if the federate unpublishes the class after requesting ownership, but prior to being
granted ownership, a condition occurs where a federate can be granted ownership of an object
attribute while not publishing the corresponding class attribute. An instance of this problem can
be shown with the counterexample generated for the UnpublishInAcquisition claim.

Version 1.3 of the IFSpec adds the pre-condition

The federate is publishing the corresponding class attributes at the known class of the 
specified object instance.

An alternative solution to this inconsistency is to have the unpublish operation cancel the feder-
ate’s willingness to acquire any related object attributes.

Table 8.1 summarizes the results of the Ladybug runs. The columns listing the names of given
types indicate the scope limit given for those types. The times given are in seconds. The entire
state space was checked for all claims except for the case presenting a counterexample, where the
search was halted after the first counterexample was found. Except for the indicated scopes, all
checks were made using the default Ladybug settings. 

The analysis of the bridge claim is more problematic. After several minutes of analysis, the
chosen scope is clearly too large for simple analysis by Ladybug. Reconsidering the scope, I chose
a smaller scope that offers less assurance of finding bugs, but one that should allow Ladybug to
exhaust the space quickly. A quick search allows simple issues to be resolved quickly. The smaller
scope considers bridging only two federations. Following the same logic as previously yields the
scope 

#CLASS=1 #ATTR=1 #FED=4 #FEDERATION=2 #BRIDGE=2 #MAP=3 #OBJECT=3 
#OATTR=3

Ladybug now discovers a bug in a few seconds. If a cycle exists in the bridges, an object can be
propagated around the cycle and reintroduced as a duplicate in the original federation. One ques-
tion remains: if no cycles in the bridges exist, can an object appear in a federation multiple times?

Figure 8.26 lists the property that the bridges are acyclic and a new claim that checks this ques-
tion. The smaller scope now discovers no counterexamples. Returning to the larger scope, the
analysis requires 21 hours and discovers no counterexamples. Therefore, requiring no cycles in the
bridge configuration eliminates this potential problem.

This analysis has not checked many interesting potential problems of bridging federations.
Most notable among these potential problems is possible critical race conditions. The relational
formula language used by Ladybug cannot express concurrency, so Ladybug is an inappropriate
tool to check these issues. Instead, these checks should be made with a tool such as FDR [FDR97],
a model checker for CSP specifications.  

8.4 Conclusions

I discovered inconsistencies and ambiguities during the formalization and analysis of an informal
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specification. While generally minor in nature, these flaws could introduce significant difficulties
into the HLA development, if not caught at design time. Components, being developed by dispar-
ate organizations with possibly disparate interpretations of the IFSpec, could fail when joined
together, forcing expensive testing and re-writes. With help from our feedback, these issues have
been resolved in a new version of the IFSpec [DoD98].

Not surprisingly, most of the issues uncovered involved the implicitly-specified state. In my
experience, a lack of detailed consideration of portions of the system leads to many of the flaws in
system designs. Informal specifications facilitate this lack of consideration by allowing seemingly
obvious portions of the system to remain unspecified or implicitly specified. Formalization helps
identify these missing pieces.

Ladybug discovered two counterexamples to properties that were expected to be valid. The
first counterexample demonstrated a flaw in the preconditions for the Attribute Ownership Acquisition

Notification service, where a federate may have stopped publishing the underlying attribute before
acquiring ownership of the object attribute. The second counterexample demonstrated a difficulty
with the bridge concept if a cycle was allowed in the bridge topology.

In addition to these counterexamples, Ladybug made two notable contributions to the analy-
sis:
• As a forcing function. Without the forced rigor of formalization and checking, it is far easier to 

ignore subtleties. In this example, the problems with mismatch in the set of object attributes 
became apparent when attempting to define specific protocol executions.

• Increased assurance of the correctness of the design. A lack of flaws is the eventual goal of any 
design. Assurance that at least selected possible flaws are not present is a significant first step. 
Experiences with analysis of other specifications, such as the new Mobile IPv6 standard 
[JNW98], have shown that flaws in systems can be discovered using automated checkers.

However, any automated analysis tool has fundamental limitations that should also be kept in
mind:
• Only properties explicitly described are checked. Many flaws that have not been considered 

may remain. Ladybug cannot generate interesting claims, but rather can only check claims 
made by the analyst.

• The structure of the specification may hide flaws allowed by the design. As an example, the 
structure of the Z model requires that the services be treated atomically, with no concurrent 
interaction. With a distributed system such as HLA, such interactions are likely, leaving possi-
ble flaws undetected. Performing analyses of the same system with multiple tools and formal-
isms can help reduce these holes.

• The specification itself may be consistent, but it may not correctly capture the intent of the 
designers. Actual implementations, developed by humans who may understand that intent, 
may introduce flaws present in the design, but not captured in the formal specification.

Figure 8.26. An additional property and claim checking only acyclic bridge config-
urations.

/* Check only acyclic bridge configurations */
NoBridgeCycles =
[
   BridgeState
 |
   (((SurrogateFor;SurrogateFor~)\Id);((Federations;Federations~)\Id))+ & Id = {}
]

CheckAcyclicObjMaps:: NoBridgeCycles => ObjectMappedOncePerFederation
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• Finite checkers, such as Ladybug, place bounds on the problem to enable analysis. Flaws may 
exist only in systems which exceed those artificial bounds. Although I have yet to find a flaw 
in a design missed by a reasonable scope in any of analysis, such flaws certainly exist in at 
least some designs.

Claim Description ATTR CLASS FED OATTR OBJ
Time 
(secs)

ReqAttrDivSoundOwns Check that the Request Attribute 
Divestiture service maintains 
sound ownership.

2 1 2 6 3 7.1

ReqAttrAcqSoundOwns Check that the Request Attribute 
Acquisition service maintains 
sound ownership.

2 1 2 6 3 19.8

AttrDivNotSoundOwns Check that the Attribute Divesti-
ture Notification service maintains 
sound ownership.

2 1 2 6 3 3.2

AttrAcqNotSoundOwns Check that the Attribute Acquisi-
tion Notification service maintains 
sound ownership.

2 1 2 6 3 1.2*

PublishSoundOwns Check that the Publish Object Class 
service maintains sound owner-
ship.

2 1 2 6 3 2.6

UnpublishSoundOwns Check that the Unpublish Object 
Class service maintains sound 
ownership.

2 1 2 6 3 2.2

ConditionalCompleteOwners Check that a simple conditional 
divestiture protocol execution 
maintains complete ownership.

3 1 2 3 1 0.1

UnconditionalSoundTargets Check that a simple unconditional 
divestiture protocol execution 
leaves all targets unowned.

3 1 2 3 1 0.1

ConditionalSoundTargets Check that a simple conditional 
divestiture protocol execution 
leaves the targets set sound.

3 1 2 3 1 4.4

CheckObjectMapping Check that no two objects in a fed-
eration are equivalent. 
#FEDERATION=2 #BRIDGE=2

1 1 4 3 3 5.1

CheckAcyclicObjMaps Check that no two objects in a fed-
eration are equivalent if no cycles 
are allowed in the bridges. 
#FEDERATION=2 #BRIDGE=2

1 1 4 3 3 10.1

CheckAcyclicObjMaps Check that no two objects in a fed-
eration are equivalent if no cycles 
are allowed in the bridges. 
#FEDERATION=3 #BRIDGE=3

1 1 7 6 6 21 hours

Table 8.1: Summary of the checks done by Ladybug. The time for AttrAcqNotSoundOwns and CheckObjectMapping is 
the time required to find the first counterexample. 
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In summary, the formalization and subsequent analysis discovered some flaws in the IFSpec and
achieved a reasonable level of assuredness that other potential flaws are not present.

Additional analyses of these specifications are possible. Many other protocol sequences are
meaningful and could be checked. Manual generation of these protocol executions is tedious and
time-consuming. Due to time constraints, I chose to investigate only a handful of these possible
protocol executions at this time. An ideal analysis tool could consider both a CSP specification,
which can express the possible protocol executions succinctly, and a Z specification, which can
express the outcomes of a particular protocol execution succinctly, and thus automate this task.
One possible future path is the generation of interesting executions using the CSP checker FDR
[FDR97], with a manual, or possibly automated, conversion of the output into NP claims.
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Chapter 9

Conclusions

This chapter concludes the dissertation by summarizing the contributions and showing how
Ladybug and selective enumeration can be extended in the future. Section 9.1 describes how
future work could enhance Ladybug by extending the input language or improving the search
techniques. Section 9.2 briefly describes the application of selective enumeration to other problem
domains. Section 9.3 summarizes the contributions of this dissertation.

9.1 Improving Ladybug

This section describes how further work could improve Ladybug. Extensions to the input lan-
guage NP would allow some specifications to be expressed more simply. Further reductions in the
search space would allow more specifications or larger scopes to be checked. Each approach
extends the applicability of Ladybug and simplifies its usage.

Two desirable extensions to the formula language became obvious in the HLA case study:
quantifiers and n-ary functions and relations. Replacing these constructs in the translation from Z
to NP was the most challenging effort in using Ladybug for the case study.

Quantifiers fit naturally into the framework established in this dissertation and could be
implemented easily in Ladybug. The current search solves the existential quantifiers implicit in
the negated formula. Adding explicit existential quantifiers is straightforward. Adding support
for universal quantifiers is only slightly more difficult (and expensive). Isomorph elimination
remains unchanged; a predicate found to be universally true for an isomorphically reduced set of
assignments will also be universally true for the full set of assignments. Partial-assignment tech-
niques can prune subtrees for which the predicate is guaranteed to be false at least once, instead of
only pruning subtrees where all subtrees fail to satisfy the predicate of an existential quantifier. In
the case of searches that discover counterexamples, the savings of this greater pruning will be at
least partially offset by the need to fully expand the subtree for universally quantified variables.

Support for n-ary relations requires no change to the overall framework or to the partial-
assignment techniques, although adding new bounded generation rules would be beneficial. The
focus of the change would be new generators, including new isomorph-eliminating generators.
The approach described in Chapter 6 extends to handle n-ary functions in a straightforward man-
ner as curried functions. As an example, this approach begins the generation of two argument
functions by choosing all possible domain sets for the first argument. Each element in each first
argument domain set is mapped to all isomorphically distinct functions mapping the second argu-
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ment to the result.

Two other extensions to NP would allow Ladybug to analyze specifications not considered in
this dissertation: hierarchical given types and support for natural numbers. Allowing a hierarchy
of given types simplifies modeling object-oriented designs. Support for this hierarchy is straight-
forward; non-root given types become distinct subsets of the corresponding root given type.
Wide-scale usage of these non-root given types would reduce the efficiency of Ladybug, especially
for the data structures representing relations and for isomorph elimination. Recovering some effi-
ciency would be an engineering challenge in supporting this feature.

Natural numbers represent the largest challenge of any of the potential enhancements to NP.
Any finite set of natural numbers is not closed under addition; ensuring that this issue does not
introduce unsoundness into the search is a significant issue that must be addressed in the frame-
work. How to effectively exploit the natural numbers in bounded generation is an implementation
challenge. Although no pure symmetry exists in the natural numbers, ranges of numbers may be
indistinguishable for a variable for any given formula. Exploiting this limited symmetry in iso-
morph elimination is another open research question.

Exploiting similar formula-specific symmetries is one possible approach to improving the
reduction gained in Ladybug. Jackson considered term symmetries in [JJD98], but only found a
small additional reduction. Further research is required to see whether this or other formula-spe-
cific symmetries can yield larger savings.

The experiences gained in this research has opened other questions about improving the
search techniques. One question was raised in Chapter 7; is there an efficient variable ordering
heuristic that exhibits fewer anomalies? Further investigations are needed to evaluate both the fre-
quency and extent of the increase in the search space yielded by the current ordering heuristic as
opposed to the search space yielded by an optimal ordering.

Chapter 7 also raised an issue with the ineffectiveness of bounded generation at exploiting
some classes of formula, notably cyclic relations and compositions of relations. Cyclic (or acyclic)
relations are a common requirement; adding special support for these cases is well justified. One
possible approach is the construction of specialized generators that generate only cyclic or acyclic
relations.

Chapter 5 briefly explored the promise and problems of multiple-antecedent rules for conse-
quence closure. If a sufficiently efficient mechanism can be implemented that utilizes these rules,
the partial-assignment reductions would be significantly improved for some searches.

9.2 Other Problem Domains

Search is one of the most common problems in computer science. Other search problems are also
good candidates for solving with selective enumeration. In some cases, the existing selective-enu-
meration framework could be used intact; new techniques need to be developed to exploit the
characteristics of the formula language that describe the new problem domain. Other cases would
require extending the selective enumeration framework in some way. This section briefly
describes how selective enumeration could solve three different search problems: test suite gener-
ation, shape analysis, and planning problems.

If an application or framework has been fully specified in a formal language such as Z, an
opportunity exists to automatically generate a test suite to partially validate the application. As
with any form of testing, complete validation is an unrealistic goal; testing every possible set of
inputs is intractable for any interesting application. Instead, partition testing splits the universe of
inputs into equivalence classes; the testing assumes that the application will behave correctly for
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every input in a equivalence class or will exhibit a bug for every input the equivalence class.

Black [ABW98] proposed a variant of mutation testing that defines a partitioning of the inputs
based on a formal specification of the application. Specification mutation testing, like source code
mutation testing, assumes that the application is almost correct. Any errors in the application are
assumed to implement a mutation of the target specification that represents only a small change
from the actual specification. For each possible mutation of the specification, the test suite contains
a test that distinguishes the mutation from the desired specification. If the original specification is
described by a formula spec and the mutation is described by a formula called mutant, each test is a
solution to a formula defined as mutant and not spec.

Selective enumeration can help generate a test suite in two ways. As used in Ladybug, selec-
tive enumeration can find satisfying assignments to the formulae that describe the distinction
between the desired and mutated specifications. Selective enumeration can also be used to reduce
the size of the test suite, a traditional problem with generated test suites. Many inputs can distin-
guish the desired specification from many potential mutants. Inputs that test mutants already
tested by other inputs are duplicates; by introducing a richer sense of duplication, selective enu-
meration can reduce the total size of the test suite. Only further research can determine whether
selective enumeration can reduce the size of the test suite significantly.

Shape analysis is a second existing problem area that can be solved by selective enumeration.
Sagiv [SRW99] describes how a program can be reduced to a series of formulae that describe how
the program manipulates a single data structure. Any solution to these formulae describes the
shape of the data structure. The formula language used by Sagiv is similar to the relational for-
mula language used in this dissertation. Selective enumeration can solve these formulae to dis-
cover the shape of data structures. For interesting programs, these formulae are probably very
large. This size may require further enhancements to selective enumeration to support a tractable
analysis of the larger problems.

The third problem domain that I have considered is the traditional STRIPS planning world
[FN71]. In this domain, the world is described as a group of objects that have attributes such as
position and operations such as move. Each operation makes some well defined changes to the
object attributes. The initial state and goal state are described as constraints on the object
attributes. The planning problem is to find a sequence of operations, called a plan, that will change
the initial state to the goal state.

Finding a plan of n steps is equivalent to finding a solution to a formula with n variables,
where each variable indicates the operation or operations performed at the corresponding time
step. Again, selective enumeration can solve this formula. Using an iterative deepening approach,
a selective enumeration tool can find a minimal length plan that solves the problem.

Because the formula language is very different from the formula language used in this thesis,
selective enumeration would need to exploit different duplications than those exploited in Lady-
bug. Although the isomorph duplication would be applicable, this problem domain also exhibits
partial symmetries between time steps. Therefore, two plans that vary only in the order of two
operations that do not interact are duplicates. Some operations are non-reversible or can be
reversed only with some minimum number of time steps. Duplications that exploit these require-
ments become the equivalent of the partial-assignment duplications described in Chapter 3.

Although the actual performance of a planner based on selective enumeration remains to be
shown, I have performed rough experiments to show that the performance on some existing prob-
lems would be at least competitive with graph-plan-based tools [BF97], the current leading
approach. In addition, selective-enumeration-based planners would not exhibit some of the
restrictions on dynamic problems imposed by graph-plan-based planners. Success of a straightfor-
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ward application of selective enumeration to a very different problem domain such as planning
would demonstrate the power of duplications as a model for thinking about search reduction.

9.3 Contributions

My thesis in this dissertation is that selective enumeration makes some otherwise intractable
searches feasible. Using only short circuiting and derived variables, most of the searches required
by the benchmark suite are intractable. No previous symmetry reduction techniques yielded even
a small fraction of the time savings gained by the isomorph elimination used in Ladybug. With
this level of reduction, Ladybug has been used to find bugs in real systems.

Beyond validating the thesis, this research offers four significant contributions: the approach,
the algorithms, the tool, and the benchmark suite. Each contribution extends the platform for fur-
ther research in a different direction. 

The selective enumeration approach provides a framework for thinking about reducing the
search space for a range of problems. Explicitly considering duplications and how they may be
exploited to reduce the search space led me to quickly find effective ways of reducing the search
space for the planning problem.

The realization of selective enumeration for the relational domain led to several new algo-
rithms. Three algorithms in particular offer significant advances over previous related approaches:
bounded generation, domain coloring, and the isomorph-eliminating function generator.
Bounded generation significantly reduces the number of values generated when compared to pre-
vious tree pruning approaches such as short circuiting and supports a much larger value space
than is feasible with traditional constraint propagation. Both the domain coloring and the iso-
morph-eliminating generator offer sound and nearly perfect approximations to isomorph-free
generation at a significantly cheaper cost than provided by any exact algorithms.

The tool Ladybug provides a realization of these algorithms that can solve interesting prob-
lems. Ladybug has been released to a handful of researchers thus far and will be made broadly
available shortly. Ladybug, and its predecessor Nitpick, have been used in courses in the Masters
of Software Engineering program at Carnegie Mellon University for five years.

The benchmark suite gives a broad blanket for comparing different techniques for analyzing
relational specifications. The opportunity to add additional solvers to Ladybug makes an apples-
to-apples comparison simpler.

In summary, this research provides both a tangible tool for aiding practitioners and students
and a platform upon which further research can be based. This research assisted could include fur-
ther attempts to analyze relational specifications or work on reducing the search space for other
purposes.
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Appendix A: Consequence Closure Rules    

Antecedent Consequent

S0 = S1 S0 <= S1

R0 = R1 R0 <= R1

S0 < S1 S0 <= S1

R0 < R1 R0 <= R1

{ G0 } <= S1 G0 in S1

not G0 in (S1 U S2) not G0 in S1

G0 in (S1 & S2) G0 in S1

not G0 in { G1 } not G0 = G1

(S1 U S2) <= S0 S1 <= S0

(R1 U R2) <= R0 R1 <= R0

not S0 <= (S1 U S2) not S0 <= S1

not R0 <= (R1 U R2) not R0 <= R1

(S1 U S2) = S0 (S0 \ S1 ) <= S2

(R1 U R2) = R0 (R0 \ R1 ) <= R2

S0 <= (S1 & S2) S0 <= S1

R0 <= (R1 & R2) R0 <= R1

( S0 & S1) = {} S0 <= ( Un \ S1 )

(R0 & R1) = {} S0 <= ( Un \ R1 )

S0 <= (S1 \ S2) S0 <= S1

R0 <= (R1 \ R2) R0 <= R1

S0 <= (S1 \ S2) S0 <= (Un \ S2)

R0 <= (R1 \ R2) R0 <= (Un \ R2)

S0 <= ( S1 \ S2 ) not S0 <= S2

Table A.1: The complete set of single antecedent consequence closure rules used by Ladybug.
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R0 <= (R1 \ R2 ) notR0 <= R2

S0 <= ( S1 \ S2 ) S2 <= ( Un \ S0 )

R0 <= (R1 \ R2 ) R2 <= ( Un \ R0 )

R1 <= R0 (dom R1) <= (dom R0)

R1 <= R0 (ran R1) <= (ran R0)

R2 <= ( R0 ; R1 ) (dom R2) <= (dom R0)

R2 <= ( R0 ; R1 ) (ran R2) <= (ran R1)

( R0 + ) <= R1 R0 <= R1

(R1 $ R2) <= R0 R2 <= R0

R0 <= (S1 <: R2) R0 <= R2

R0 <= (S1 <; R2) R0 <= R2

R0 <= (R2 :> S1) R0 <= R2

R0 <= (R2 ;> S1) R0 <= R2

R0 <= (S1 <: R2) (dom R0) <= S1

R0 <= (S1 <; R2) (dom R0) <= ( Un \ S1 )

R0 <= (R2 :> S1) (ran R0) <= S1

R0 <= (R2 ;> S1) (ran R0) <= ( Un \ S1 )

Antecedent Consequent

Table A.1: The complete set of single antecedent consequence closure rules used by Ladybug.
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First Antecedent Second Antecedent Consequent

S0 = S1 S1 = S2 S0 = S2

R0 = R1 R1 = R2 R0 = R2

S0 <= S1 S1 <= S2 S0 <= S2

R0 <= R1 R1 <= R2 R0 <= R2

S0 <= S1 S1 <= S0 S0 = S1

R0 <= R1 R1 <= R0 R0 = R1

S0 = ( S1 U S2 ) S2 <= S1 S0 = S1

R0 = ( R1 U R2 ) R2 <= R1 R0 = R1

S0 <= ( S1 U S2 ) S2 <= S1 S0 <= S1

R0 <= ( R1 U R2 ) R2 <= R1 R0 <= R1

S0 = ( S1 & S2 ) S1 <= S2 S0 = S1

R0 = ( R1 & R2 ) R1 <= R2 R0 = R1

Table A.2: The complete set of multiple antecedent consequence closure rules defined by Ladybug. 
These rules were disabled for the analyses used in this thesis.
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Original Formula Simplified Formula

S0 <= (S1 & S0) S0 <= S1

R0 <= (R1 & R0) R0 <= R1

S0 <= S0 true

R0 <= R0 true

S0 = S0 true

R0 = R0 true

G0 = G0 true

{} <= S0 true

{} <= R0 true

S0 <= {} S0 = {}

R0 <= {} R0 = {}

Un <= S0 S0 = Un

Un <= R0 R0 = Un

S0 <= Un true

R0 <= Un true

S0 <= ( S0 U S1 ) true

R0 <= ( R0 U R1 ) true

S0 < S0 false

R0 < R0 false

not S0 = S0 false

not R0 = R0 false

not G0 = G0 false

Table A.3: The complete set of formula simplifying rules used by Ladybug.
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Original Term Simplified Term

S0 \ {} S0

R0 \ {} R0

S0 \ Un {}

R0 \ Un {}

S0 \ S0 {}

R0 \ R0 {}

S0 U ( S1 \ S0 ) S0 U S1

R0 U ( R1 \ R0 ) R0 U R1

S0 U ( ( S1 \ S0 ) U S2) (S0 U ( S1 U S2 ) )

R0 U ( ( R1 \ R0 ) U R2) (R0 U ( R1 U R2 ) )

S0 & ( S1 \ S0) {}

R0 & ( R1 \ R0 ) {}

S0 \ (S1 \ S0 ) S0

R0 \ (R1 \ R0 ) R0

S0 \ (S0 \ S1 ) S0 & S1

R0 \ (R0 \ R1 ) R0 & R1

S0 U S0 S0

R0 U R0 R0

S0 U (S0 U S1) S0 U S1

R0 U (R0 U R1) R0 U R1

S0 & S0 S0

R0 & R0 R0

S0 & (S0 & S1) S0 & S1

R0 & (R0 & R1) R0 & R1

Un U S0 Un

Un U R0 Un

Un & S0 S0

Un & R0 R0

{} U S0 S0

{} U R0 R0

Table A.4: The complete set of term simplifying rules used by Ladybug.
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{} & S0 {}

{} & R0 {}

dom {} {}

ran {} {}

dom Un Un

ran Un Un

dom (S0 <: R1) S0 & (dom R1)

dom (S0 <; R1) (dom R1 ) \ S0

ran (R1 :> S0) S0 & ( ran R1 )

ran (R1 ;> S0) ( ran R1 ) \ S0

Original Term Simplified Term

Table A.4: The complete set of term simplifying rules used by Ladybug.
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AttributesToClass : CLASSATTR  CLASS
privToDeleteObject : CLASS  CLASSATTR

privToDeleteObject   AttributesToClass

Appendix B

Full Z Description of the HLA Specification

CLASS,CLASSATTR,OBJECT, OBJECTATTR, FEDERATE, FEDERATION, BRIDGE, MAP]

ObjectCollection
Objects :  OBJECT
FederationObjects : OBJECT  FEDERATION
ObjectsToClass : OBJECT  CLASS
ObjectAttrs :  OBJECTATTR
ObjectAttrToObject: OBJECTATTR  OBJECT
ObjectAttrToClassAttr : OBJECTATTR  CLASSATTR

ObjectAttrs = dom (ObjectAttrToObject   Objects)
Objects = dom FederationObjects
ObjectToClass AttributesToClass  = ObjectAttrToObject   ObjectAttrToClassAttr
( ObjectAttrToObject  ObjectAttrToObject )  

( ObjectAttrToClassAttr  ObjectAttrToClassAttr ) 
  id OBJECTATTR

SimulationState
ObjectCollection
Federates :  FEDERATE
Federations : FEDERATE  FEDERATION
Publishing: FEDERATE  CLASSATTR
Owns : FEDERATE  OBJECTATTR

Federates = dom Federations
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OwnershipInternalState
WillingToDivest: FEDERATE  OBJECTATTR
WillingToAccept : FEDERATE  OBJECTATTR
TargetOwners : FEDERATE  OBJECTATTR

BridgeState
SimulationState
Bridges :  BRIDGE
SurrogateFor : FEDERATE  BRIDGE
ObjectMapping : OBJECT  OBJECT
MapsFromObject : MAP  OBJECT
MapsToObject : MAP  OBJECT
MapsForBridge : MAP  BRIDGE

ran SurrogateFor = Bridges

ObjectMapping = MapsFromObject~ MapsToObject  MapsToObject~ MapsFromObject

SurrogateFor SurrogateFor   Federations Federations   id FEDERATE

(FederationObjects ObjectMapping FederationObjects~)  id FEDERATION = 

MapsForBridge MapsFromObject  MapsToObject FederationObjects  SurrogateFor Federations

ExecutionState
SimulationState
OwnershipInternalState
BridgeState
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NoTwoOwners
SimulationState

Owns   OBJECTATTR  FEDERATE

NoBadOwnedAttrs
SimulationState

ran Owns  ObjectAttrs

NoBadOwners
SimulationState

dom Owns  Federates

OwnsOnlyIfPublishes
SimulationState

(Owns  ObjectAttrToClassAttr)   Publishing

CompleteOwners
SimulationState

ran Owns  ObjectAttrs

SoundDivestments
ExecutionState

WillingToDivest  Owns

SoundAccepts
ExecutionState

WillingToAccept  Owns  

TargetsUnowned
ExecutionState

ranTargetOwners  ran Owns  

TObjectMappedOncePerFederation
BridgeState

o : OBJECT ● FederationObjects  ObjectMapping o   FEDERATION  OBJECT
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CreateFedExecution
ExecutionState

fedex? : FEDERATION

FederationObjects {fedex?} = 
FederationObjects {fedex?} = FederationObjects
Federations {fedex?} = 
Federations {fedex?} = Federations

OwnershipInternalState  = OwnershipInternalState
Publishing  = Publishing
Owns  = Owns

JoinFedExecution
ExecutionState

fedex? : FEDERATION
fed? : FEDERATE

fed?  Federates

Federations  = Federations  {fed? fedex?}
ObjectCollection  = ObjectCollection
OwnershipInternalState  = OwnershipInternalState
Publishing  = Publishing
Owns  = Owns

RequestAttrOwnDivestiture
ExecutionState

fed? : FEDERATE
targets? : FEDERATE
obj? : Object
cattrs? :  CLASSATTR
oattrs :  OBJECTATTR

ObjectAttrToClassAtttr oattrs  = cattrs?
ObjectAttrToObject oattrs  = {obj?}
fed?  Federates
{fed?   oattrs  Owns

WillingToDivest  = WillingToDivest  ( {fed?   oattrs)
WillingToAccept  = WillingToAccept
TargetOwners  = TargetOwners  (targets?  oattrs)

SimulationState  = SimulationState 



FULL Z MODEL 211

RequestAttrOwnAssumption
ExecutionState

fed? : FEDERATE
obj? : Object
cattrs? :  CLASSATTR
oattrs :  OBJECTATTR

ObjectAttrToClassAtttr oattrs  = cattrs?
ObjectAttrToObject oattrs  = {obj?}
fed?  Federates
( {fed?}  oattrs)  ObjectAttrToClassAttr  Publishing
( {fed?}  oattrs)  Owns = 

RequestAttrOwnAcquisition
ExecutionState

fed? : FEDERATE
obj? : Object
cattrs? :  CLASSATTR
oattrs :  OBJECTATTR

ObjectAttrToClassAtttr oattrs  = cattrs?
ObjectAttrToObject oattrs  = {obj?}
fed?  Federates
( {fed?}  oattrs)  ObjectAttrToClassAttr  Publishing
( {fed?}  oattrs)  Owns = 

SimulationState  = SimulationState  

WillingToAccept  = WillingToAccept  ( {fed?}  oattrs)
WillingToDivest  = WillingToDivest
TargetOwners  = TargetOwners  

AttrOwnDivestNotify
ExecutionState

fed? : FEDERATE
obj? : Object
cattrs? :  CLASSATTR
oattrs :  OBJECTATTR

ObjectAttrToClassAtttr oattrs  = cattrs?
ObjectAttrToObject oattrs  = {obj?}
fed?  Federates
{fed?}  oattrs  Owns

Owns  = Owns   ( {fed?}  oattrs)
FederationObjects  = FederationObjects 
Publishing  = Publishing 
ObjectAttrs  = ObjectAttrs 
Federates  = Federates 

WillingToAccept  = WillingToAccept 
WillingToDivest  = WillingToDivest  ( {fed?}  oattrs)
TargetOwners  = TargetOwners
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AttrOwnAcquisitionNotify
ExecutionState

fed? : FEDERATE
obj? : Object
cattrs? :  CLASSATTR
oattrs :  OBJECTATTR

ObjectAttrToClassAtttr oattrs  = cattrs?
ObjectAttrToObject oattrs  = {obj?}
fed?  Federates
Owns oattrs  = 
oattrs  TargetOwners  {fed?} 

Owns  = Owns   ( {fed?}  oattrs)
Objects  = Objects 
Publishing  = Publishing 
ObjectAttrs  = ObjectAttrs 
Federates  = Federates 

WillingToAccept  = WillingToAccept  ( {fed?}  oattrs)
WillingToDivest  = WillingToDivest 
TargetOwners  = TargetOwners   oattrs

RequestAttrOwnRelease
ExecutionState

fed? : FEDERATE
obj? : Object
cattrs? :  CLASSATTR
oattrs :  OBJECTATTR

ObjectAttrToClassAtttr oattrs  = cattrs?
ObjectAttrToObject oattrs  = {obj?}
fed?  Federates
( {fed?}  oattrs)  Owns
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PublishObjectClass
ExecutionState

fed? : FEDERATE
class? : CLASS
cattrs? :  CLASSATTR

AttributesToClass cattrs?  = {class?}  cattrs? = 
fed?  Federates

Publishing  = Publishing  ( {fed?}  Publishing  AttributesToClass {class?} )
 ({fed?}  cattrs?)

Owns  = Owns  ({fed?}  Owns  (ObjectAttrToClassAttr  AttributesToClass) {class?}‚)

ObjectCollection  = ObjectCollection
OwnershipInternalState  = OwnershipInternalState

UnpublishObjectClass
ExecutionState

fed? : FEDERATE
class? : CLASS

class?  AttributesToClass Publishing {fed?}  
fed?  Federates

Publishing  = Publishing  ( {fed?}  Publishing  AttributesToClass {class?} )
Owns  = Owns  ({fed?}  Owns  (ObjectAttrToClassAttr  AttributesToClass) {class?}‚)

ObjectCollection  = ObjectCollection
OwnershipInternalState  = OwnershipInternalState
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Appendix C

NP Specification of Ownership Management
/* Define the basic kinds of entities to consider */
[CLASS, ATTR, FED, OATTR, OBJECT]

/* Define the basic universe */

ObjectCollection = [
    Objects: set OBJECT
    Object_Attrs: set OATTR
    ObjectToClass: tot OBJECT -> CLASS
    ClassAttrsToClass: tot ATTR -> CLASS
    ObjAttrsToClassAttrs: tot OATTR -> ATTR
    ObjAttrsToObject: tot OATTR -> OBJECT
 |
   /* Only object attributes about known objects are of interest */
   Object_Attrs = dom (ObjAttrsToObject :> Objects)
 ]

GoodObjColl = [
    ObjectCollection
|
    ObjectToClass;ClassAttrsToClass~ = ObjAttrsToObject~;ObjAttrsToClassAttrs 
    (ObjAttrsToObject;ObjAttrsToObject~ & ObjAttrsToClassAttrs;ObjAttrsToClassAttrs~)  <= 
Id

/*  First invariant says that each instance has the attributes
specified by its class (or has the right number of attributes

2nd invariant states that the intersection of the
two equivalence relations on AttrTo Object and ObjAttrsToClassAttributes
intersect only when the same object attributes
are the subject, i.e., two object attributes can’t be of the
same type and belong to the same object instance  */
]

/* Explicitly defined state */
SimState = [
    GoodObjColl
    Federates: set FED
    Publishing: FED <-> ATTR
    Owns: FED <-> OATTR
]

/* Implicitly defined state */
OwnershipInternalState = [
    WillingToDivest:FED <-> OATTR
    WillingToAccept: FED <-> OATTR
    TargetOwners : FED <-> OATTR
]

/* Total state to consider */
ExecutionState = [ SimState OwnershipInternalState]
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/* Define any properties of the state */

/* Does more than one federate own any object attribute? */
NoTwoOwners = [ SimState | fun Owns~ ]

/* Force a non-empty state */
NonEmpty =  
[
   SimState
|
   Publishing  != {}
   Owns != {}
   Federates != {}
]

/* Check that the non-empty state allows two owners */
NoTwoOwnersForced = [NonEmpty | fun Owns~]  

/* Check that federates only own valid object attributes */
NoBadOwnedAttrs  =  
[
   SimState
|
   ran Owns <= Object_Attrs
]

/* Check that only valid federates own object attributes */
NoBadOwners = [SimState | dom Owns <= Federates]

/* Check that all federates that own object attributes also publish the corresponding class 
attribute */
OwnsOnlyIfPublishes = 
[

   SimState

|
   Owns;ObjAttrsToClassAttrs <= Publishing 
]

/* Check that all required properties hold */
SoundOwners = 
[
   NoTwoOwners
   NoBadOwnedAttrs
   NoBadOwners
   OwnsOnlyIfPublishes
]

/* Is every object attribute owned? (May be violated at times) */
CompleteOwners  = [SimState | ran Owns = Object_Attrs]

/* Is every announced willingness to divest for a currently owner attribute */
SoundDivestments = [ExecutionState | WillingToDivest <= Owns]

/* Is any current desire to acquire already satisfied */
SoundAccepts = [ExecutionState | WillingToAccept & Owns = {} ]

/* Does any potential owner already own the attribute */
TargetsUnowned = [ExecutionState | ran TargetOwners & ran Owns = {} ]
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/* Operations defined on the state */

/* Create an empty federation */
CreateFedExecution() = 
[
  ExecutionState
  SimState
|
  Objects' = {}
  Object_Attrs' = {}
  Federates' = {}
  Publishing' = {}
  Owns' = {}
  WillingToAccept' = {}
  WillingToDivest' = {}
  TargetOwners' = {}
]

/* Add a new federate to the federation */
JoinFedExecution(fed?:FED) = 
[
  ExecutionState
  const ObjectCollection
  const OwnershipInternalState
|
  fed? not in Federates
  Federates' = (Federates U {fed?})
  Publishing = Publishing'
  Owns' = Owns
] 
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/* Describe the relevant services */

/* Request Attribute Ownership Divestiture */
RequestAttrOwnDivestiture(fed?:FED, obj?:OBJECT, targets?:set FED, 

oattrs?:set OATTR) =
[
  ExecutionState
  const SimState
|
  fed? in Federates
  ObjAttrsToObject.oattrs? = {obj?}
  obj? in Objects
  /* ({fed?} <: Un :> oattrs?) is the same as {fed?} x oattrs? */
  ({fed?} <: Un :> oattrs?) <= Owns

  WillingToDivest' = WillingToDivest U ({fed?} <: Un :> oattrs?)
  WillingToAccept' = WillingToAccept
  TargetOwners' = TargetOwners U (targets? <: Un :> oattrs?)
]

/* Request Attribute ownership Assumption */
RequestAttrOwnAssumption(fed?:FED, obj?:OBJECT, oattrs?:set OATTR) =
[
  const ExecutionState
|
  fed? in Federates
  ObjAttrsToObject.oattrs? = {obj?}
  obj? in Objects

  ({fed?} <: Un :> oattrs?);ObjAttrsToClassAttrs <= Publishing
  ({fed?} <: Un :> oattrs?) & Owns = {}
] 

/* Request Attribute Ownership Acquisition */
RequestAttrOwnAcquisition(fed?:FED, obj?:OBJECT, oattrs?:set OATTR) =
[
  ExecutionState
  const SimState
|
  fed? in Federates
  ObjAttrsToObject.oattrs? = {obj?}
  obj? in Objects
  ({fed?} <: Un :> oattrs?);ObjAttrsToClassAttrs <= Publishing
  ({fed?} <: Un :> oattrs?) & Owns = {}

  WillingToDivest' = WillingToDivest 
  WillingToAccept' = WillingToAccept U ({fed?} <: Un :> oattrs?)
  TargetOwners' = TargetOwners
] 
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/* Attribue Ownership Divestiture Notification */
AttrOwnDivestNotify(fed?:FED, obj?:OBJECT, oattrs?:set OATTR) =
[
  ExecutionState
  const ObjectCollection
|
  fed? in Federates
  ObjAttrsToObject.oattrs? = {obj?}
  obj? in Objects
  ({fed?} <: Un :> oattrs?) <= Owns
  ({fed?} <: Un :> oattrs?) <= WillingToDivest

  Owns' = Owns \ ({fed?} <: Un :> oattrs?)
  Federates' = Federates
  Publishing' = Publishing

  WillingToDivest' = WillingToDivest \ ({fed?} <: Un :> oattrs?)
  WillingToAccept' = WillingToAccept
  TargetOwners' = TargetOwners
]

/* Attribute Ownership Acquisition Notification */
AttrOwnAcquisitionNotify(fed?:FED, obj?:OBJECT, oattrs?:set OATTR) =
[
  ExecutionState
  const ObjectCollection
|
  fed? in Federates
  ObjAttrsToObject.oattrs? = {obj?}
  Owns~.oattrs? = {}

  /* Only look for owners amongst the target owners */
  obj? in Objects
  oattrs? <= TargetOwners.{fed?}
  ({fed?} <: Un :> oattrs?) <= WillingToAccept

  Owns' = Owns U ({fed?} <: Un :> oattrs?)
  Federates' = Federates
  Publishing' = Publishing

  WillingToAccept' = WillingToAccept \ ({fed?} <: Un :> oattrs?)
  WillingToDivest' = WillingToDivest
  TargetOwners' = TargetOwners ;> oattrs?
]

/* Request Attribute Ownership Release */
RequestAttrOwnRelease(fed?:FED, obj?:OBJECT, oattrs?:set OATTR) = 
[
  const ExecutionState
|
  fed? in Federates
  ObjAttrsToObject.oattrs? = {obj?}
  obj? in Objects
  ({fed?} <: Un :> oattrs?) <= Owns
]
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/* Publish Object Class */
PublishObjectClass(fed?:FED, class?:CLASS, cattrs?: set ATTR) =
[
  ExecutionState
  const ObjectCollection
  const OwnershipInternalState
|
  ClassAttrsToClass.cattrs? = {class?} or cattrs? = {}
  fed? in Federates

  Federates' = Federates
  Publishing' = Publishing \ ( {fed?} <: Publishing :> (ClassAttrsToClass~.{class?}))
  U ({fed?} <: Un :> cattrs?)
  Owns' = Owns \ ({fed?} <: Owns :> ((ObjAttrsToClassAttrs;ClassAttrsToClass)~.{class?}))
]

/* Unpublish Object Class */
UnpublishObjectClass(fed?:FED, class?:CLASS) =
[
  ExecutionState
  const ObjectCollection
  const OwnershipInternalState
|
  fed? in Federates
  class? in ClassAttrsToClass.(Publishing.{fed?})  

  Federates' = Federates
  Publishing' = Publishing \ ( {fed?} <: Publishing :> (ClassAttrsToClass~.{class?}))
  Owns' = Owns \ ({fed?} <: Owns :> ((ObjAttrsToClassAttrs;ClassAttrsToClass)~.{class?}))
]
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/* Now construct the claims to test */

/* Check that each modifying operation maintains sound ownership */ 

ReqAttrDivSoundOwns(fed:FED, obj:OBJECT, targets:set FED, oattrs:set OATTR)::
   SoundOwners and RequestAttrOwnDivestiture(fed,obj,targets,oattrs) => SoundOwners'

ReqAttrAcqSoundOwns(fed:FED, obj:OBJECT, oattrs:set OATTR)::
   SoundOwners and RequestAttrOwnAcquisition(fed,obj,oattrs) => SoundOwners'

AttrDivNotSoundOwns(fed:FED, obj:OBJECT, oattrs:set OATTR)::
   SoundOwners and AttrOwnDivestNotify(fed,obj,oattrs) => SoundOwners'

AttrAcqNotSoundOwns(fed:FED, obj:OBJECT, oattrs:set OATTR)::
   SoundOwners and AttrOwnAcquisitionNotify(fed,obj,oattrs) => SoundOwners'

PublishSoundOwns(fed:FED, class:CLASS, cattrs:set ATTR)::
   SoundOwners and PublishObjectClass(fed,class,cattrs) => SoundOwners'

UnpublishSoundOwns(fed:FED, class:CLASS)::
   SoundOwners and UnpublishObjectClass(fed,class) => SoundOwners'

/* Check that willing to divest and accept stays sound */

ReqAttrDivSoundDiv(fed:FED, obj:OBJECT, targets:set FED, oattrs:set OATTR)::
   SoundDivestments and RequestAttrOwnDivestiture(fed,obj,targets,oattrs) => 
SoundDivestments'

AttrDivNotSoundDiv(fed:FED, obj:OBJECT, oattrs:set OATTR)::
   SoundDivestments and AttrOwnDivestNotify(fed,obj,oattrs) => SoundDivestments'

ReqAttrAcqSoundAcc(fed:FED, obj:OBJECT, oattrs:set OATTR)::
   SoundAccepts and RequestAttrOwnAcquisition(fed,obj,oattrs) => SoundAccepts'

AttrAcqNotSoundAcc(fed:FED, obj:OBJECT, oattrs:set OATTR)::
   SoundAccepts and AttrOwnAcquisitionNotify(fed,obj,oattrs) => SoundAccepts'
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/***********************************************************************************/
/* Check against protocol executions, not just single operations                   */
/***********************************************************************************/

/* Check for complete ownership after a simple conditional divestiture */

ConditionalCompleteOwners(fed1:FED, fed2:FED, targets : set FED, obj:OBJECT,
 oattrs1:set OATTR, oattrs2:set OATTR)::

[
  ExecutionState
|
  /* require the case we are interested in */
  not fed2 = fed1 and
  fed2 in targets and
  oattrs2 <= oattrs1 and
  SoundOwners and

  CompleteOwners and
  /* the conditional divestiture of oattrs1, actually divesting oattrs2 */
     (RequestAttrOwnDivestiture(fed1,obj,targets,oattrs1);
      RequestAttrOwnAssumption(fed2,obj,oattrs1);
      RequestAttrOwnAcquisition(fed2,obj,oattrs2);
      AttrOwnDivestNotify(fed1,obj,oattrs2);
      AttrOwnAcquisitionNotify(fed2,obj,oattrs2)) =>
  CompleteOwners'
]

/* How about an unpublish in the middle of an acquisition */
UnpublishInAcquisition(fed:FED, obj:OBJECT, oattr : OATTR)::
[
  ObjectCollection
  const class : CLASS
|
  class = ClassAttrsToClass.(ObjAttrsToClassAttrs.oattr)
  obj = ObjAttrsToObject.oattr

  SoundOwners and
     RequestAttrOwnAcquisition(fed,obj,{oattr});
     UnpublishObjectClass(fed,class);
     AttrOwnAcquisitionNotify(fed,obj,{oattr})
  =>  SoundOwners'
]

/* Now check that target owners is maintained correctly when ownership is transferred 
unconditionally */

UnconditionalSoundTargets(fed1:FED, obj:OBJECT, targets:set FED, oattrs1:set OATTR, 
             fed2:FED, oattrs2:set OATTR)::

[
|
  /* require the case we are interested in */
  not fed2 = fed1 and
  oattrs2 <= oattrs1 and
  SoundOwners and  

  TargetsUnowned and
     (RequestAttrOwnDivestiture(fed1,obj,targets,oattrs1);
      AttrOwnDivestNotify(fed1,obj,oattrs1);
      AttrOwnAcquisitionNotify(fed2,obj,oattrs2)) =>
  TargetsUnowned'
]
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/* And check for conditionally as well */

ConditionalSoundTargets(fed1:FED, obj:OBJECT, targets:set FED, oattrs1:set OATTR, 
             fed2:FED, oattrs2:set OATTR)::

[
  ExecutionState
|
  /* require the case we are interested in */
  not fed2 = fed1 and
  oattrs2 <= oattrs1 and
  SoundOwners and

  /* the targetowners still owned should be owned by the originating and be willing to divest */
  TargetsUnowned and 
     (RequestAttrOwnDivestiture(fed1,obj,targets,oattrs1);
      AttrOwnDivestNotify(fed1,obj,oattrs2);
      AttrOwnAcquisitionNotify(fed2,obj,oattrs2)) =>
  (ran TargetOwners' & ran Owns' = oattrs1 \ oattrs2 and
   dom (Owns' :> (oattrs1 \ oattrs2)) <= { fed1 } and
   {fed1} <: Un :> (oattrs1 \ oattrs2) <= WillingToDivest')
]
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Appendix D

NP Specification of HLA Bridges
/* Define the basic kinds of entities to consider */
[CLASS, ATTR, FED, OATTR, OBJECT]

/* Define the basic universe */

ObjectCollection = [
    Objects: set OBJECT
    FederationObjects : OBJECT -> FEDERATION
    Object_Attrs: set OATTR
    ObjectToClass: tot OBJECT -> CLASS
    ClassAttrsToClass: tot ATTR -> CLASS
    ObjAttrsToClassAttrs: tot OATTR -> ATTR
    ObjAttrsToObject: tot OATTR -> OBJECT
 |
   /* Only object attributes about known objects are of interest */
   Object_Attrs = dom (ObjAttrsToObject :> Objects)
   /* All current objects must be part of some federation */
   Objects = dom FederationObjects
 ]

GoodObjColl = [
    ObjectCollection
|
    ObjectToClass;ClassAttrsToClass~ = ObjAttrsToObject~;ObjAttrsToClassAttrs 
    (ObjAttrsToObject;ObjAttrsToObject~ & ObjAttrsToClassAttrs;ObjAttrsToClassAttrs~)  <= 
Id

/*  First invariant says that each instance has the attributes
specified by its class (or has the right number of attributes

2nd invariant states that the intersection of the
two equivalence relations on AttrTo Object and ObjAttrsToClassAttributes
intersect only when the same object attributes
are the subject, i.e., two object attributes can’t be of the
same type and belong to the same object instance  */
]
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/* Explicitly defined state */
SimState = [
    GoodObjColl
    Federates: set FED
    Federations : FED -> FEDERATION
    Publishing: FED <-> ATTR
    Owns: FED <-> OATTR
]

/* Implicitly defined state */
OwnershipInternalState = [
    WillingToDivest:FED <-> OATTR
    WillingToAccept: FED <-> OATTR
    TargetOwners : FED <-> OATTR
]

/* Allow bridges between federations */
BridgeState =
[
  SimState
  Bridges : set BRIDGE
  Maps : set MAP
  SurrogateFor : FED -> BRIDGE
  MapsFromObject : MAP -> OBJECT
  MapsToObject : MAP -> OBJECT
  ObjectMapping : OBJECT <-> OBJECT
  MapsForBridge : MAP -> BRIDGE 
|
  ran SurrogateFor = Bridges
  ran MapsForBridge = Bridges
  dom MapsForBridge = Maps
  dom MapsToObject = Maps
  dom MapsFromObject = Maps
  ObjectMapping = 

(MapsFromObject~ ; MapsToObject) U (MapsToObject~ ; MapsFromObject)
  dom ObjectMapping <= Objects  

  /* limitation -- allow only binary bridges, meaning each object mapped only once */
  ((MapsToObject U MapsFromObject);((MapsToObject U MapsFromObject)~)) &

 (MapsForBridge;(MapsForBridge~)) <= Id

  /* A bridge has one surrogate for each federation it participates in */
  SurrogateFor;SurrogateFor~ & Federations;Federations~ <= Id

  /* A bridge only maps objects into/out of a federation in which it has a surrogate */
  MapsForBridge~; (MapsFromObject U MapsToObject);FederationObjects <=

 SurrogateFor~;Federations

  /* Each object mapping must be across different  federations */
  (FederationObjects~;MapsFromObject~;MapsToObject;FederationObjects) & Id = {}
]

/* Total state to consider */
ExecutionState = [ SimState OwnershipInternalState BridgeState]
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/* Define any properties of the state */

/* Does more than one federate own any object attribute? */
NoTwoOwners = [ SimState | fun Owns~ ]

/* Force a non-empty state */
NonEmpty =  
[
   SimState
|
   Publishing  != {}
   Owns != {}
   Federates != {}
]

/* Check that the non-empty state allows two owners */
NoTwoOwnersForced = [NonEmpty | fun Owns~]  

/* Check that federates only own valid object attributes */
NoBadOwnedAttrs  =  
[
   SimState
|
   ran Owns <= Object_Attrs
]

/* Check that only valid federates own object attributes */
NoBadOwners = [SimState | dom Owns <= Federates]

/* Check that all federates that own object attributes also publish the corresponding class 
attribute */
OwnsOnlyIfPublishes = 
[

   SimState

|
   Owns;ObjAttrsToClassAttrs <= Publishing 
]

/* Check that all required properties hold */
SoundOwners = 
[
   NoTwoOwners
   NoBadOwnedAttrs
   NoBadOwners
   OwnsOnlyIfPublishes
]

/* Is every object attribute owned? (May be violated at times) */
CompleteOwners  = [SimState | ran Owns = Object_Attrs]

/* Is every announced willingness to divest for a currently owner attribute */
SoundDivestments = [ExecutionState | WillingToDivest <= Owns]

/* Is any current desire to acquire already satisfied */
SoundAccepts = [ExecutionState | WillingToAccept & Owns = {} ]

/* Does any potential owner already own the attribute */
TargetsUnowned = [ExecutionState | ran TargetOwners & ran Owns = {} ]
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/* Properties about bridges */
ObjectMappedOncePerFederation =
[
  BridgeState
|
  (FederationObjects~ ; (ObjectMapping+\Id) ; FederationObjects) & Id = {}
 ]

 AcyclicObjectMapping =
 [
   BridgeState
 |
   MapsForBridge~;(MapsFromObject U MapsToObject);ObjectMapping ; 
   (MapsFromObject~ U MapsToObject~);MapsForBridge <= Id

 ]

 NoBridgeCycles =
 [
   BridgeState
 |
   (((SurrogateFor;SurrogateFor~)\Id);((Federations;Federations~)\Id))+ & Id = {}
 ]
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/* Operations defined on the state */

/* Create an empty federation */
CreateFedExecution() = 
[
  ExecutionState
  SimState
|
  Objects' = {}
  Object_Attrs' = {}
  Federates' = {}
  Publishing' = {}
  Owns' = {}
  WillingToAccept' = {}
  WillingToDivest' = {}
  TargetOwners' = {}
]

/* Add a new federate to the federation */
JoinFedExecution(fed?:FED) = 
[
  ExecutionState
  const ObjectCollection
  const OwnershipInternalState
|
  fed? not in Federates
  Federates' = (Federates U {fed?})
  Publishing = Publishing'
  Owns' = Owns
] 
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/* Describe the relevant services */

/* Request Attribute Ownership Divestiture */
RequestAttrOwnDivestiture(fed?:FED, obj?:OBJECT, targets?:set FED, 

oattrs?:set OATTR) =
[
  ExecutionState
  const SimState
|
  fed? in Federates
  ObjAttrsToObject.oattrs? = {obj?}
  obj? in Objects
  /* ({fed?} <: Un :> oattrs?) is the same as {fed?} x oattrs? */
  ({fed?} <: Un :> oattrs?) <= Owns

  WillingToDivest' = WillingToDivest U ({fed?} <: Un :> oattrs?)
  WillingToAccept' = WillingToAccept
  TargetOwners' = TargetOwners U (targets? <: Un :> oattrs?)
]

/* Request Attribute ownership Assumption */
RequestAttrOwnAssumption(fed?:FED, obj?:OBJECT, oattrs?:set OATTR) =
[
  const ExecutionState
|
  fed? in Federates
  ObjAttrsToObject.oattrs? = {obj?}
  obj? in Objects

  ({fed?} <: Un :> oattrs?);ObjAttrsToClassAttrs <= Publishing
  ({fed?} <: Un :> oattrs?) & Owns = {}
] 

/* Request Attribute Ownership Acquisition */
RequestAttrOwnAcquisition(fed?:FED, obj?:OBJECT, oattrs?:set OATTR) =
[
  ExecutionState
  const SimState
|
  fed? in Federates
  ObjAttrsToObject.oattrs? = {obj?}
  obj? in Objects
  ({fed?} <: Un :> oattrs?);ObjAttrsToClassAttrs <= Publishing
  ({fed?} <: Un :> oattrs?) & Owns = {}

  WillingToDivest' = WillingToDivest 
  WillingToAccept' = WillingToAccept U ({fed?} <: Un :> oattrs?)
  TargetOwners' = TargetOwners
] 
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/* Attribue Ownership Divestiture Notification */
AttrOwnDivestNotify(fed?:FED, obj?:OBJECT, oattrs?:set OATTR) =
[
  ExecutionState
  const ObjectCollection
|
  fed? in Federates
  ObjAttrsToObject.oattrs? = {obj?}
  obj? in Objects
  ({fed?} <: Un :> oattrs?) <= Owns
  ({fed?} <: Un :> oattrs?) <= WillingToDivest

  Owns' = Owns \ ({fed?} <: Un :> oattrs?)
  Federates' = Federates
  Publishing' = Publishing

  WillingToDivest' = WillingToDivest \ ({fed?} <: Un :> oattrs?)
  WillingToAccept' = WillingToAccept
  TargetOwners' = TargetOwners
]

/* Attribute Ownership Acquisition Notification */
AttrOwnAcquisitionNotify(fed?:FED, obj?:OBJECT, oattrs?:set OATTR) =
[
  ExecutionState
  const ObjectCollection
|
  fed? in Federates
  ObjAttrsToObject.oattrs? = {obj?}
  Owns~.oattrs? = {}

  /* Only look for owners amongst the target owners */
  obj? in Objects
  oattrs? <= TargetOwners.{fed?}
  ({fed?} <: Un :> oattrs?) <= WillingToAccept

  Owns' = Owns U ({fed?} <: Un :> oattrs?)
  Federates' = Federates
  Publishing' = Publishing

  WillingToAccept' = WillingToAccept \ ({fed?} <: Un :> oattrs?)
  WillingToDivest' = WillingToDivest
  TargetOwners' = TargetOwners ;> oattrs?
]

/* Request Attribute Ownership Release */
RequestAttrOwnRelease(fed?:FED, obj?:OBJECT, oattrs?:set OATTR) = 
[
  const ExecutionState
|
  fed? in Federates
  ObjAttrsToObject.oattrs? = {obj?}
  obj? in Objects
  ({fed?} <: Un :> oattrs?) <= Owns
]
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/* Publish Object Class */
PublishObjectClass(fed?:FED, class?:CLASS, cattrs?: set ATTR) =
[
  ExecutionState
  const ObjectCollection
  const OwnershipInternalState
|
  ClassAttrsToClass.cattrs? = {class?} or cattrs? = {}
  fed? in Federates

  Federates' = Federates
  Publishing' = Publishing \ ( {fed?} <: Publishing :> (ClassAttrsToClass~.{class?}))
  U ({fed?} <: Un :> cattrs?)
  Owns' = Owns \ ({fed?} <: Owns :> ((ObjAttrsToClassAttrs;ClassAttrsToClass)~.{class?}))
]

/* Unpublish Object Class */
UnpublishObjectClass(fed?:FED, class?:CLASS) =
[
  ExecutionState
  const ObjectCollection
  const OwnershipInternalState
|
  fed? in Federates
  class? in ClassAttrsToClass.(Publishing.{fed?})  

  Federates' = Federates
  Publishing' = Publishing \ ( {fed?} <: Publishing :> (ClassAttrsToClass~.{class?}))
  Owns' = Owns \ ({fed?} <: Owns :> ((ObjAttrsToClassAttrs;ClassAttrsToClass)~.{class?}))
]
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/* Now construct the claims to test */

/* Check that each modifying operation maintains sound ownership */ 

ReqAttrDivSoundOwns(fed:FED, obj:OBJECT, targets:set FED, oattrs:set OATTR)::
   SoundOwners and RequestAttrOwnDivestiture(fed,obj,targets,oattrs) => SoundOwners'

ReqAttrAcqSoundOwns(fed:FED, obj:OBJECT, oattrs:set OATTR)::
   SoundOwners and RequestAttrOwnAcquisition(fed,obj,oattrs) => SoundOwners'

AttrDivNotSoundOwns(fed:FED, obj:OBJECT, oattrs:set OATTR)::
   SoundOwners and AttrOwnDivestNotify(fed,obj,oattrs) => SoundOwners'

AttrAcqNotSoundOwns(fed:FED, obj:OBJECT, oattrs:set OATTR)::
   SoundOwners and AttrOwnAcquisitionNotify(fed,obj,oattrs) => SoundOwners'

PublishSoundOwns(fed:FED, class:CLASS, cattrs:set ATTR)::
   SoundOwners and PublishObjectClass(fed,class,cattrs) => SoundOwners'

UnpublishSoundOwns(fed:FED, class:CLASS)::
   SoundOwners and UnpublishObjectClass(fed,class) => SoundOwners'

/* Check that willing to divest and accept stays sound */

ReqAttrDivSoundDiv(fed:FED, obj:OBJECT, targets:set FED, oattrs:set OATTR)::
   SoundDivestments and RequestAttrOwnDivestiture(fed,obj,targets,oattrs) => 
SoundDivestments'

AttrDivNotSoundDiv(fed:FED, obj:OBJECT, oattrs:set OATTR)::
   SoundDivestments and AttrOwnDivestNotify(fed,obj,oattrs) => SoundDivestments'

ReqAttrAcqSoundAcc(fed:FED, obj:OBJECT, oattrs:set OATTR)::
   SoundAccepts and RequestAttrOwnAcquisition(fed,obj,oattrs) => SoundAccepts'

AttrAcqNotSoundAcc(fed:FED, obj:OBJECT, oattrs:set OATTR)::
   SoundAccepts and AttrOwnAcquisitionNotify(fed,obj,oattrs) => SoundAccepts'

/* Check the bridge properties */

CheckObjectMapping:: BridgeState => ObjectMappedOncePerFederation

CheckMappingAcyclic:: BridgeState => AcyclicObjectMapping

CheckAcyclicObjMaps:: NoBridgeCycles => ObjectMappedOncePerFederation
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/***********************************************************************************/
/* Check against protocol executions, not just single operations                   */
/***********************************************************************************/

/* Check for complete ownership after a simple conditional divestiture */

ConditionalCompleteOwners(fed1:FED, fed2:FED, targets : set FED, obj:OBJECT,
 oattrs1:set OATTR, oattrs2:set OATTR)::

[
  ExecutionState
|
  /* require the case we are interested in */
  not fed2 = fed1 and
  fed2 in targets and
  oattrs2 <= oattrs1 and
  SoundOwners and

  CompleteOwners and
  /* the conditional divestiture of oattrs1, actually divesting oattrs2 */
     (RequestAttrOwnDivestiture(fed1,obj,targets,oattrs1);
      RequestAttrOwnAssumption(fed2,obj,oattrs1);
      RequestAttrOwnAcquisition(fed2,obj,oattrs2);
      AttrOwnDivestNotify(fed1,obj,oattrs2);
      AttrOwnAcquisitionNotify(fed2,obj,oattrs2)) =>
  CompleteOwners'
]

/* How about an unpublish in the middle of an acquisition */
UnpublishInAcquisition(fed:FED, obj:OBJECT, oattr : OATTR)::
[
  ObjectCollection
  const class : CLASS
|
  class = ClassAttrsToClass.(ObjAttrsToClassAttrs.oattr)
  obj = ObjAttrsToObject.oattr

  SoundOwners and
     RequestAttrOwnAcquisition(fed,obj,{oattr});
     UnpublishObjectClass(fed,class);
     AttrOwnAcquisitionNotify(fed,obj,{oattr})
  =>  SoundOwners'
]

/* Now check that target owners is maintained correctly when ownership is transferred 
unconditionally */

UnconditionalSoundTargets(fed1:FED, obj:OBJECT, targets:set FED, oattrs1:set OATTR, 
             fed2:FED, oattrs2:set OATTR)::

[
|
  /* require the case we are interested in */
  not fed2 = fed1 and
  oattrs2 <= oattrs1 and
  SoundOwners and  

  TargetsUnowned and
     (RequestAttrOwnDivestiture(fed1,obj,targets,oattrs1);
      AttrOwnDivestNotify(fed1,obj,oattrs1);
      AttrOwnAcquisitionNotify(fed2,obj,oattrs2)) =>
  TargetsUnowned'
]
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/* And check for conditionally as well */

ConditionalSoundTargets(fed1:FED, obj:OBJECT, targets:set FED, oattrs1:set OATTR, 
             fed2:FED, oattrs2:set OATTR)::

[
  ExecutionState
|
  /* require the case we are interested in */
  not fed2 = fed1 and
  oattrs2 <= oattrs1 and
  SoundOwners and

  /* the targetowners still owned should be owned by the originating and be willing to divest */
  TargetsUnowned and 
     (RequestAttrOwnDivestiture(fed1,obj,targets,oattrs1);
      AttrOwnDivestNotify(fed1,obj,oattrs2);
      AttrOwnAcquisitionNotify(fed2,obj,oattrs2)) =>
  (ran TargetOwners' & ran Owns' = oattrs1 \ oattrs2 and
   dom (Owns' :> (oattrs1 \ oattrs2)) <= { fed1 } and
   {fed1} <: Un :> (oattrs1 \ oattrs2) <= WillingToDivest')
]
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