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ABSTRACT
The human language is inherently unstructured. Human
authors never follow the strict rules of grammar because
their human readers possess cognitive abilities to interpret
the semantic meaning of unstructured human written text.
Since unstructured text possess ambiguities and uncertain-
ties, using probabilities to model human language is a nat-
ural choice. The investigation of a widely used probabilistic
model is the motivation of my survey here. This proba-
bilistic model known as Latent Dirichlet Allocation (LDA),
has seen widespread adoption in the field of information re-
trieval. As prelude to the introduction of LDA, I shall re-
view the Latent Semantic Analysis (LSA) and Probabilistic
Latent Semantic Analysis (PLSA) for historical interests.
Finally, I briefly discuss Hierarchical Latent Dirichlet Allo-
cation.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Clustering

General Terms
Probabilities and Statistics, Algorithms and Experimenta-
tion

Keywords
Bayesian Models, Gibbs Sampling, Singular Value Decom-
position

1. INTRODUCTION
Information Retrieval (IR) as a field emerged in computer

science when authors started storing their documents in dig-
ital format. IR importance increased after wide spread usage
of internet. Since there are millions of webpages on the inter-
net, users need a quick and simple way of finding web pages
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that are relevant to their information need. To fulfill the in-
formation need, internet search engines emerged to provide
search service for users. Traditionally, these search engines
were built using deterministic mathematical approaches such
as set theory, logic, linear algebra and combinatorics. How-
ever, unlike computer programming languages which follows
strict grammars and syntax, the common human language
is unstructured with great amount of ambiguity. The un-
structured nature of human language makes it difficult for
search engines to understand the semantic meaning of web
pages. To overcome the difficulty of understanding human
languages, an IR related field, Natural Language Processing
(NLP) emerged. Despite NLP progress, their scalability for
understanding the huge amount of text on the web is still
intractable. To make computation tractable for understand-
ing text documents, IR researchers have treated documents
using a simple approach known as bag-of-words. Using the
bag-of-words approach, IR researchers have been able to
cluster documents based on similarities between them.

A notable technique which uses the bag-of-words assump-
tion for document classification of a text corpus is Latent
Dirichlet Allocation (LDA) proposed by Blei et al [2]. The
success of LDA in the research community extends far be-
yond the field of Information Retrieval. LDA has also seen
wide application in related fields such as data mining and
multimedia classification. My survey here is motivated by
the importance of LDA and the bayesian principles used in
LDA. To gain a thorough understanding of LDA, it is neces-
sary to appreciate the predecessors of LDA, namely Latent
Semantic Analysis (LSA) [4] and Probabilistic Latent Se-
mantic Analysis (PLSA) [9].

Despite the success of these clustering techniques, it is
not clear how many clusters should be assigned to for a
text corpus. The naive approach performs the clustering
repeatedly by varying the number of clusters and observing
the scores of precision, recall and perplexity. To address the
issue of variable clusters, Blei et al proposed the Hierarchical
Latent Dirichlet Allocation (hLDA) based on principles of
nonparametric bayesian techniques [1]. Besides being able
to vary the number of clusters, hLDA also model subclusters
which meant that documents belonging to a cluster can be
further classified into specialized clusters. A close look at
the the Computer Science article in Figure 1 also reflects
this phenomenon.

The paper is organized as follows, we give a derivation of
LSA and show a basic folding-in technique for answering IR
queries in Section 2. Section 3 introduces PLSA for modeling



Figure 1: Snippet of Computer Science article in
Wikipedia

text documents. After reading PLSA, readers should be able
to appreciate the extension of PLSA to LDA in Section 4.2.
Section 5 will talk briefly about hLDA. Finally, we end the
paper with a conclusion in Section 6 and discuss what I have
learned in this survey.

2. LATENT SEMANTIC ANALYSIS
Latent Semantic Indexing is a linear algebraic technique

that uses Singular Value Decomposition(SVD) to factorize
a given matrix of term-document occurrence [4]. I will de-
scribe the factorization process of SVD, then show an exam-
ple of how SVD can be used to improve retrieval results.

2.1 Singular Value Decomposition

Definition 1. Suppose we have t number of terms and d
number of documents in our text corpus. We can form a
term by document matrix X of size t× d. SVD decomposes
X into the product of three matrices X = TSDT , where T
is a t × d matrix, S is a d × d matrix and DT is a d × d
matrix. T and DT are orthogonal matrices while S is a
diagonal matrix.

Lemma 1. Multiplying matrix X by its own transpose,
always yields a square matrix. XXT is a square matrix of
size t× t. XT X is a square matrix of size d× d.

Theorem 1. The square matrices XXT and XT X can
always be factorized into their corresponding eigenvectors
and eigenvalues. We will not discuss the proof in detail
here but interested readers might want to refer to [11] for
a detailed explanation.

We now show how to derive the matrices T , S and DT .

X = TSDT

XT = (TSDT )T

= DST T T

XXT = (TSDT )(DST T T )

= TS(DT D)ST T T

If we constrain D to be orthogonal, then DT = D−1. Hence,

XXT = TS(DT D)ST T T

= TS(D−1D)ST T T

= TSST T T

If we constrain S to be a diagonal matrix, then S = ST .
Hence,

XXT = TSST T T

= TS2T T

Doing the same manipulations for XT X and constraining T
to be orthogonal allow us to obtain

XT X = DST T T TSDT

= DS2DT

From Theorem 1, obtaining the eigenvectors of XXT and
XT X gives us T and DT respectively. Since LSA have been
mentioned in class, I will skip the examples of LSA.

2.2 Folding-in
Suppose we have a query q and we want to retrieve the

relevant documents in the reduced semantic space. First we
have to map q into the reduced semantic space dq.

q = TrSrd
T
q

T T
r q = T T

r TrSrd
T
q

S−1
r T T

r q = S−1
r Srd

T
q

S−1
r T T

r q = dT
q

dq = (S−1
r T T

r q)T

= qT TrS
−1
r

We can also apply the same method to update the matrices
without recomputing SVD. Suppose we have a updated term
document matrix X(t+m)×(d+q) where q represents number
of new documents and m represents number of new terms
in these documents. We can first compute the updated ma-
trices D(d+q)×r using the current Tt×r and Sr×r matrices
where r is the dimension of the reduced space.

Xt×q = Tt×rSr×rD
T
r×q

Dq×r = XT
q×tTt×rS

−1
r×r

Using the computed Dq×r, we append it to the current Dd×r

matrix to obtain a D(d+q)×r matrix. Then we compute the
new T(t+m)×r matrix.

Xm×q = Tm×rSr×rD
T
r×q

Xm×qDq×rS
−1
r×r = Tm×r

Tm×r = Xm×qDq×rS
−1
r×r

We also append the computed Tm×r to Tt×r and obtain a
T (t+m)×r matrix. Finally we have shown that the updated



term document matrix X(t+m)×(d+q) can be factorized in
this manner,

X(t+m)×(d+q) = T (t+m)×rSr×rD
T
r×(d+q)

3. PROBABILISTIC LATENT SEMANTIC
ANALYSIS

Definition 2. Suppose we have M number of documents
and V number of words in the vocabulary. Let dm be the
index for each document and wv be the occurence of word
v in the document dm. We define a joint probability model
P (dm, wv) as the probability of observing word v in the doc-
ument dm. As we have shown earlier in LSA, it is possible
to represent words and documents in latent space. PLSA
achieves the same effect by introducing a latent variable zk

that denotes the topic of each word in a document, where K
is the number of topics in the corpus and 1 ≤ k ≤ K. PLSA
makes several assumptions to define the model.

1. Given a document dm in the corpus, we are able to
infer the topic zk of the document, P (zk|dm).

2. Given a topic, we are able to infer which word v is
likely to appear, P (wv|zk).

With the introduction of this latent topic variable z, we
can define the joint probability of observing a word in the
document as P (dm, wv, zk), where

P (dm, wv, zk) = P (wv|zk)P (zk|dm)P (dm)

Since zk is latent and we can only observe dm and wv, then
we need to marginalize zk out of the equation by summing
over all possible values that zk can take.

P (dm, wv) =

K∑

k=1

P (dm, wv, zk)

=

K∑

k=1

P (wv|zk)P (zk|dm)P (dm)

=

K∑

k=1

P (wv|zk)P (zk)P (dm|zk)

We will like to define the probability of the entire corpus
P (d, w) where

P (d, w) =

M∏
m=1

V∏
v=1

P (dm, wv)

=

M∏
m=1

V∏
v=1

K∑

k=1

P (wv|zk)P (zk)P (dm|zk)

Before we proceed on, we will like to show its relation
to LSA. Suppose we assume that in our corpus in Table 1,
our documents consists of two main topics, then what we
want to find is the conditional probability tables here as
shown in Table 2. These conditional probabilities bear sim-
ilarities to the LSA formulation for a semantic space of two
dimension. These values should be filled in to maximize the
likelihood value P (d, w). In statistics, it is computationally
more tractable to maximize the log equivalent of likelihood

Table 1: An example for Bayesian Networks

d1: Learning Bayesian Networks
d2: Probabilistic Graphical Models
d3: Learning in Graphical Models
d4: Modern Information Retrieval
d5: Introduction to Data Mining
d6: Data Management and Information Retrieval

Terms Documents Matrix, X

Terms Documents

d1 d2 d3 d4 d5 d6

networks 1 0 0 0 0 0
learning 1 0 1 0 0 0
bayesian 1 0 0 0 0 0
graphical 0 1 1 0 0 0
models 0 1 1 0 0 0

information 0 0 0 1 0 1
retrieval 0 0 0 1 0 1

data 0 0 0 0 1 1
mining 0 0 0 0 1 0

Table 2: The Conditional Probability Tables
P (di|zk) d1 d2 d3 d4 d5 d6

z1 ? ? ? ? ? ?
z2 ? ? ? ? ? ?

P (wj |zk) w1 w2 w3 w4 w5 w6 w7 w8 w9

z1 ? ? ? ? ? ? ? ? ?
z2 ? ? ? ? ? ? ? ? ?

P (z1) ?
P (z2) ?

values, hence, the log likelihood L is often expressed in this
manner,

L = log P (d, w)

= log

M∏
m=1

V∏
v=1

K∑

k=1

P (wv|zk)P (zk)P (dm|zk)

=

M∑
m=1

V∑
v=1

n(dm, wv) log

K∑

k=1

P (wv|zk)P (zk)P (dm|zk)

where n(dm, wv) is the number of times word wv occur in
document dm. Maximizing the likelihood here by filling
in the conditional probability tables is essentially an opti-
mization problem. For maximizing likelihood, the Expecta-
tion Maximization algorithm often used for computing these
value [5]. We shall skip the full derivation here but inter-
ested readers may refer to [10]. We shall follow the equations
as described in [9] to compute these values. In the E step of
the algorithm, we first compute P (zk|dm, wv).

P (zk|dm, wv) =
P (zk)P (dm|zk)P (wv|zk)∑K
l=1 P (zl)P (dm|zl)P (wv|zl)

(1)



In the M step of the algorithm, we compute the quantities
P (wv|zk), P (dm|zk), P (zk).

P (wv|zk) =

∑M
m=1 n(dm, wv)P (zk|dm, wv)∑M

m=1

∑N
n=1 n(dv, wn)P (zk|dv, wn)

(2)

P (dm|zk) =

∑V
v=1 n(dm, wv)P (zk|dm, wv)∑N

n=1

∑V
v=1 n(dn, wv)P (zk|dn, wv)

(3)

P (zk) =

∑M
m=1

∑V
v=1 n(dm, wv)P (zk|dm, wv)∑M
m=1

∑V
v=1 n(dm, wv)

(4)

After running the EM algorithm, we get such values in
Table 3.

Table 3: The Conditional Probability Tables
P (di|zk) d1 d2 d3 d4 d5 d6

z1 0 0 0 0.29 0.29 0.43
z2 0.38 0.25 0.38 0 0 0

P (wj |zk) w1 w2 w3 w4 w5 w6 w7 w8 w9
z1 0 0 0 0 0 0.29 0.29 0.29 0.14
z2 0.13 0.25 0.13 0.25 0.25 0 0 0 0

P (z1) 0.47
P (z2) 0.53

Since PLSA is a probabilistic technique, the results of
small samples may not always be consistent. Therefore, we
ran experiments on a corpus of a larger size. Using text cor-
pus from wikipedia articles for Computer science, Informa-
tion theory, Cryptography, Cryptanalysis, History of cryp-
tography, Database, Data mining and Information retrieval.
We run PLSA on these articles. Then we rank the words
and obtain the following sets of words for each topic. Refer
to Table 4 for the results.

Table 4: List of words by topics using PLSA and
LDA
PLSA Topic 1 LDA Topic 1 PLSA Topic 2 LDA Topic 2

data data cipher comput
databas databas kei inform
mine comput cryptographi cipher

pattern inform inform kei
relat mine us cryptographi
us system encrypt us

model model attack system
object scienc algorithm algorithm
system retriev secur theori
inform pattern cryptanalysi attack
applic us cryptograph encrypt

set document code secur
transact object messag cryptanalysi

lock relat channel cryptograph
manag program comput code

3 applic system messag
program queri theori channel
exampl 3 commun scienc
oper transact entropi commun

document set develop entropi

4. LATENT DIRICHLET ALLOCATION
Because of the heavy use of probabilities and symbolic

notations here, I will first like to go through the basics of
probabilities. I introduce these notations here instead of
the previous section because PLSA is significantly simpler
than LDA. I also provide a toy example using Dice Toss to
illustrate the basic principles of bayesian parameter learning.
It is important to understand this section before moving on
to the section on LDA model.

4.1 Probabilities and Identities

Γ(x) = (x− 1)!∫ 1

0

fa−1(1− f)b−1 df =
Γ(a)Γ(b)

Γ(a + b)
∫ 1

0

N∏
i=1

fai−1
i df =

∏N
i=1 Γ(ai)

Γ(
∑N

i=1 ai)

B(a) =

∏N
i=1 Γ(ai)

Γ(
∑N

i=1 ai)

4.1.1 Dice Toss Toy Example
Suppose I have a dice of I sides. I toss the dice and the

probability of landing on side i is p(s = i|f) = fi. I throw
the dice N number of times and obtain a set of results s
where s = (s1, s2, s3, . . . , sn, . . . , sN ). We can specify the
probability of observing this set of results in this manner,

p(s|f) =

N∏
n=1

p(sn|f)

= fn1
1 fn2

2 fn3
3 . . . fni

i . . . fnI
I

=

I∏
i=1

fni
i (5)

where ni denotes the number of times side i appear. Notice
that the

∏N
n=1 has been changed to

∏I
i=1. The

∏trials
n=1 has

been expressed as
∏states

i=1 .
Suppose that f is a dirichlet distribution with a as hyper-

parameters. Then we express the probability distribution of
f as,

p(f |a) =
Γ(

∑I
i=1 ai)∏I

i=1 Γ(ai)

I∏
i=1

fai−1
i

If we want to update the parameter f base on the observa-
tion of s, then we can express f in this manner.

p(f |s, a) =
p(s|f, a)p(f |a)∫ 1

0
p(s|f, a)p(f |a) df

=

∏I
i=1 fni

i
Γ(

∑I
i=1 ai)∏I

i=1 Γ(ai)

∏I
i=1 fai−1

i

∫ 1

0

∏I
i=1 fni

i

Γ(
∑I

i=1 ai)∏I
i=1 Γ(ai)

∏I
i=1 fai−1

i df

=

Γ(
∑I

i=1 ai)∏I
i=1 Γ(ai)

∏I
i=1 fni+ai−1

i

Γ(
∑I

i=1 ai)∏I
i=1 Γ(ai)

∫ 1

0

∏I
i=1 fni+ai−1

i df

=
Γ(

∑I
i=1 ni + ai)∏I

i=1 Γ(ni + ai)

I∏
i=1

fni+ai−1
i

Notice that after updating f base on s observations, f is
still a dirichlet distribution. This property is known as
conjugate priors. Base on this property, estimating the
parameters fi after observing n trials is a simple count-
ing procedure. Suppose I want to obtain fx from f =



(f1, f2, . . . , fx, . . . , fi, . . . , fI),

E(fx|s, a)

=

∫ 1

0

fxp(f |s, a) df

=

∫ 1

0

fxp(f |s, a) df

=

∫ 1

0

fx
Γ(

∑I
i=1 ni + ai)∏I

i=1 Γ(ni + ai)

I∏
i=1

fni+ai−1
i df

=
Γ(

∑I
i=1 ni + ai)∏I

i=1 Γ(ni + ai)

∫ 1

0

fnx+ax
x

I∏

i=1,i 6=x

fni+ai−1
i df

=
Γ(

∑I
i=1 ni + ai)∏I

i=1 Γ(ni + ai)

Γ(nx + ax + 1)
∏I

i=1,i 6=x Γ(ni + ai)

Γ(nx + ax + 1 +
∑I

i=1,i6=x ni + ai)

=
Γ(

∑I
i=1 ni + ai)Γ(nx + ax + 1)

Γ(nx + ax)Γ(1 +
∑I

i=1 ni + ai)

=
nx + ax∑I
i=1 ni + ai

(6)

Now I show the Collapsed Gibbs Sampling for this toy ex-
ample. Suppose we want to obtain f but do not have the
counts of occurence ni. We can generate the samples sn us-
ing f by deriving a markov chain, p(sn|s−n, a), where s−n

represents all samples except sn. Using the above results,

p(sn = i|s−n, a) = E(fi|s−n, a)

=
ni + ai

(
∑I

i=1 ni + ai)
(7)

I will show later in Algorithm 1 how we adjust the parame-
ters by excluding the results of sn in s−n.

4.2 LDA Model

M

N

α z wθ

β

K

Φ

Figure 2: Latent Dirichlet Allocation

Refer to Figure 2 for a graphical description of LDA in
plate notation form.

Definition 3. Suppose we have M documents and N words
in document m. Let θm represent the dirichlet distribu-
tion of topics in each document m and α are the hyper-
parameters of the dirichlet distribution. Let wm,n be the
index of the word n in document m and zm,n be the topic k
of each word wm,n. Let φk represent the dirichlet distribu-
tion of words over topic k with β as hyper-parameters.

Formally, the LDA model can be described mathematically
in this manner,

α = (α1, . . . , αk, . . . , αK)

p(θm|α) =
Γ(

∑K
k=1 αk)∏K

k=1 Γ(αk)
θα1−1

m,1 . . . θαK−1
m,K

=
Γ(

∑K
k=1 αk)∏K

k=1 Γ(αk)

K∏

k=1

θαk−1
m,k

β = (α1, . . . , αv, . . . , αV )

p(φk|β) =
Γ(

∑V
v=1 βv)∏V

v=1 Γ(βv)
φβ1−1

k,1 . . . φβV −1
k,V

=
Γ(

∑V
v=1 βv)∏V

v=1 Γ(βv)

V∏
v=1

φβv−1
k,v

The discrete values zm,n depends on the topic distribution
of each document m.

p(zm,n = k|θm) = θm,k

The probability of observing each word wm,n in document
m depends on the discrete topic zm,n and word distribution
φ.

p(wm,n = v|zm,n = k, φ) = φk,v

The joint probability of observing a word is,

p(wm,n, zm,n, φ, θm|α, β)

= p(wm,n|zm,n, φ)p(zm,n|θm)p(φ|β)p(θm|α)

The joint probability of observing a corpus is

p(w, z, φ, θ|α, β)

=

M∏
m=1

N∏
n=1

p(wm,n, zm,n, φ, θm|α, β)

=

M∏
m=1

p(θm|α)

N∏
n=1

p(zm,n|θm)p(wm,n|zm,n, φ)

What we want to solve for are the parameters θ and φ. There
are many ways of solving this model. I present a collapsed
Gibbs Sampling approach to find these parameters [7, 8].

4.3 Gibbs Sampling
Gibbs Sampling is commonly used when it is hard to de-

rive an analytical expression of a single variable from the
joint probability distribution. Our main objective is to ob-
tain,

θ = (θ1,1, θ1,2, . . . , θm,k, . . . , θM,K)

θm,k =
n(m, k) + αk∑K

k=1 n(m, k) + αk

(8)

φ = (φ1,1, φ1,2, . . . , φk,v, . . . , φK,V )

φk,v =
n(k, v) + βv∑V

v=1 n(k, v) + βv

(9)

where nk,v is the number of times word v has been assigned
topic k and here nm,k is the number of times topic k appear
in document m. But n(m,k) and n(k,v) are unknown to us
now.

The Gibbs Sampling algorithm allows us to reduce the pa-
rameter estimation problem to a simple counting and sam-
pling process. We will like to derive a sampling, counting



and update procedure for estimating the parameters and la-
tent variables.

4.3.1 Collapsed Gibbs Sampling
Following the approach in [7, 8], we integrate the φ and θ

parameters to obtain the following,

p(z, w|α, β) = p(w|z, β)p(z|α)

p(w|z, β) =

∫
p(w, φ|z, β) dφ

=

∫
p(w|z, φ, β)p(φ|z, β) dφ

=

∫
p(w|z, φ)p(φ|β) dφ

=

∫ K∏

k=1

(
V∏

v=1

φ
nk,v

k,v

)
Γ(

∑V
v=1 βv)∏V

v=1 Γ(βv)

(
V∏

v=1

φβv−1
k,v

)
dφ

=

∫ K∏

k=1

Γ(
∑V

v=1 βv)∏V
v=1 Γ(βv)

V∏
v=1

φ
nk,v+βv−1

k,v dφ

=

K∏

k=1

Γ(
∑V

v=1 βv)∏V
v=1 Γ(βv)

∫ V∏
v=1

φ
nk,v+βv−1

k,v dφ

=

K∏

k=1

Γ(
∑V

v=1 βv)∏V
v=1 Γ(βv)

∏V
v=1 Γ(βv + nk,v)

Γ(
∑V

v=1 βv + nk,v)

p(z|α) =

∫
p(z, θ|α) dθ

=

∫
p(z|θ, α)p(θ|α) dθ

=

∫
p(z|θ)p(θ|α) dθ

=

∫ M∏
m=1

(
K∏

k=1

θ
nm,k

m,k

)
Γ(

∑K
k=1 αk)∏K

k=1 Γ(αk)

(
K∏

k=1

θ
αk−1
m,k

)
dθ

=

∫ M∏
m=1

Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏

k=1

θ
nm,k+αk−1

m,k dθ

=

M∏
m=1

Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

∫ K∏

k=1

θ
nm,k+αk−1

m,k dθ

=

M∏
m=1

Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

∏K
k=1 Γ(αk + nm,k)

Γ(
∑K

k=1 αk + nm,k)

At this point, we can observe that the form of p(z, w|α, β)
is similar to the Dice Toss toy example discussed earlier.
The derivation of the markov chain updates will be summa-
rized and simplified since we have already seen the dice toss

example. Hence, deriving the chain updates.

p(zi = k|z−i, w, α, β) =
p(w, z|α, β)

p(z−i, w|α, β)

=
p(w, z|α, β)

p(z−i, w|α, β)

=
p(w|z, β)p(z|α)

p(z−i, w−i|α, β)p(wi|α, β)

=
p(w|z, β)p(z|α)

p(w−i|z−i, β)p(z−i|α)p(wi|α, β)

∝ p(w|z, β)p(z|α)

p(w−i|z−i, β)p(z−i|α)

∝ βv + nk,v∑V
v=1 βv + nk,v

.
αk + nm,k∑K

k=1 αk + nm,k

(10)

Equation 10 follows Equation 6 and 7 earlier in the dice toss
example. Now with Equation 8, 9 and 10, we are ready to
look at Algorithm 1. Algorithm 1 outputs the parameters
that tells us the topic distribution in documents and topic
distribution in words. Refer to Table 4 for a summarize
comparison with PLSA.

5. HIERARCHICAL LATENT DIRICHLET
ALLOCATION

The LDA presented in previous section fails to address
one issue: how many topics to use for a text corpus. Blei
proposed a Hierarchical Latent Dirichlet Allocation (hLDA)
based on nonparametric Bayesian statistics [1]. In nonpara-
metric Bayesian statistics, the probability of observing a
word in a document follows the probability distribution of
stochastic processes instead of dirichlet distributions. The
stochastic processes proposed in hLDA is a combination of
two classical stochastic processes. The first stochastic pro-
cess known as the Chinese restaurant process allows the
number of topics to grow infinitely as many as required.
The second stochastic process known as the stick breaking
process allows for the division of topics into specialized top-
ics to form a hierarchy of topics. Putting this two stochastic
processes together, Blei call it the nested Chinese restau-
rant process [1]. Figure 3 shows an example of the words
associated with the hierarchical topics of hLDA. I took this
example from [3].
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Figure 3: Hierarchical Latent Dirichlet Allocation



Algorithm 1 LDA

Initialize z[M ][N ], nkv[K, V ] and nmk[M, K] arrays to 0
Initialize β[V ] and α[K] to 1
docs[M ][N ] ← read in documents
for m ← 1 to M do

for n ← 1 to N do
k ← a random number between 1 and K
v ← docs[m][n]
nkv[k, v] ← nkv[k, v] + 1
nmk[m, k] ← nmk[m, k] + 1
z[m][n] ← k

end for
end for
while run for 1000 iterations do

for m ← 1 to M do
for n ← 1 to N do

k ← z[m][n]
v ← docs[m][n]
{The subtraction here corresponds to z−i}
nkv[k, v] ← nkv[k, v]− 1
nmk[m, k] ← nmk[m, k]− 1
for k ← 1 to K do

p[k] ← β[v]∗nkv[k,v]∑V
v=1 β[v]+nkv[k,v]

∗ α[k]+nmk[m,k]∑K
k=1 α[k]+nmk[m,k]

end for
for k ← 2 to K do

p[k] ← p[k] + p[k − 1]
end for
u ← a random number between 0 and 1
u ← u ∗ p[K]
for k ← 1 to K do

if p[k] > u then
break and use current k

end if
end for
nkv[k, v] ← nkv[k, v] + 1
nmk[m, k] ← nmk[m, k] + 1
z[m][n] ← k

end for
end for

end while
Initialize φ[K, V ] and θ[M, K]
for k ← 1 to K do

for v ← 1 to V do
φ[k, v] ← nkv[k,v]+β[v]∑V

v=1 nkv[k,v]+β[v]

end for
for m ← 1 to M do

θ[m, k] ← nmk[m,k]+α[k]∑K
k=1 nmk[m,k]+α[k]

end for
end for
return φ[K, V ] and θ[M, K].

6. CONCLUSION
I have presented in detail, the formulation of LDA and the

derivation of the Gibbs Sampling technique for solving LDA.
The derivation is necessary because the math equations are
hard to understand without working through it ourselves.
I believe my derivation of LDA Gibbs Sampling is much
more thorough than [7] and [8]. This will be useful for other
researchers who are relatively new to Bayesian parameter
learning.

In earlier section, LSA and PLSA was presented because
of their incremental advances leading to the invention of
LDA. Then I have briefly discussed hLDA. Although the
mathematical formulation of LSA, PLSA and LDA are dif-
ferent, they are fundamentally performing the same task,
grouping similar terms and documents together. Whether
is it algebraic method or probabilistic method, all mathe-
matical techniques aim to achieve the similar objective of
representing unstructured data into structured and well or-
ganized knowledge. The semantics of linear algebra is sig-
nificantly much simpler than PLSA and LDA. PLSA also is
much simpler than LDA. However, probabilistic representa-
tion is much simpler to understand when we want to inter-
pret the results. Having prior knowledge of the text corpus
and using the bayesian formalism in PLSA and LDA allow
us to process the text corpus quickly. One notable difference
between LSA and LDA is that LDA allows the number of
topics to exceed the number of documents which expands
the semantic space rather than reducing it. However, the
results of expanding semantic space requires further valida-
tion.

One question remains in my mind. Since the mathemat-
ics of LDA is so much harder, what makes it different from
PLSA? The difference is not obvious since both techniques
uses probabilities for defining the topics of documents and
words. Girolami addressed this issue in [6] and explained
that LDA introduces dirichlet priors which avoids an over-
fitting problem in the text corpus. Another issue that I have
not addressed is how does such document classification im-
prove IR results? Wei and Croft have shown that LDA does
improve IR results [12]. Finally, I have not give an in-depth
explanation of hLDA. hLDA builds on the field of nonpara-
metric Bayesian statistics which requires a thorough theo-
retical foundation in this area. hLDA was proposed a year
later after LDA but the research community have readily
adopted LDA instead of hLDA. This is because the research
community have not fully understood how to interpret the
topics discovered by LDA, hence, the usefulness of hLDA is
still limited by our understanding of text.
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APPENDIX
I wrote these programs myself.

A. RUNNING PROGRAMS

A.1 PLSA for Toy Example
1. Run Matlab.

2. Run the script EM from the directory \matlab\.
3. Run the script a few times to observe the random re-

sults generated.

This random results obtained motivated me to use a larger
text corpus in the next section.

A.2 PLSA for wikipedia articles
1. Run Matlab.

2. Run the script PLSA from the directory \matlab\.
3. This will take some time.

A.3 LDA
I wrote LDA with reference to an existing C++ imple-

mentation of Gibbs Sampling from [8].

1. Run TopicModel\LDAGibbsSampling\bin\Release
\LDAGibbsSampling.exe

2. This is quite fast.

A.4 LDA Gutenberg corpus
1. Run TopicModel\Gutenberg\bin\Release
\Gutenberg.exe <no. of topics>

2. This is will take some time.

3. results store in results.<no. of topics>.topics.txt

The results are shown here.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
(Nature) (Western

Lifestyle)
(Politics &
History)

(Casual) (Biology)

species coffee great said bone
water co king man disease
great house war time tissue
light pounds government know skin
found de states see blood
time trade century good treatment
see states made come infection
body united sidenote mr joint
work illustration time day patient
man york france made cases
illustration tea england go form
form cafe state old nerve
feet roasting church say met
part years years where fig
thus made people thought tissues
animals water french eyes glands
made london part hand bones
life cup work room pain
where green german went result
seen time general came wound

Title Nature Western
Lifestyle

Politics
&
History

Casual Biology

A Book of Natural History 87.91% 0.05% 0.05% 11.97% 0.02%
A Tale of Two Cities 0.02% 0.00% 0.04% 99.94% 0.00%
Adventures of Tom Sawyer 0.03% 0.01% 0.06% 99.90% 0.01%
Alice In Wonderland 0.11% 0.01% 0.07% 99.79% 0.02%
All About Coffee 3.83% 85.06% 5.46% 5.65% 0.00%
An Introduction to the His-
tory of Western Europe

0.00% 0.00% 99.93% 0.07% 0.00%

Current History, A Monthly
Magazine

0.02% 0.01% 79.42% 20.55% 0.00%

Discourse on the method of
rightly conducting the reason
and seeking truth in the sci-
ences

53.25% 0.02% 13.23% 32.75% 0.74%

Dracula 0.00% 0.01% 0.00% 99.98% 0.00%
Emma 0.00% 0.00% 0.00% 99.99% 0.00%
Encyclopaedia Britannica,
11th Edition

19.66% 0.23% 80.08% 0.00% 0.02%

Frankenstein 5.52% 0.01% 1.16% 93.29% 0.02%
General Science 98.53% 1.42% 0.04% 0.00% 0.01%
History of the United States 0.01% 0.00% 99.90% 0.09% 0.00%
Jane Eyre 0.21% 0.02% 0.00% 99.77% 0.00%
Les Miserables 0.65% 0.00% 1.69% 97.65% 0.01%
Manners, Custom and Dress
During the Middle Ages and
During the Renaissance Pe-
riod

4.12% 0.00% 86.17% 9.71% 0.01%

Manual of Surgery 8.76% 0.00% 0.01% 0.01% 91.21%
Metamorphosis 0.04% 0.02% 0.19% 99.73% 0.02%
Music Notation and Termi-
nology

99.88% 0.01% 0.05% 0.05% 0.01%

Natural History of the Mam-
malia of India and Ceylon

99.93% 0.01% 0.00% 0.06% 0.00%

On the origin of species 99.99% 0.00% 0.00% 0.01% 0.00%
Romeo and Juliet 0.03% 0.03% 0.01% 99.90% 0.02%
The Adventures of Sherlock
Holmes

2.30% 0.20% 0.56% 96.93% 0.00%

The Art of War 9.85% 0.02% 76.20% 13.93% 0.01%
The Communist Manifesto 6.98% 0.07% 92.75% 0.14% 0.06%
The Kama Sutra of Vat-
syayana

24.90% 0.01% 13.44% 61.62% 0.03%

The Last Supper 20.30% 0.11% 72.47% 7.02% 0.11%
The Notebooks of Leonardo
Da Vinci

92.85% 0.00% 0.80% 6.35% 0.00%

The Outline of Science 98.24% 0.02% 0.04% 1.67% 0.03%
The Practice and Science Of
Drawing

92.31% 0.00% 0.06% 7.61% 0.01%

The Prehistoric World 89.38% 0.00% 10.55% 0.06% 0.01%
The Romance of Lust 0.00% 0.00% 0.00% 99.99% 0.00%
The Tempest 1.79% 0.07% 10.96% 87.10% 0.08%
War and Peace 0.00% 0.00% 0.00% 99.99% 0.00%
Woman as Decoration 40.24% 0.01% 22.98% 36.74% 0.02%


