Surveying the field of computing

third edition

by Carl Burch

Copyright(©1999 by Carl Burch
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,

or transmitted, in any form or by any means, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the author. Permission is granted to reproduce and
distribute the document provided it is unedited and in its entirety.

Contents

Listof exercises o iv

Syllabus v

1998 QUIZ X

Acknowledgments Xii

First Unit: Foundations 1

1 OVEIVIEW . . . o o e e 2
1.1 What is computer science? 2
1.2 Outline 3
13 Whattoexpect 4

2 Problemsandalgorithms 5
2.1 Problems 5
2.2 Solutions 6
2.3 Undecidability (optional) 7

3 High-levelprocedure 8
3.1 Pseudocode 8
3.2 Flowcharts 10

Second Unit: Programming 13

4 Programmingoverview 15
4.1 The programming process. o o v v v it 15
4.2 Asimpleprogram 16
4.3 Tipsforwritingprograms 18

5 Variables 20
51 Basicdatatypes 20
5.2 Declarations e 21
5.3 ASSIgNMENTES L 22
5.4 EXpressions 22
5.5 Inputandoutput 23

6 Controlstatements 25
6.1 Conditional statements 25
6.2 lteration statements 29

6.3 Extendedexample 31

il CONTENTS

7 Functions e
7.1 Functioncalls
7.2 Functiondefinitions
7.3 Extendedexample
7.4 Parametersand variables L.

8 Complexdatatypes e
8.1 Arrays
8.2 SUINGS o
8.3 Structures

9 Objects
9.1 Object-orienteddesign
9.2 Definingobjects
9.3 Additional objectconcepts oo

Third Unit: Recursion 51

10 Recursion e
10.1 Definition
10.2 Exponentiation.
10.3 TowerofHanoi

11 Playinggames
111 Gametreesearch
11.2 Heuristics e
11.3 Alpha-betasearch

Fourth Unit: Internet 67

12 Networkingfundamentals
12.1 Representingdata
12.2 Divisionoflabor

13 Transportingpackets
13.1 Machinenames
13.2 Findingaroute

14 Putting packetstogether. L
141 CONNECLIONS o
14.2 Reliabledelivery

15 USINgMESSAGES v v v o i e
151 HTTP . . .
152 SMTP . . .

16 Cryptography e
16.1 Protocols
16.2 Private-key cryptography
16.3 Communicatinganaverage o e

Fifth Unit: Algorithms 89

17 Analyzing algorithmspeed

17.1 Comparing algorithms

CONTENTSIii

17.2 Findingbig-Obounds 91
18 Divideand conquer. 95
181 Sorting. 95
18.2 Multiplication. 97
19 Dynamic programming e e e e e 102
19.1 Fibonaccinumbers. 102
19.2 Makingchange 103
19.3 All-pairsshortestpaths 104
Sixth Unit: Appendices 107
A C++syntaxreference 108
B Symbols 111
C Mathematical concepts 112
(O Logarithms 112
Cc.2 Induction 112
C3 GeometricSeries. 113
C4 Recurrences e 113
C5 Graphs e 113
C.6 Mathematical notation 115
D Exercisesolutions 116

INdeX e e e, 123

List of exercises

1.1
2.1
2.2
3.1
3.2
4.1
5.1
5.2
5.3
5.4
6.1
6.2
6.3
6.4
6.5
6.6
6.7
7.1
8.1
8.2
8.3
8.4
9.1
10.1
10.2
111
16.1
16.2
17.1
17.2
17.3
C1l

Computer science definition L. 3
TheSearch problem (Solution, 116). 6
Algorithms forSquare-Root (Solution, 116). 7
Pseudocode f@quare-Root (Solution, 117). 10
Flowchart foilSquare-Root (Solution, 118). 11
Compiling “hello, world” 17
Classifying constants (Solution, 118) 21
Variable names (Solution, 118)o 21
Expressions (arithmetic) (Solution,118) 23
Program: Age (Solution, 118) 24
Expressions (logical) (Solution, 119) 28
Leap year condition (Solution, 119)... 29
Conditional errors (Solution, 119) 29
Program: Division (Solution, 119) 29
Translating &or loop (Solution,119) 32
Loop errors (Solution, 119). 33
Program: Checkbook (decimals) 33
Program: Checkbook (rationals) 38
Removing duplicates (Solution, 120) 41
Program: Median finding (Solution, 12Q). 41
Program: Palindromes (Solution, 121) 42
Defining a library book (Solution, 121) 43
Checkbook (objects) e 49
Program: Printing all subsets (Solution,121) 59
Program: Printingsome subsets
Gametree proof 65
Decrypting a substitution cipher (Solution, 122). 87
Votingusingthetotal 88
Ordering functions (Solution, 122) 91
Big-O bounds for expressions (Solution, 122) 91
Big-O bounds fosquare-Root (Solution, 122) 93
INdUCION ONCOWS. e e e e e 113

Syllabus

Course overview

Our goal isto understand thecope techniques and contributions of the field of computer
science.

Topics

This is a survey course; we will move fairly rapidly through a series of topics. (Table 0.1 gives
an anticipated schedule.) The course is structured around four major areas, of which you should
have a fair understanding by the end of PGSS.

Programming fundamentals. You will be programming-literate by the end of the course.

Recursion. Between induction in Discrete Math and recursion in CS, you will have mastered
the use of constructive self-reference.

Internet. You will have learned the fundamentals of the Internet’s structure and operation.

Algorithms. You should appreciate the mathematical side to the study of algorithms, under-
standing especially the mathematical analysis of running time.

The course should be challenging, enlightening, and fun for everybody; please demand it!

For the inexperienced. ..

The CS core is particularly frustrating because a wide experience gap separates the students.
Many students have never attempted to understand computing before; a few have several com-
puter science courses behind them. No matter what, the beginners will be frustrated, and the
experienced students will be bored. Expect frustration.

But don’t be daunted: You are in the majority! The material is all targeted at you.

We will move very quickly. | encourage beginners especially to ask questions when they
don’t feel they completely understand the topic. It's tempting to think that maybe if you sit back
you will begin to understand later. but this doesn’t work. Ask!

The assignments will have multiple levels and will indicate what the beginner should do.
As an overachieving student, you may find it hard not to go to the highest level; nonetheless, |
recommend that beginners avoid this.

Experience shows that some students grasp programming quickly while others do not. This
is naturally frustrating for those among the latter. If programming doesn’t seem to be clicking
for you, | advise you to stick with it nonetheless — you will be a better person for the struggle,
and the effort will pay off when you try again in a few years.

vi Syllabus

Session| Material

1 Prologue

2

3

4

5 Programming
6

7

8 Recursion

9

10 Internet

11

12

13 Algorithms

14

15 Cryptography
16 TBA / Quiz
17 Evaluation / Epilogue

Table 0.1: Tentative schedule of topic coverage

For the experienced. ..

Everybodyshould find the CS core interesting and challenging! Unfortunately it is not pos-
sible within PGSS to have multiple sections of the CS core. But I still believe students who
have already studied computer science intensively can still learn a lot — at least if they allow
themselves.

This class employs three strategies for teaching experienced students without neglecting
those who have not seen much computer science before.

1. The assignments have multiple levels to which they may be completed. While the lower
levels are acceptable — nay, encouraged — for beginners, experienced programmers
should find the more advanced levels more interesting.

2. We will get programming behind us as quickly as possible, so that we can discuss material
experienced students are less likely to have seen.

3. During these programming lectures (Sessions 2—8 in Table 0.1), students who already
know how to program have the option of pursuing self-paced study. You can read more
about this at the end of this syllabus.

Learning resources

The CS core includes many facets intended to make this course challenging, enlightening, and
fun for everybody. Please take full advantage of them!

Vi

CS staff

Without question, the greatest resource at your disposal is the CS staff. We are employed full-
time to help you learn about CS. Never hesitate to ask for help!

Carl Burch burch@andrew.cmu.edu CS core instructor
Kirk Yenerall kyOh@andrew.cmu.edu lab/CTW instructor
Matt Huenerfauth matt@udel.edu TA
Rob Liebscher liebsche@cse.psu.edu TA
Merrie Ringel Meredith_Ringel@brown.edu TA

Programming classwork

Each weekly assignment includes a programming portion. Additionally, students in self-paced
study will have more programming assignments to complete. You will find these assignments
are the most effective learning resource for this class. Take them very seriously!

Collaboration: Stronglyencouraged! On the weekly programming assignments, you may
work in groups of up to threeCollaborationtogether is essential; you mawpt merely
cooperate by splitting the assignment between group membersmagget some help
from course staff and classmates, but the work must be primarily yours. List all collabo-
rators and helpers on what you hand in.

Help from staff: Encouraged! Feel free to buttonhole any of the course staff, any time, to talk
about assignments or class material. To make this easier for you, we frequently visit the
Baker Hall clusters to see if students can use our help. Sometimes this will be announced
(in class or on the Web page); other times we may just drop in.

Suggestion: Start early! Programming is notorious for almost always taking longer than ex-
pected. Also, starting early will avoid problems with computer and TA availability.

Submissions: Your group’s programming assignments must be submitted together electroni-
cally via the ‘Handin’ Web page. The electronic deadline is 2:30 pm Monday.

Solutions and evaluations: Soon after the deadline, we will post our solutions on the ‘Solu-
tions’ Web page. The course staff will evaluate your work; their evaluations will appear
on the ‘Grades’ Web page.

Cheating: Notencouraged! By not giving grades, PGSS removes the only incentive to cheat.
Any detected cheating cases will go straight to Dr Berget. Expulsion in such cases is
likely. It's not worth it!

Written classwork

This class includes a weekly written assignment. Again, these are a vital learning resource for
the class that you should take very seriously!

Collaboration: Encouraged! Feel free to work with your classmates (or with course staff)
about the written assignments as you search for a solution. You must write up your
solution on your own, however, and you should not show your write-up to other students.
Be sure to list all collaborators and helpers (including course staff) on what you hand in.

viii Syllabus

Help from staff: Encouraged! Again, feel free to buttonhole any of the course staff, any time,
to talk about the written work. We will also be happy to look over your write-up and
indicate any significant shortcomings. (Dothave classmates look over them, however.)

Submissions: Your written assignment may be submitted electronically (via the ‘Handin’ Web
page) or on paper (via the dorm mail room’s CS box). The deadline is 2:30 pm Monday.

Quiz

At the end of PGSS, the course staff must evaluate your performance for the PGSS recommen-

dation letter. A drawback of emphasizing groupwork so much on assignments is that there is no

reliable individual evaluation mechanism. The final quiz at the end is meant to address this.
There will be a short, 15-minute quiz at the penultimate session of class. Let me tell you

three reasons why you shouidt worry about this quiz.

e You may use both the textbook and any papers. (You cannot use computers, calculators,
people, and especially tangerines.)

e The quiz will primarily emphasize what has appeared on the assignments. You should
understand them already (after all, you completed them), but anyway it is a small amount
to study. The 1998 quiz appears in this book on page x.

e Forthe sake of argument, let's say the material has simply not clicked. Then no doubt the
course staff has helped you many times. If, then, you perform poorly on the quiz, we will
remember your struggle, and our evaluation will emphasize this, not quiz performance.
(Of course, it's even better if you will do well enough that we can emphasize both struggle
and success.)

Web page

The course Web page is a major component of course administration. Its address is (you might
as well memorize it now)http://www.cburch.com/ . This syllabus mentions much of
Web page elsewhere, but there are a few other useful parts.

Registration: Maintain your Web page account and password. This account is necessary for
submitting assignments, reading evaluations, and completing polls. Youeadive a
registration ticket on the first day of class to allow you to create your account.

Polls: Answer questions about how you would get the most from the CS core experience.

Comment box: Submit anonymous comments to me about what would contribute to the CS
core experience. Comments about any aspect of the course are welcome at any time,
whether anonymous or not.

Web links: Links to other sites on the Web relevant to the material we cover in class.

Lectures

Questions: Asking questions during lecture strongly recommended at all timel is very
easy to complacently sit back and become very lost, thinking you can get back on track
later; but in fact getting back on track is often impossible. Don't let this happen! Ask
guestions when you begin to feel even vaguely that you are falling behind.

Notes: | personally believe that note-taking (as commonly performed) often detracts from stu-
dent understanding. If you find your own notes useful as a learning aid, go ahead. In case
you would like to have a copy of notes during class for reference or annotation, antici-
pated notes will be available on the ‘Lecture’ Web page by the evening before lecture in
time for you to print them out.

Textbook

We will cover the textboolSurveying the field of computirfthird edition) fairly closely, at a
rate of roughly one chapter per lecture.

Self-paced track

The self-study option is for students with a fair amount of computer programming background
already (in any sophisticated programming language).

If you are eligible and select this option, instead of sitting in lecture studying the funda-
mentals of programming, you will be in the computer clusters (Baker 140) practicing. The CS
TAs will be there to answer questions and to monitor your work. (Mr Carl Burch, who will be
lecturing, regrets that he will be unable to attend.)

PGSS approves this option with certain restrictions:

1. The self-study option is availabtaly to those who have significant programming back-
ground. More specifically, the student is expected to be somewhat comfortable at least
with loops and arrays in some programming language.

2. You must be either at lecture or in Baker 140 during the scheduled class time. If you are
in Baker 140, you must study CS. (You cannot defer self-study to other times.) The TAs
will monitor and take attendance.

3. During this time, you will complete and submit exercises listed on the Web page. (Except
for Programming Exercise 0, you magptwork on the weekly assignments during class
time.) Your submissions will be evaluated by the course staff and will count toward your
final evaluation.

4. The TAs are there to answer any questions you have. In addition, we will often be in the
cluster at other times to answer questions. And of course you should always feel free to
stop any course staff, any time, to get help.

The self-study programming assignments are divided into exercises and projects. The exercises
are to ensure that you learn what is taught in lecture; you must do these first. The projects give
you the opportunity to learn material that we will not cover elsewhere.

1998 quiz

Quiz questions
You may use your book and your notes; you may not use classmates.

1. Write a program to determine whether a number the user enters is a multiple of 7. A
sample run:

Test what number? 1245
Not multiple of 7

#include <iostream>
#include <string>

int main() {

2. Write a function to count the number of occurrences of the nudlieran array. For
example, if our parameter arrayr is (5,9, 3,2, 9, 0), the function should retur®, since
9 occurs twice.

int countNines(const vector<int> &arr, int arr_len) {
int i;

for(= 0; i < arr_len; i=i+1) {

Xi

3.

Using big-O notation in terms of, what is the running time of the following function?
Explain your answer in one or two sentences.

public static int squareRootD(int n) {

int i = n;
while(i * i >= n) {
i=i-1;
}
return i + 1;
}
Solutions

1.

#include <iostream>
#include <string>

int main() {
cout << "Test what number? ";
int num;
cin >> num; /Il read number from user

iflnum % 7 == 0) { // test whether it is divisible by 7
cout << "Multiple of 7" << endl;

} else {
cout << "Not multiple of 7" << endl;

}
}
" int countNines(const vector<int> &arr, int arr_len) {
int i;
int count = 0; // this is the #9's we have seen so far
forG = 0 ;i < arr_len; =i+ 1) {
if(arri] == 9) {
count = count + 1; // we found another one
}
}

return count;

}

. O(n). The program beginsat » and subtracts 1 from it until it reachegn. So the

computer goes through the loop approximately /» times; the,/n term grows more
slowly than the: term, so we go through the lo@p(n) times. Each iteration takes O(1)
time (Constant Rule), so by the Iteration Rule, the total tim@(is).

Acknowledgments

The Pennsylvania Governor's School for the Sciences provided the occasion to put this book
together. | most especially want to recognize the 1997 PGSS class, who faithfully stuck with
me on the first iteration of this course, and the 1998 PGSS class, whose comments led to this
current edition. The suggestions and struggles of these students have shaped this course and
this book. | wish the students could benefit from what they taught me.

The author acknowledges Carnegie Mellon University and Charles and Cheri Burch for
providing the computing facilities on which this document was produced.

FIRST UNIT

Foundations

This begins the first unit of this texEoundations In this part, we learn about some of the
most fundamental aspects of computer science. We begin in Chapter 1 with an overview of
computer science and of this book. In Chapter 2 we look at the types of problems computer
science investigates and the solutions that it seeks. Finally, in Chapter 3, we examine at two
common ways for expressing procedure concisely, pseudocode and flowcharts.

Chapter 1

Overview

In this book we undertake to understand the discipline of computer science. Surveying this
vast field is a high goal, but it is nonetheless ours to pursue.

We are particularly interested in learning about the scope, techniques, and contributions of
computer science. Our approach is to look at a variety of different parts, so that you can draw
an educated picture about what computer science is about. To use the dhiehiill see the
trees; you will draw the forest.

But before we attempt to examine these trees, we glance at the author’s vision of the for-
est. In this chapter we look at this outlook, and we see an outline describing how this book
approaches its goal of surveying the field of computing.

1.1 What is computer science?

“What is computer science?” is exactly the question this book attempts to answer. But let’s take
a crack at the question directl¢omputer scienceis the field of inquiry that asks, “How can
we solve problems most effectively?”

Understanding how to solve problems effectively is vital to advancing technology, even
without computers. That computer science was not a separate field until computers became
usable in the 1950’s, therefore, is surprising.

You may object thatomputerscience should be at least somewhat related to computers.
In fact, it is. Because computers can solve many problems automatically, they are important
problem-solving tools. But as computer scientists we are aware that computers are not fit for all
problems; our goal is to try to extend the domain of problems that can be approached automati-
cally (by computer).

As you might expect of a brilliant gem such as computer science, it has raaeisf Each
is enough for a lifetime of study. In this book we will hit many of them, but for now let us spend
just a few seconds on each of a selection of some of the more prominent facets.

Computational complexity asks, “What is the inherent hardness of problems?” This leads
to deep mathematical questions. Computational complexity researchers look for lower
bounds on how quickly particular problems can be solved.

Algorithms researchers ask, “What are provably fast algorithms for problems?” This question
is the inverse of computational complexity’s — instead of asking whatt be done for
a problem, it asks whatanbe done.

1.2 Outline 3

Artificial intelligence (abbreviated\l) asks, “How can we automatically behave ‘intelligently’?”
Al researchers attempt to find methods of emulating complex aspects of human behav-
ior. Learning, understanding, and planning are all difficult aspects that researchers are
examining.

Human—computer interaction (abbreviatedHCI) asks, “How can humans efficiently spec-
ify problems?” In many cases the biggest time sink in problem-solving is specifying
the problem itself. HCI researchers seek ways to improve computers’ interfaces so that
humans can use them more efficiently. They want to make computer use faster, more
pleasant, and more intuitive.

Programming languagesasks, “How can we best describe approaches to problems?” Re-
searchers seek better ways of specifying a method exactly, with mathematical rigor, in a
way that both humans and computers can understand the method quickly and easily.

Software systemsasks, “How can computers better help solve problems?” Software systems
researchers look for new ways to use computers’ capabilities. Some examples of current
software systems research include development of different programs to archive video, to
share files across a network, and to safely transfer money over the Internet.

Software engineering asks, “How can we develop complex systems better?” We want faster,
safer, simpler, more powerful software without spending too much more. Software engi-
neering researchers look for ways to alter the development process so that better software
is produced efficiently.

Hardware systems asks, “How can we develop better problem-solving machines?” Among
other things, researchers look for ways to build faster networks, to improve computer
reliability, and to use many processors in the same computer effectively.

These facets are widely different, touching a variety of the academic disciplines. Com-
puter scientists often collaborate with people from other university departments. Some of the
more common sources for collaboration are mathematics (computational complexity and algo-
rithms), the natural sciences (algorithms and Al), philosophy (Al and programming languages),
psychology (Al and HCI), sociology (HCI and software engineering), management (software
engineering), and electrical engineering (hardware systems). And of course computer scientists
work with each other, often across different parts of the field.

Exercise 1.1: We define computer science as the study of solving problems effectively. Do
you think this a reasonable definition? Is it general enough (covering all the facets)? Is it
specific enough (not hitting other fields)? Can you recommend an alternative definition?

1.2 Outline

All these questions that computer scientists ask can be overwhelming. The point is that com-
puter scientists ask a lot of neat questions. We can't possibly cover all of the field in a few
hours, in a few years, or even a few lifetimes. We can only sample a selection.

This text is structured around fiwenits each roughly corresponding to a major concept of
the course. Each unit contains two to six chapters; a chapter is meant to be a lesson conveying
a single topic, of a length reasonable for a single reading or a single lecture.

4 Overview

First Unit: Foundations We lay a foundation for learning about computer science, with a brief
introduction to the field and the problems it tries to solve.

Second Unit: Programming We examine how to write a program in a particular programming
language called C++. Our overall goal is this book is not to learn how to program. But
knowing how to program is crucial to a strong understanding of computer science (and it
is a useful skill anyway).

Third Unit: Recursion Once we understand programming fundamentals, we will be ready to
talk about more involved conceptfecursion the third unit, addresses a very useful
programming device called recursion, which requires a more abstract understanding of
programming. We will examine how it works and how we can use it for game-playing.
The game-playing chapter represents our first foray into “real” computer science.

Fourth Unit: Internet We concentrate on a major recent contribution of computer science to
the world at large: new approaches to information networks. In particular, we look at
many of the inherent problems, and we see details of how these are solved in the Internet.

Fifth Unit: Algorithms Finally, we look at mathematical aspects of algorithm design. We par-
ticularly concentrate on how to construct fast solutions for a problem.

After all this, we should have some idea of the breadth of computer science. We're omitting
entire fascinating subdisciplines in this survey. We simply cannot cover everything. The above
outline carves out a huge chunk that is more than enough. What we have selected makes an
exciting and interesting journey.

1.3 What to expect

The first thing you should draw from this book is a much deeper understanding of computer
science. This is the book’s purpose. But there are other benefits you will also accrue along the
way: writing procedure, manipulating procedure, and handling complexity.

Through studying this material you should become better at writing procedure. This is most
obvious as we studyrogrammingandRecursion Good programming involves communicating
a procedure well — so well, in fact, that even a computer can understand it. Programming is a
good way to learn how to think precisely about procedure.

Related to this, but slightly different, is manipulating procedure. Computer science treats
programs not only as solutions, but things to be considered and analyzed. We will be reasoning
closely about procedure igorithms*

Finally, through computer science you can learn to handle complexity better. Much of
computers and their software are terrifically complex instruments, and much of system design
involves handling complexity. The principal tool for attacking complexitghstraction This
is one of the big lessons driternet one of the most complex human systems developed.

Thus this course not only teaches specific material, it also teaches new, useful ways of
thinking. We begin our journey with the first step, as we examine more closely what we mean
by problemwhen we define computer science asshaly of solving problems effectively

*A word about this reasoning: It often gets rather mathematical. If you ever get mired in proofs, don’'t become too
discouraged. Most of the material is disjoint, so if you skip over a proof because it is giving you real difficulty, you
should be able to rejoin after it. The mathematics is meant to be accessible to those with a solid foundation in high
school algebra, but understanding mathematics well takes practice. Even very talented, mathematically-oriented
computer scientists are often confused.

Chapter 2

Problems and algorithms

If computer science is about solving problems effectively, we should be specific about our
terms. In this chapter we look more carefully at what we meaprbilemandsolution

2.1 Problems

A problem instanceis a question whose exact answer is well-defined. “Whagisi2?”, “Is
4097 prime?”, and “What's the shortest way to Tulsa?” are problems. “What is the meaning of
life, the universe, and everything?” is not; there is no accepted way to prove an answer wrong.
Usually we want techniques to solve entire sets of problem instances. A computer that only
calculate®3 - 42 is not very useful; but it is useful if it can calculate y for anyz andy. A
set of related problem instances we cagtirablem.
A problem is specified by iimputs. In the case of a computer that calculateg, the inputs
would be the specific values ofandy. In response to the inputs, the computer should produce
an answer, called itsutput. We describe a problem by specifying the input and desired output.

Problem Multiplication:
Input: two numbers: andy.
Output: the product ofr andy.

Another problem ifrimality. (Recall that: is prime if only 1 andr dividen exactly.)

Problem Primality:
Input: an integem that is greater thah.
Output: true if n is prime, andalse if not.

You might think from these two examples that problems in computer science are typically
computational in nature. And it is true that in this book we will investigatienality (next
section) andultiplication (Chapter 18). But the problems tackled by computer science span a
wide spectrum. Two more examples will suffice to demonstrate this.

One problem that interests computer scientists comes up in chess. As input, the computer
receives a current chess board. The desired output is a move that guarantees a win no matter
what the opponent does. Of course this is a very difficult problem for even moderately compli-
cated boards. We will visit game-playing problems like this in Chapter 11.

Another problem is thé&ire-Hydrant problem (more commonly known d@ominating-

Set). In this problem we are given a map of houses as in Figure 2.1, with lines connecting

6 Problems and algorithms

Figure 2.1: An exampl€&ire-Hydrant problem.

adjacent houses. We want to build as few fire hydrants as possible so that every house either has
a hydrant or is next to one that does. The output should be the set of houses at which to build
hydrants. In the example of Figure 2.1, the output might say to build hydrants at hoasds
d. (One hydrant is not enough for this map.)

These two problems are closer thdnltiplication andPrimality to the problems computer
scientists typically investigate. Neither is inherently very computational, but they are very in-
teresting from a computer science perspective.

Exercise 2.1:(Solution, 116) Thé&earch problem is to determine whether a number occurs in
a list of numbers. Give a formal description of the inputs and outputs for this problem, similar
to those we gave fdPrimality andMultiplication.

2.2 Solutions

As computer scientists we want techniques to solve problems automatically. Such an automatic
solution is called aralgorithm if it eventually finds the correct output for any valid input.
That is, algorithms are recipes with two important properties: They always stop for any input
(termination), and they always output the correct ansvearfectness.

You already know many algorithms. Fbtultiplication, for example, you were taught an
algorithm in grade school. (But in Chapter 18 we’ll see an algorithm faster than the one you
probably know.)

To illustrate algorithms, let's consider an algorithm ferimality, which we callPrime-
Test-Exhaustive. In this algorithm, when we want to seerifis prime, we try all the numbers
betweer2 andn — 1 to see if any of them divide the input exactly. If so, then we know the
number is not prime; otherwise, it is.

For example, say we want to knowiifis prime. We first try dividing’ by 2. After some
labor, we find that there is a remainderlgfso2 is not a divisor of7. Then we try3. Again,
there’s a remainder af. Now we try4, which we find is not a divisor of either. We continue
to 5, then6. We now know that none of the possibilities are divisors, and so we ofstiset
— 7 is not prime.

Actually, we can make a much faster algorithm using a simple observatioiis tfot prime,
then it must have a divisor of that is at most/n. This is because if - ¢ = n, then eithep
or ¢ is at most,/n — they can’t both be more thayn, because then their product would be
more tham. So to determine if a number is prime, we can stop once we@asdVe call this
Primality algorithmPrime-Test-All.

Now if we’re usingPrime-Test-All for 7, we would tes and stop. (Sincé > /7, there’s
no pointin going farther.) This algorithm is much faster than beforeviere1, 000, 003, then
Prime-Test-Exhaustive would try 1, 000, 001 possible divisors. Now we try onl§99.

This simple example illustrates a theme that we develop much more extensively in this
book’s fifth unit,Algorithms Often, with a little cleverness, we can find a faster algorithm.

2.3 Undecidability (optional)7

Exercise 2.2:(Solution, 116) InPrime-Test-All, we want to find the square root of a number
n. This suggests the following problem.

Problem Square-Root:
Input: an integenm.
Output: the largest integef so thatk? < n.

Think of two significantly different algorithms for this problem. Describe each of them, and in
3—4 sentences compare what you think are their relative advantages and disadvantages.

(You may have seen complicated algorithms similar to long division for this type of prob-
lem. Feel free to think of simpler, more obvious ways to solve this problem.)

2.3 Undecidability (optional)

A natural question to ask is, is there an algorithm (perhaps very slow) for every problem? In
this section we will see that the answer is no. Problems that have no algorittumdseidable
Consider the following problem, which we will show does not have an algorithm.

Problem Halting:
Input: a programP and input to the program.
Output: true if P ever stops given input, false otherwise.

This is not obviously unreasonable. For many programs, we can reason whether or not they will
stop. But, we will show, this is not true for all programs.

Say that we have an algorithBoes-Halt for the Halting problem. By definitionDoes-

Halt has the twin properties of correctness and termination. We will show that the existence of
such an algorithm leads to a contradiction.

In particular, consider the following program (which we daes-Not-Halt), which takes
a programP as input: FirstDoes-Not-Halt runsDoes-Halt to see if P will halt when given
P as input. IfDoes-Halt returnstrue , thenDoes-Not-Halt enters a segment of code that
simply repeats itself without ever stoppingObes-Halt returnsfalse , thenDoes-Not-Halt
immediately stops.

Now we ask the following, simple question: What wilbes-Not-Halt do if the inputP is
Does-Not-Halt itself? There are two possible behaviors: It either eventually stops, or it does
not.

If Does-Not-Halt never stops given the inpDes-Not-Halt, then (becausboes-Halt, as
an algorithm, always terminates correctlypes-Halt must outpufalse . So, if we see how
Does-Not-Halt behaves when given itself as input, it enters the second case and so immediately
stops. This is a contradiction, 8ibes-Not-Halt cannot loop forever given itself.

If Does-Not-Halt does stop, thePoes-Halt must outputrue . Butthis means thddoes-
Not-Halt never stops when given the input@bes-Not-Halt. This also is a contradiction.

So there is no correct answer for wizdes-Not-Halt does when given the input &foes-
Not-Halt. Our contradiction is that neither of its two possible behaviors is possible! Our as-
sumption of the existence @foes-Halt must have been wrong.

This proof may sound like a trick; it's not. It may also sound very abstract — but again,
it's not; the proof has practical implications. A program which says whether a program will
eventually stop would be useful, since it could ensure that a computer never becomes stuck in a
useless loop. This proof says that no program can possibly achieve this correctly.

Chapter 3

High-level procedure

Writing programs is largely a process of describing algorithms in an exact, formal way. An
important step toward this is to look at how to describe algorithms less formally. This helps us
conceptualize algorithms, a crucial element of programming.

One way to describe an algorithm is with simple English text (or any other human language),
but this has two major disadvantages. English text buckles under the load of complicated algo-
rithms. And English is also often woefully ambiguous. Therefore, in this chapter we look at
two more systematic communication media for algorithpseudocodandflowcharts

3.1 Pseudocode

Pseudocodds a formatted mixture of English and mathematics intended to communicate an
algorithm’s structure concisely and exactly. Itista definite, single way of writing an algo-
rithm.

Pseudocode has been around a long time, and you have certainly seen it before. Open any
book of recipes for a multitude of examples (or see Figure 3.1). Recipes tend to make poor
pseudocode, though, since they are often ambiguous. Exactly how thick a layer of butter should
be placed on that foil? When do | stop beating these eggs?

Prime-Test-Exhaustive

The simplest way to learn about pseudocode is to look at an example. RenferinbesTest-
Exhaustive from Chapter 2? ThaPrimality algorithm takes a number and checks each
number between andn — 1 to see if that number is a divisor @f One way to write this in
pseudocode is as follows.

Algorithm Prime-Test-Exhaustive(n)
1. For each numberbetweer2 andn — 1, do the following:
a. Dividen by .
b. If the remainder i$, then outpufalse and stop.
2. If none of these numbers divide then outputrue and stop.

This book tends to use a slightly more systematic method that more closely resembles computer
programs.

3.1 Pseudocod®

Algorithm Gingerbread(foil, butter, brown_sugar, white_sugar, molasses, eggs, flour,
baking _soda, ginger, cinnamon, allspice)

1. In a large bowl, crean ¢ butter, 1% C brown _sugar, andli white_sugar.

. Put2 tbspmolasses and6 eggs into bowl and beat.

. Into another large bowl, sift ¢ flour, 2 tsp baking _soda, 1 tbspginger, 1 tbspeinnamon,
and1 tbspallspice.

. Combine contents of both bowls and kneed into a small balbo#h .

. Coverdough and place into refrigerator.

. Wait at leas80 minutes.

. Repeat the following untidough isi inches thick:
a. Flour surface.
b. Roll dough.

8. Cutdough into pieces.

9. Line cookie sheets witfil.

10. Apply butter and flour to foil.

11. Using a spatula, gently littough and place it orfoil.

12. Preheat the oven 825°F.

13. Bakel5-20 minutes or until slightly firm.

14. Let cool on racks until firm enough to handle.

w N

~N o o~

Figure 3.1: An algorithm for theélungry problem.

Algorithm Prime-Test-Exhaustive(n)
for eachi from 2to n — 1, inclusive,do:
if < dividesn, then:
output false
stop
end of if
end of loop
output true

You can write pseudocode any way you want, as long as it is structured (note the use of inden-
tation) and precise.

Notice that our pseudocode sometimes skips over steps. For example, in our pseudocode for
Prime-Test-Exhaustive, we did not say exactly how to divide two numbers. This is because
division s builtinto computers, so that computers already “know” how to divide; thus we didn't
need to explain this. As you learn to program, you will get a better feel for exactly what is built
into computers and what you need to explain. (For now, you can draw the line at what you would
explain to another person if you were trying to describe the crucial steps of the algorithm.)

Mode-Tally

Let’s look at another example, an algorithm for finding the mode of a list of scoresndtieof

a list of numbers is the number that occurs most frequently. For example, if a group of students
take a test, and their scores &88,7,8,2,9,8,9), the mode score i8, since8 occurs thrice

and all other scores occur less often.

10 High-level procedure

Problem Find-Mode:

Input: A list L of scores betweetand100.

Output: The score that occurs most frequently/in (In the case of a tie, any of the
most-frequently-occurring is acceptable.)

There are many interesting ways to compute a mode. Here we consider just one of them,
calledMode-Tally. In this technique, we creat®1 empty tally boxes, labeled with the numbers
0 through100. Then we go through the list; for each scarén the list, we find the tally box
with x as its label and add a tally mark to that box. Finally, we go through the tally boxes to see
which has the most marks, and return the label of this box.

How can this be expressed in pseudocode? One way is the following, almost identical to
the above English description.

Algorithm Mode-Tally(L)
Createl 01 empty tally boxes, labele@lthrough100.
for eachscorex in L, do:
Find the box labeled.
Add a mark to it.
end of loop
Let mode be0.
Let modeCount be the number of marks in the box labeled
for each numberz from 1 to 100, do:
Let 2Count be the number of marks in the box labeled
if zCount > modeCount, then:
Let mode bex instead.
Let modeCount be zCount instead.
end of if
end of do
output mode.

This example happens to be very explicit about how to find the maximum in the list, but this is
not really necessary, since this is so obvious to humans.

Mode-Tally is actually a fairly complex procedure. If you understand it, and if you can
write pseudocode for similarly complex procedures, then you are well on your way to learning
to program. The only thing left is learning how to translate pseudocode into a completely formal
language that a computer can understand. In any case, you will improve as you study the details
of programming later in this book.

Exercise 3.1:(Solution, 117) Write pseudocode describing eSgliare-Root algorithm you
made in Exercise 2.2.

3.2 Flowcharts

Flowcharts are another general way of describing procedure. Flowcharts use a graphical lan-
guage to emphasize how procedure flows through the algorithm.

Again, the best way to learn about flowcharts is to look at an example. Figure 3.2 gives
a flowchart for ouPrime-Test-All algorithm. Recall thaPrime-Test-All is like Prime-Test-
Exhaustive, except that it tests only numbers up\f@.

In this flowchart, you will notice three shapes. Ovals are reserved for the “START” and
“STOP” indicators, which indicate where to begin the algorithm and where to stop. Boxes are

3.2 Flowcharts11

Leti be?2.

Y

Isi>/n? yes

no
| Add1toi.| [Dividenbyi
A

Y
[Output fal se .| [Output true.]
|

Figure 3.2: A flowchart foPrime-Test-All.

meant for simple instructions, like “Adtlto ¢.” A box always has exactly one outgoing arrow.
Finally, diamonds are meant for questions, like fIs- \/n?”. Diamonds have two outgoing
arrows, one for each possible answgrgandno).

We’'ll see some more flowcharts as we look at programming. In practice, programmers
use flowcharts primarily for very-high-level diagrams relating components of a large software
system, not for low-level procedures likrime-Test-All. For such procedures, pseudocode
is usually more convenient. Nonetheless, flowcharts are very useful to beginners as a way to
conceptualize procedure.

Exercise 3.2:(Solution, 118) Draw a flowchart for one of ti8guare-Root algorithms you
made in Exercise 2.2.

12 High-level procedure

SECOND UNIT

Programming

We turn to learning the fundamentals of programming. This isn't the place to try to learn
every single detail about a particular programming language. If we tried this, we would run
out of space and time to discuss other interesting bits of computer science. Instead we cover
the basic building blocks of programs. Understanding this much will enable us to write useful
programs and prepare us to understand computer science more completely.

The specific programming language we study is C++. There are many prominent program-
ming languages today, most very similar in approach. We could choose any of them, but C++
has the advantage of being widely used both in education and in industry.

C++is a notoriously huge language, and we cannot hope to cover every detail in only a few
short chapters. We therefore study a subset of the language, illustrating the conceptual details of
programming and enabling you to write genuinely useful C++ programs. In order to maintain
compatibility with other introductory courses, this subset is largely a restriction of the College
Board’s C++ subset used in their AP Computer Science exams. (But this is not an AP course:
It includes only about half of the AP subset.)

Our introduction to C++ consists of six chapters. In each chapter, we’ll introduce a new
piece to the programming puzzle by describing the concept, illustrating it, and examining an
extended example program putting everything together.

Chapter 4 discusses the overall programming process and looks at a brief example program.

Chapter 5 examines how a program can manipulate data ugmigbles

14 Programming

Chapter 6 examines how a program can control the execution of instructions @simigol
statements

Chapter 7 examines how larger tasks can be broken into more manageable subtasks using
functions

Chapter 8 examines how to use conglomerations of data calkeglysandstructures
Chapter 9 introduces the concepts objectsandobject-oriented design

By the end of these chapters, you should be able to write a wide variety of useful programs, and
you should have some idea of what programming is about.

Three appendices to this book supplement this material. Appendix A is a quick-reference
outlining C++ syntax. Appendix B lists common names for keyboard symbols. And Ap-
pendix D provides solutions for many of the exercises.

As you reach exercises, you should try them out. When it asks that you write a program,
preferably you will write it on a computer and test it yourself. But if that isn't immediately
available, at least do it on paper. Then read the solutions in Appendix D: Often, the solutions
introduce new material; in all cases, you're likely to learn from seeing alternative approaches to
the questions.

Chapter 4

Programming overview

In this chapter we look at programming at the broad, high-level view, starting with the pro-
gramming process, continuing with a simple C++ program, and ending with some programming
guidance. The details of programming we leave to following chapters.

4.1 The programming process

The pipeline from idea to action consists of three phagesggrammingcompiling andexecut-
ing. Figure 4.1 illustrates the process.

In programming, you as the programmer translate your mental concept of how the com-
puter should behave to correspondaaglewritten in aprogramming languagesuch as C++,

Java, or Ada. A programming language is a compromise between what humans find most nat-
ural for expressing procedure and what computers can easily interpret in an efficient way. Im-
portant tools in the programming phase include pseudocode and flowcharts, as well as a good
editor for writing and editing code.

Computers, as built, cannot actually understand programming languages; they are built to
understand a much more primitive language caltgachine language (Different types of
machines have different machine languages — the machine language for a PC is totally different
from the machine language for a Macintosh.)cbbmpiling, the computer runs a program to
translate the programmer-written code to machine language. This program is cailegiter,
and it is the primary programming tool for the compile phase.

In the final phase, the computexecutegshe machine language that the compiler produced.

At this point the machine finally does the job that the programmer originally conceived. .. at
least if all the phases proceed flawlessly.

During these phases, errors crop up due to programmer errors. For all these errors, the
solution is for the programmer to discover where the code is wrong, to fix the code, and to
repeat the compile and execution phases.

Executing: A run-time error occurs during execution; one example of a common run-time
error is when the machine code instructs the computer to divide a number by zero. Often
such errorgrashthe program; that is, execution stops abruptly.

Compiling: A compile-time error is an error that prevents the compiler from interpreting the
program. If the code contains a mistyped name, for example, then this causes a compile-
time error. The result of a compile-time error is that the compiler refuses to compile the

16 Programming overview

mental concept

programming

code

compiling

machine language

executing

computer action

Figure 4.1: The programming process.

program, instead issuing a description of what is wrong with the program. This is the
easiest type of error to fix, since the compiler usually points directly to the problem.

Programming: A logic error arises when the programmer has written code that compiles and
executes without any problems, but the machine’s behavior does not correspond with the
original concept. For example, if the user indicates to the computer to save a file, but the
computer does nothing, this is probably due to a logic error.

4.2 A simple program

To get a feel for the programming process, let us look at a very simple program, a classic
program whose job is simply to say, “Hello, world.” (The line numbers are for reference in this
book; they are not part of the program.)

#include <iostream>
#include <string>

int main() {
/I this program prints the words “hello, world” and exits
cout << "hello, world" << endl;
return O;

O~NOO U, WN P

}

To compile and run this program, create a file calledllo.cc " containing the above pro-
gram. Then tell your compiler to compile and run it. If all goes well, the computer will print
the following to the screen before finishing.

hello, world

We now briefly examine this simple program, to get a general idea of what is happening.
Do notyet become concerned about learning the details or learning how to do this yourself; we
will examine this in following chapters.

4.3 Tips for writing programsl7

Lines 1-2: Just mindlessly include these two lines in all your programs. It tells the compiler
that your program may be using keyboard input or screen output, and that your program
may be using character strings. (Tibe in iostream stand forinputandoutput)

Line 3: In C++, blank space (empty lines, tabs, and spaces) is not significant. The compiler
uses them only as a way of separating words. But when we write programs, we often use
blank space to structure ideas so that they are easier to understand. You see this with the
blank line separating lines 1 and 2 from the rest of the program, and with the indentation
used in later lines.

Line 4: This tells the computer that theainpart of the program is beginning.The main part
of the program will be contained in left and right bracds énd ‘}). Actually, this line
is declaring dunction which we discuss in Chapter 7; for now, just think of this line as
being required in each program to tell the computer where execution is meant to begin.

Line 5: This is acomment A comment begins with two slashes {f and continues to the end
of the line. The computer ignores all comments; they exist to help humans understand
what the program does.

Line 6: This line is the first functional part of the program. In this case, it says to print the
words “hello, world”, followed by an end-of-lineedl) to cout (this is what C++ calls
the screen). The double-quotes delimiteng, which is a sequence of characters that
the computer should treat as a single piece.

Line 7: Areturn statementsays to halt running the program.
Line 8: This closing brace (which corresponds to the opening brace in line 4) says that this is
the end of the definition of thenain part of the program. In this case, we are defining

only this part of the program, so the file ends just after this brace. (In a longer program,
we might want to define more parts of the program after the closing brace.)

Exercise 4.1: Find a C++ compiler, and type the “hello, world” program.

a. Compile and run the program to see what happens. If things go well, this will demonstrate
how a working program works.

b. Insert a typo by removing a quotation mark from line 6. Compile this new program to see
what a compile-time error looks like.

c. Finally, insert a run-time error by replacing line 6 with the following fragment.

int x = 0;
cout << "300 / 0 = " << (300 / x) << endl;

If this compiles successfully, when you run the program, the computer should attempt to
divide 300 by 0, causing a run-time error.

18 Programming overview

4.3 Tips for writing programs

Experienced programmers follow some guidelines to make their jobs easier. Their collected
wisdom can be helpful to you, too, as you begin to develop programs.

Design the program on paper first. Even for small programs, take the time to decide how to
best accomplish the task. Pseudocode descriptions, as we saw in Chapter 3, are useful,
especially for beginners.

As you think about how to approach the problem, criteria to consider include:

Will the program be correct? In many systems (transportation and military applica-
tions, for example) absolute correctness is the primary consideration. Simple ap-
proaches tend to be easier to verify and test.

Will the program take too much time? Time is not always an issue, especially as com-
puter speed increases, but sometimes itis. Often itis best to try the simplest method,
even if you think it may be too slow; then, if your suspicions prove correct, you can
write the faster but more complicated program. We will study the analysis of pro-
gram speed later in this book (Chapter 17).

Will the program use too much memory? Sometimes, but rarely, memory is a limita-
tion.

Is the approach easy to understand and program?Usually this is the most important
consideration, especially for small programs. It makes little sense to spend hours
writing a program if it will save only seconds the few times it is executed.

Start simple. Although the preliminary, on-paper design should consider how to extend the
program, as you begin developing code it is good to begin with a small piece and to get it
right before extending it.

Make your program readable. That programs be understandable is important. This is not
only important so that graders can understand your assignment. It is actually more im-
portant in the workplace, where programmers often need to modify a progristenityy
others. Readability makes a program easier to fix or enhance. A program is not worth
much if it is so unreadable that a programmer must spend hours studying it to learn how
to tweak a small piece.

The following are some rules for writing readable code.

Convey structure using blank space.In C++, blank space is not significant. All the
examples in this book, however, are indented in a particular way. (Other indenta-
tion styles are also good, as long as they are consistent and convey structure.) We
also use blank lines to separate distinct ideas. These uses of blank space make a
program’s structure easier to see.

Use meaningful names.When you name things in the program, the name should de-
scribe their purpose. For example, the namgvery poor; it means almost nothing.
A more descriptive name, liki®_test , would be better.

Include comments to structure and annotate your code For beginners a frequent ques-
tion is how many comments are necessary. Generally, line-by-line description is
unnecessary. The author offers the following loose guideline: Use blank lines to
break each function into paragraphstefi0 lines, and include a comment at the
beginning of each paragraph describing its purpose.

4.3 Tips for writing programsl9

Break large problems into subtasks. By breaking the problem into pieces, you aid your code’s
readability and make error-finding easier. (C++ helps you express subtasks tfunagh
tions we study these in Chapter 7.)

Beginning programmers often find it difficult to decide at what point to break something
into subtasks. If you find yourself wanting to duplicate a segment of code, likely the
duplicated code should really be part of a separate function. Another general, rough rule
is that you should consider breaking your pieces so that no piece has more thasfitabout
lines.

Test the program thoroughly. After you finish writing the program, or after you finish an in-
termediate step, you should test the program to find any errors. You should understand
the program well enough and test the program thoroughly enough that you are confident
that it will always work.

For all but the most simple programs, you will not always be able to try all cases, but
you should be able to hit many of them. Try simple cases first, since understanding the
program’s behavior in these cases is easiest. (With a program involving numbers, the
simple cases may includg 1, and—1.) After that, try extreme cases. (If the program
should work for numbers up t00, try 1000.) Try any special cases, and then if it still
works, try some common cases.

Chapter 5

Variables

A variable reserves a place in the computer's memory to hold some information. They're
calledvariablesbecause a program can vary them from time to time. Think of a variable as a
named box that holds a value.

The picture illustrates a variable namadariable ~ which currently holds the number 64.
Variables hold information about how things are going. For example, a word processor
could have a variable for each open window, a variable for the current font choice, a variable
for the clipboard contents, and many more.
Much of a program involves manipulating variables and updating their values. In this chap-
ter we learn about creating new variableslectlarationschanging their values iassignments
and accessing variablesémpressions
First, though, we'll see several different types of data that our boxes can hold.

5.1 Basic data types

There are severdlasic data typesthat C++ recognizes. (We call thebasicto distinguish
them from the more complex types we study in Chapter 8.) Let’s look at each of them.

int An integer is a number with no fractional part, like 42, or —5. This turns out to be the
most useful single type. You can refer to specific integers in C++ exactly as you would
expect: 42", for example.

double This is the C++ way of saying “real number.” Examplesdufuble s are “2”,
“3.14 *, and “22.1e-3 " (which stands for the numbex.1 x 10~3 — the ‘e’ stands

5.2 Declarations21

for exponent It's occasionally important to remember that, because computers only
allocate so much room for storingdouble , the representation cannot be exact for
all numbers (for example2/3 is actually something lik®.666666666666667). This
sometimes causesaund-off error .

char A characteris a single letter, digit, space, or punctuation mark. To express a character in
C++, enclose it in single quotes'C’ ", for example, is the letterC. (A few characters
require a backslash before them %' ", for example, represents the single-quote
character, and¥\' " represents\'’.)

string A string is a sequence of characters. A C++ program encloses a string in double-
quotes (*’): We saw the'hello, world" string in Chapter 4 already. (Technically,
string is not a basic data type, but you can think of it as one.)

Exercise 5.1:(Solution, 118) What is the type of each of the following constants?

a."3.4" c.45.0 e.-1lel0
b.0 d. "a"

5.2 Declarations

A variable declaration tells the computer to create a new box. Associated with this box is the
ability to hold data of a certain type (am , double , or whatever).

(typeOfVariable (variableToDefing;

This creates a new variable of the specified type. For example, if our program includes the
statement

int aVariable;

then we get a variable nama¥ariable for holding integers, which we can use and change
as we please in the future.
A detail Name your variables with care. It is much easier to program and|it is
worth much easier to understand a program when variable names indicate the
remembering variables’ purpose.
In C++, variable names can contain letters (upper-case or lower-gase),
digits, and underscores {f. The name can have as many of these as you
like, but it must not begin with a digit. Letter case is significaBg\are
andsquare are different names, for example.)

Exercise 5.2:(Solution, 118) Which of the following are valid variable names? For those that
are well-named, what type would be best for them?

a.name C. letter e. #students g.r2d2
b. num_points d. char f. temperature h. 2i

22 Variables

5.3 Assignments

When a variable is created using a declaration, it doesn't have a defined value yet. (You cannot
accurately predict its itial value; it may be something completely useless, likg7.) So the
program needs to give it a value for the variable to be useful.

To change the contents of a variable’s box, we usassignment statement An assign-
ment statement in C++ looks something like this.

(variableToChangg = (valueToGivel};

Say we want C++ to change the valueadfariable to the numbef4. Then we would
use the C++ statement

aVariable = 64;

When the machine executes the machine language corresponding to this statement, it will re-
place whatever is in the box correspondingtariable with the numbe4.
C++ also allows the declaration and assignment statements to be combined.

(typeOfVariablg (variableToDefing = (valueToGivel};
So instead of the above two lines, we could combine them into one:

int aVariable = 64;
A detail Don't let the equal sign=’ confuse you: We are not discussing algebraic

worth equality here. The assignment statement actudibngeshe value of
remembering the variable mentioned. The statemekt= k + 17, for example, is
entirely reasonable (even if it is algebraic nonsense): It replaces the value
in thek box with something more than it was previously. For example,
if the k box was holding the valug, after the statement it would hold the
value2 (which is1 4+ 1) instead.

5.4 Expressions

An expressionis anything that can be evaluated to a value. They can turn up in many situa-
tions; one common place is on the right-hand side of an assignment. Using an expression as a
statement itself is also sometimes useful.

A constant value (like64” or “’c’ ") is the simplest expression; its value is the fixed value
itself. A variable name (likedVariable ") makes another expression; its value is the value
currently in the variable’s box.

But we can also combine expressions usipgrators. C++ recognizes a number of differ-
ent operators, some of which we’ll introduce later. The most familiar operators are the arith-
metic operators.

(---) parentheses
- negation (as in-x)
* multiplication
/ division
% remainder
+ addition
- subtraction (as in3-x ")

5.5 Input and outpu23

C++ observes the order of operations when evaluating expressions.
A detail The division operatof often causes problems when applied to two itgms
worth the compiler understands to be integers. In this case, the machine will
remembering performinteger division — which means that any remainder will be ig-

nored. So in C++, the value 08"/ 2 "is 1, not1.5 as you might hope
A decimal point (asin3.0 / 2 ") makes the C++ compiler understand

a number as double instead.
Let's look at some examples of expressions. Say we already have an integer variable named

k whose value ig.

expression value
-k -2
9/ k 4
9.0 / k 4.5
9 +k*(k + 1) 15
30 % 4 2 (the remainder 030 =+ 4)
A detail Often beginners expect the carét’j'to do something useful (like expg-
worth nentiation). It doesn't. In C++, the value @5 " is 6, not243. Explain-

remembering ing what the caret means takes longer than it's worth. It's rarely useful
anyway, so just don’t use it.

Exercise 5.3: (Solution, 118) For each of the following expressions, say whether it is valid
and, if so, compute its valuexf holds the valu®8.6 andk holds the valud2.

a.k % 8 c.k/9 e.2 k+5
b.x - k * 2 d-x/ 2

5.5 Input and output

The input/output operators >> and << are also useful operators in expressions. Between
them, they form a way for programs to communicate with the person at the computer (who
we call theuser). For printing things to the screen, the program can applytheperator to
the automatically-defined variabt®ut . (We saw an example of this in our “hello, world”
program of Section 4.2.) And to read data from the user, the program canapptythe
automatically-defined variabtgn .

To illustrate input and output — and to illustrate the other concepts we have seen in this
chapter — we examine a complete program to convert temperatures. Again, the line numbers
are for reference in this book, and are not part of the actual program.

1 #include <iostream>
2 #include <string>

3

4 int main() {

5 double fahrenheit;

6 cout << "What temperature? "; // prompt user and read number
7 cin >> fahrenheit;

8 double celsius = (fahrenheit - 32) / 1.8; // print conversions

9 cout << "lt is " << celsius << 'C’ << endl

10 cout << "It is " << (celsius + 273.15) << 'K’ << end|;

11 return O;

24 Variables

Lines1—4 and the last line are exactly the same as in the “hello, world” program of Section 4.2.
The change is in lines-11. Once the computer compiles and runs this program, it will begin at
line 5 and proceed line by line until reachingeturn statement (which, in this case, occurs
inline 11).

When we run this program, what it does looks something like the following. (Boldface
indicates what the user types.)

What temperature? 98.6

It is 37C
It is 310.15K

Let us trace how it managed to do this, line by line.

Line 5: The computer begins at linebecause this is what immediately follows the opening
brace for thenainfunction. In this line, the computer creates a box lab&edenheit
designated for holding numbers. At this point, the box contains some weird, useless
value.

Line 6: The computer write§What temperature?” to the screen, to ask the user for
what to convert.

Line 7: The computer waits for the user to type a piece of data forfaheenheit box.
Sincefahrenheit has thedouble type, the computer knows to read a number. Once
the user types a number and presses the Enter or Return key, the computer reads it and
places the corresponding number into thierenheit box.

Line 8: The computer creates a new box calbedsius and assigns its value to be the result
of subtracting32 from the contents of théahrenheit box and then dividing this
difference byl .8.

Line 9: The computer prints several things to the screen: First it prints the String ",
followed by the contents of theelsius box, followed by the characteC; finally, it
ends this line of output.

Line 10: Again, the computer prints several things to the screen. This time, it computes the
expressioncelsius + 273.15 " and prints the result to the screen.

Line 11: The computer encounters theturn statement and so stops.

What we know so far, then, is enough to write moderately useful programs. But to write
genuinely interesting programs, we must learn about statements that control the flow of execu-
tion. It is these that we examine in the next chapter.

Exercise 5.4:(Solution, 118) Write a program to determine your age on January 1 of a partic-
ular year. The following should be a sample transcript; it will differ slightly if you were born in
a different year.

It is January 1 of which year? 1999
You are 25 years old.

Chapter 6

Control statements

The fundamental unit of a program is a statement. We have already seen several types
of statements: declaration statements, assignment statements, expressicetsyiand state-
ments. For most tasks, we also need statemerdsritiol what other statements the computer
executes. These aoentrol statements In this chapter, we look at examples of both types of
control statementstonditional statemen@nditeration statements

6.1 Conditional statements

An if statementtells the computer to execute a sequence of statementdfoalparticular
condition holds. This is a type aonditional statement since it allows us to execute some
statements only in some circumstances. In C+# arstatement looks like this:

if((thislsTrue)) {
(statementsToDolfTrug

}

This corresponds to the flowchart in Figure 6.1. The part in parentheses after thié waued
the parentheses must be there) adition— that is, an expression with a value tofie or
false (We'll see several examples of conditions soon.) If this expression’s vatugejsthen
the computer sequentially executes the statements between the braces. Then it goes on to do
whatever follows the braces. If the valuefédse then the computer skips the statements in
braces and goes directly to whatever follows them.

For example, consider the following code fragment.

double abs = num;
iflnum < 0.0) {
abs = -num;

}

cout << "Absolute value = " << abs << endl;

In this code fragment, we create a variadls , which initially holds the value ofium If num

is less tharo, then we instead put the value ehtim” into abs, and then we continue to the
statement printing this as the absolute value. Buuifn is not negative, we skip theabs =
-num” statement and go directly to primtos as the absolute value (in this case, the printed
value is the same as thatmiim).

26 Control statements

Conditions

no

yes

<statementsToDol fTrue>

Y
Cso>

Figure 6.1: A flowchart for thé statement.

A condition is an expression with lagical value, which can berueor false In C++, a logical
value is represented by amt : 0 representfalseand any nonzero value represeints.

We have already seen one example of a conditiabs” < 0.0 ”, which introduces th&
operator. C++ includes operators for all six comparison possibilities.

== equalto

I= notequal to

< lessthan

> greater than

<= at most (less than or equal to)
>= atleast (greater than or equal to)

(Why does the exclamation pointia meannot? There’s not a good reason; just play along.)

A detail
worth
remembering

Some people at first find the distinction between the comparison ope
== and the assignment symbslconfusing. Use= when you want tg
changea variable’s value, and use= when you merely want toompare
two values without changing anything. Generally you want to &se
only in conditions (as in th# statement), while you want to useonly
in assignment statements.

prator

A detail
worth
remembering

One occasional pitfall when comparimpuble s is that round-off er-
ror can cause unexpected results. For exaniple,1.0/3.0 may not
equal2.0/3.0 , because the first may be something k66667 and

the second something liKe666666 . To avoid this, when you are tes
ing to see if twodouble s are equal, you should instead test to see if
absolute value of their difference is very small.

the

In addition to comparison operators, C++ includes operators for combining logical values.

&& and(trueif both sides ardrue)
I or (trueif either side igrue, or if both sides ar¢rue)

I not(trueif expression ialse

6.1 Conditional statement87

rank operators
I'- (negation)
*[%
+ - (subtraction)
<< >>

OO ~NOOOThWNPE
N
N
1
V
1
\

Table 6.1: Order of precedence for C++ operators.

A few examples illustrate how you can use these.

expression value
k >= 0 &% k <= 3 trueif k is at leasb and at mos8
Ik >= 0 && k <= 3) trueif k is not betweerd and3

k<O0]| k>3 trueif k is less thart) or greater thas
A detail C++ does not provide any way to express the concept of “betweenress”.
worth If you want to see ik is betweerd) and3, you should use0 <= k &&
remembering k <= 3”. (Using“0 <= k <= 3" doesn’t work.)
A detail In combining multiple logical operators in an expression, you should al-
worth ways parenthesize to indicate the order of evaluation. Until now, the op-

remembering erators’ order of precedence has been what you expect +ipiiaation
precedes adtion, for example. But C++ uses a weird order for the logi-
cal operators. Table 6.1 lists all the operators we have seen in theirjorder
of precedence. Notice that tmet operator () is near the top, whilg
the and operator&& is just above ther operator|| near the bottom
Because of this weird ordering, you're best off parenthesizing every time
you combine more than one logical operator.

Theelse clause

Sometimes we want to do one thing if the condition is true and another thing if the condition is
false. In this case thelse keyword comes in handy.

if((thislsTrue)) {
(statementsToDolfTrug

} else {
(statementsToDolfFalse

}

Figure 6.2 contains a flowchart diagramming this type of statement.
For example, if we wanted to compute the larger of two valuasdy, then we might use
the following code fragment.

28 Control statements

yes no

Y Y
<statementsToDol fTrue> <statementsToDol fFalse>

| |

o

Figure 6.2: A flowchart for thelse clause.

int max;
iftx > y) {
max = Xx;
} else {
max =y,
}

This function says place the valuexinto maxif x holds a larger value thayy otherwise —
it says — place the value gfthere.

Sometimes it's useful to string several possibilities together. This is possible by inserting
“else if ”clauses intothe code.

char order;

cout << "What would you like? ";

cin >> order;
double price = 0.00;

iflorder == 's’ || order == 'S’) { /I sandwich ordered
cout << "Would you like fries with that?" << endl;
price = 4.20;

} else if(order == ' || order == 'F) { /| fries ordered
cout << "Is that all?" << endl;
price = 2.10;

} else if(order == 'd’ || order == 'D’) { /I drink ordered
cout << "Soda or pop?" << endl;
price = 0.80;

} else { /I unrecognized order
cout << "That's gibberish!" << endl;

}

cout << "That will be $" << price <<

<< endl

Exercise 6.1:(Solution, 119) For each of the following caitidns, describe the variable values
for which it is true.

a.’'a = "'A
b.x * X == x && x > -1
c.score > 90 || bonus && score == 89

d. 'k ==

6.2 lteration statementg9

<statementsToRepeat>

|

Figure 6.3: A flowchart for thevhile statement.

Exercise 6.2:(Solution, 119) Write a condition to test whether the variableyear repre-
sents a leap year. (Remember that a year is a leap year if it is a multipjertept for years
that are multiples of 00 but not400. For example]992 and2000 are leap year,100 is not.)

Exercise 6.3:(Solution, 119) Describe all the errors in the following code fragment, and write
a version correcting all of them.

char ch;
if k =2{
ch = "o

}

Exercise 6.4:(Solution, 119) Write a program to tell whether an integer divides another exactly.
It should behave something like the following. (You may find the modulo opevatseful.)

What is the numerator? 13
What is the denominator? 2
2 does not divide 13.

6.2 Iteration statements

The statements we have seen so far allow us to write programs following a top-down sequence.
With conditional statements, we are able to tell the computer to sometimes skip some state-
ments, but in all cases we can only go downward.

So we introducdoops, which allow us to tell the computer to execute a sequence of state-
ments several times. They're call@bpsbecause they introduce loops into flowcharts. Each
time through this sequence of statements is calledleaation; of course, a loop may iterate
many times before finally proceeding to instructions past the loop.

while loops

The simplest C++ loop is thehile statement It is constructed exactly like ah statement.

30 Control statements

<initial Assignment>

<statementsToRepeat>

{

<updateAssignment>
‘ Y

Figure 6.4: A flowchart for théor statement.

while((thislsTrue)) {
(statementsToRepekat
}

The difference is that when the computer finishes executing the statements within thet braces,
it retests the condition. If it still holds, the computer repeats the statementdesbagain and
again until it finally finishes the statements in braces and theittongho longer holds. Once
the computer gets to this point, it continues to the first statement following the loop (after the
closing brace). (If the cortilon never held in the first jplce, the computer skips past the loop
immediately.) Figure 6.3 illustrates this process.
Let's look at a particularly useless code fragment illustratimghde statement at work.
char cont = 'y’
int i = 0;
while(cont ==y’ || cont == "Y") {
cout << "lteration " << (i + 1) << " Shall | continue (y for yes)? ";
cin >> cont;
i=1i+ 1
}
cout << "OK; there were " << i << " iterations." << endl;
Here is a sample run of this fragment.

Iteration 1: Shall | continue (y for yes)?
Iteration 2: Shall | continue (y for yes)?
Iteration 3: Shall | continue (y for yes)?
Iteration 4: Shall | continue (y for yes)?
Ok; there were 4 iterations.

S <<

for loops

Thefor loopis a different iteration statement which is also frequently useful. It is meant for
executing a sequence of statemdptsevery value in a set (especially for iterating over some

6.3 Extended exampla1

statement$or every integer in arange). far loop looks like the following in C++.

for((initialAssignmen; (thislsTrue); (updateAssignmen) {
(statementsToRepekat

}

This corresponds to the flowchart in Figure 6.4. The syntax here is a bit awkward, but it turns
out to be quite useful. You may find it easiest to understand this by the followilg loop
which is equivalent for our purposes.

(initialAssignment;

while((thislsTrue)) {
(statementsToRepekat
(updateAssignment

}

As an example, let's consider a fragment to compute the factorial of a number(The
factorial of a number is the product of all the integers up to the number; so the factorial of 6 is
1x2x3x4x5x6.)

int fact = 1; // we begin with 1
int i;

for(= 1; i <= num; =i+ 1) {

fact = fact * i; // multiply the value of i into fact
}
cout << num << " factorial = " << fact << endl;

This fragment begins by creating two variabfast (initially 1) andi . For the first iteration
of thefor loop, we put the valué intoi . As long as does not exceedum, we execute the
statements in the loopféict = fact * i ") and then add 1 td . So we'll execute the loop
once withi beingl, then once with being2, once withi being3, and so on until we get to
wherei is more thamum, at which point we are finished with the loop. Then we print out the
current value ofact as the factorial ohum

If numhappened to hold as the computer begins executing this code fragment, then within
the fragment the computer would print

6 factorial = 720

(You'll frequently see a variable namedas the variable being changed each time through
the loop. The name choice is arbitrary — we could nanaelgop _variable , if we wanted
— but many programmers name their loop varialblésr some reason.)

6.3 Extended example

Now that we know our control statements, we can at last write genuinely useful programs. Let's
look at an example program incorporating everything we've seen so far in an implementation
of thePrime-Test-All algorithm from Chapter 2.

32 Control statements

1 #include <iostream>
2 #include <string>

3

4 int main() {

5 /I read in a number from the user

6 int to_test;

7 cout << "What do you want to test? "

8 cin >> to_test;

9

10 /I test each possible divisor up to sqrt(to_test)

11 int i;

12 forG =2 ;i*i<= to_test; i =i + 1) {

13 if(to_test % i == 0) { // then we have found the divisor i
14 cout << to_test << " is not prime." << endl;
15 return O;

16 }

17 }

18 cout << to_test << " is prime." << endl;

19 return O;

20 }

Here’s a sample run of this program.

What do you want to test? 25

25 is not prime.
Let us do a step-by-step trace to see how this came about. First the computer prompts the
user (line 7) for a number and reads the number from the user (line 8). The useR s
the variableto _test now contains the numbe&?5. Now we create a new variabiebefore
entering thdor loop (line 11). We assign to hold2 as thefor statement instructs.

Firstiteration: Sincei 2 < 25, we go through our first iteration. In line 13, we test to see
if “to test % i ”is 0, which itis not (the remainder ik); thus we continue past the
statements in these braces (lines 14 and 15) to what follows them (line 17). This ends the
statements within théor loop, so we execute the assignment= i + 1 " from the
for statement. Now holds the valug.

Second iteration: Still i 2 < 25, so we go through another iteration. This tinte “test %
i " has the valud, so we skip the statements within the braces to line 17. This ends the
statements within thor loop. We executei“= i + 1 ”; nowi holds the valud.

Third iteration: Still i 2 < 25, so we go through another iteration. This time “test %
i " has the valud, so we skip the statements within the braces to line 17. This ends the

statements within thor loop. We executei“= i + 1 ”; nowi holds the valué.

Fourth iteration: Still i 2 < 25, so we go through another iteration. This tinte “test
% i” has the valud, so we execute the statements within the braces. In this case, the
statements tell us to print thiat _test is not prime (line 14) and then to exit the program
immediately (line 15). We are thus done with our trace.

Exercise 6.5: (Solution, 119) Translate the following into a fragment usingldle loop
instead, and explain what the fragment does.

double total = 1;

forG = 30; i > 0 =01 2) {
cout << total << endl;
total = 2 * total;

6.3 Extended exampld3

Exercise 6.6: (Solution, 119) Describe all the errors in the following code fragment, write a
version correcting all of them, and describe what the corrected version does.

for(== 30, i =0, i = =i+ 1) {
cin << num
product = product * num

}

Exercise 6.7: Write a program to help balance a checkbook. A run of the program should look
like this.

To add? 30.25

+ 30.25 = 30.25
To add? -20.30

- 20.3 = 9.95

To add? 998.23

+ 998.23 = 1008.18
To add? -447.87

- 447.87 = 560.31
To add? 0.0

The user should be able to type as many entries as desired; but when the user types zero, the
program exits. (Using zero this way allows you to read the user-typed value duaalde
instead of doing something more complicated.)

Chapter 7

Functions

A function is a packaged sequence of statements to accomplish a certain task. A useful
analogy is to think of a function as a sort of juicer.

®,

o/

A function takes somparametersand produces geturn value. In our juicer analogy, the fruit
would be parameters, and the juice produced would the return value. If you give it oranges, it
makes orange juice. Give it lemons, and it makes lemonade.

One purpose of a function is to allow the programmer to describe a procedure once, even if
the program executes the procedure many times. For example, maybe your program determines
whether a number is prime in many places. By making a function to test lt§imeou can
write your algorithm only once (as the machinery for that function) and then easily use this
function in many places. This simplifies the task oftimg the program, but more importantly
it makes modifying the primality-testing method very easy later.

Another major purpose of functions is to decompose a program into subtasks. Even if there
is only one location in your program where you decide whether a number is prime, it may be
useful to make it a separate function anyway, just because in the larger program the details
of exactly how you determine this are irrelevant. By using functions in this way, a program
becomes easier to read, and it becomes possible to write much larger programs.

7.1 Function calls

To use a function, a program uskesiction calls. A function call is a part of an expression,
which begins with the name of the function being called, followed by parentheses with the
parameter value placed within the parentheses.

7.2 Function definitions35

For example, one of the functions that is already builtinto C++ istief) function. (The
name is actually jusabs ; but to distinguish functions from variables, conventionally function
names are written with parentheses.) Ittakes one integer as a parameter and returns that integer’s
absolute value. The following line of code illustrates a calbs() .

cout << x << " and " << y << " are " << abs(x - y) << " apart." << endl

In this case, we have used tales() function with the value of the expression - y " as its
parameter. So ik held1 andy held5, thenabs() would be called with its parameter equal to
—4, and the output of this code fragment would be

1 and 5 are 4 apart.

7.2 Function definitions

Actually, we have already seen several function definitions: Each of our programs defines a
function calledmain() . Until now, however, we have ignored this as necessary verbiage; now
we examine exactly what is happening.

A function definition looks like the following.

(returnValueTypé (functionName ((parameterLis}) {
(statements

}
Let's break apart a very simple example to illustrate this.

double square(double to_square) {
return to_square * to_square;

}

double This definition begins with the wordouble , saying that we are about to define a
function whose return value isdouble .

(C++ includes a special return type calleoid for functions returning nothing useful.

Of course the return value of such a function is not useful, but we may still want to call
the function if it has other useful effects like printing information to the screen. We'll see
examples of this later.)

square Then we find the name of the function square in this case. The rules for function
names are the same as for variable names. Always think carefully about how to name your
functions so as to best communicate the function’s purpose.

(double to _square) In the parentheses are the functiop&rameters— the lemons for
ourjuicer. Inthis case, the function takes one parameter, which is ofityygge ; within
the function, we refer to its value with the narte_square . The rules for parameter
names are the same as for function names and for variable names, and as for them you
should try to use names that describe their purpose.

—...” The brace characters surround the statements that say what the function does. This is
called thefunction body. This corresponds to the machinery within the juicer.

36 Functions

return to _square * to _square; In our example, the function body is a single state-
ment, which is aeturn statement When the computer gets tareturn statement,
it stops working on the function. The value of the expression between theretord
and the semicolon is used as the function’s return value (the lemonade, according to our
analogy). In this case we want the return value to be the squaece_stjuare , so our
return value igo _square multiplied by itself.

7.3 Extended example

To illustrate how functions work, we trace through a complete program including a function.

1 #include <iostream>

2 #include <string>

3

4 int fact(iint what) {

5 int ret = 1; // this will be the factorial of what

6 int i;

7 for(= 1; i <= what; =i+ 1) {

8 ret = ret * i; // multiply the value of i into ret
9 }

10 return ret;

1 }

12

13 int main() {

14 int n;

15 int r;

16 cout << "Choose how many of how many? "

17 cin >> r >> n;

18 cout << (fact(n) / fact(r) / fact(n - r)) << " choices" << endl;
19 return O;

20 }

Here is a sample run of this program.

Choose how many of how many? 2 6
15 choices

Let's see how this came about.

Lines 14-17: We begin at the beginning aiain() . We create two variablesandr and wait
for the user to give their values. Nawcontain® andn containtss.

Line 18: In order to compute the first expression to be printed, we compute the value of
“fact(n) . Sincen holds6, we callfact() with the parametewhat holding6.

Lines 5-9: We run through the code d¢&ct() with what holding6. This code multiplies
all the integers betweehand6 together; we finally reach line 10 witet holding720.

Line 10: We return the value afet (thatis,720) and continue with executing line 18.

Line 18: Now that we know the dividend 820, we compute the divisor. Again, we call
fact() , thistime withwhat holding whatr holds, the value.

Lines 5-10: We run throughfact() with what holding2. When we reach line 10gt
holds2 and s is the return value.

7.4 Parameters and variable37

Line 18: Now that we have computed the first two calls, we divide to@8t/2 = 360. But
we still have to perform another division. We know the dividen®hig; to get the divisor,
we callfact() again, this time witlwhat holding the value offi - r ”, which is4.

Lines 5-10: We run throughfact() one more time, this time witlwhat holding4. The
return value i24.

Line 18: Now that we have4 fromfact() , we perform the second divisionto g0 /24 =
15. This is the first number printed. Then we printhoices" , followed by an end-
of-line.

Line 19: We reach theeturn statement irmain() , so we are finished with running the
program.

7.4 Parameters and variables

The variables available within a function are exactly those declared within the function. The
code within a function cannot see variables defined in other functions. For this reason, whenever
you want to call a function, you should include among its parameters any information that the
function needs.

Often we want a function with several parameters. In this case we list the parameters,
separated by commas. For example, we might want a functioase()

int choose(int n, int r) {

return fact(n) / fact(r) / fact(n - r);

}
To call such a function, you list the expressions for the arguments in the same order they are
defined, separated by commas.

cout << choose(6, 2) << " choices" << endl;

This will call ourchoose() function with the parameter holding the valu& and the param-
eterr holding the value.

Note that when we call a function, values are copied into the parameters. So if we happen
to change a parameter’s value, this does not alter anything outside the function. As an example,
consider the following program.

void setToZero(int n) {

n=0;
return;

}

int main() {
int i = 1;
setTozZero(i);
cout << i << endl
return O;

}
(Remember that C++ usesid as the return value type for functions that do not return any-
thing useful.) This program will print the valde Setting the value af to 0 in setToZero()
has no effect on the value dfin main() . This system of parameter passing is cattatl-by-
value.

38 Functions

C++ also allows forcall-by-reference parameters. This alters the behavior so that changes
to the parameteato effect the variable passed to it. You can indicate a call-by-reference parame-
ter using an ampersan&’‘just before the parameter name. For example, we can instead define
setToZero() as follows.

void setToZero(int &n) {

n=0;
return;

}

When we use this in place of our earlggtToZero() , the change of parameter valdees
affect the value of in main() , and so the program prinG (Of course, whenever you use
a call-by-reference variable, you must pass something whose value can be changed. You can't
use ‘setToZero(2) " in an attempt to chang®, for example.)
A final type of parameter passing that C++ provides isahestant-reference parameter
Here the value is not copied to the parameter, but C++ does not allow the programmer to change
the value of the parameter. You can indicate a constant-reference parameter by including the
wordconst beforehand.
void setToZero(const int &n) {
n = 0; // this now causes a compile-time error
return;

}

This fragment will cause a compile-time error because the statement ‘0" attempts to alter
the value of the constant-reference parameter

Exercise 7.1: Define a function to find the greatest common divisor of two numbers, and
use this to modify the checkbook exercise of Exercise 6.7 to work with fractions rather than
double s. The program should keep the total in lowest terms.

To add? 5 6
+ 5/6 = 5/6

To add? 3 4
+ 3/4 = 19/12
To add? 5 12
+ 5/12 = 21

To add? 0 O

Chapter 8

Complex data types

Besides allowing for variables holding only a single item of data (a number or character),
C++ allows variables to hold conglomerations of data. These allow programs to work with more
massive data.

8.1 Arrays

An array holds a sequence of values of the same type. This is especially useful when you want
to store a large group of related data, like data points in a graphing program or students’ scores
in a gradebook program. Each individual value in the array is calleziay element

SCcore

You can declare a new variable to be an array using the following format.
vector< (typeOfElement> (variableToDefing((lengthOfArray));

For example, the following creates an array narseate to hold3 numbers.
vector<double> score(3);

More generally, the array length can be any expressi@n*(*num _students " instead of
“3”, for example).

To work with an array, we must refer to individual elements using theay indices. The
array elements are automatically numbered ffbup to one less than the array length.

40 Complex data types

A detail
worth

remembering at0. (This turns out to be more convenient than the intuitive choic

Yes, that'sone less than the array lengthSo if you declare an array
score of length3, the array indices ar@, 1, and2. C++ always begins
1.) If you try to access an undefined array index, the program may be-
have weirdly (unexpectedly crash, for example), so be careful with array
indices.

To refer to an array element in an expression, type the array variable name, followed by
the element’s array index enclosed in brackets. You can also do this on the left-hand side of an
assignment to alter an array element’s contents.

vector<double> score(3);

score[0]
score[1]
score[2]
cout <<

97.0;
83.0;
66.0;
"Average = " << ((score[0] + score[l] + score[2]) / 3.0) << end];

In these statements we create an array of three numbers, satlesl . We assigned its three
boxes to hold three test scorés, 83, and66. And finally we printed the average of these. The
computer will displayd2.

Parameters can be arrays too. Use the tygmtor< (typeOfElement> to indicate that a
parameter is an array,

A detail
worth

When you pass arrays as parameters to a function, they should be |either
reference parameters (if you want to change the elements) or constant-

remembering reference parameters (if you do not). Do not pass arrays as call-by-value

parameters; the inefficiency of copying arrays is too large to ignore.

Let's look at an implementation of thdode-Tally algorithm we discussed in Chapter 3.
This implementation combines everything we have seen about arrays.

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17 '}

int modeTally(const vector<int> &score, int num, int max) {

vector<int> tally(max + 1);
int i;

fori = 0; i <= max; i =i+ 1) {/ set all tallies to O
tally[i] = O;
}
forfG =0 ;i<num;, i=1i+1){/ tally up the scores
tally[score[i]] = tally[score[i]] + 1;
}
int mode = 0; // find the most-frequently-occurring score
for(G = 1; i <= max; i =i+ 1) {
if(tally[i] > tally[mode]) {
mode = i;
}
}

return mode;

Line 1: Here we have an array of integers nansedre as one of our parameters. (Notice
thatscore is a constant-reference parameter here.) We have another paraovatter
tell the function how many elemergsore has.

Line 2: We define a new arragally to hold “max + 1" integers. We userhax + 1”
rather than justthax’ because scores can range frorto max, and we want a tally box
for each one of these possities.

8.2 Strings41

Lines 3—6: Just after creating an array, the array element contents are undefined. We want all
the tally boxes to be initially empty, so we go through the array and set all elements to
zero.

Lines 7-9: Now we tally up the scores. For each array indétr thescore array (and the in-
dices orscore rangefromDtonum - 1), we addl to tally boxtally[scoreli]]
(You may find it a bit weird to have array indices within array indices, but this is perfectly
legitimate. If it helps to understand what is going on, there is no problem with separating
this statement into two, the first defining a variakl® be “score[i] " and the second
addingl to tally boxtally[x])

Lines 10-16: Finally we go throughally to find which entry is the largest. We usede
to hold the largest entry found so far. We begin with this béir(@e see only the first
array element), but as we go along the array we compare more elements to the best we
have found so far. When we see something better, we store the index of that element in
mode instead.

Exercise 8.1:(Solution, 120) Write a functiomemoveDuplicates() to replace the el-
ements of an array dht s with the sequence with adjacent duplicates removed. The func-
tion should return the number of elements in the new sequence. For example, given the array
(3,7,7,7,8,3,3), the function should replace the elements with7, 8, 3) and returnt.

Exercise 8.2:(Solution, 120) Write a program that computes the median of a set of integer
test scores betwednand100. (Themedianis an element that falls in the middle if we list the
scores in sorted order.) Here is a sample transcript.

How many numbers? 5
#1: 83

#2: 32

#3: 83

#4: 71

#5: 65

Median = 71

8.2 Strings

Thestring typeis quite similar to theector type: Each individual element of tistring
is a character, and you can access individual characters using brackets.

In addition, you can get a string’s length (the number of characters in it) by using the
length() function. The following fragment illustrates all these aspects at work.

string name;

cout << "Who are you? "
cin >> name;

cout << "Hello, "

for(int i = 0; i < namelength(); i =i + 1) {
if(nameli] == "_") {
cout << ' 7
} else {

cout << nameli];
}
}

cout << "I" << endl;

42 Complex data types

This fragment reads a word the user types into the variasiee. (When you use the input
operator>> with a string, the string it reads includes the characters up to the first space or return
character. Subsequent letters are left for later inputs.) After reading this word, the fragment
prints out the name, but prints spaces in place of the underscore charac}ers ('

Who are you? J_Edgar Hoover
Hello, J Edgar!

You can also compare strings with operators kkand== just as you compare numbers.
The ordering is similar to a dictionary’s, but all the upper-case letters precede all the lower-case
case letters. Sd'Washington" <= "cherry" " has a value ofrue.

Exercise 8.3:(Solution, 121) Write a program that gets a word that the user types and then
tells the user whether or not the word is a palindromepélindrome is a sequence of letters
that read the same forwards and backwards. Examples in@dderanddeified)

8.3 Structures

It's also sometimes useful to have variables conglomerating several very different pieces of data.
For example, we may want a variable to represent a student. A student may have an ID number,
a raw score, and a letter grade. To make a single variable to contain all this data, you can use a
structure

A structure is a programmer-defined type combining several other pieces of data. You can
use thestruct keyword to define a new structure.

struct (nameOfStructureTypg {
(elementDeclarations

2
The structure definition should appear outside function bodies.

struct StudentType {

int id; /I student id

double score; // raw score

char grade; /I letter grade (A’, 'B, 'C’, 'D’, or 'F)
h

A detail Notice that a structure definition introduces a semicolon after the clgsing

worth brace, in contrast to the rules we have seen elsewhere in C++. It's easy to

remembering forget that semicolon, but you must include it to avoid confusing the C++
compiler.

Once you have defined a structure, you can easily create variables of that new type.
StudentType stud;

In an expression or an assignment statement, you can refer to individual data elements within
the structure by using the dot operator

stud.id = 42;
stud.score = 98.3;
stud.grade = 'A’;

Of course there’s no problem with using arrays of structures, representing perhaps an entire
array of students.

8.3 Structures43

int findMaxScore(const vector<StudentType> &student, int num_students) {

int max = 0;
int i;
for(= 1, i < num_students; =i+ 1) {
if(student[i].score > student[max].score) {
max = i
}
}

return student[max].id;

}

This function takes an array of students as its parameter. It determines the index of the student
with the highest score (exactly as we determined the maximum tathoaeTally()), and
it returns that student’s ID number.

Note that, just as an array parameter should be either a reference parameter or a constant-
reference parameter, so should a structure parameter.

Exercise 8.4:(Solution, 121) Write a C++ fragment to define a new type representing a library
book. The relevant data to include in this structure are the book’s name, ID number, the price,
and the due date.

Chapter 9

Objects

In large software projects, a primary problem is how to structure and decompose the prob-
lem into more manageable brain-sized chunks. Software engineers use a variety of techniques
to do this. One fairly recent and very popular techniquebect-oriented design In this
chapter we look at what this means, and we examine how it works in practice using a particular
language designed for object-oriented designs, C++.

9.1 Object-oriented design

The main insight motivating the idea of object-oriented design as that most tasks involve the
manipulation of objects. This is certainly true in the real world, and object-oriented design
proposes that it holds for computing too. If thisis true, then a natural way to structure a program
is to define separately each of the objects involved in the task. If these are designed properly,
then the program to manipulate the objects should be short and straightforward.

As an example, consider a program for drawing graphs. The program manipulates several
objects related to the interface: a menu, individual menu items, a canvas for the graph, a palette
of colors, and maybe a toolbox. The program also manipulates objects related to the graph
itself: the z-axis, they-axis, data points, data series, labels, and a legend. And the program
manipulates objects for handling graph data: a spreadsheet, files, the printer. In an object-
oriented design, each of these objects would be a candidate for being a separate component of
the program.

A single component defines a single object. An object has two basic pieces — its state and
its interface. Thestate of the object is the information associated with it. Thethodsof the
object are the actions the object can perform. Together, these amgethbers of the object.

Good designs usually prevent the state from being changed except through the methods. Think
of a Rubik’s cube: the state would be the current configuration, and the methods would include
actions for twisting and turning the cube. The cube does not allow tweaking individual pieces
of the state, so the object should not allow the program to do this by changing the object’s state
directly.

To return to our graphing example, a data point object may have-thiedy-coordinates as
its state. Among its methods may be a method for drawing the point on the screen and a method
for moving the point.

Deciding where different functionality lies is a matter of taste. Is it the data point’s job to
draw itself, or is this the purview of the data series, or should the canvas draw it? The designer

9.2 Defining objectsA5

must decide which is most natural. Object-oriented design then, does not make program design
simple: It is a guiding paradigm, which provides guidelines but not answers about how to
structure a design.

9.2 Defining objects

A programming language can provide support for object-oriented programs. C++ is one of
these languages; this is one of the features most distinguishing it from C, BASIC, and Pascal.

Defining an object’s type

To define an object in C++, you first define the object’s type, whic specifies its behavior. An
object type is called alass Like a structure, this new data type is an alternative to the basic
data types we have already seenndf , char , of double . C++ calls one of these types a
class An example of a class definition is the following.

class DataPoint {
public:
double my_x;
double my_y;
void draw(Graphics &dest);

h

This class definitionshould appear outside any function bodies in the program. Here we have
defined an object class calléhtaPoint . It has two data members associated with it, called
my_x andmy.y. And it has one method, calletfaw() . We haven't defined what this method
does yet; we'll get to this soon.

Defining an object

Now that we have defined an object’s class, it is time to create an individual object. When we
create an object, we set aside some memory to hold that object’s state.

DataPoint pt;

Usually we want the object to define what its initial state is. To do this we incledastructor

in the class definition. The constructor is called automatically when a new object is created. To
define it, we create a method with the same name as the class and without any return type. It
can take parameters.

class DataPoint {
public:
DataPoint(double x, double vy);
/I declarations of other data and methods

h

If the constructor takes parameters, then we must include them when we create an object.

DataPoint pt(3, 4);

46 Objects

class DataPoint {
public:
double my_x;
double my y;

DataPoint(double x, double y);
double getX();

double getY();

void draw(Graphics &dest);
void move(double X, double y);

3

DataPoint::DataPoint(double x, double y) {
my_x = X; my_y =Yy,
}

double DataPoint::getX() { return my_x; }
double DataPoint::getY() { return my_y; }

void DataPoint::draw(Graphics &dest) {
dest.drawRect(my x - 1, my_y - 1, 3, 3);
}

void DataPoint::move(double x, double y) {
my_x =X, my_y =y,
}

Figure 9.1: ThdataPoint class.

Accessing an object

To access an object, we use a period. To dravin theGraphics objectgraph , for example,
we would include the statement

pt.draw(graph);

This will call thedraw() method defined in thBataPoint class, with the parametdest
beinggraph . (As with arrays and structures, when you pass an object as a parameter, you
should either make it a call-by-reference paramater or a constant-reference parameter.)

When the computer calls a method (suchdemw()), it includes information about the
object (such agt) on which the action is to operate. Within the method, we can refer to
individual members of this object directly without specifying them as part of the object.

With this in mind we create ouwdraw() method:

void DataPoint::draw(Graphics &dest) {

dest.drawRect(my x - 1, my_.y - 1, 3, 3);
}

(This definition would appear outside the class definition.) Here we have indicated that the
action of drawing a point should be completed by drawidge square centered on the point’s
coordinates. Figure 9.1 contains a complete definition DataPoint class, including the
constructor.

9.3 Additional object concepts

The definition of objects is the most basic and important way that C++ and other object-oriented
languages provides support for objects. But it also includes other features.

9.3 Additional object conceptd7

Multiple files

To help modularize a larger program, we will want to split it across files. A natural way to do
this in object-oriented designs is to designate a file for each object’staefin

In C++, when we want to have a file for an object, we include botteader file and
a definition file. The header file contains the type definition (tlass block), while the
definition file contains definitions of the methods. The header file’'s name is typically something
like “DataPoint.n ", while the definition file is typically something likedataPoint.cc .

When we have a file including code using the class definition (and this includes the defini-
tion file), we must tell the compiler this. We do this using #fieclude statement at the file’s
beginning.

#include "DataPoint.h"

(This is similar to what we have blindly included earlier; there we were telling the compiler
that we wanted to use the input and output objects, and that we wanted to sdnte

object. Now we place the file name in quotes rather than angle brackets because the file is not
compiler-supplied.)

Protecting information

In the Rubik’s cube example of Section 9.1, we noted that generally the program should not
alter the state of an object without using the object’s interface. C++ provides support for this
with its private keyword. When we define a data member or metpioeate instead of
public , we disallow that member to be used outside the object’'s methods.

Good programming practice suggests that all state information (the data members) should
be declared aprivate . If the program does this, then a programmer can later change the
implementation of the object without worrying about how the rest of the program uses the
object, provided that the interface remains unchanged. IiDataPoint example, we would
instead declare the class as follows.

class DataPoint {

private:

double my_x;
double my_y;

public:

DataPoint(double x, double vy);
void draw(Graphics &dest);
double getX();

double getY();

void move(double x, double vy);

%

Later circumstances may make us decide that it is more convenient to define a data point
using polar coordinates, as the distance from the origin and the angle framattie. I1fx andy
are private members, then we can do this safely by modifying onlp#taPoint definition.
We can ignore the rest of the program, since it does noxwsaly directly.

Extending an object

In larger programs, we may find that some objects are just specific instances of different types.
We may decide, for example, that a pencil is just a special type of drawing utensil. Or buttons

48 Objects

and checkboxes in the user interface are both special types of user-input devices. We might hope
that we can write code that applies to both. C++ and other object-oriented languages provide
support through this through the mechanisnndiieritance. This is a complicated mechanism;
we will touch on C++’s support of inheritance only briefly.

We call a class that inherits from anothesubclass and the class it inherits from we call a
superclass SoPencil would be a subclass @&frawingUtensil

In C++, we define a subclass just as a regular class, but we add a colon to indicate what it is
a subclass of.

class Pencil : public DrawingUtensil {
private:
int uses_left;

public:
Pencil();
void sharpen();
void draw();

h
Pencil::Pencil() { uses_left = 10; }
void Pencil::sharpen() { uses_left = 10; }

void Pencil::draw() {
if(luses_left > 0) {
DrawingUtensil::draw();
uses_left = uses_left - 1;
}
}

In our subclass definition, we have added some functionality to the pencil. In particular, it
includes some new state indicating how sharp the pencil is. We have added a method to

sharpen the pencil. And we have inherited any other method¥afingUtensil . If
DrawingUtensil has metho@rase() |, forexample, thenwe can calfase() onPencil s
too.

One of these methodslraw() , we have overridden so that it only draws if the pencil
has been sharpened recently. This implementation happens to uBeatimgUtensil
draw() method; itindicates that it wants to use this method (andPeoicil 's draw()) by
using the: operator.

In many cases it is natural to have subclasses of subclassBadRencil might be a
subclass oPencil , for example. We can draw a tree of the different subclasses; this is called
aninheritance hierarchy. The inheritance hierarchy is a good way to illustrate the structure of
an object-oriented program’s design.

Conclusion

Object-oriented design is a useful paradigm in many situations. Some people claim that it is the
best paradigm for all programs. This seems to be an exaggeration, but object-oriented design has
proven useful in many instances. User interfaces (an important component of most commercial
software) are particularly conducive to object-oriented design.

Object-oriented languages (like C++) can aid in developing programs with object-oriented
designs. These languages add features like data protection and inheritance, which are awkward
to simulate in other languages.

9.3 Additional object concept49

301 °

20

10+

50 350 650 950
Figure 9.2: Input for line-fitting program.

In any case, structure is essential in very large projects. Design paradigms — like object-
oriented design — are natural and very helpful for producing well-structured programs.

We close with a longer program illustrating object-oriented design, in Figure 9.3. This
program computes the least-squares fit to a series of data. Here is a sample run of this program
for the input of Figure 9.2.

How many points?

4

Point 1 (separate numbers with space):
150 1.6

Point 2 (separate numbers with space):
350 6

Point 3 (separate numbers with space):
650 16.4

Point 4 (separate numbers with space):
950 29.24

slope : 0.0349034

intercept: -5.01429

corr r'2 : 0.986412

Exercise 9.1: Define aRational class and use it to convert the checkbook program of
Exercise 7.1 to an object-oriented design.

50 Objects

#include <iostream>
#include <string>

class DataSeries {

private:
int num; double x_sum; double y sum;
double xx_sum; double xy_sum; double yy sum;

public:
DataSeries();
void addPoint(double x, double y);
double getSlope();
double getintercept();
double getCorrelation();

h
DataSeries::DataSeries() {
num = O; x_sum = 0.0; y_sum = 0.0;
xx_sum = 0.0; xy_sum = 0.0; yy_sum = 0.0;
}
void DataSeries::addPoint(double x, double y) {
num = num + 1; X_sum = x_sum + X; y_sum = y_sum + y;
XX_sSum = Xx_sum + X * X; yy sum = yy sum + y *y;, Xy sum = xy_sum + X *vy;
}

double DataSeries::getSlope() {
return (xy_sum - x_sum * y sum / num) / (XX_sum - x_sum * x_sum / num);
}

double DataSeries::getintercept() {
return (y_sum / num) - getSlope() * (x_sum / num);
}

double DataSeries::getCorrelation() {
double xy_var = xy_sum - X_sum * y sum / num;

double x_var = xx_sum - x_sum * x_sum / num;
double y var = yy sum -y sum * y sum / num;
return (xy_var * xy var) / (x_var * y var);
}
int main() {
/I let num_pts be the number of points
int num_pts; cout << "How many points? "“; cin >> num_pts;
while(num_pts < 2) {
cout << "At least two are required. How many? "; cin >> num_pts;
}
/I add the points to the data series
DataSeries series;
forint i = O ;I < num_pts; =i+ 1) {
cout << "Point " << (i + 1) << " (separate numbers with space): ";
double x; double vy;
cin >> x >> vy;
series.addPoint(x, y);
}
/I print statistics
cout << "slope ;" << series.getSlope() << endl;
cout << "intercept: " << series.getintercept() << endl;
cout << "corr r° 2 : " << series.getCorrelation() << endl;
}

Figure 9.3: A program to fit a line.

THIRD UNIT

Recursion

In the third unit of this textRecursion we look at programming from a slightly more
abstract level. We begin in Chapter 10 by extending our programming tools to encompass the
concept ofecursion— that is, functions that use themselves. This concept is very intuitive and
allows simple procedures to accomplish complex tasks effectively.

In Chapter 11, we look at the specific task of playing games. Game playing is a huge success
of the study of artificial intelligence, and we study many of the mostsssful game-playing
techniques. In our study, we find that recursion plays an important role in game playing. This
study also sets the stage for other abstract computer science concepts coming in the following
units.

Chapter 10

Recursion

Recursion is a powerful technique, often giving impressive results through simple expres-
sions that are otherwise quite complex. In this chapter, we examine recursion through three
specific examples: a definition of Jews, exponentiation, and the Tower of Hanoi puzzle.

10.1 Definition

Recursionis the concept of well-defined self-reference.

Definitions are often recursive. Consider, for example, the following hypothetical definition
of a Jew. (We examine this definition onlgtause of its interesting structure. | don’t vouch for
its validity — | just heard it at a party once.)

Somebody is a Jew if his or her mother is a Jew.

This definition isself-referential because it relies on itself for a defion. This definition has
a problem, though; do you see it?

One problem that sometimes comes up with self-referentialitdefis is that they are circu-
lar. For example, “A rose is a rose” is circular. The Jewishness definition would also be circular
if it were possible for somebody to be their own mother or their own maternal grandmother
(or further down the line); then somebody’s Jewishness might depend on her own Jewishness.
Barring science-fiction time anomalies, however, this is impossible.

The problem with the definition is that it is missindpase caseThere has to be at least one
person whose Jewishness does not rely on her mother; otherwise, we have a problem of infinite
regress: I'm Jewish if my mother is Jewish; my mother is Jewish if her mother is Jewish; she is
Jewish if her mother is Jewish; and so on. We never stop. This problem is easy to fix.

Somebody is a Jew if she is Abraham’s wife Sarah, or if his or her mother is a Jew.

Soif Iwant to know if | am a Jew, | look at this definition. I'm not Sarah, so | need to know
whether my mother is a Jew. How do | know about my mother? We look at the definition again.
She isn’t Sarah either, so we ask about her mother. We keep going back through the generations
— recursively — until we arrive at Sarah.

We can translate this procedure for determining whether somebody is a Jew into pseu-
docode.

10.2 Exponentiatiorb3

Algorithm Is-A-Jew(person)
if person = Abraham'’s wife Saratthen:
return true .
else:
return Is-A-Jew(person’s mothey.
end of if

This is arecursive functionsince it uses itself to compute its own value. Every recursive
functionmusthave a base case. That is, it must have some case (in this examplepanhen
is Sarah) when the function does not call itself recursively. A function without a base case will
keep calling itself and will never get around to returning a value. The program will either crash
or it will continue until an external effect stops it; it will certainly not find the right value.

Notice thatis-A-Jew still has a problem. What if | am not a Jew? Then we’ll ask about my
mother, then her mother, then her mother, and so on. We’ll never reach Sarah, and the list of
mothers will go much further back: We'll never stop. (In this case, we’ll crash at some point
(maybe when we get to Eve).)

The problem is that in this example we need more than one base case. Here is a repaired
version.

Algorithm Is-A-Jew(person)

if person = Abraham'’s wife Saratthen:

return true .

else ifperson was born before Sarah was botimen:

return false

else:

return Is-A-Jew(person’s mothey.
end of if

As this example demonstrates, recursion can involve subtle problems, but it's often useful or
even essential.

10.2 Exponentiation

Now we’ll look at a very different, very practical problem: exponentiating a number. That is,
given a numbet: and a nonnegative integer we want to findz".

A C++ implementation

This time, we’ll use C++ rather than pseudocode. A recursive function in C++ is written just as
you would expect: Call the function exactly as you would any other function.
Notice that whem > 0, we have

" =z 2"

1 .
This suggests that we might compute by first computingz"~! (using recursion) and then
multiplying it by z. We can implement aexponentiate() function doing exactly this.
double exponentiate(double x, int n) {
if(n == 0) {
return 1.0;
} else {
return X * exponentiate(x, n - 1);

}

54 Recursion

This is simple, but it is rather poor for large Notice that if we want to take something to the
1000th power, the computer will gb000 levels deep into the recursion. This takes a while, and

it extends the resources of computers, which are often not designed to handle that many layers
of function calls.

A faster implementation

Fortunately, recursion suggests a faster way by noticing a different fact about exponernss: If
even, then:” = (2)"*/2. And if n is odd, then:” = z - (22)(*=1/2,
We can use this fact to write a new solution.

double exponentiate(double x, int n) {

ifln == 0) { // base case
return 1.0;

} else if(n % 2 == 0) { // then n is even
return exponentiate(x * x , n/ 2);

} else { // then n is odd
return X * exponentiate(x * x, (n - 1) / 2);
}
}

How deep does the recursion go for this new versiomxgfonentiate() ? Here's a
way to bound it: Notice that each time we go one level deeper in the recursion, the value of
n at the new level is at most half of what it was. You can see that this will always be true by
looking at our definition oéxponentiate() . (Whenn is even, the value at the next level is
exactly half; whem is odd, the value is a little less.) Therefore, if welgg, » levels deep, the
exponent at that level &t most

(1)log2n 1 1
n — :n—:n—:l,
2 9logy n n

wheren is the exponent at the top level. When we go one more level deep, the exponent will
become 0 and we will have reached the base case. So the deepest the recursion will ever go is
1 + log, n levels.

This is much faster than thelevels we saw with our first algorithm. For example, taking
something to the000th power required going dowh00 levels of recursion, which seemed a
bit unreasonable; now we go only levels down (at most).

10.3 Tower of Hanoi

In the Tower of Hanoi puzzle, we have three pegs and several disks, initially stacked from largest
to smallest on the left peg. We’'ll refer to these disks by the numbénsough3 (3 being the
largest). For example, the four-disk puzzle is the following.

=

a b C

Our goal is to move the entire tower from the left peg to the middle peg, but we can only move
one disk at a time and we can never place a larger disk on a smaller one. (You should try to
figure this out on your own before continuing.)

10.3 Tower of Hanob5

According to folkloré, a 64-disk version of the puzzle lies in a Hanoi monastery, where
monks work continuously toward solving the puzzle. When they complete the puzzle, the world
will come to an end. This brings up two crucial questions on which the future depends:

¢ How should the monks solve the puzzle? That is, how can we write a program for solving
the puzzle?

¢ If the monks use our program, how long will the world last?

We’'ll answer both of these questions in sequence.

Solving the puzzle

Recursion is the easiest way to explain how to solve this puzzle. Before going on and spoiling
the fun, try yourself to think of a way to define the pattern for solving Tower of Hanoi.

Using recursion often involves a key insight that makes everything simpler. Often the insight
is determining what data exactly we are recursing on — we ask, what is the essential feature of
the problem that should change as we call ourselves? In the cieséafew, the feature is the
person in question: At the top level, we are asking about a person; a level deeper, we ask about
the person’s mother; in the next level, the grandmother; and so on.

In our Tower of Hanoi solution, we recurse on the largest disk to be moved. That is, we will
write a recursive function that takes as a parameter the disk that is the largest disk in the tower
we want to move. Our function will also take three parameters indicating from which peg the
tower should be moved:¢urce), to which peg it should gadest), and the other peg, which we
can use temporarily to make this happepfe).

At the top level, we will want to move the entire tower, so we want to move disksd
smaller from peg A to peg B. We can break this into three basic steps.

1. Move disk=2 and smaller from peg Aspurce) to peg C épare), using peg B {est) as a
spare. How do we do this? By recursively using the same procedure. After finishing this,
we’ll have all the disks smaller than digkon peg C. (Bear with me if this doesn’t make
sense for the moment - we’ll do an example soon.)

| =

a b c

2. Now, with all the smaller disks on the spare peg, we can movesdislectly from peg A

(source) to peg B (est).
L2

a b c

3. Finally, we want to move disksand smaller from peg Gpare) to peg B (est). We do
this recursively using the same procedure again. After we finish, we’ll have all disks on

dest.

a b C

*Invented by Edouard Lucas in 1883 to help market his commercial version.

56 Recursion

In pseudocode, this looks like the following. At the top level, we’'ll ¢dthve-Tower with
disk = 3, source = A, dest = B, andspare = (.

Algorithm Move-Tower(disk, source, dest, spare)

1
2
3
4
5
6
7

if disk =0, then:
Move disk from source to dest. /[base case
else:
Move-Tower(disk — 1, source, spare), dest) I/ Step 1 above
Move disk from source to dest. /[Step 2 above
Move-Tower(disk — 1, spare, dest, source) [/ Step 3 above
end of if

Note that the pseudocode adds a base case in line 1: Wheis 0, the smallest disk, we don't
need to worry about smaller disks, so we can just move the disk directly. In the other cases,
we follow the three-step recursive procedure we already described foB dtbks is done in
lines 4-6).

An example will help to explain what is going on here. First, a definition: ddlestack
is a representation of where we are in the recursion. As we progress through the algorithm,
we will have several levels. Each level will have a different status (the varidblessource,
dest, andspare are different at all levels, and we will be at different locations in the different
functions. As we proceed, we will put new function calls at the top (end) of the stack, and we

will remove function calls from the top (end) of the stack as we finish them.
We'll look a three-disk problem here. We uSH as an abbreviation fdviove-Tower.

1.

We begin with a call tdMT(2, A, B, C), so that our call stack is simpl(MT(2, A, B, C),0)).

(This representation of the call stack says that there is one function call currently on it. This is
a function call toMove-Tower(2, A, B, ('), and we are currently at lin@ of the call.) Since

disk # 0, this is not the base case, and we go to line 4.

Atline 4 of MT(2, A, B, C), we callMT(1, A, C, B). So now our call stack becomes
(MT(2, A, B,C),4); (MT(1, A, C, B),0)) .

Now at this new call taviT, we haved:sk = 1. We are still not in the base case, so wegaed to
line 4.

Atline 4 ofMT(1, A, C, B), we callMT(0, A, B, C). So now our call stack becomes
((MT(2, 4, B,C),4); (MT(1, 4,C, B),4); (MT(0, 4, B, C), 0)) .

At this call toMT, we havedisk = 0. We enter the base case (line 1) and move disk 0 frota

| Ll

. We now reach the end of the callMT (0, A, B, C'). We remove this from the call stack and step

to the next line (line 5) of what is now on the top. Our call stack is now
(MT(2, A, B,C),4); (MT(1, A, C, B),5)) .

This says to move disk 1 from to C'.

L4 L

10.3 Tower of Hanob7

5. Now, at line 6 oMT(1, A, C, B), we callMT(0, B, C', A). Our call stack now becomes
((MT(2, A, B,C),4); (MT(1, A,C, B),6); (MT(0, B, C', A),0)) .

In this call, we are at the base case and so move disk 0 faoC'.

L | =

6. We return from this call, making the call stack become
(MT(2, A, B,C),4); (MT(1, A, C, B), 7)) .

Proceeding from line 7 oM T(1, A, C, B), we find we reach the end and so return from it too.
Now the call stack is simply(MT(2, A, B, '), 5)). Line 5 says to move disk 2 from to B.

| ::E%l

7. Atline 6 of MT(2, A, B, C), we make another function call, now MT(1,C, B, A). Our call
stack becomes

((MT(2, 4, B, C),6); (MT(L, C, B, A),0)) .

We do not enter the base case, and proceed to lineMT¢f, C, B, A), where we make another
function call to make the call stack

((MT(2, A, B,C),6); (MT(1,C, B, A),4); (MT(0,C, A, B),0)) .
In the callMT(0, C, A, B) we enter the base case and move disk O directly ffota A.

Lo

8. We return fronMT(0, C, A, B); now the call stack is
((MT(2, A, B,C),6); (MT(1,C, B, A),5)) .
Atline 5 of MT(1, C, B, A), we move disk 2 to pegs.

b= |

9. Atline 6, we callMT(0, A, B, C'). The call stack is now
((MT(2, A, B,(C),6); (MT(1,C, B, A),6); (MT(0, A, B,C),0)),
and from here we proceed to line 1 and move disk O frbto B.

=

10. We return from the call tMT(0, A, B, C'); the call stack is now
((MT(2, A, B,C),6); (MT(1,C, B, A), 7)) .

We return from the call tMMT(1, C, B, A); the stack is now(MT(2, A, B, (), 7)). We return
from the call toMT(2, A, B,); the call stack is now empty, and so we are done.

Besides the call stack, another useful way to visualize what happens when ybloven
Tower is acall tree. The call tree graphically represents all the recursive calls made by a single
function call. For example, Figure 10.1 contains a call tredvfove-Tower(3, A, B, C'). Each
function call in the call tree is called mode The nodes connected just below any naede
represent the function calls made by the function call-fatust below the top, for example,
are Move-Tower(2, A, C, B) andMove-Tower(2,C, B, A), since these are the two function
calls thatMove-Tower(3, A4, B, C') makes. At the bottom are many nodes without any nodes
connected below them — these represent base cases.

58 Recursion

3,A,B,C
\
2,A,C, B 2,C, B, A
e N yd N
1,A,B,C 1,B,C,A 1,C,A,B 1,A,B,C

Figure 10.1: Call tree foMove-Tower(3, A, B, C).

Analyzing our solution

Now we ask: If the monks ugdglove-Tower, how long will it be before the world ends? To
answer this question, we need to learn abmgtrrences A recurrence is a well-defined
mathematical function written in terms of itself; it's a mathematical function defined recursively.
Take theFibonacci sequenceas an example. The Fibonacci sequence is the sequence of
numbers
1,1,2,3,5,8,13,21,34,55, ...

The first two numbers of the sequence are both 1, while each succeeding number is the sum of
the two numbers before it. (We arrived at 55 as the tenth number, since it is the sum of 21 and
34, the eighth and ninth numbers.)

Let’s define a functior’(n) that returns thé¢n + 1)th Fibonacci number. (Don't let the use
of n + 1 rather tham confuse you; it's just a little more convenient if we number this sequence
starting a0.) First, we knock off two base cases:

1
1

Now we consider the other numbers. To get thet+ 1)th Fibonacci, we just add theth
Fibonacci and thén — 1)th Fibonacci.

Fn)y=Fn—-1)4+F(n-2).

This functionF is called arecurrencebecause it is defined in terms of itself evaluated at other
values.

Now we're going to use a recurrence to find how many times the monks will move a disk
if they follow our Move-Tower program. Think about this on your own for a while before
proceeding.

To answer how long it will take our friendly monks to destroy the world, we write a recur-
rence (let’s call itV (n)) for the number of moveslove-Tower takes for am-disk tower.

The base case — whernis 1 — is easy: The monks just move the single disk directly. Thus
we have

M(1)=1.

In the other cases, the monks follow our three-step procedure. First they mave-thig -disk
tower to the spare peg; this takés(n — 1) moves. Then the monks move thth disk, taking

1 additional move. And finally they move the — 1)-disk tower again (this time to the top of
thenth disk), takingM (n — 1) moves. This gives us our recurrence relation,

Mmn)y=Mmn-1)+1+Mn-1)=2Mn—-1)+1.

10.3 Tower of Hanoib9

Since the monks are handling&-disk tower, all we need to do is to comput&(64), and
that tells us how many moves they will have to make. This would be more convenient if we had
M (n) in closed form— that is, if we could write a formula fak/ (=) without using recursion.
Do you see what it should be? (It may be helpful if you go ahead and compute the first few
values, likeM (2), M (3), andM (4).)

Looking at these first few numbers, we see the following.

M) = 1
M2) = 2M(1)+1 = 3
M@3) = 2M@2)+1 = 7
M4) = 2M(3)+1 = 15
M() = 2M@A)+1 = 31
By looking at this, we can guess that
M(n)=2"-1.

We can prove this using a simple proof by induction. ket 1, M (n) is 1, which is indeed
2" — 1. Now consider any. > 1 and sayM (n — 1) = 2"~ — 1. ThenM (n), which we have
already seen i@M(n — 1) + 1,is2(2"71 — 1) + 1 = 2» — 1. This completes a proof by
induction thatM (n) = 2" — 1.

So the monks will move® — 1 ~ 18.45 x 10'® disks. Even if they could move a disk
every millisecond, they’'d have to work f684.6 million years. It looks like we're safé.

Exercise 10.1(Solution, 121) Write a recursive program to enumerate all subs¢ts of., n}
for somen the user specifies. (The order in which they are printed is notimportant.)

Choose from how many? 2

RN

2

Exercise 10.2: Write a recursive program to enumerate all the subsets of a given size from
{1,...,n} for somen the user specifies. (This is like the program on page 36, except now we
actually list the choices.)

Choose how many of how many? 2 4
12

NN P -
AW bw

3

One tempting way to do this exercise is to take the answer of Exercise 10.1 and modify it to
only print out subsets of the given size. Don’t do this; it is impractically slow for larg&our
program should handle all pairs frofd numbers quite quickly.)

tActually, you might object that the monks could use a much faster algorithm. But it turns ohtdkiatTower
uses the fewest moves possible.

Chapter 11
Playing games

Although artificial intelligence research dates from the dawn of computer science, its goals
are so ambitious that it still has far to go. But it has a fewcasses behind it. One of the most
notable examples is in playing games.

The motivation behind game-playing research is much more serious than it sounds. The pri-
mary goal is to have computers adapt and plan, so that they can handle serious tasks like driving
a car or managing a production line. Game-playing as a topic of study came about because
it was fun, manageable, but somewhat beyond current technology. For similar reasons, some
robotics researchers today concentrate on creating robotic juggling — not because juggling is a
useful task, but because it requires dexterity and quick thinking that robots need but currently
lack.

Classical game-playing techniques work for a variety of games with certain common char-
acteristics. We assume that the game involves two players alternating turns. We assume that
both players always know everything about the current state of the game. (This is not true for
many card games, for example, because a player does not know the other’s hand.) And we
assume that the number of moves on each turn is limited.

These restrictions still encompass many games, including tic-tac-toe, Connect-4, Othello,
checkers, chess, and go. In this chapter we look at the simplest of these, tic-tac-toe. But, except
for go, the techniques covered in this chapter work well for all of the games just listed.

In case your childhood somehow lacked tic-tac-toe, let us review the rules. We start with a
3 x 3 board, all blank. It isX’s turn first, andX can place his mark in any of the nine blanks.
ThenO places her mark in one of the eight remaining blanks. In respéiises seven choices.
In this way the players alternate turns until one of the players has three marks along a horizontal,
vertical, or diagonal line (thus winning the game), or until the board becomes filled (this is a tie
if neither player has won).

One approach to writing a tic-tac-toe program is to simply enumerate the situations that may
occur and what the computer should do in each case. For example: If the compDiemid
X’s first move is in a corner, the@ should play in the center. K’s first move is in the center,
O should play in a corner. And so on. But this approach has a major problem: It relies on a
human to list what to do in every circumstance in advance. The list becomes unmanageable for
games more complicated than tic-tac-toe; worse, the computer will never exceedlitiiefb
its programmer.

11.1 Game tree searchl

X|0]|0
X X's turn
O| X
X|0]|0 X|0]|0 X|0]|0
XX X X X O’sturn
O| X O X O|X|X
KA T ()
X|0|0O X|O|O X|O|O X|O|O X|O|O0 X|O|O
X[X]O X|X X[O|X X X X|O X @] X’s turn
O| X O|X|0O O0O|X O|X|O O|X|X O0O|X|X
(i) (i) (-1 (i) (-1 (i)
X|0|O0 X]|O|O X|0|0 X|0]|0
X[X]O X|[X|X X|X|X X[X]|O
O|X|X O|X|O O|X|O O|X|X
1) 1) 1) 1)

Figure 11.1: Evaluating a board.

11.1 Game tree search

A more general approach is have the computer determine how to move by evaluating all choices.
Say the current board is

0|0

X
X
O|X

and the computer, playing, must choose a move. To do this, the computer can consider each
of the three possible next boards and consider which is most appealihg to

X|0|0 X|O0|0 X|O|O
XX X X X
O|X OX O|X[X

To determine which is best f@, the computer looks at each Ofs possibilities. Eventually
we end up with what is calledgame tree as in Figure 11.1.

The parenthesized numbers in Figure 11.1 indicate the “value” of each bbéwda tie,
1 for a guaranteed win faX, and—1 for a guaranteed win faD. At the bottom, when a final
board is reached, the value of the board is the outcome for that board: In the figure, the bottom
left board isl becaus&X has completed the diagonal. For other boards, the value is the best of
the choices for the current player. For the top board, we have three choices: a Wjrafain
for O, or a win forO. Itis X’s turn, soX would choose the win foX; hence the board’s value
is 1, andX should move in the board’s center.

62 Playing games

Evaluating such a tree is called th@nimax search algorithm, sinceX chooses the max-
imum of its childrens’ values an@ chooses the minimum. We can write the minimax search
algorithm very naturally using recursion.

Algorithm Minimax-Search(board, player)

I/l base case for final state

if board is a win forX then return 1.

else ifboard is a tiethen return 0.

else ifboard is a win forO then return —1.

end of if

I/l try all moves, lettingrest be value of most desirable

if player = X then let best hold —oc.

elselet best hold co.

end of if

for each legamove on board do
Make move on board.
Let value hold Minimax-Search(board, oppositeplayer).
Undo move from board.
if player = X and value > best then let best hold value.
else ifplayer = O and value < best then let best hold value.
end of if

end of loop

return best.

11.2 Heuristics

The problem with minimax search is that it takes a lot of time. Tic-tac-toe games, which last at
most9 moves, have game trees that computers can exhaust. But a chess game may last more
than50 moves; the game tree is well beyond the total computing capacity of the world.

The solution is simple. We search only to a certain depth of the tree. When we see a board
at the depth that is not in a final state, we applyearistic function to estimate the board’s
value. The heuristic function is a function written by the programmer that tells roughly how
good the board is. In tic-tac-toe, a simple heuristic function may calculate the difference of the
number of possible wins foX and the number of possible wins fOr, where a possible win is
a row, column, or diagonal with none of the opponent’s pieces. The board

O[X
X0
X|0O|X

has one possible win foxX (the right column) and no possible wins f@, its heuristic value
would bel. We should also make the value of guaranteed wins more extredfi@igd —10°,
say) to indicate how sure we are of them.

We now evaluate the board by going to a certain depth and using the heuristic function to
evaluate the boards at the bottom depth that are not final. We use the same minimax procedure
for boards above the maximum depth. Figure 11.2 illustrates an example going to a d&pth of
In this exampleX would decide for either the second or third choices.

11.3 Alpha-beta searclt3

A
O| X
O X's turn
X0 X
/(0)\
| B
O|X|X O X O X
O X|O O X O’s turn
X0 X X0 X X0 X
T AT AN
C
O|X|X O|X|X 0O|X|0 0O|X O|X|O O0O|X
0|0 0|0 X]|O X|O|0 O|X O0|0|X
X0 X X|O|X X|OIX X|OIX X|OIX X|O|X
(0) (-1) (0) (0) (0) 1)

Figure 11.2: Using heuristics to evaluate a board.

11.3 Alpha-beta search

Heuristics allow us to write reasonably good game-playing programs. The professionals are
somewhat more sophisticated, though, in choosing which boards to evaluate. One particularly
interesting enhancement is callahha-beta search where we notice that some of the boards
need not be evaluated to get the exact answer.

Figure 11.2 provides an example where this applies. Call the right-most board in the bottom
level C, its parentB, and the top of the tred. Notice that, no matter what the value @fis,
the value ofB will be at most0, sinceO will choose the minimum of its children’s values and
B already knows that the first choice givesSince atA X already knows it can guarantedoy
choosing the middle route, the exact valuebtioes not matter. Through this reasoning, then,
we can avoid evaluating'.

In this case we would avoid evaluating a single board — not so impressive. But the rea-
soning can help tremendously for larger games, almost doubling the depth that can be handled
within the time limit.

The pseudocode for alpha-beta search is in Figure 11.3. Itis not much longer, but it is much
harder to interpret. In the code,(the Greek lettealpha) represents the best (i.e., maximum)
value we have found foX for any of the boards at or above the current one wherexXisisurn.

(At the top,« is initially —occ.) The parametes (the Greek lettebetd represents the best (i.e.,
minimum) value we have found f@ for any of the boards at or above the current one where it

is O’s turn; at the top it isx. (These variables are the inspiration for the decidedly lame name
computer scientists have given to this technique.) We can stop examining a board when it has
o> S.

Summary
The approach oflpha-Beta-Search is very close to what the best game programs use. They

have some additional enhancements. For example, a good chess program will have a large list
describing specific moves and responses for the beginning of the game. It may also vary the

64 Playing games

Algorithm Alpha-Beta-Search (board, player, o, 3, depth)
I/l base case for final state
if board is a win forX then return 10°.
else ifboard is a tiethen return 0.
else if board is a win forO then return —106.
end of if
/l'if we've max’ed out the game tree, return the heuristic value
if depth = 0, then:
return Heuristic(board).
end of if
I/l try all moves, lettingrest be value of most desirable
for each legamove on board do
Make move on board.
Let value hold Alpha-Beta-Search (board, oppositeplayer, o, 3, depth — 1).
Undo move from board.
if player = X and value > «, then:
Let o hold value.
if « > 3, then:
return 5.
end of if
end of if
if player = X and value < 3, then:
Let 5 hold value.
if « > 3, then:
return a.
end of if
end of if
end of loop
if player = X then return «.
else return 3.
end of if

Figure 11.3: TheAlpha-Beta-Search algorithm.

11.3 Alpha-beta searcl5

search depth based on how good the board looks, rather than going to a fixed depth. But the
primary code is very much like what is above, with a sophisticated heuristic function attached.

Philosophically, these techniques are not very satisfying. Can one really say thata computer
using exhaustive search is displaying any intelligence? Certainly if the standard is how a human
works, no. While major chess computers search through millions of board=aéir play,

a human grandmaster searches through merely hundreds. One cannot accurately say that a
computer is actually reasoning as a human does.

This is really a question for philosophers about the nature of intelligence. For computer
scientists, the interesting question raised is how to apply the human’s techniques effectively.
Through trying to apply them, we can learn more about the the human'’s techniques. So far
attempts to use more human reasoning have had only limited success, however.

More pragmatically, these game-playing techniques do not generalize to other planning
tasks, where actions sometimes fail to produce the desired result (steering on ice, as an extreme
example) and the world is much larger than a few pieces on a board. These problems are much
harder. Researchers are currently addressing them, but a long time will pass before we know
how to automatically handle such real-world problems. Game-playing is just a first step.

Exercise 11.1: Prove thalX can still guarantee a tie game from the following board.

X0

Proving this involves drawing the game tree starting at this board, except that for levels where
it is X’s turn, you need only include your chosen move for X. (Thus at every other level, each
node will have only one child at the next level.)

66 Playing games

FOURTH UNIT

Internet

Computer science is hard to discuss without some knowledge of programming, but com-
puter science is naboutprogramming — no more than mathematics is about arithmetic, or
biology is about identifying animals, or history is about knowing the dates of events. Computer
science is aboyiroblem-solvingand programming is a means to understanding the capacity of
computers as problem-solving devices. Programming is a tool, and now that we understand its
basics we are ready to look at hard-core computer science.

This unit concentrates on one particular aspect of computer science: the Internet. In the
last few decades, the Internet has grown quickly from a minor plaything for computer science
researchers to become a major player in the world’s economies and lifestyles (see Figure 11.4).
The Internet is the product of decades of research @ilhgresents many interesting problems
for computer scientists to consider, some of which we see in this unit.

There are a variety of tacks we could take on the Internet. We could, for example, study how
to use its components — mail, Web pages, newsgroups, and its other offerings. On the other
end of the spectrum, we could study how networks are built and how to create our own. This
book takes neither approach. We opt for the middle road, the most interesting from a computer
scientists’ perspective: We examine how the Internet fits together and transmits messages.

Five chapters divide our approach into more manageable chunks.

Chapter 12 We are introduced to the fundamentals of networks.

Chapter 13 We learn about how Internet messages try to reach their destination.

68 Internet

43.2 x 10°
‘ [e]
40 x 10%4

hosts

'81 '86 91 96

Figure 11.4: Number of Internet host computers.

Chapter 14 Since messages sometimes fail to reach their destination, we study a protocol for
resending messages until they get there.

Chapter 15 We examine a sampling of useful protocols that use the techniques from the pre-
vious chapters for specific tasks like sending mail and fetching Web pages.

Chapter 16 We examine some of the Internet’s weaknesses and learn the fundamentals of cryp-
tography, a solution to many of the weaknesses.

One purpose of our study is to understand how the Internet works, but thisis only an inciden-
tal benefit. More crucially, we want to understand the questions and techniques that computer
science has developed for the problems that the Internet presents. What are these problems?
The Internet must be able to scale well — that is, it must be able to grow as quickly as the
Internet itself. It must be able to quickly adapt to environmental changes; for example, if a
single computer or region’s power goes out, other computers must be able to work around the
absence gracefully. And, despite the comjileg, the Internet must ultimately be manageable
by human programmers. These problems will crop up, sometimes obviously but more often
subtly; look out for them.

Chapter 12

Networking fundamentals

In this chapter we look at the fundamentals of networks, dividing our approach between the
representation of data and the division of labor in networking software.

12.1 Representing data

The original motivation for computers was to manipulate numbers. Most of today’s applications
appear far from this; e-mail, Web browsers, and computer games are not obviously related to
numbers. Despite their appearance, however, in a real sense even these applications reduce their
various problems to specific computational problems. Thus a crucial question is, how can we
represent numbers to a computer?

Binary numbers

On an even more fundamental level, computers manipulate electricity, routing it between wires.
Through this routing, the computer represents numbers. A wire represeritsn electricity
flows through it and when electricity is not. The computer constantly decides whether to route
electricity through the wire, depending on whether each wire should represemta.*

As beings who typically have ten fingers, humans work withdbeimal(base10) num-
bering systemit’s no coincidence that we call both our fingers and the chara6btémsough9
digits. In the decimal numbering system, the sequence of digi8represents the number

1x10°4+9x10®2+8x 10" +0x 10°.

Since a wire can represent only the two digiend1, computers work with a basesystem:
thebinary numbering system The basic unit of data is a single binary digit, zero or one. We
call this unit abit, from Binary digT . To represent larger numbers, we can expand this just as
we represent larger numbers in decimal notation. Consider the binary nuirbéy,,. (The
parenthesized subscript here is to emphasize that this is &baseber.) Each position in the
number now represents a power of two. To conveftl0,) to the decimal representation with
which we are familiar, we rewrite the number as

1x 24—|- 1x 23—|-0 X 22—|- 1x 21 +0x 20 = 16(10) —|—8(10) —|—0(10) —|—2(10) —|—0(10) = 26(10) .

*Why two values? We have to have at least two values; if there is only one value, then the computer cannot
think or communicate anything other than this value, and this is not useful. People have tried giving computers more
values than just two, but this complicates things enough to hurt overall efficiency.

70 Networking fundamentals

letter code letter code letter code
*° 00100000y =32 ‘A" 010000015 =65 ‘& 01100001 = 97
‘.’ 00101110y =46 ‘B’ 010000102 =66 ‘b’ 011000105 = 98

‘0" 0011000005 = 48 :
‘1’ 001100015 =49 ‘I’ 010010015 =73 ‘m 01101101 = 109

‘9’ 001110013y =57 ‘2" 010110102y =90 ‘z" 01111010 = 122
Table 12.1: An ASCII sampler.

S011010¢,) is decimal26.
Conversely, to represent the numbieén o) in binary, we would break it into a sum of
distinct powers of two:

100(10) — 64(10) —I_ 32(10) —I_ 4(10) — 26 —I_ 25 —I_ 22 .

Hence the binary representationl® ;) is 1100100;s;.

Types of data

Because the number of bits in a computer is so large and we rarely want to work with numbers
between 0 and 1, we find it convenient to break data into groups of eight bits, each dajted a

A single byte can represent the numbers betw@#900002) = 010 and 111111115y =
255(10). On top of bytes we build the three basic data types: characters, integers, and floating-
point numbers. There are other types of data — pictures and sound, for example — but they
tend to be simple conglomerations of these three basic types.

Characters

A character is a single letter, digit, punctuation mark, or control character (like a tab or end-
of-line). Most of today’s computers represent a character with a single byte using an encoding
standard calledASCIl (AmericanStandardCode for Informationlnterchange). Table 12.1
contains a few of these codes. If we want to interpret a sequence of bits

01001001 00100000 01100001 01101101 00101110

as characters, we divide it into bytes and interpret using ASCII. Here, the message is, | think,
“lam.”

Integers

The next basic type is tHateger. These are the numbers without fractional pieces,diker

—100 but not1.62. A single byte, we saw, can represent numbers betWesm255. Since we
frequently want to use integers outside this range, computers group bytemialsio represent
numbers. Word sizes vary between computers: Some old computers (the 16-bit machines) use
2-byte words, most current computers (32-bit machinesiiusge words, and some (the 64-bit
machines) even usebyte words.

12.2 Division of labor71

With 32 bits we can represent any integer betweeri' and23! — 1. Representing positive
integers is straightforward: We take the binary representation and place zeroes to the right to
fill out the bits. The numbet00,,) becomes

00000000 00000000 00000000 01100100 .

The most popular method for representing negative numbers sstitemplement represen-
tation. On a32-bit machine usin@’s-complement representation, the representation.ofs
binary representation of the difference2sf andz. Thus the number 100,y becomes

1 00000000 00000000 00000000 00000000
— 00000000 00000000 00000000 01100100
11111111 11111111 11111111 10011100

Floating-point numbers

The final basic data type of a computer ifl@ating-point number A floating-point number
allows for the representation of a fractional number (Bkiet). These too can be represented in
binary. The most common encoding method for floating-point numbers I&&ie standard.

It calls for representing the number in basseientific notation. In binarg.14,) is

11.0010001111010111000010 .. .2y = 1.10010001111010111000010. . .(9) X 2,

The IEEE standard uses the first bit of a word to represent the®&ignpositive,1 for negative.
The next eight bits hold the exponent in the scientific representation p¥usddingl 28 allows
negative exponents). And the finzd bits give the firse3 bits of the mantissa’s fractional part.
(Since the number before the decimal is alwayshere is no reason to include it.) So the
number3.14 is represented iA2 bits as

0 10000001 10010001111010111000010

All of these three basic types, then, have representations in bits. Several layers of abstraction
separate the raw electronics of the computer and the data types that programmers actually think
about. From electricity we built bits, bits begat bytes, and bytes became characters, integers,
and floating-point numbers. These are the basic building blocks of data.

12.2 Division of labor

Since networks are extremely complicated objects, researchers find it useful to work with ab-
stractions. They udayersto divide the duties of networking into four pieces. We thus tend to
envision a single message as something of a layer cake (see Figure 12.1).

application layer Theapplication layer interprets messages using some special-punpase
tocol. For example, HTTP (the World Wide Web protocol) specifies how to interpret
Web page requests and how Web browsers should interpret the servers’ responses. We
will look at the application layer more in Chapter 15.

transport layer The transport layer takes a single message from the application layer and
divides it intopacketsof about1000 bytes each. Instead of sending the entire message
across the network in one big chunk, the packets are sentindividually instead, since many

72 Networking fundamentals

application layer

transport layer (TCP)

internetwork layer (IP)

physical layer

Figure 12.1: The layers of an Internet message.

physical IP TCP

licati
header header header application message

Figure 12.2: Packet headers.

small messages are much easier to handle than big pieces. But the transport layer gives
these packets to the internetwork layer, who ships each packet to the destination. The
destination’s internetwork layer receives these and passes them up to the destination’s
transport layer, who reconstructs the original message by packing all the packets back
together again.

The most widely-used protocol for the transport layer isfitssport Control Protocol
(TCP), which we will study in Chapter 14.

internetwork layer Theinternetwork layer takes a single packet and attempts to route this
packet to its destination. The internetwork layer does not guarantee that these packets
will arrive at their destination in any particular order or even that they will arrive at all.
What the internetwork layetoesguarantee ibest-effort delivery— that it will make a
reasonable effort to get the packet to its destination if possible. This is inconvenient, since
generally all packets need to reach their destination. The jobs of resending lost packets
and of ordering the packets correctly go up to the transport layer.

On the Internet, the internetwork layer is implemented usingriteznet Protocol (IP).
We will discuss this in Chapter 13.

physical layer The Internet is a networked combination of networks. Any Internet packet must
pass through several networks; thigysical layers job is to pass the packet through a
single network. We will not examine the physical layer in this book; we simply assume
that we already have a facility for transporting packets within a single network.

Each layer addslaeaderto a message giving information about how to handle the message,
as in Figure 12.2. For example, the internetwork layer header contains several bytes telling the
address of where the packet is headed. Among other things, the transport layer adds bytes
identifying where the packet is within the overall message (so that the destination knows where
the packet goes within the final message).

Now we begin our journey up the layers. We assume a physical layer to transport messages
within a single network. How does the internetwork layer get a packet to its destination?

Chapter 13

Transporting packets

In this chapter we take a look at how the Internet gets a packet from one place to another
using IP (nternetProtocol).

The Internet is a hetwork of networks. We assume that each network knows how to deliver
a message within itself (the job of routing a packet within an individual network is handled by
the physical layer). The Internet’s job is to determine how to find its way through the networks
to deliver a message, say from San Francisco to Pittsburgh.

There are two basic steps to routing a packet from its source to its destination. First we must
determine where the packet is going; then we must send the packet through the Internet to that
place.

13.1 Machine names

The first step toward transmitting a message is to determine where it is going. To do this, we
use the machine’s address. A computer on the Internet typically has two identities. The first is
amnemonic name like

truffle.bh.andrew.cmu.edu

Notice that the mnemonic name consists of several parts separated by periods. The first part
(truffle) is the name of the computer itself. The succeeding parts are cahading they
are an indication of where the computer is. t8dfle is part of thebh domain, which is
part of theandrew domain, which is part of themu domain, which is part of thedu domain.
This layering of domains is called tleomain hierarchy. Figure 13.1 illustrates some of the
domain hierarchy.

The second identity of a computer is itdboyte IP address For exampletruffle 's IP
address is

128.2.124.147

This is what computers actually use to identify other computers on the network. The numbers
of an IP address are also hierarchical. In this case, the first two numbers of the ati2Bess,
indicate that the computer is in CMU’s network.

Although we can use IP addresses to tell where to send a message, the mnemonic names
are much easier for humans, so that is what we humans usually use. But to send the message,
the computer must have the IP address. So the first step to sending a message is to translate the
mnemonic name into the corresponding IP address. This is cadied resolution

74 Transporting packets

T

edu com gov uk
T | | |
cmu pitt cburch whitehouse ac
cs andrew mcs
| | |
pc bh WWW-PQSS
| |
avrim truffle

Figure 13.1: Internet domain hierarchy.

The simple solution to hame resolution is to store all the translations on every computer.
This is an impractical solution: There are too many computers and the Internet changes too
rapidly. Every Internet computer would spend a vast amount of resources just try to remember
everybody’s names! Instead, when a computer sees a new mnemonic name, it goes out to the
network to find the corresponding IP address.

To do this, the computer goes down the domains. Each domaindw@san name server
whose job is to give IP addresses for the domains within it. So, if we want tarfiffte |
we begin at the top-level domain nhame server to findettie name server. Then we ask the
edu name server for themu domain. We ask themu name server for thendrew domain,
whose name server we ask for thie domain, whose name server we asktfoffle . This
name server answers with the IP addressudfle ~ , answering our question.

This approach solves the old problems of size and rapid change, but now a new problem
arises: A name server (like theom server) cannot conceivably handle the traffic of answering
a request every time any Internet computer sends a message to another computer.

So actually a computer storesache3 the important IP addresses it sees. This saves time
and communication. So if we have already accesadtle |, there is no need to go through
the process at all. If we have not, but we have accessed some comphitemie may remem-
ber thebh name server’'s address and ask it directly wiudfle is. If we don'’t have this
information, but we have accessed #rerew domain before, then we can skip to asking the
andrew name server for the identity d@h.

By using domain name servers, the network distributes the job of maintaining name trans-
lations to just a small fraction of the computers of the Internet. In practice, a computer using
good caching techniques usually spends Vigihg time in translating a name.

13.2 Finding a route

Once we know the IP address of our message’s destination, we still must route the message
through the Internet. This is not easy: Somehow the messages are to go through the network
and end up at a destination, without the benefit of any single map to consult.

But what does it mean to send a message on its way? Remember that we are not going
to worry about individual networks; we assume they can work individually. But somehow we
have to send messages between networks. To transfer a packet between networks, the Internet
hasgateways A gateway is a computer that resides on two (or more) networks. This allows

13.2 Finding a route75

10.2.2.2 W(20.2.2.2 W(30.2.2.2 W(rest of Internet

10.0.0.5 20.0.0.6 30.0.0.7
20.0.0.5 30.0.0.6 40.0.0.7
AN AN AN

Figure 13.2: Internet gateways. (Boxes are gateways; ovals are networks.)

it to transfer messages between the networks. Figure 13.2 diagrams a series of networks (the
light-bordered ovals), connected by gateways (the heavy-bordered rectangles). Notice that a
gateway has multiple IP addresses, onesfach network it is on. This is so the gateway can be
recognized as being part of each of its networks.

To send a message on its way, then, means to send it to the best gateway in the network.
To determine this, the computer consulteoating table, which tells where to send packets
of different destinations. For example, for the gateway betwee2@hand 30 networks of
Figure 13.2, the routing table might read

if destination is then route to
10.2.2.? 20.0.0.5
20.2.2.? destination directly
30.2.2.? destination directly
else 30.0.0.7

You can read this table as follows. If the packet’s destination is id@heetwork, then the way

to get there is through the gateway betweenlibend20 networks, whose address on 2@
network is20.0.0.5 . It can route the packet directly to this computer since the computer is
on the20 network. Since the computer is on both #@and30 networks, it can route packets
directly to machines in these networks. And since other packets should go through né@work
the computer routes these packets to the gateway to that network, @@.€h@.7 gateway.

Naturally, these routing tables change occasionally. Periodically gateways tell their neigh-
bors about the best routes they know. When a gateway receives this information, it considers
whether to update its routing table. If it does, it also forwards the updated routes to its neighbors.

These gateways provide what is calleebt-effort delivery. That is, they try to route pack-
ets, but they may ignorelfop) packets if routing it is inconvenient. Possible reasons for drop-
ping a packet include: The gateway is too busy with other things, the gateway doesn’t know
where the packet should go next, the packet has passed through too many computers (and so it
may be that it is going in circles), or just the whimsy of the gateway dictates that it should be
dropped.

Packet drops are frequent; it is not uncommon for about half of the packets to fail to reach
their destination. In this case, the sender and receiver should detect there is a problem, negotiate
what to do about it, and send the lost packets again until all packets successfully reach the
destination. This task is performed by upper layers, not IP. We consider this issue in the next
chapter, where we study TCP.

Chapter 14

Putting packets together

The IP protocol gives us the ability to route packets from their source to their destination
with some degree of reliability (if only minimal). Of course programs often want to work with
a much stronger system. Therefore computers provide an additional layer separating programs
from IP. This layer is calledransport Control Protocol (TCP), and it provides reliable deliv-
ery of arbitrary amounts of information.

A program using TCP (as built into the computer’s system) does not have to worry about
the vagaries of lost packets and out-of-order transmission. Instead, the program can treat com-
munication as being as simple as a telephone call. We'll see examples of programs using TCP
in the next chapter.

In this chapter we see how TCP achieves its goal. We first see how TCP provides the
illusion of a connection between programs. Then we see how TCP provides reliable delivery of
information.

14.1 Connections

IP provides a system for computer-to-computer delivery, but programs want a telephone-like
connection, and for that they need program-to-program delivery.

Abstract model

To provide this, TCP providgsorts. A port is not a physical device; it is just a number between
0 and65, 535. (Why 65, 535? It is2'6 — 1, the largest number that can fit into two bytes.) Each
program using TCP reserves a port on its computer for its own use, and each TCP packet header
indicates for which TCP port it is intended. When the computer receives a TCP message, it
reads the port number from the header, and it routes the body of the message to the program
reserving that port.

A connectionis a pair of Internet addressds and A; and corresponding ports andp; .
When progran® wants to send a message to progrgrit sends a message o including in
the header all the information about the connectidg, (41, po, andp;). When A, receives
this message, it can tell from the header that the message is for progsamee prograni is
the program reserving popi. So the computer gives the message to prograamd program
1 can tell which connection the message belongs to, since all the informaltiont(, po, and
p1) is included in the message.

14.2 Reliable deliveryr7

port protocol

17 QUOTE (quote of the day)

21 FTP (file transfer)

23 TELNET (remote login to computers)
25 SMTP (e-mail transfer)

37 TIME (time)

42 NAMESERVER (host name server)
53 DOMAIN (domain name server)

80 HTTP (Web page transfer)

Table 14.1: Some well-known port numbers.

Before sending any messages, the connection musstablished This is a matter of a
simple initial protocol to make sure both machines know what to expect from the other’'s TCP
information.

What really happens

The above description is a bit abstract. Luckily, things are a little easier to follow in practice.

Normally, one program — called server — runs on a computer on a publicized port
number. For widely-distributed applications, therewaegl-known port numbers reserved for
them. For example, port 80 is reserved for Web servers. Table 14.1 lists several other well-
known port numbers.

A program — called alient — (maybe on a different computer) reserves a port for it to
communicate, and it sends a message asking to be connected with a given port on the server’s
computer. It includes its own port number in its message to the server, so that the server knows
how to send messages back to the client. For example, when you tell your Web browser (which
is a client) that you would like a page fromww.whitehouse.gov , it sends a message to
that computer saying that it wants to get in touch with whatever program is running on port 80.

Programs can and often do converse with many programs simultaneously through the same
port. (Busy Web servers do this, for example.) This is fine, because each TCP message also
includes information about the computer and port from which the message originated, and the
program can use this information to distinguish conversations.

Technically, TCP doesn’t impose such a client-server relationship between programs. But
this is what happens in practice, as we’ll see in the next chapter.

14.2 Reliable delivery

TCP's approach to reliable delivery is obvious, but it becomes more complex as we worry about
efficiency issues.

Simple acknowledgement protocol

The obvious protocol for ensuring that a packet reaches its destination is to have the destination
send an acknowledgement whenever it receives a packet. If the sender does not receive an
acknowledgement within a reasonable time after the packet is sent, then the sender concludes

78 Putting packets together

sender destination
1 Sender sendsfirst packet to destination; it is received.

1 Destination sends acknowledgement of receipt.

/ Sender receives acknowledgement and so sends second packet.
\ - . g . p
=1 Second packet islost in transit.
4 Sender waits for acknowledgement but receives none.
2 Sender gives up and resends second packet.
\ , Destination receives packet and sends acknowledgement.
.« | Acknowledgement islost in transit.
=< Sender waits for acknowledgement but receives none.
/
[J
[J

Sender gives up and sends second packet once more.
2 Destination receives packet again and resends acknowledgement.

—~— time
N

Sender receives acknowledgement.

Figure 14.1: Simple acknowledgement protocol.

that the packet may have been lost, and so it resends the information. It continues sending
packets until it receives an acknowledgement of receipt. Figure 14.1 diagrams this process.

This protocol necessitates numbering the packets as they appear in the message, since the
destination may receive the same packet twice (as in Figure 14.1 when the destination’s ac-
knowledgement was lost in transit). Thus the TCP header for a packet includes, besides the
port numbers of the source and destinatioseguence numbettelling with which byte the
packet begins, relative to the first byte in the connection sent by the sender. It also includes an
acknowledgement number which indicates how many bytes the sender has received from the
destination since the connection began.

Sliding window protocol

This system is pretty slow, however. The lag time for a packet to reach its destination can be
large — we don't really want to wait that long for every single packet. It's like having a bucket
brigade with only one bucket.

o

A bucket brigade is much more efficient with several buckets; likewise, a TCP connection is
more efficient when there are several packets on the network at once.

14.2 Reliable deliveryr9

window —

142|43|44|45|46(47]148149|50|51(52(53}--

packets

Figure 14.2: The TCP sliding window.

sender destination

o ol AWN O1 A WNER

o

Figure 14.3: Example of communicating with sliding window of size

Ej@ A AOA AD @M

On the extreme end, the sender might send all the packets in the message simultaneously.
This would be a waste, however, since neither the intermediate points in the network nor the
receiver can handle such large gtiaes, and almost all the packets would be lost. Instead,
therefore, TCP adopts a compromise, caibding windows.

The sliding window technique maintains a window of several packets that TCP is currently
trying to send. (See Figure 14.2.) TCP keeps all the packets in its window on the network.
When it receives an acknowledgement of receipt from the destination network, TCP moves the
window up so that the first unreceived packet is on the far left of the window, and it sends all the
packets that enter the window. When a packet in the window times out (that is, enough time has
elapsed that the server gives up on receiving an acknowledgement for that packet), the sender
resends the packet.

To illustrate how this works, let’s step through the event sequence diagrammed in Fig-
ure 14.3. Here we have a sliding windowfso the window initially contains packets 1-4.

It sends each of these to the destination. Packet 1 reaches the destination, and the destination
sends back an acknowledgement of receipt. But packet 2 is lost midstream. In TCP, the destina-
tion only sends back an acknowledgement when the window can move forward, so even though
the destination receives packets 3 and 4, it does not acknowledge them.

80 Putting packets together

source| dest. sequence acknowledgeme%n —_ |window| __
port | port number number : size
0 2 4 8 12 12514 16

byte number

Figure 14.4: TCP header information.

Once the sender receives the acknowledgement for packet 1, the window moves forward,
and the sender sends the new packet in the window, packet 5. Eventually it decides that packet 2
must have been lost, and so it resends packet 2. It does the same for packets 3 and 4 when their
acknowledgement is long overdtieThe destination receives packet 5, but it cannot yet ac-
knowledge it, because itil doesn’t have packet 2. But when the destinatieceaives packet 2,
it has packets 3, 4, and 5 from their first transmissions. So it sends back an acknowledgement
telling the sender that it hagceived everything through packet 5. Now the sender moves the
window to cover packets 6-9, and it sends each packet to its destination. And so the protocol
continues.

The actual protocol

A small detail is that TCP works with bytes, not packets. The window has many bytes, and it
divides its window up inteegmentsand sends each segment via IP.

Because the destination can become over-full with data, whenever the destination sends an
acknowledgement, it also tells the sender how big a window it should use (based on how much
more data the destination can handle). This is not entirely necessary, since the destination can
actually just drop any messages it receives beyond its own capacity, but as long as it is sending
an acknowledgement anyway, it might as well try to avoid unnecessary network traffic. This
complicates matters slightly for the sender, since the window size will vary.

Another complication in real TCP is the determination of how long to wait between sending
a packet and giving up on the acknowledgement. Network traffic varies considerably over time,
so it should quickly adapt to changing delays. To do this, the sender keeps track of recent
observed delays and computes a weighted average based on this data.

Figure 14.4 diagrams the information appearing in a TCP header that we have seen in this
chapter. The TCP includes the source port and the destination port (each 16 bits long) to identify
to which connection it belongs (the IP address of the source machine and destination machine
are already in the IP header). The sequence number (32 bits) tells which byte of the message
begins the segment. The acknowledgement number (32 bits) tells the destination the first byte
the sender has not yet received. The header length (4 bits) tells how many 32-bit groups the
header contains (so that TCP can tell where the actual message begins). The window size (16
bits) tells how big a window the destination should use (or, equivalently, how much data the
sender can handle).

Now that we have a fair understanding of what TCP provides, we can go on to applications
using TCP.

*Actually, since packets 3 and 4 may have reached their destination (but the sender cannot be sure), TCP imple-
mentations are allowed to decide against resending packets 3 and 4 in this case.

Chapter 15

Using messages

TCP and IP give us the ability to send messages reliably between computers. Now we want
to use them to do something useful. In this chapter we look at two of the most useful application
protocolsin existence, the Web-access protocol (HTTP) and the mail protocol (SMTP). We will
not learn all of the details of how these protocols work; instead, we look at short common
examples of how they are used.

15.1 HTTP

HTTP (Hypettext TransferProtocol) is the basis for Web communication. Since the protocol
is so simple, it is ideal for a first look at an application protocol.
Let's say that we want our browser to get the page at

http://avrim.pc.cs.cmu.edu/index.html

”

This jumble of letters means that the browser should use HTTP to request thiadigthtml
from avrim.pc.cs.cmu.edu . So the browser uses TCP to open a connection tojdart
avrim (80 being HTTP’s well-known port number).

Once the browser connects to the server, it tells the server what it wants with the message

GET /index.html HTTP/1.1
Accept: text/html

The first line says that the browser wants to get the fildeéx.html " using version 1.1 of
HTTP. After this the browser can specify preferences for what it would like. In this example the
second line says that the browser prefers HTML. The preferences end with a blank line.

In this case the server responds with the following message and, since there is nothing more
to say, closes the connection.

HTTP/1.0 200 Document follows

Server. CERN/3.0A

Date: Mon, 11 Jan 1999 03:22:42 GMT
Content-Type: text/html

Content-Length: 115

Last-Modified: Mon, 11 Jan 1999 03:17:24 GMT

<p>I'm <tt>avrim.pc.cs.cmu.edu</tt>; my primary user is
Carl Burch.</p>

82 Using messages

The first line here gives the basic nature of the response. The server is using version 1.0 of
HTTP, and it is responding with a cod®b response200 is the code for successful requests.
Then the server says several things about the request: The server identifies itself as version 3.0A
of CERN'’s server and tells the time when it received the request. Finally, it says that the file is
an HTML file, that it is115 bytes long, and that it was last modified on January 11. Finally a
blank line says that the file is about to start. In this case the file is just two lines of HTML,

<p>I'm <tt>avrim.pc.cs.cmu.edu</tt>; my primary user is
Carl Burch.</p>

15.2 SMTP

Most mail on the Internet is transfered using SMB#{ple M ail TransferProtocol). It's more
complicated than HTTP, but not much worse.

Let's say I'mspot@cburch.com working on the machinavrim.pc.cs.cmu.edu ,
and | tell it to send mail tourch@andrew.cmu.edu . Thenavrim opens up a connection
to port25 (SMTP’s well-known port number) on the computerdrew.cmu.edu . Unlike
HTTP, an SMTP transaction is an extended two-sided conversation; in the following, boldface
text indicates whaavrim sends, and normal text indicates whatirew sends.

Firstandrew responds with a message welcoming you to the system. Each line begins
with a 220 code so that automatic mail systems can just read the code to know what sort of
messages are being sent. (We can't expect the automatic system to understand the text.)

220-andrew.cmu.edu ESMTP Sendmail 8.8.5/8.8.2

220-Mis-identifying the sender of mail is an abuse of computing facilities.

220 ESMTP spoken here
In SMTP, nothing prevents people from lying about who is sending the message. The ‘welcome’
message at this SMTP server kindly warns you that doing this is abusive behavior. In many cases
doing this is grounds for serious penalties (expulsion from school or wackpperhaps).

Once thisis senfvrim sends a message identifying itself usinglieéo command.

helo avrim.pc.cs.cmu.edu

250 andrew.cmu.edu Hello AVRIM.PC.CS.CMU.EDU [128.2.185.114], pleased to meet you
The server courteously responds that it recognizes the computer. Now the client wants to send
mail; first it tells the server the sender and the recipient.

mail from: spot@cburch.com

250 spot@cburch.com... Sender ok

rcpt to: burch@andrew.cmu.edu

250 burch@andrew.cmu.edu... Recipient ok
The server accepts both of these e-mail addresses as valid. Finally, the client is ready to give the
message to be sent using tega command. When the server gives the c8d¢-message, it
is ready to receive the message to be sent. The client will insert the message verbatim and finish
it off with a line containing a single period.

data

354 Enter mail, end with "." on a line by itself
Arf, arfl

250 XAA21092 Message accepted for delivery
The server commits to delivering the message. The client is now done and so signs off.

quit
221 andrew.cmu.edu closing connection

Chapter 16

Cryptography

One of the striking things about the Internet protocols is how trusting they are. There is
nothing to prevent somebody from listening in on a message (given access to a machine on the
path) or from counterfeiting messages.

One of the most attractive options for addressing privaayryptography. The obvious
approach to preventing a spy from reading a message is to hide the message from the spy.
Cryptography has a more subtle approach: We do not worry about whether the spy sees the
message; instead, we encode the message so that only the intended recipient will understand it.

The idea of cryptography is certainly not new. It has been around at least since Julius Caesar,
and war has continued to inspire cryptography. In World War I, when secrets were transmitted
by broadcast radio, cryptography blossomed into a full-blown science.

Now cryptography is no longer the domain of soldiers, criminals, and spies. Everybody
sends sensitive information (passwords and credit card numbers, for example) across the essentially-
public Internet. But using cryptography, we can render electronic communication one of the
most secure forms of communication.

This chapter begins by defining different types of cryptographic goals. Then we look at
the most simple goal, private-key cryptography. And finally we look at how one can provide
interesting and impressive guarantees for some special cases.

16.1 Protocols

Cryptography has a number of applications. In this section we look at a few of the most impor-
tant goals. In the following, we suppose that Bob wants to deliver a message to Alice, but Eve
can eavesdrop.

Private-key cryptography

The traditional form of encryption igrivate-key cryptography. In private-key cryptography,
Alice and Bob agree in private orkay K. When Bob wants to send his message, he encrypts it
so that anybody withk” can decrypt it. He sends the encrypted message to Alice, who decodes
the message usiny. If Eve happens to get what Alice sent, she would have to kiowo
understand the message.

84 Cryptography

Public-key cryptography

Private-key cryptography has a crucial shortcoming: Alice and Bob have to agree beforehand
on their key. This is inadequate if Alice and Bob have never met privately before. This may
happen if Bob has just visited Alice’s Web site and decided that he wants to buy something from
her store with his credit card.

Public-key cryptography is a way to address Alice and Bob’s conundrum. Of course,
Alice can't include a private key on her Web site, because Eve could find it too. But she can
publicize a public keyP that, if a message is encrypted using it, the encryption can only be
decoded with a corresponding private kiythat only Alice knows. So when Bob responds
to Alice’s advertisement, he encrypts his message uBinljow only people who hav&™ can
decrypt the message, and only Alice has it.

Doing this safely is an ambitious goal. It is somewhat surprising that there are any tech-
nigues to do this. But there are a few. One of the most well-known is cRI&A encryption
(named after its inventors, Rivest, Shamir, and Adelson); it is one of the most important pieces
of PGP Pretty Good Privacy), the most widespread cryptography package on the Internet. An
RSA public key is the product of two large prime numbers (of several hundred digits each),
and the private key includes the factorization. Breaking RSA essentially requires that the public
key be factored. Weéelievethis takes impractically long for large numbers, since people have
worked on this problem since the ancient Greeks with only moderate su@ése-Test-All
is basically the best algorithm we know, and it takes much to long for large numbers. RSA
encryption is therefore interesting and important, but it is too complicated to adequately explain
here.

Public-key cryptography is inherently insecure. If Eve can intercept messages between
Alice and Bob, then she can pretend to be Alice to Bob and pretend to be Bob to Alice. That is,
she creates a set of public and private keys, and she convinces Bob that this public key is really
Alice’s. Now Bob sends a message which Eve can decrypt. If she wants Alice to receive the
message, she can encrypt the message using Alice’s real public key. So public-key cryptography
has problems. But it forces Eve to masquerade as somebody else rather than just eavesdrop; this
is usually much harder to do.

Signatures

Arelated issue is signing a message. Here we want Alice to be sure that messages from Bob are
actually from Bob. For this purpose, Bob publishes a public ReyVhen he sends a message,
he encrypts it using a private kdy that Alice doesn’t know, in such a way th&tcan decrypt
it. Now Alice can verify that Bob sent the message by seeing if his publicfkegcrypts it.
She can be sure that Bob sent the message insofar as she is siitéstBaib’s public key. Eve
couldn’t masquerade as Bob unless she could figuré&out

This is called asignature. A good signature algorithm is much more difficult to forge than
a traditional signature. RSA, it turns out, can also be used as a signature algorithm. But we're
still not going to talk about it.

Special-purpose goals

The above protocols were for very general purposes. There are many special-purpose cases that
are interesting for cryptographers to consider. How can we vote securely? What is a secure way
to bid on an item? How can we transmit money with minimal risk? How can we insure that

16.2 Private-key cryptograph§5

keys are kept secure? All these are good questions, and cryptographers seek ways to handle
these cases.

16.2 Private-key cryptography

It's important that a private key be long enough that computers can’t search through all of them
to see which one gives a result in an interpretable language. For good cryptographic schemes,
searching through all possible keys is often the best known attack.

The simplest and most popularly-understood form of cryptography isuhstitution ci-
pher, also known as theecret decoder ring In it Alice and Bob agree on a translation between
letters. One possible translation is

fom _ABCDEFGHIJKLMNOP
to AXIJEWUIDCHTNMBRLYV

So if Bob wants to say,I“ DO,” to Alice, he would send,MAWL When Alice receives it, she
goes in the opposite direction to get the original message.

There are many2(! ~ 102?%) possible keys here; Eve is unlikely to be able to try them
all to decode Bob’s message. But of course, as anybody who has ever solved a newspaper
cryptogram knows, this is not very secure. By analyzing letter frequencies, Eve can deduce the
original message.

To analyze cryptography rigorously, we need to have a mathematical model of what it means
for a protocol to be secure. A particularly strong model, proposed by Alan Turipgriect
security. In perfect security, we model Eve’s belief about messages as a probability distribution.
Perhaps Eve thinks Bob will say “Yes” with probability7 and “No” with probability0.3. A
protocol is perfectly secure if the message does not change her belief at all; that is, it is secure
if for the transmitted messag€, for every possible original messag#, we have

Pr[M is original messade= Pr[M is original message, given transmissivh .

(This is not true of the substitution cipher, since in seeligeve can immediately eliminate
messages not matching the pattern. It is also not true of RSA, since an infinitely-powerful Eve
might factor the public key, and this would change her belief.)

Here’s a simple scheme worth analyzing, called dhe-time pad Here Alice and Bob
agree to a stream of random numbers betwkand26:

(2,23,20,8,16,16,1,23,20,3,..) .

Now when Bob wants to send the message, he adds the corresponding number to each letter
(wrapping around when he reach@s

I - D O
+2 +23 420 48
K W X W

So he sendsKWXWo Alice, who then subtracts the same numbers to get the original mes-
sage. (Bob should also append several spaces to his original message so that Eve doesn't learn
anything about the message’s length.)

86 Cryptography

To analyze the one-time pad, we need a fact cdlages’ theorem Bayes’ theorem says
that for any two eventd and B, we have

Pr [B occurs, give occur$ - Pr[A occurg

Pr[A occurs, giverB occurg = Pr[B occur$

The following sequence of equalities is a simple proof of this theorem.

Pr[B occurs, givem occurg - Pr[A occurs ~ Pr[A andB both occuf
Pr [B occur$ N Pr [B occur$
= Pr[A occurs, givemB occurs

We takeA to be the event that a particular messagés the actual message Bob sent, and
we takeB to be the event that Bob sent the encrypted mes&adgeay that the key and message
both have: characters.

Notice that the probability oB occurring given thatd occurs (that is, the probability that
X isthe encryption of\f) is (1/27)*, since for each letter o¥/, there is al /27 chance that the
private key happens to include the right rotation to get to the corresponding leftergbtice
also that the probability of occurring (regardless of) is also(1/27)%, since

Pr[X isencryptioh = > Pr[Kiskey-Pr[MisX — K]
keysK
1 k
= §:<—) ‘Pr[Mis X — K]
-\ 27
keysK
1\F
= (-) - Y Pr[MisX - K]
27 keysK

1 k
- (#) -
The last step holds because the summation is over all plitksitfor the original messagé/,

and the probability that the message is one of its possibilities is exactly
Now we apply Bayes’ theorem.

Pr [B occurs, give4 occurs - Pr[A occurg
Pr[B occurg
(1/27)% - Pr[A occurs
(1/27)%
= Pr[A occur$.

Pr[A occurs, givenB occurg =

Thus the one-time pad satisfies our definition of perfect security.

The one-time pad is useful in some very high-security military applications. But it is not
adequate for prime-time use, because the number of bits in the key is as long as the message.
Transmitting such a long key is as expensive as transmitting the original message itself.

For this reason, we normally go with a goal much weaker than perfect seaaitplexity-
theoretic security. In this, we build a cryptographic scheme so that the key cannot be broken
quickly unless somebody finds a fast algorithm for a problem for which nobody seriously be-
lieves a fast algorithm exists. This is where RSA, factoring, and prime numbers come in: Fac-
toring is a very well-studied problem for which no known algorithm can handle thousands of
digits in a practical amount of time.

16.3 Communicating an averagg/

Alice Bob Carl Dafna| score
Alice | 135 240 301 221| 95
Bob | 285 363 109 133| 88
Carl | 135 300 334 83 | 50
Dafna| 132 5 230 116 | 82
total | 286 106 172 152 315

Table 16.1: Communicating the average kot 4, m = 100

Exercise 16.1:(Solution, 122)
OKXYUOPUAKURCCAPLUBLMR!LBULSUPBMMXYU
BLSU,0QQSVDMIGYUDABLUSJSPUMCUC OTSYU
IOTSUDLACC AK!UBLVMRILUBLSUBR !SJUDMMXYU

OKXUQRVQ SXUOPUABUIOTSW

16.3 Communicating an average

Let's look at a special-purpose cryptographic protocol. Say we have sekpstlfients, and
they want to know their average test score. But none of them wants to tell what their test score
is. What can they do?

It turns out that they can find out their average without anybody revealing any information
about their score! (This ignores the information that is inherently gained from the average
itself.) To do this, we use surmsodulo k£m + 1, wherem is the maximum test score possible.
(Sokm + 1 is more than the sum of the scores could possibly be.) The sunaonély modulo
z is the remainder of 4+ y when divided by:. That s, ifz andy are both betweefand:z — 1,
it willbe z + y if + y < zandz 4+ y — z otherwise.

Say Alice’s score is 95. Alice selects— 1 random numbers betwednand km, and
she computes a number, between0 andkm such that the sum of 4 and all these random
numbers is 95 moduldm + 1.

Confidentially, Alice tells each other person one of these random numbers. Each other
person does the same: They pick- 1 random numbers, compute somg and communicate
the random numbers confidentially. So Alice has been told 1 numbers, and she still has
n4. Now she adds them up moduten + 1, and tells everybody the result. The sum of what
everybody announces will be the sum of all their test scores. (And of course Alice is intelligent
enough to divide by to get the average.)

Now is it really the case that this is the sum? Look at Table 16.1. The score of each personis
the sum of the numbers in the row, and we want the total of these. In our protocol, each person
announces a column sum, and we add them. These are just two ways of summing all the entries
in the table. Since adding modulon + 1 is associative and commutative, both sums are the
same.

Now can anybody know anything about Alice’s score? They certainly don't from the ran-
dom number she first told them. And the number she announced to everybody is the sum of
her score and several random numbers. The chance that she announces any individual number
between0 andkm is 1/(km + 1). (The sum of all the random numbers has a uniform dis-

88 Cryptography

tribution betweerd and km, and adding: 4 modulo km + 1 will only shift this distribution
cyclicly, maintaining the uniform distribution.) So that says nothing alout Hence nobody
else knows anything more about Alice’s score.

Cryptography appears to be the surest way to handle many of the problems that arise in
communication. It will continue becoming more prominent as the Internet matures to handle
more people and important transactions.

Exercise 16.2: One very important place where cryptography can be used is in voting. Here
we have several people wanting to vote yes or no on an issue, and we want to determine which
has the majority without revealing any information about individuals’ votes. One tempting
approach is to use the protocol of Section 16.3 to tally votes. What's wrong with this approach?

FIFTH UNIT

Algorithms

In this unit we look at the study of developing fast algorithms for problems. Our approach is
mathematical, in defining algorithms, in proving their correctness, and in analyzing their speed.

Our study begins in Chapter 17 with an examination of how we can analyze an algorithm'’s
speed usingsymptotic analysjsvhich basically means that we analyze the algorithm’s time
requirements for very large problems. This concept is a foundational tool for mathematically
analyzing algorithms, so we must learn how to do this well.

After learning the fundamentals, we turn to a selection of two techniques in the development
of algorithms that have proven useful for a variety of problems: divide and conquer (Chapter 18)
and dynamic programming (Chapter 19). Of course there are many other algorithms and general
techniques to study; we choose these two because of their relation to recursion (Chapter 10) and
their frequent usefulness.

In each of these latter two chapters, we will see two or three very different problems where
the technique applies. As you read each chapter, try to think abstractly about what unites the
algorithms in the chapter. By understanding the techniques better, you can become better at
writing your own algorithms for other problems.

Chapter 17

Analyzing algorithm speed

Constructing algorithms is easy. But we would like to be able to compare them. In particu-
lar, we often want to know how fast they are. How can we determine which of two algorithms
is the faster?

Computer scientists have a mathematical approach to answering this question. The answer
eliminates the tedium of experimentation and adds much more rigor. This approach is called
asymptotic analysisThis chapter introduces and explains this concept.

17.1 Comparing algorithms
How can we compare two algorithms’ speed? We quickly look at several alternatives.

Implement and test: The most reliable and intuitive approach is to implement both algorithms
and to test them. Done correctly, this approach has a definite advantage: It gives strong
evidence that the algorithm often works well. There are several problems, though, that
lead us to look for other ways. First, implementing algorithms takes a lot of time. Second,
the results depend strongly on which computer we use and how well we implement each
algorithm. Finally, the algorithm that appears to be better may actually be much slower
for many cases not included in the tests. This especially could be a problem if we run
our tests on small problems but later, as we work with more powerful computers, we start
attempting to use the same algorithm for larger problems.

Extrapolate: The last objection can be met partially by graphing the speed of each algorithm
relative to problem size and extrapolating. Unfortunately, as is typical with extrapolating,
this can lead to major problems far from the known points (especially if, for example,
we fit the points to a line, but actually as problem size increases, the points fit a parabola
better).

Create a formula: We can ignore experimentation and just write a formula for the algorithm.
For example, we might introducg, ;; for the time it take our machine to add two num-
bers together]}.,; for the amount of time it takes to compare two numbers, and so on.
The problem with this approach is that it is quite tedious, and the resulting formula isn’t
easy to interpret.

Approximate: So what we actually do is calleasymptotic analysis The real question, as
the problem size gets larger, is: Which term of the formula grows the fastest® As

17.2 Finding big-O bound®1

increases, does aN term dominate? Or does aW? term dominate? (We ignore the
constant coefficient for the term, since that makes things more complicated.)

Admittedly, ignoring slower-growing terms and coefficients in this way is extremely
crude, but it is an important first cut in deciding which algorithms are worth consider-
ing.

We indicate a algorithm’s speed usibig-O notation. For example (as we’ll see soon),
Prime-Test-All runs inO(v/N) time (pronouncearder square-root ofV), because as
the input numberV grows, the dominating term in the time formula is some coefficient

timesv/ V.

We can define big-O notation explicitly and rigorously. (Don’t worry about this definition
too much if it's confusing; the intuition is easier to understand and use.) We say a function
f(n) is O(g(n)) if there are constantsand M so that, for all numbersV pasti, we
havef(N) < c¢-g(N).

Before we look at asymptotic analysis of algorithms, we first should get a better feel of the
asymptotic bounds of an expression. To do this, you go through each term and determine which
term grows fastest for large values, and you ignore the coefficient in this term.

expression asymptotic bound
50x% + 25z + 40 = O(2?)

5096 logy n 4+ 0.02n = O(n)

4,236,121 = 0(1)

4-2" logy n + n? = O(2" logyn)

It's important to remember that big-O bounds anggper bounds For example, though
5022 4 25z + 40 is O(2?), it is alsoO(x?) and everO(2?"), since all these grow faster than
the fastest-growing term of the expression.

Exercise 17.1:(Solution, 122) Order the following from slowest-growing to fastest-growing
asn increases to very large values.

vn logylog,n 27 n?
1 logy n nlogsn n!

Exercise 17.2:(Solution, 122) Give the best asymptotic bound for each of the following ex-
pressions using big-O notation.

a.3nlogyn + 5y/n c.nl+8-2"+5
b. 8n%(dlogyn + 3y/m) d. Tlemrn

n

17.2 Finding big-O bounds

To find the bound for a program, there are some simple rules that you can use. After describing
the rules, we go through several examples illustrating these rules at work. (Sometimes these
rules are somewhat crude, but don’t worry about that for now.)

Constant Rule: All computer actions, except for function calls and iteration statements, take
O(1) time.

92 Analyzing algorithm speed

Sequence Rule:If you do one thing that take3(f(n)) time and then another thing that takes
O(g(n)) time, then doing both take3(f(n) + g(n)) time.

Iteration Rule: If you go throughO(f(n)) iterations of a loop, and each iteration tak&g ())
time, then the time for all iterations is bounded®yf(n) - g(n)).

Function Rule: Calls to functions take as much time as the analysis for that function says.
(Recursive calls are more complicated; we defer this issue to Chapter 18.)

In light of these rules, we return to tigime-Test-All example.

Algorithm Prime-Test-All(NV)
1 Letihold2.

2 while ;2 < n, do:

3 if 7 dividesn, then:
4 return false
5 end of if

6 Add1 toq.

7 endofdo

8 return true .

When we analyze algorithms like this, we start from the inside and go out. Lines 3, 4, and 6
have no function calls or iteration statements, so each takéestime (Constant Rule). By the
Sequence Rule, the total time for lines 3-®id + 1+ 14 1) = O(1). (Usually we don't get to
line 4, but it doesn't hurt to throw it in too.) Now we apply the Iteration Rule tovthée loop
of lines 2—7: We go throug®(+/N) iterations of this loop, and each iteration tak¥d) time,
so the total time i®) (v N - 1) = O(v/N). By the Constant Rule, lines 1 and 8 each téKe)
time. We apply the Sequence Rule again: The total amount of time tak@rirbg-Test-All is
O(1++VN+1) = O(N).

Now let's look at an algorithm foMatrix-Addition. Given twon x n matrices, we’re to
find the sum of each corresponding pair of elements.

Algorithm Add-Matrices(A, B)
1 for eachinteger: betweenl andn, do:

2 for eachinteger; betweenl andn, do:
3 LetC;; holdA; ; + B; ;.

4 end of do

5 endofdo

6 return C.

This is slightly more complicated because of the nested loop. Again, the approach is to start
with the inside and go out. By the Constant Rule, line 3 takel) time. There are: iterations
of thej loop in lines 2—4, and each iteration takegl) time, so by the Iteration Rule, lines 2—4
takeO(n-1) = O(n) time. For the loopin lines 1-5, there aneiterations, and we just saw that
each iteration take9 (n) time, so by the Iteration Rule, lines 1-5 taRén - n) = O(n?) time.
Line 6 takesO(1) time (Constant Rule), so the total amount of time (applying the Sequence
Rule to combine lines 1-5 with line 6) 8(n? + 1) = O(n?). ThusAdd-Matrices takes
O(n?) time.

Another example: This C++ function takes a number to a positive integer power. We exam-
ined this algorithm in Chapter 10; now we replace the recursion with a loop.

17.2 Finding big-O bound®3

1 double exponentiate(double x, int n) {

2 double ret = 1.0;

3 double y = x;

4 int i = n;

5 while(i > 0) { // always at this point y'’n == Xi * ret
6 ifi % 2 == 0) { // iis even

7 i=il 2

8 }else { /] iis odd

9 ret = ret * x;

10 i=(@G-212

11 }

12 X =X * X

13 }

14 return ret; // i must be 0, so y'n = X0 * ret = ret
15 }

By the Constant and Sequence Rules, each iteration of lines 6-12Qgkesime. But how
many times do we go through the loop? After each iteratias,at most half of what it was
before, so aftet: iterations,: is at mostn(3)*. Thus if go throught = log, n iterations,i
is at mostn(3)°&2” = Z = 1. One more iteration bringsto 0, so there arat most! +
log, n iterations. (Sometimes we will finish the loop sooner. But it will always stop in at most
1 + log, n iterations, and an upper bound is all we need for big-O bounds.) Each iteration
takesO (1) time, so by the Iteration Rule, lines 5-13 tak€og, n) time. The amount of time
consumed by the statements outside the lo@p(is). So by the Sequence Rule, the amount of
time Fast-Exponentiate requires isD (1 + log, n) = O(log, n).

Now we look at an example involving the Function Rule. Say we want to count the number
of primes betweed and V. The following would do this.

Algorithm Count-Primes(XN)

1 Letcount hold0.

2 for eachi betweer2 andN, do:

3 if Prime-Test-All(:) = true , do:
4 Add 1 to count.

5 end of if

6 endofdo

-

return count.

By the Function Rule, line 3 tak&3(+/7) time, and since it is always the case that N, this is
O(V/N). Line 4 takesD (1) item (Constant Rule), so each iteration of lines 3-5 takég'N)
time (Sequence Rule). We go througyh— 1 iterations of the loop in line 2, so lines 2—6 take
a total of O((N — 1)v/N) = O(N+/N) time (lteration Rule). Lines 1 and 7 each taRél)
time, so the total amount of time f@ount-Primes isO(1 + Nv/N + 1) = O(N+/N).

Exercise 17.3:(Solution, 122) In Exercise 2.2, you invented and compared algorithms for
the Square-Root problem. Using big-O notation, analyze the speed of each of the following
Square-Root algorithms. Describe the best big-O bound you can find.

int squareRootA(int n) {
int i = 0; // find the least i whose square is less than n
while(i * i <= n) {
=i+ 1
}

return i - 1;

94 Analyzing algorithm speed

int squareRootB(int n) {

int i = n; // find the greatest i whose square is more than n
while(i * i > n) {
i=1i-1;
} .
return i

}

int squareRootC(int n) {
int low = 0; /I this algorithm works by successively halving

int high = n; // range (low, high), as dictionary searching
while(high - low > 0) {
int mid = (low + high) / 2;
if(mid * mid < n) {
low = mid + 1;
} else if(mid * mid > n) {

high = mid,;
} else {
return mid;
}
}
iflow * low <= n) {
return low;
} else {
return low - 1;
}

}

int squareRootD(int n) { // assumes n perfect square
/I take every other number in the prime factorization

int ncur = n;
int sqrt = 1; // always we have (sqrt * sqrt) * ncur == n
for(int i = 2; ncur =1 i =0+ 1) {
while(ncur % i == 0) {
ncur = necur / i/ i
sqrt = sqgrt * i;
}
}
return sqrt;

Chapter 18

Divide and conquer

One of the most useful general algorithmic approachdsside and conquer. Algorithms
using this approach solve a problem in three steps.

1. Splitthe problem into smaller, similar subproblems.
2. Solve each of these problems using recursion.
3. Combine the solutions into a solution for the original problem.

We will see how to use the divide-and-conquer technique for two important problems: sorting
and multiplication.

18.1 Sorting

One of the classic — and one of the most useful — instances of using the divide-and-conquer
approach is in sorting an array.

Problem Sort:

Input: an arrayA of integers.

Output: an array in increasing order, containing each integer exactly as often as it
occurs inA.

For example, given the input array
A =(19,1,29,30,6,15,2,5)

we would want to output
(1,2,5,6,15,19,29,30) .

The Merge-Sort algorithm

Our strategy is to divide the problem in two using the simplest possible method: We split the
array down the middle. Recursively we sort both halves. How can we combine these solutions?
The two solutions may overlap, but we can combine them into a single sorted list by merging
the two sorted solutions in a zipper fashion.

96 Divide and conquer

19| 1| 29| 30

1119 29| 30
19| 1 29 | 30
19 1 29 30
19 1 29 30

Figure 18.1: Sorting the arra§t9, 1, 29, 30) usingMerge-Sort. (Italic numbers are inputs,
Roman numbers are outputs.)

Algorithm Merge(A, B)
/I A and B must be already-sorted arrays
Letn4 andng be the length of arrayd andB.
Let C hold an array of length 4 + ng. // C will be the result
Leta, b, ande hold 0. // current positions ind, B, and(C'
whilea < ny or b < ng, do:
ifa<ny and A, < By, then:
Let C'[¢] hold Ala].
Add 1 toa ande.
else:
Let C'[c] hold B[b].
Add 1to b ande.
end of if
end of loop
return C.

Since every time through the loop we handle one of the itemsan B, we go through the loop
exactlyn, + np times. Each iteration of the loop, since it involves no loops or function calls,
takesO (1) time. SoMerge consume®)(n 4 + np) time.

With Merge in hand we can write our divide-and-conquer sorting algorithi@,ge-Sort.

Algorithm Merge-Sort(A)
if A has only one itenthen:
return A.
else:
Let 4, hold first half of A.
Let 4; hold second half oft.
return Merge(Merge-Sort(Ag), Merge-Sort(A,)).
end of if

Figure 18.1 gives an example of usiMgrge-Sort on the array(19, 1, 29,30). We divide it
into two arrays(19, 1) and(29, 30). Recursively we sort each to gét, 19) and(29, 30). And
finally we merge these two arrays and retgrn19, 29, 30).

18.2 Multiplication 97

Time analysis ofMerge-Sort

To analyze the time this algorithm consumes, we write a recurren@(for, the time to sort
numbers. Let us assume for convenience thigta power of2. In the base case, when= 1,
T(n)isO(1). For othern, we have three steps to analyze. We first divide the array into two
pieces of length/2; this takesD(n) time. Then we recursively sort the two subpieces; each
recursive call take%'(n/2) time by induction, so sorting both pieces tak&yn/2) time. And
finally we merge the two lists, takin@(n/2 + n/2) = O(n) time. Thus the total amount of
time is
T(n)=0(mn)+2T(n/2)+O(n) =2T(n/2)+ O(n) .

That is, for some, T'(n) is at mos7’(n/2) + cn.

To solve this recurrence, we will apply the recurrence to itself until we reach the base case
of T'(1).

T(n) < 2T(n/2)+cn
< 22T (n/4)+ en/2) + en = 4T (n/4) + 2¢en
< 42T (n/8) + en/4) + 2en = 8T (n/8) + 3cen

In general, after applying the recurrence to ité¢elimes we have
T(n) < 2T (n/2%) + ken
Let us takek to belog, n, so that: /2% isn/n = 1. In this case we have

T(n) < 2°8n7 (/20" 4 (log,n)en
nT'(n/n) + cnlogy n

nO(1) + O(nlogy n)

= O(nlog,n)

Thus we have that the total amount of time kderge-Sort is O (n log, n).
(We’'ll not see why in this book, but the general formSxdrt cannot be done in less than
O(nlog, n) time. TheMerge-Sort algorithm, then, is optimal within a constant factor.)

18.2 Multiplication

Given twon-digit numbers: andb, theMultiplication problem is to find their product.

Problem Multiplication:
Input: numbers: andb of » digits each.
Output: the product of: andb.

Our goal is find a quick multiplication algorithm.

The grade-school method

The multiplication method that you probably know from grade school works fairly well. It in-
volves going though each digit 6fand multiplying that single digit witlk, and then adding the

98 Divide and conquer

1215
X 1998
9720
10935
10935
+ 1215
2427570

Figure 18.2: Example of grade-school multiplication.

results in a special way. In case you suffer from calculator-induced forgetfulness, Figure 18.2
illustrates this method.

This is not a divide-and-conquer technique, but we should analyze it first to get a point of
comparison: How much time does the grade-school approach take? We kiayiés of b to
multiply by «; each of these nitiplications takesD(n) time, so the first step of writing down
the numbers take3(»?) time. Then we add togethemumbers, each having at mast digits.
Adding two2n-digit numbers take® (n) time, so the addition step tak€gn?) time. Thus the
grade school method takéqn?) time.

Karatsuba’'s method

We now expose the ruse your grade school teacher played on you: There is a better way. Using
divide and conquer, we can multiply d(n!-°%) time!
Say we dividez into two piecesg;, andag, whereay, has the top:/2 digits of « andap
has the bottor /2 digits. Soa is aj, x 10"/ + ay. Divide b likewise intob;, andby. Then
a x b can be written as

(aL X 10n/2 + aR)(bL X 10n/2 + bR) =arb; x 10" + (aLbR + aRbL) X 10n/2 + arbr .

This already gives us a divide-and-conquer algorithm: Divid@db into two pieces each, find
the four productsdr by, arbr, arbr, anderbr), and add them together as the equation tells
us.

We can analyze this algorithm by writing another recurrence, leftibg) represent the
amount of time taken to multiply twe-digit numbers. Dividing: andb into two pieces takes
O(n) time. Four multiplications of./2-digit numbers will takel7'(n/2) time. And adding the
results together according to the equation involves adding four numbers, each with @nmost
digits. This take®)(n) time. So our recurrence is

T(n) <4T(n/2)+O(n).

We can solve this similarly to how we solved tNerge-Sort recurrence; if we did this we
would find an answer of'(n) = O(n?). This is not an improvement over the grade-school
method.

The problem is that we save nothing by multiplying four numisersh withr /2 digits. But,
using a bit of cleverness, we can conserve our multiplies. In particular, say we caleylate
andzs as follows.

vy = arby

18.2 Multiplication 99

ry = (ap+ar)(br +bR)

r3 = agrbgr

Each of these three quantities involves multiplying tw@-digit numbers. (Calculating, may
involve multiplying numbers of./2 + 1 digits, but for large: the additivel is not significant.
For convenience we ignore it.) From these we already ha¥e andarbr. The clever thing,
though, is that we also havg,br + arbyr, because we can obtain it by subtractingandzs
from z5. Thus we can writeb as

ab=arbr x 10"+ (ar,bp+aprbyr) x 10"2 Y apbp = x4 x 10"+ (z2—x1 —x3) X 1072 4 25,

So we can multiply twae-digit numbers by multiplying onlyhreen /2-digit numbers!
This gives us a new, faster multiplication algorithm, invented by Karatsuba in 1962.

Algorithm Karatsuba-Multiply(a, b)
if @ orb has one digitthen:
return a - b.
else:
Let a;, hold the higher /2 digits of a.
Let ar hold the lower /2 digits of a.
Let b7, hold the higher /2 digits ofb.
Let bz hold the lowem /2 digits ofb.
Let z; holdKaratsuba-Multiply(az,, by1.).
Let z, holdKaratsuba-Multiply(az, 4+ ar, bz, + br).
Let z; hold Karatsuba-Multiply (ar, br).
return z; x 10” + ($2 — T — $3) X 10n/2 + x3.
end of if

Figure 18.3 contains an example of running this algorithmid and1998.

Time analysis ofKaratsuba-Multiply

We now analyze the running time Bfaratsuba-Multiply. Each addition or subtraction in the
algorithm takesD(n) time, and we hav8 recursive calls, each for ritiplying numbers with
(about)r /2 digits. So we obtain the recurrence

T(n) <37 (n/2)+cn,

for some numbee. Our approach to solving this recurrence is similar to thaMerge-Sort:
We find a general equation for unrolling the recurrehdénes, and then we use a valuelof
for which we getl'(n) in terms of the base casg(1).

T(n) < 3T(n/2)+cn
33T (n/4)+en/2)+en=9T(n/4) + (3/2+ 1)cn
93T (n/8) 4+ cn/4) + (34 1)en = 27T (n/8) + (9/44+3/2+ 1)en

35T (n/2"%) + ((;)k_l + (;) v + -+ ; + 1) cn

<
<

IN

100 Divide and conquer

1215 x 1998

/\

1 =12%x 19 xo = 27 X 117 z3 =15 X 98

RN RN RN

1x1 3x10 2x9 2x 11 9x18 7x7 1x9 6x17 5Hx8

1 30 18 22 162 49 9 102 40
I N N e
18 49 40
11 91 53
+1 +22 + 9
x1 =228 z9 =3159 x3 =1470

1470
1461
+228
2427570

Figure 18.3: Example of multiplying usirigaratsuba-Multiply.

To simplify this somewhat, we fact@B/2)*~! from the second term, and we extend the geo-
metrically decreasing series infinitely. (This extension only increases the sum.) It is a fact that
forr < 1,the suml + r +r% 4+ 2 + ... = 1/(1 — r); in this casey is 2/3, so the sum is.

We apply this fact to our bound too.

Tn) < $T(n/2%) 1 ((;)k f() Tl 1) o
= 3" (n/2%) + (;)H (1 + % + (;)2 ot (;)H) en
< g1+ (3) (1 P2 (2) o

= 3"T(n/2%) + 3¢ (;)H n = 3" (n/2%) + 2¢ (;)k n

Our bound forT'(n) is in terms of’(1) whenk = log, n. In this case* is
3k — (210g2 3)10g2 " _ glogy(3)-logy (n) _ glogy(n)-logy(3) _ (210g2(n))10g2 P _ nlog2 3

We can use this to simplify our recurrence

nlog2 3

Sk
T(n) < 3kT(n/2k) + QCQ_kn — plog: 3T(1) + 92 n = O(nlog2 3) ‘

n
Thus the time bound fdkaratsuba-Multiply is O (n'°%23) =~ O (n'->?).

Performance ofKaratsuba-Multiply in practice

In a certain sense the theoretical analysis unsatisfying. It is not really a prodfatesuba-
Multiply is always faster; it is a proof that is it faster for very lange Indeed, the relative

18.2 Multiplication 101

400 R
300] ¢ grade-school method
time e Karatsuba-Multiply
(Ms) 9001 .
100+ o
[]
0'_’_._._8_?_|_|_>

32 128 512 2048
number of digits

Figure 18.4: Multiplication experiment results. (Note the logarithmaxis.)

complexity of Figures 18.2 and 18.3 suggests that perhaps your grade-school teacher was right
not to teach yowaratsuba-Multiply. Our analysis shows th#taratsuba-Multiply becomes

faster at some point, but that point may be impractically large (hundreds of thousands of digits,
maybe).

To see how the algorithms performed with small numbers, the author performed an experi-
ment comparind<aratsuba-Multiply with the grade-school algorithm. Figure 18.4 graphs the
results. The graphed measurements are from a Sun SPARCstation 4.

What we see from the results is that the experimental results follow the theoretical analysis
very closely. The difference becomes a facto? at 64-digit numbers, and it widens thereafter.

But why, you will ask if you are properly inquisitive, would anybody want to multiply
64-digit numbers? “We never need such precision in real life!” you can object. There are
cases when this is important. One case is cryptography. Many cryptographic protocols involve
choosing and multiplying keys containing hundreds of digits; this multiplication must be exact.
Moreover, the more digits in a key, the more secure the cryptography. A quick multiplication
algorithm, then, can help make messages more secure by allowing us to choose larger keys.

In this chapter we have seen and analyzed two divide-and-conquer algorithms: one for sort-
ing, one for multiplication. Both problems are fundamental to computer programs. Divide and
conquer applies to many other problems. It is an important technique that is worth considering
for nearly any problem you might cross.

Chapter 19

Dynamic programming

In applyingdynamic programming to a problem, we observe that we could quickly find
the problem’s solution if we had solutions to some similar but smaller problems. To solve these
similar, smaller problems, we can use solutions to similar, yet smaller problems. These will
take similar, tiny problems, which require solutions to miniscule problems, and so on. Finally
we get to something a problem so small it is trivial.

So far, this description is similar to divide-and-conquer approaches. The difference is that
dynamic programming applies when the recursive solution requires recomputation to the same
subproblem many times. To apply the technique in an algorithm, we begin with the trivial
problems and work our way up until getting to the problem at hand. This allows us to avoid
recomputing the same answer to a problem many times.

Dynamic programming algorithms tend to require quite a bit of insight. (Actu&dlyatsuba-
Multiply required a neat bit of insight itself!) The best way to demonstrate how it can work is
to try an example.

19.1 Fibonacci numbers

One of the simplest examples of using dynamic programming is in computing Fibonacci num-
bers. The Fibonacci numbers turn up in a variety of places that we won't discuss here. Instead,
we simply define them: ThEibonacci sequencdegins with the numbers

1,1,2,3,5,8,13,21,34,55, ...

The first two numbers arg and each other number is the sum of the two numbers preceding it.
Using this definition, a simple recursive function will compute tile Fibonacci number.

Algorithm Fibonacci(n)
if n <1,then:
return 1.
else:
return Fibonacci(n — 1) + Fibonacci(n — 2).
end of if

Look at the recursion tree fdfibonacci(6) in Figure 19.1. You can see that we frequently
recompute values. For exampkhonacci(2) is computed 5 times.

19.2 Making changel 03

Figure 19.1: Recursion tree f&ibonacci(6).

Because of this recomputation, this algorithm is quite slow. Although we won't discuss
why, in big-O notation,Fibonacci takesO(1.62") time. In the author’s tests, computing
Fibonacci(40) took 75.2 seconds. The execution time rapidly increases mitGomputing
Fibonacci(70) would take 4.4 years!

The dynamic programming approach stafitsonacci on its head. Rather than compute
starting atn, we will begin atd and work up. We store the Fibonacci numbers in an array so that
to compute each Fibonacci we can access previous Fibonacci numbers without recomputation.

Algorithm Dynamic-Fibonacci(n)
Let fib, hold 1.
Let fib, hold 1.
for each i from 2 to n, do:

Let fib; hold fib,_, + fib;_.
end of loop
return fib,,.

Each iteration of the loop here takes constant time, and there ard iterations. So this
algorithm take®)(n) time. A timing on the same computer as earlier demonstrates how much
of an improvement this is. Computir@ynamic-Fibonacci(40) took 2 microseconds, and
Dynamic-Fibonacci(70) took 3 microseconds.

19.2 Making change

Now we look at another example where we can apply dynamic programming. Say we’re given
a huge bag of coins containing an infinite number of coins for each of a set of denominations
{do,dy,...,d,_1}, and we want to make change for some amaunt. The Make-Change
problem asks, “How can we use the fewest coins to get exaoth?”

Problem Make-Change:

Input: n denominationdy, dy, ..., d,_1, amountamt.

Output: the smallest number of coins needed so that their net woriis(we can
use a denomination as often as we please).

We do this daily using the greedy method, and in American denominations the greedy
method works. (The greedy method would take the most valuable coin whose value is at most
amt, then the most valuable coin worth at most whatever’s left, and so on until wedathe

104 Dynamic programming

fact that this works is a result of what American coins are worth. For general denominations
this method doesn'’t always give an exact answer. Indeed, it may not find a solution when one
exists!

For example, if we have pennies, four-cent pieces, and nickels, and we want to make change
for eight cents, we should choose two four-cent pieces even though the greedy method would
recommend a nickel and three pennies. If we don’t have pennies available, the greedy method
would flail helplessly over the three cents after the nickel!

A dynamic programming approach observes that, if we knew how many coins it takes to
handleamt — dy, amt — dy,..., amt — d,,_1, then making change farmt would take only
one coin more than the minimum of these. (If it tookoins to reactumt — d;, we could use
these: coins needed to reachnt — d; and then use &;-coin, for a total of: + 1 coins worth
amt.) Finding the best solution formt — d; is just a matter of solving the same way, so we
can recurse. The base case here is when the amount is zero; we can @hanrgd with no
coins at all.

To program the solution, we start at the trivial case of zero and work our waynto
remembering in the arraspins the number of coins required to change each amewibng
the way.

Algorithm Dynamic-Make-Change(amt, do, dy, . . .d,—1)
Let coinsy hold0.
for each a from 1 to amt, do:
Let coins, hold co. /[an upper bound owoins,
for eachj from 0 ton — 1, do:
if d; <a and coins,_q, +1 < coins,, then:
Let coins, hold coins, 4, + 1.
end of if
end of loop
end of loop
return coins ;.

How much time does this algorithm take? An iteration of the inner loop téKes time,
and there are: iterations of it, so the inner loop také¥n) time. Each iteration of the outer
loop, then, iKD(n), and it goesumt times. Thus the total time takend¥ amt - n).

19.3 All-pairs shortest paths

Now we’ll consider shortest paths in a graph.

Problem All-Pair-Paths:
Input: an undirected graph with nonnegative edge lengths.
Output: for each pair of vertices, the length of the shortest path between them.

For simplicity, we number the verticdsto », and define a distance matixso thatd; ; is the
length of the edge betweeérandj if it exists and infinite) otherwise. We want to compute
the matrix ofp; ;, wherep; ; is the length of the shortest path frorto ;.

How can we approach this with dynamic programming? This requires quite a bit of insight.
Here’s the observation. If we want the shortest path betweserdt in ann-vertex graph, we
can find it quickly if we already know the shortest patthat only involve the first — 1 vertices
(except the endpoints themselves). That is, if we know the shortest path between aveyy

19.3 All-pairs shortest path405

that does not pass through vert@xalong the way, then we can find the shortest path over all
then vertices. We use the following method. Say tpg}_l) is the length of the shortest path
betweeni andj that has only the firsk — 1 vertices as intermediate steps. Then the shortest
path froms to ¢ on all» vertices will be the minimum o;f)g_l) andpgﬁfl) 1 Y The first

n,t

alternative pg?;”) represents the case that the shortest path frtort does not go through.

The secondpé?n_l) —|—p7(f[1)) represents the case thatitdoes. In this case, it will only go through
n once. (Can you prove this?) The path will first extend froto », with Iengthpg?n_l). Then

it will extend fromn to ¢, with Iengthp(”_l). So its total length in this case;ié?n_l) + p(”_l).

n,t n,t

We can likewise compute théj;_l) if we know thep(”_z), which we can compute if we

(%]
know thepgz_?’), and so on until we get to thzég). This is the trivial case: The shortest path

between and;j going througmointermediate vertices i&; ;.

As before, the dynamic programming algorithm will stand the computation on its head. We
begin with finding thep(®) matrix; gradually, we work up to thel”) matrix, at which point we
are done.

Algorithm Dynamic-Paths(n, d)
I/ Initialize p©)
for each s from 1 to n, do:
for eacht from 1 to », do:
if there is an edge betweerandt, then:
Let pg?,) hold length of edge betweenandt.
else:
Letp
end of if
end of loop
end of loop
/1 Now work up top(™) by computing successipé?).
for each k from 1 to n, do:
for each s from 1 to », do:
for each ¢t from 1 to », do:

©) hold cc.

s,t

Let pg? hold min{pgﬂt_l),pgrl) + pgft_l)}.
end of loop
end of loop
end of loop
return p(™.

This algorithm take® (r*) time. Figure 19.2 gives an example of how this problem would
work on a specific graph.

Summary

In this chapter we have investigated how dynamic programming helps in three very different
problems: computing Fibonacci numbers, making change, and finding all the shortest paths in
a graph. Dynamic programming shows up in many other problems, too.

The problems where it applies have this characteristic: One can phrase the solution to a
problem in terms of recursive solutions to smaller problems from the same problem, and these

106 Dynamic programming

WNWO WwhwOo
PNOW FPFUOW
R ONND RPOOIN
orFPF W ORrRLW®

3

=
ANWO g VNWO g NWO
PUOoOoOw RPUOW FPooOow
RPouiNn POON POoOON
OrprP»P orrFP,Q Oorrgy

’E/—\

=

Figure 19.2: An example of usirigynamic-Paths.

smaller problems overlap. When you see this, it is time to consider dynamic programming. The
dynamic programming algorithm will begin with the small — or easy — problems and build on
previous solutions, remembering solutions to more and more complicated problems until finally
reaching the actually asked problem.

Sometimes the dynamic programming solution is obvious enough that only after you see
the algorithm do you realize it uses dynamic programming. But sometimes its application is
less obvious. When you encounter a problem, it is often worthwhile to consider how dynamic
programming might be applied; the thought could easily pay off in a good solution.

SIXTH UNIT

Appendices

This textbook includes four appendices.
Appendix A is a quick-reference listing the fundamentals of C++ syntax.
Appendix B lists miscellaneous keyboard symbols, their names, and how they are used in C++.
Appendix C describes some fundamental math concepts that are used elsewhere in the book.

Appendix D gives solutions to many of the exercises appearing in the book.

Appendix A

C++ syntax reference

Program structure

#include <iostream>
#include <string>

int main() {
(programBody

}

Function definition

(returnValueTypé (functionName ((parameterLis}) {
(functionBody)
}

Exiting a function

return (expressionWhoseValueToRetum

Variable declaration

(typeOfVariable (variableToDefing;
vector< (elementTypg> (arrayToDefing((lengthOfArray));

Variable assignment

(variableToChangg = (valueToGivel};

Conditional statements

if((thislsTrue)) {
(statementsToDolfTrug

}

if((thislsTrue)) {
(statementsToDolfTrug

} else {
(statementsToDolfFalse

}

109

if((thislsTrue)) {
(statementsToDolfThisTrug

} else if ((thatlsTrue)) {
(statementsToDolfThisFalseButThatTrue

} else {
(statementsToDolfBothFalse

}

Iteration statements

while((thislsTrue)) {
(statementsToRepekat

}

for((initialAssignmen; (thislsTrue); (updateAssignmen) {
(statementsToRepekat

}

Types Types included in C++:

int integer
double number
char character
string string

The array type ivector< (elementTypg>, and a structure type is declared as follows.

struct (structureTypeNamg {
(elementDeclarations

h

Expression operators The following table lists the operators we saw in the book. Operators
listed higher have a higher order of precedence; operators on the same line have the same

priority.

rank operator meaning

1 = object specifier

2 (--9),[--],. function call, array index, structure member
3 -,! negation, logical not

4 * 1. % multiplication, division, remainder

5 +,- addition, subtraction

6 <<,>> output, input

7 <, <=,>=> comparison

8 ==I= equals, not equals

9 && logical and

10 || logical or

11 = assignment

Reserved words C++ uses a variety dfeywords (also calledreserved wordg for special
purposes. These cannot be used as names for other things. Some of these we have seen in this

textbook.

110 C++ syntax reference

keyword page usagein C++

char 21 thetype for characters

class 45 define a new object type

const 38 for constant-reference parameters

double 20 the type for real numbers

else 27 for an “otherwise” clause iifi statements

for 30 loop through statemenfisr items in a set

if 25 do some statemerifsa condition holds

int 20 thetype for integers

private 47 forindicating an object’'s hidden members
public 47 forindicating an object’s public members
return 36 exit from a function with a given value

struct 42 define a new structure type

void 35 thereturn type for functions returning nothing
while 29 loop through statemenighile a condition holds

Many more keywords we have not seen at all in this book.

asm enum protected this
auto extern register throw
break float short try

case friend signed typedef
catch goto sizeof union
continue inline static unsigned
default long switch virtual
delete new template volatile
do operator

Appendix B

Symbols

symbol name C++ meaning seen in this book

! exclamation point, bang, not not operatglinequality operatol=

@ at sign

sharp, pound, hash mark usedfinclude statements

$ dollar sign

% percent, mod remainder operaér

B caret, exponentiation

& ampersand, and and opera®d; indicates reference parameter

* asterisk, star, multiplication multiplication operator

0 parentheses orders expression evaluation; function call opérator
delimits condition inf , for , while

- minus, dash negation operatagrsubtraction operator

_ underscore part of a name of variable or function

= equal sign assignment operatgrcomparison operators= |= <= >=

+ plus addition operatof

\ backslash quote next character literally (a8'in - or"\")

| vertical bar, or or operatdf

‘ backquote

~ tilde, twiddle

0 brackets array indexing operafr

{3 braces delimits statement block

; semicolon terminates statement

: colon qualifies object (it); endsprivate andpublic

’ single-quote delimits character constant

" double-quote delimits string constant, delimits filefinclude

, comma separates function parameters

. period, dot structure member operatgdecimal

<> angle brackets, less/greater than comparison operators= >=; input/output operators< >>;
delimits file in#include ; delimits vector element type

/ slash, virgule, division division operatbdr begins commentg

?

guestion mark

Appendix C

Mathematical concepts

You may not be familiar with all of the mathematical concepts found in this book; or maybe
you are. At any rate, in this appendix we discuss some of the more obscure mathematical
concepts we assume. Go through it quickly to make sure you understand it; and, that which you
don't, learn.

C.1 Logarithms

A logarithm is the inverse of exponentiation. The logarithm basé =, written aslog,, z, is
the value ofy for which ¥ = .
Logarithms have a number of important properties. Here are a few of them.

log, b* = =
blOgb T g
logy(zy) = log,x +logyy
logy(z¥) = ylog,x
log,
1 _ ezt
%y ® log. y

It's worth proving each of these idtties on your own, to get a better feel for how logarithms
behave.

C.2 Induction

Computer scientists often usgthematical induction to prove things. Mathematical induction
is a method for proving that something holds for all integers at least some nugnb&mproof
by induction consists of two steps. The first is iese caseHere we show that the hypothesis
is true forng. (This is usually trivial.) The second step is timgluction step, wherein it is
shown that, if the statement is true for abbetweenny andn, then it is also true forn. These
two steps imply that the statement is true foralk n,.

As an example, we will show that, for any integep 1, the sum of the first. positive odd
numbers is»?. As the base case, we observe that the first odd number is 1, whiéh 8o
the statement is true for = 1. Now, for the inductive step, we assume it holds foriaf n.

In particular, it holds forn — 1. The sum of the first, positive odds is the sum of the first

C.3 Geometric seried13

n — 1 positive odds (which we assumed(is — 1)%) and thenth odd number2n — 1. Since
(n—1)2+2n—1=n?-2n+ 1+ 2n— 1 = n?, we know that the sum of the firstpositive
odds isn?. So our statement is proven.

Exercise C.1: Induction can often go awry. What's wrong with the following “proof” that alll

cows are the same color? For our base case, consider one cow. Obviously the cow is the same
color as itself. Now say it holds for all< ». Take away a cow named Alfalfa. We have- 1

cows left, and by the inductive hypothesis they all have the same color. Put Alfalfa back, and
take away another cow, Bessie. Again, we know that they all must have the same color. This
means that if we have cows, they must all have the same color. Since there are only a finite
number of cows in the world, they must all be identically colored.

C.3 Geometric series

You can also use induction to show facts about geometric seriegeofnetric seriesis a
summation of numbers+ r + r? + - .- + r*, where each number is a factotimes the last.
You can show by induction that the sum of this serie@is ") /(1 — r).

An infinite geometric seriesextends the previous series out to infinityy- » + 2 + - - -, If
r < 1, then this infinite sum i$ /(1 — r).

C.4 Recurrences

Recurrencesturn up frequently when we use an inductive method. A recurrence is a function
defined in terms of itself. Like induction (and recursion), every recurrence must have a base
case.

We can represent the sum of the firsbdd numbers using a recurrence as the following:
Let S(n) represent the sum of the firstodd numbers. Obviously we hag1) = 1; this is
the base case. For other values in the parentheses, wé&taye- S(n — 1) 4+ (2n — 1), since
2n — 1 is thenth odd number, and(n — 1) is recursively defined as the sum of the figst 1
odd numbers.

We proved in Section C.2 that(n) has a simpleclosed form — that is, a form using no
recurrences or extended summations. The closed forsiof is n?.

C.5 Graphs

A graph is a pair of setd” and £, denoted V, £). The first set}/, is a set ofvertices This
is an arbitrary set. The second s&t, is a set ofedges Each edge is a defined by a pair of
vertices. One graph is a square, drawn in Figure C.1. In this graph, the set of vertices is

V: {a7b7c7d}7
and the set of edges is

E={(a,b),(b,c),(c,d), (d,a)}.

Graphs are useful because they are very general structures that model a wide variety of
problems. The edges can represent roads between cities, friendships between people, wires
between computers, or many other things. This makes them interesting to computer scientists.

114 Mathematical concepts

Figure C.1: A simple graph.

O O O

O O O

Figure C.2: A disconnected graph.

If they find how to model a problem as a graph problem (which often occurs), there’s a good
chance that somebody has already solved the graph problem.

An undirected graph is one in which the order of vertices in each pair is not significant
(edge(a, d) is considered the same as edgdea)). In adirected graph, order matters. This
book deals exclusively with undirected graphs.

Notice that an undirected graphofvertices has at most(n — 1)/2 edges, since there are
that many pairs of vertices, and the set of edges is a set of vertex pairs.

A graph defined by set8”’ and E’ is a subgraph of graph defined by set§ and F if
V' C VandE' C E. Asingle point {/ = {c¢},F' = 0) is a subgraph of the graph of
Figure C.1. Note thati¥’’ = {«} andE’ = {(a, b)}, we do not have a subgraph, even though
the vertices and edges are subsets of the graph: This is not a graph itself. (The edge includes
something notif’’.)

A weighted graphis a graph with a functiom from edges to real numbers. Such a graph
is often notated agV, I/, w). Theweight of an edge is the value of the function for that edge.
These weights can be understood as costs, capacities, or distances of thecedgiing to
what is natural for the problem.

A weighted graph definesdistancebetween vertices. fpath between two vertices and
u' is a sequence of vertic€s = vg, vy, v, . ..vk_1, v;x = ') such that, for every < ¢ < k,
(v;—1,v;) is an edge in the graph. Thength of a path is the sum of the weights of the edges
on it. There can be many paths between two vertices. di$tance betweenu andv is the
minimum length among all the paths betweeandv.

We call a graptconnectedif, for every pair of vertices, there is a path in the graph con-
necting the vertices. The graph of Figure C.1 is connected; the graph of Figure C.2 is not.

C.6 Mathematical notatiorl. 15

C.6 Mathematical notation
This section defines most of the more unusual mathematical notation you'll find in in this book.

(...) anordered sequence of elements.
{...} asetofelements.

|...|] if anumber is enclosed, thebsolute value(z if = is positive, otherwise-z); if a set is
enclosed, the number of items in the set.

oo theoretically, infinity; in practice, a number that larger than anything that might occur.

>-; f(@) the sum off(¢) for each value of. If i can be any number betweérandn, this is

FO+ M+ +--+ f(n).

n! thefactorial of a numberj!isthe product of the positive integers at mogg! = 3x2x1 =
6)

e Euler's constant, an irrational number (lik¢ whose value is approximatedy718281828.
log, « the basérlogarithm; see Section C.1.

O(...) big-O notation; see Chapter 17.

Pr[--] the probability that the event in brackets occurs.

z(3) the number should be interpreted in base(If b = 2, thenz is in binary; ifb = 10, then
x isin decimal.)

That's all the mathematical concepts we need. If you find a concept in the book not covered
in this appendix, try referring to the index. If you don't find it listed, your instructor should be
happy to help.

Appendix D

Exercise solutions

(The#include lines are omitted from the program listings in these solutions.)
Exercise 2.1:(page 6)

Problem Search:
Input: Alist L of numbers and a number
Output: true if z occursinl, andfalse otherwise.

Exercise 2.2:(page 7) There are many plausible answers here. The following lists just a few
of them.

Square-Root-Up Start with1l and continue counting upward until you reach a number whose
square is more tham. Output the number just before that one.

This algorithm’s primary virtue is its simplicity. This simplicity makes it easy to under-
stand and easy to program. It is not particularly quick, however.

Square-Root-Down Start atn and count downward until you reach a number whose square
is less tham.

This is a minor variation on the previous algorithm. It is also very simple (although
counting downwards is a little harder to understand), but it is much slower than before.
Consider, for example, i were 1,000, 000. With the previous algorithm, we count up
from1to 1, 000. Butwith this algorithm we count down from 000, 000to 1, 000, which

is a much longer distance.

Square-Root-Half Always maintain a range where the square root might be. Initially, the
range is[1, n], but then we successively refine this range by repeatedly choosing the
midpoint of the range (the first time, for example, the midpoirtlis- »)/2), squaring
it, and seeing whether the square is more or less thdhit is more, then we know the
square root is less than the midpoint and so we take our range to be the lower half of the
range. Ititis less, then the square root is above the midpoint, and so we take the range to
be the upper half instead. We can stop once the range includes only one iitégen
we know the answer is eithéror & — 1, and we can easily determine which it by seeing
how &? compares tai. (By the way, this method of searching in a range by successively
halving the range where it might be is calleichary search.)

For example, if we sought the square rootl8f we would start with the rangé, 18].
The midpoint is9.5, whose square i80.25, so we restrict our range {a, 9.5]. Now

117

the midpoint is5.25, whose square i85.56; we restrict the range tpl, 5.25]. Now
the midpoint is3.13, and the square .77; we restrict the range t{8.13, 5.25]. The
midpointis4.19, and the square is7.54; we restrict the range td.19, 5.25]. This range
contains only one intege¥, We test to see wheth&f > 18; it is, so the answer is.

This algorithm is considerably more complicated than either of the first two algorithms,
but it is also considerably faster. Consider again the case wher, 000,000. The
range is initially999, 999 wide, but it halves each time we try something out. Aftér
tries, then, the range #99,999(1/2)%° ~ 0.95 wide. At this point it contains at most
one integer, and so the algorithm will stop after another try, for a total afies. This is
much better than the, 000 done for the first algorithm. Unfortunately, the complexity of
the algorithm does make it rather error-prone.

Square-Root-Factor If we knewn were a perfect square, then we could might take the prime
factorization ofrn and then take every other prime factor. For example, to find the square
root of 3600, we find the prime factorization @f* x 32 x 52. Every other factor of this is
2% x 3 x 5 = 60, which is the square root 600.

This procedure has the fatal flaw that it doesn’t accomplish what the problem states. It
assumes that the input is a perfect square, and the problem statement did not include this
restriction. But if the problem were for perfectly square inputs, it would be a reasonable
algorithm. (In most cases it would be much faster than the first (and certainly the second)
algorithm, and in some cases it may be somewhat faster than the third.)

Exercise 3.1:(page 10)

Algorithm Square-Root-Up(n)
Let: hold0.
while :2 < n, do:
Add 1toz.
end of loop
output 7 — 1.

Algorithm Square-Root-Down(n)
Let: holdn.
while :2 > n, do:
Subtractl fromi.
end of loop
output .

Algorithm Square-Root-Half(»)

Initialize range to 1, n].

while range contains more thai integer,do:
Let & be the middle number in the range.
if k2 < n, then narrowrange to [range’s bottom £].
elsenarrowrange to [k, range’s top|.
end of if

end of loop

Let k£ be the first integer aftetunge’s bottom.

if &2 < n, then output k.

else outputk — 1.

end of if

118 Exercise solutions

Exercise 3.2:(page 11)

Exercise 5.1:(page 21)

a."3.4" string
b.0 int
c.45.0 double
d."a" string

e.-1e10 double

Exercise 5.2:(page 21)

name
num.points
letter

char
#students
temperature
r2d2

2i

S@ "o o0oTw

The following is a flowchart f@quare-Root-Up.

| Leti bel. |

no v
| Add1toi. | [Outputi-1. |

T G

Yes; astring is probably the best choice.

Yes; anint is probably the best choice.

Yes; achar is probably the best choice.

No; the wordchar is reserved for other uses in C++.

No; the #' character cannot appear in names.

Yes; adouble is probably the best choice.

Yes; but itis a poor variable name: It doesn't indicate content.
No; names cannot begin with digits.

Exercise 5.3:(page 23)x holds the valu®8.6 andk holds the valud2.

Exercise 5.4:(page 24)

int main() {
int year;

a. k% 8 value is2

b. x-k*2 value is14.6

c. k/79 value is4 (remember integer division!)
d -x/2 value is—49.3

e. 2k+5 invalid (must usé for multiplication)

cout << "It is January 1 of which year? "

cin >> year;

int age = year -

1974,

cout << "You are " << age << " years old." << endl

119

Exercise 6.1:(page 28)

a. truealways

b. trueif xislor0

c. trueif score is more thard0, or if bonus is nonzero andcore is more thar80
d. trueonlyifkis0 (! has higher rank tham=)

Exercise 6.2:(page 29) lfyear is a multiple of4 but not100, itis a leap year. Itis also a leap
year ifyear is a multiple of400. The following encodes both these cases.

(year % 4 == 0 && year % 100 != 0) || year % 400 ==

Exercise 6.3:(page 29) This fragment letd hold a question mark i holds2. One minor
fault is thatch doesn'’t hold anything meaningful otherwise, so we can't really use the value of

ch later on.
char c h =" " I/l ch should holds something meaningful if k != 2.
iftk == 2) { // condition must be in parentheses, and = must be doubled
ch = /| "?" is a string, but ch is a char. It should be '?'.

}

Exercise 6.4: (page 29) Notice how the following tests whether the denominator is O before
performing the division. This is a feature of good programs: It is very careful with user in-
put when the user might type something causing a run-time error. It is much better to print
something meaningful in these cases.

int main() {
int num; // numerator
int den; // denominator
cout << "What is the numerator? ";

cin >> num;
cout << "What is the denominator? ";
cin >> den;
ifden == 0) {
cout << "Cannot divide by 0." << endl;
} else if(num % den == 0) {
cout << den << " divides " << num << "" << endl;
} else {

cout << den << " does not divide " << num << "" << endl;

}
}

Exercise 6.5:(page 32) This fragment prints the powers of two frono 16.
double total = 1;
i = 30;
while(i > 0) {
cout << total << endl;
total = 2 * total;
i=il2
}
Exercise 6.6:(page 33) This is probably meant to readinnumbers from the user and output

the product of all the numbers. (Since it beginat 30 and increases it for each iteration, the
loop does not actually stop.)

forG =0 ;i<30;i=1i+1){/ commas become semicolons, == becomes =
cin >> num; /I >> becomes <<, semicolon added
product = product * num; /I semicolon added

120 Exercise solutions

Exercise 8.1:(page 41)

int removeDuplicates(vector<int> &arr, int arr_len) {
int j = 1; // position in array with duplicates removed
int i; /I position in initial array
for(= 1; i < arr_len; =i+ 1) {
if(arr[i] '= arri - 1]) { // this is not a duplicate
arrjl = arr[il; // put it in array with duplicates removed
j=j+ 1 i increase our position
}
}

return j;

Exercise 8.2:(page 41) Probably the most intuitive way to do this is to read the numbers into
an array and sort the numbers. This is an alternative answer workingd&e-Tally. Both are
good approaches.

int main() {
/I create the tally boxes, initially O.
int tally[101];

int i;

for(= 0; i <= 100; i++) {
tally[i] = O;

}

/I how many scores are there?
int num_scores;

cout << "How many numbers? ";
cin >> num_scores;

/I tally up the scores
for(= O; i < num_scores; =i+ 1) {
cout << "#' << (i + 1) << " Y
int x;
cin >> x;
tally[x] = tally[x] + 1;
}

/I now find the median
int total = 0; // number of marks found so far
forG = 0; i <= 100; i =i + 1) {

total = total + tally[i];

if(fotal > num_scores / 2) {

cout << "median = " << i << endl;
return O;

121

Exercise 8.3:(page 42) It's important that you be careful with how you select the indices of
the two letters you're comparing. (It's easy to be off by one here.)

int main() {
string to_test;
cout << "Which word? ";
cin >> to_test;

int i;
for(= O; i < to_testlength() / 2; i =i+ 1) {
if(to_test[i] != to_test[to_test.length() -0 -1) {
cout << to_test << " is not a palindrome." << endl;
return O;
}
}
cout << to_test << " is a palindrome." << endl;
return O;

}

Exercise 8.4:(page 43)

struct Date {
int year;
int month;
int day;
h

struct LibraryBook {
string name;
int id;
double price;
Date due;

%
Exercise 10.1:(page 59)

void allSubsets(int depth, vector<int> &chosen, int n) {
if(depth == n) { // we've made all choices; print this subset
int i;
forG = 0 ;i < depth; i++) {
if(chosenl[i]) {
cout << " " << (i + 1)
}
}

cout << endl

} else {
chosen[depth] = 0; // choose #depth to not be in the subset
allSubsets(depth + 1, chosen, n);
chosen[depth] = 1; // now choose #depth to be in the subset
allSubsets(depth + 1, chosen, n);

}
}
int main() {
int n;
cout << "Choose from how many? "
cin >> n;

vector<int> subset(n);
allSubsets(0, subset, n);

122 Exercise solutions

Exercise 16.1:(page 87) This comes from Lewis Carroll's poem “The Jabberwocky.”

And, as in uffish thought he stood,

The Jabberwock, with eyes of flame,
Came whiffling through the tulgey wood,
And burbled as it came!

Exercise 17.1:(page 91)1, log, log, n, logy n, /7, nlogy n, n2, 27, n!
Exercise 17.2:(page 91)

a. 3nlogyn+5yn = O(nlog, n)
b. Sn?(dlogyn+3y/n) = O(n?)

c. n!l+8-2"+5 =0(n!)

d. 8+3log, n — O(log2 n)

Exercise 17.3:(page 93)

squareRootA() O(+/n). Each time we go through the loop, we increaby one. We start
at zero and end at at most+ /n so we go througl (1/n) iterations. Each iteration
through O(1) time (Constant Rule) so the total is the product of tliesgn).

squareRootB() O(n). The program begins atn and subtracts 1. It stops by the tirhe
becomes,/n — 1. So the computer goes through the loop at nmost,/n + 2 iterations.
The fastest-growing term here is theterm, so we go througt(n) iterations. Each
iteration takes O(1) time (Constant Rule), so by the Iteration Rule, the total tith@is

squareRootC() O(logy n). The distance betwedaw andhigh is initially n, and each
time through the loop this distance at least halves. After halving the diskagoe times,
the range’s size is at most 1, and so we have at iiegstn iterations. Each iteration
involves no loops or function calls, so each takes O(1) time. By the Iteration Rule, the
time required is therefore 3(log, n).

squareRootD() It's not the best answer, but one reasonable answ@(ign log, n). The
outer loop will go through until is the largest prime factor af; \/n is the largest
possible prime factor of a perfect square, since every prime factor occurs twice in the
factorization. So the outer loop has at mg4t iterations. The inner loop can happen at
mostlog, n times, since each iteration dividesby i 2, andi is always at least 2. Each
iteration of the inner loop tak@ (1) time, and the inner loop overall tak€glog, n) time.
Thus each iteration of the outer loop takefog, n) time, for a total ofO (y/nlog, n).

A slightly better answer i©(y/n). This comes from observing that the inner loop can
occur at moslog,, n times during the entire execution of the function. Thus the total time
isO(y/n +log, n) = O(y/n). Since this reasoning is a little subtle, you may reasonably
not have found it.

Index

#include , 17,47

absolute valuel15
acknowledgement, 77
acknowledgement numbét3
Add-Matrices, 92
Adelson, Leonard, 84
Al, 3
algorithm,6
Add-Matrices, 92
Alpha-Beta-Search, 64
Count-Primes, 93
Does-Halt, 7
Dynamic-Fibonacci, 103
Dynamic-Make-Change, 104
Dynamic-Paths, 105
Fibonacci, 102
Gingerbread, 9
Is-A-Jew, 53
Karatsuba-Multiply, 99
Merge, 96
Merge-Sort, 96
Minimax-Search, 62
Mode-Tally, 10
Move-Tower, 56
Prime-Test-All, 6, 10, 3192
Prime-Test-Exhaustive, 6,8, 9
Square-Root-Down, 116,117
Square-Root-Factor, 117
Square-Root-Half, 116,117
Square-Root-Up, 116,117,118
algorithms 2
All-Pair-Paths, 104
alpha (), 63
alpha-beta search3
Alpha-Beta-Search, 64
ampersand &), 26, 38
angle brackets €>"), 47
application layery1
array,39

artificial intelligence 3
ASCII, 70

assignment statemer22
asterisk (*), 22
asymptotic analysi€0

backslash {), 21

base, 69

base cas&h2, 112

BASIC, 45

basic data type20

Bayes’ theorem36
best-effort delivery75

beta (5), 63

big-O notation91

binary numbering systers9
binary search]1 16

bit, 69

blank space, 17

box, 20

braces §} 1, 17, 25, 35, 42
brackets (]), 40, 41
Burch, Charles, xii

Burch, Cheri, xii

byte,70

C, 45

C++,13,45

cache,74

call stack56

call tree,57

call-by-reference38

call-by-value 37

caret ("), 23

Carnegie Mellon Univ, xii

char , 21

character?l, 70, 111
ampersand &), 26, 38
angle brackets €>"), 47
asterisk (*), 22

124 INDEX

backslash {), 21
braces (} '), 17, 25, 35, 42
brackets] "), 40, 41
caret ("), 23
colon (: "), 48
comma (;), 37
double quote (*'), 21, 47
equal sign (=), 22, 26
exclamation point (*"), 26
greater than ¢'), 23, 26
less than &), 23, 26
minus (-), 22
parentheses() '), 22, 25, 35
percent (%), 22
period (. °), 42, 70
semicolon (} '), 36, 42
single quote (* "), 21
slash ("), 17, 22
space (* "), 70
underscore (), 21
vertical bar (| "), 26
chess, 60
cin , 23
class ,45
class definition45
class, C++45
DataPoint , 45-47
DataSeries , 50
DrawingUtensil , 48
Pencil , 48
RedPencil , 48
client, 77
closed form59, 113
code,15
colon (. "), 48
comma (;), 37
comment17, 18
compile-time errorl5
compiler,15
compiling,15
complexity,2
complexity-theoretic securit36
computational complexityg
computer science,
condition,26
conditional statemen®5
connectedl14
connection/6

const , 38
constant-reference parametas,
constants, C++, 20
constructor45

control statemen5
correctness, 18
Count-Primes, 93

cout , 17,23

cryptography83

decimal numbering syster9
declaration, variable1
definition file,47

design, 18, 44

directed graphl14
distancel14

divide and conqueBg5
Does-Halt, 7

domain,73

domain hierarchy73

domain name server4
Dominating-Set, 5

double , 20

double quote (*’), 21, 47
dynamic programmingl,02
Dynamic-Fibonacci, 103
Dynamic-Make-Change, 104
Dynamic-Paths, 105

edge,113
electrical engineering, 3
element, array39
else , 27
endl , 17
equal sign (=), 22, 26
exclamation point (*"), 26
executel5
expression22

evaluation order, 27

factorial,31, 115

factoring, 84, 86
Fibonacci, 102

Fibonacci sequencggd, 102
files, C++, 47

Find-Mode, 10
Fire-Hydrant, 5, 6
flowchart,10

for , 30

INDEX 125

FTP, 77

function body35

function call,34

function, C++, 17, 1934
abs() , 35
allSubsets() , 122
choose() , 37
exponentiate() , 54,93
fact) ,36
findMaxScore() , 42
length() , 41
main() , seeprogram, C++
modeTally() , 40,43
removeDuplicates() , 41,120
setToZero() , 37,38
square() ,35
squareRootA() , 94,122
squareRootB() , 94,122
squareRootC() , 94,122
squareRootD() , 94, 122

game tree6l

games, 60

gateway,/4

geometric series,13
Gingerbread, 9

go, 60

graph,113

greater than ¢'), 23, 26
greatest common divisor, 38

Halting, 7

Hanoi, Tower of 55

hardware systems,

HCI, 3

headery/2, 80

header file47

heuristic functiong2

HTTP, 77,81
human-computer interactio8,
Hungry, 9

IEEE standard/1
if ,25

include , 17,47
indentation, 18
index, array39
induction,112
induction step112

infinite geometric serie4,13
inheritance48
inheritance hierarchy}8
input,5

input/output operato3
int , 20

integer,20, 70

integer division23
Internet,67

Internet Protocol72, 73
internetwork layery2
jostream , 17

IP,72

IP address(3
Is-A-Jew, 53
iteration,29

Karatsuba-Multiply, 99
key, 83
keyword, C++,109

char , 21
class , 45
const , 38
double , 20
else , 27
for , 30
if ,25
int , 20
private , 47
public , 47,48
return , 17,36
struct , 42
void , 35
while , 29
layer,71
length,114

less than &), 23, 26
logarithm,112

logic error,16
logical value 26
loop, 29

machine languagé5
main() , seeprogram, C++
Make-Change, 103
management, 3
mathematical inductiort,12
mathematics, 3

126 INDEX

Matrix-Addition, 92
median41l

member, classi4
memory, 18

Merge, 96
Merge-Sort, 96
method 44
Minimax-Search, 62
minus (-), 22
mnemonic name;3
mode,9

Mode-Tally, 10
modulo,87
Move-Tower, 56
Multiplication, 5, 6,97

name resolution/3
names, C++, 18, 21
network, 73
node,57

object-oriented desigd4
one-time padg85
operator, C++22, 109

I, 26

I=, 26,42

0,34

*, 22

+, 22

-,22

., 42

/,22

,48

<, 26,42

<<, 23

<=, 26, 42

=, 22

==, 26, 42

> 26,42

>=, 26, 42

>> 23

] ,40

% 22

&8&, 26

Il .26
order of evaluation, 23, 27, 109
output,5

packet,71

palindrome 42
parameter34
parentheses() '), 22, 25, 35
Pascal, 45
path,114
percent (%), 22
perfect securityg5
period (% '), 42, 70
PGP, 84
PGSS, xii
philosophy, 3
physical layery/2
planning, 60
port, 76
Primality, 5, 6, 8
prime,5
Prime-Test-All, 6, 10, 3192
Prime-Test-Exhaustive, 6,8, 9
private , 47
private-key cryptographg3
problem,5
All-Pair-Paths, 104
Dominating-Set, 5
Find-Mode, 10
Fire-Hydrant, 5, 6
Halting, 7
Hungry, 9
Make-Change, 103
Matrix-Addition, 92
Multiplication, 5, 6,97
Primality, 5, 6, 8
Search, 6,116
Sort, 95, 97
Square-Root, 7, 10, 11, 93
problem instancey
program, C++
age, 24119
checkbook, 33, 38, 49
choices 336, 59
divisor, 29,119
hello world,16, 17
line fitting, 50
median, 41
palindrome, 42121
parameter passings
primality, 32
subset, 59122
temperature conversio@3

INDEX 127

programmingl5
programming languagéb
programming languages,

programming process, 16, 18

protection, information, 47
protocol,71

pseudocodes, 18
psychology, 3

public , 47,48
public-key cryptographyg4

readability, 18
recurrence58, 97, 99,113
recursion52, 62, 95
reserved wordl09
return , 17,36

return value34
Rivest, Ronald, 84
robotics, 60

round-off error,21
routing table75

RSA encryption84, 86
run-time error]15

science, 3

Search, 6,116

secret decoder rin@5
segment, TCR80
self-referenceb2
semicolon (; 7), 36, 42
sequence numberg
server,77

Shamir, Adi, 84
signature84

simplicity, 18

single quote (* "), 21
slash (f), 17, 22

sliding window,79

SMTP, 77

sociology, 3

software engineerin@
software systems$

Sort, 95, 97

space (* "), 70
speed, 6, 18, 90
Square-Root, 7, 10, 11, 93
Square-Root-Down, 116,117
Square-Root-Factor, 117

Square-Root-Half, 116,117
Square-Root-Up, 116,117,118
state 44
statement, C++
assignmen®22
declaration21, 39
expression22
for , 31
if ,25
return , 36
while , 29
string ,17,21,41
struct , 42
structure, C++42
Date, 121
LibraryBook , 43,121
StudentType , 42
subclass48
subgraphl14
substitution cipher85
superclass48

TCP,72
TELNET, 77
termination6
testing, 19
tic-tac-toe 60
Tower of Hanoi 55
Transport Control Protoco¥,2, 76
transport layer71
Turing, Alan, 85
2’s-complement representationl
type, C++,20, 45
array,39
char , 21
class, 45
double , 20
int , 20
string , 21,41
structure4?2
vector , 39

undecidable?
underscore (), 21
undirected graphl.14
user,23

variable,20
variable declaratior21

128 INDEX

vector , 39
vertex,113
vertical bar (| "), 26
void , 35

weight,114

weighted graphl114
well-known port number77
while , 29

white space, 17

world, end of, 55

