NAME
DLXsim - Simulator and debugger for DLX assembly programs

SYNOPSIS

dlxsim

OPTIONS
[-al#] [augt] [-dIF#] [-dug#] [-mlg] [mu#]

-al# Select the latency for a floating point add (in clocks).
-au#t Select the number of floating point add units.

-dl# Select the latency for a floating point divide.

-du# Select the number of floating point divide units.
-ml# Select the latency for a floating point multiply.

-mu# Select the number of floating point multiply units.

DESCRIPTION
DLXsim is an interactive program that loads DLX assembly programs and simulates the operation
of a DLX computer on those programs. When DLXsim starts up, it looks for a file named .dlxsim
in the user’s home directory. If such a file exists, DLXsim reads it and processes it as a command
file. DLXsim also checks for a .dlxsim file in the current directory, and executes the commands
in it if the file exists. Finally, DLXsim loops forever reading commands from standard input and
printing results on standard output.

NUMBERS
Whenever DLXsim reads a number, it will accept the number in either decimal notation, hex-
adecimal notation if the first two characters of the number are 0x (e.g. 0x3act), or octal notation if
the first character is 0 (e.g. 0342). Two DLXsim commands accept only floating pointer numbers
from the user; these are fget and fput and will be described later.

ADDRESS EXPRESSIONS
Many of DLXsim’s commands take as input an expression identifying a register or memory
location. Such values are indicated with the term address in the command descriptions below.
Where register names are acceptable; any of the names r0 through r31 and fO through £31 may
be used. The names $0 through $31 may also be used (instead of r0 through r31), but the dollar
signs are likely to cause confusion with Tcl variables, so it is safer to use r instead of $. The name
pc may be used to refer to the program counter.

Symbolic expressions may be used to specify memory addresses. The simplest form of such an
expression is a number, which is interpreted as a memory address. More generally, address ex-
pressions may consist of numbers, symbols (which must be defined in the assembly files currently
loaded), the operators #, /, %, +, —, <<, >>, &, |, and 1 (which have the same meanings and
precedences as in C), and parentheses for grouping.

COMMANDS
In addition to all of the built-in Tcl commands, DLXsim provides the following application-specific
commands:

asm instruction [address]
Treats instruction as an assembly instruction and returns a hexadecimal value equivalent

DLXSIM

User Commands Page 2

to instruction. Some instructions, such as relative branches, will be assembled differently
depending on where in memory the instruction will be stored. The address argument
may be used to indicate where the instruction would be stored; if omitted, it defaults to

0.

fget address [flags]

Return the values of one or more memory locations or registers. Address identifies
a memory location or register; and flags, if present, consists of a number and/or set
of letters, all concatenated together. If the number is present, it indicates how many
consecutive values to print (the default is 1). If flag characters are present, they have
the following interpretation:

d Print values as double precision floating point numbers.

f Print values as single precision floating point numbers (default).

fput address number [precision)

Store number in the register or memory location given by address. If precision is d, the
number is stored as a double precision floating point number (in two words). If precision
is f or no precision is given, the number is stored as a single precision floating point
number.

get address [flags]

Similar to fget above, this command is for all types except floating point. If flag char-
acters are present, they have the following interpretation:

B Print values in binary.

b When printing memory locations, treat each byte as a separate value.

c Print values as ASCII characters.

d Print values in decimal.

h When printing memory locations, treat each halfword as a separate value.

Print values as instructions in the DLX assembly language.

-

S Print values as null-terminated ASCII strings.

v Instead of printing the value of the memory location referred to by address,
print the address itself as the value.

w When printing memory locations, treat each word as a separate value.

x Print values in hexadecimal (default).

To interpret numbers as single or double precision floating point, use the fget command.

go [address]

Start simulating the DLX machine. If address is given, execution starts at that memory
address. Otherwise, it continues from wherever it left off previously. This command does
not complete until simulated execution stops. The return value is an information string
about why execution stopped and the current state of the machine.

load file file file ...

Read each of the given files. Treat them as DLX assembly language files and load memory
as indicated in the files. Code (text) is normally loaded starting at address 0x100, but
the codeStart variable may be used to set a different starting address. Data is normally
loaded starting at address 0x1000, but a different starting address may be specified in

DLXSIM User Commands Page 3

the dataStart variable. The return value is either an empty string or an error message
describing problems in reading the files. A list of directives that the loader understands
is in a later section of this manual.

put address number
Store number in the register or memory location given by address. The return value is
an empty string. To store floating point numbers (single or double precision), use the
fput command.

quit Exit the simulator.

stats [reset] [stalls] [opcount] [pending] [branch] [hw] [all]
This command will dump various statistics collected by the simulator on the DLX code
that has been run so far. Any combination of options may be selected. The options and
their results are as follows:

reset Reset all of the statistics.

stalls Show the number of load stalls and stalls while waiting for a floating point
unit to become available or for the result of a previous operation to become
available.

opcount Show the number of each operation that has been executed.

pending Show all floating point operations currently being handled by the floating
point units as well as what their results will be and where they will be stored.

branch Show the percentage of branches taken and not-taken.
hw Show the current hardware setup for the simulated machine.

all Equivalent to choosing all options except reset. This is the default.

step [address]
If no address is given, the step command executes a single instruction, continuing from
wherever execution previously stopped. If address is given, then the program counter is
changed to point to address, and a single instruction is executed from there. In either
case, the return value i1s an information string about the state of the machine after the
single instruction has been executed.

stop [option args)
This command may take any of the forms described below:

stop Arrange for execution of DLX code to stop as soon as possible. If a simulation
isn’t in progress then this command has no effect. This command is most often
used in the command argument for the stop at command. Returns an empty
string.

stop at address [command)

Arrange for command (a DLXsim command string) to be executed whenever
the memory address identified by address is read, written, or executed. If
command is not given, 1t defaults to stop, so that execution stops whenever
address is accessed. A stop applies to the entire word containing address: the
stop will be triggered whenever any byte of the word is accessed. Stops are
not processed during the step commands or the first instruction executed in
a go command. Returns an empty string.

stop info

DLXSIM User Commands Page 4

Return information about all stops currently set.

stop delete number number number . ..
Delete each of the stops identified by the number arguments. Each number
should be an identifying number for a stop, as printed by stop info. Returns
an empty string.

ASSEMBLY FILE FORMAT
The assembler built into DLXsim, invoked using the load command, accepts standard format
DLX assembly language programs. The file is expected to contain lines of the following form:

e Labels are defined by a group of non-blank characters starting with either a letter, an under-
score, or a dollar sign, and followed immediately by a colon. They are associated with the
next address to which code in the file will be stored. Labels can be accessed anywhere else
within that file, and in files loaded after that if the label is declared as .global (see below).

e Comments are started with a semicolon, and continue to the end of the line.
e Constants can be entered either with or without a preceding number sign.

e The format of instructions and their operands are as shown in the Computer Architecture

book.

While the assembler is processing an assembly file, the data and instructions it assembles are
placed in memory based on either a text (code) or data pointer. Which pointer is used is selected
not by the type of information, but by whether the most recent directive was .data or .text. The
program initially loads into the text segment.

The assembler supports several directives which affect how it loads the DLX’s memory. These
should be entered in the place where you would normally place the instruction and its arguments.
The directives currently supported by DLXsim are:

.align n Cause the next data/code loaded to be at the next higher address with the lower n bits
zeroed (the next closest address greater than or equal to the current address that is a
multiple of 277 1).

.ascii “stringl”, “string?”, ...
Store the strings listed on the line in memory as a list of characters. The strings are not
terminated by a 0 byte.

.asciiz “stringl”, “string2’, ...
Similar to .ascii, except each string is followed by a 0 byte (like C strings).

.byte “bytel” “byte2’, ...
Store the bytes listed on the line sequentially in memory.

.data [address]
Cause the following code and data to be stored in the data area. If an address was
supplied, the data will be loaded starting at that address, otherwise, the last value
for the data pointer will be used. If we were just reading code based on the text (code)
pointer, store that address so that we can continue from there later (on a .text directive).

.double numberl, number?, ...
Store the numbers listed on the line sequentially in memory as double precision floating
point numbers.

Moat numberl, number?, ...
Store the numbers listed on the line sequentially in memory as single precision floating
point numbers.

DLXSIM User Commands Page 5
.global label
Make the label available for reference by code found in files loaded after this file.
.space size
Move the current storage pointer forward size bytes (to leave some empty space in mem-
ory).
.text [address)
Cause the following code and data to be stored in the text (code) area. If an address
was supplied, the data will be loaded starting at that address, otherwise, the last value
for the text pointer will be used. If we were just reading data based on the data pointer,
store that address so that we can continue from there later (on a .data directive).
word wordl, word2, ...
Store the words listed on the line sequentially in memory.
VARIABLES

DLXsim uses or sets the following Tcl variables:

codeStart
If this variable exists, it indicates where to start loading code in load commands.

dataStart
If this variable exists, it indicates where to start loading data in load commands.

insCount
DLXsim uses this variable to keep a running count of the total number of instructions
that have been simulated so far.

prompt If this variable exists, it should contain a DLXsim command string. DLXsim will
execute the command in this string before printing each prompt, and use the result as
the prompt string to print. If this variable doesn’t exist, or if an error occurs in executing
its contents, then the prompt “(dlxsim)” is used.

SEE ALSO

Computer Architecture, A Quantitative Approach, by John L. Hennessy and David A. Patterson.

KEYWORDS

DLX, debug, simulate

