
Computer hardware

Thememoryholds the bits associated with the current state of the program; for example,
in word-processing software, the memory would hold the text being edited, along with where
you currently are in the document, where you have your windows, where the cursor lies, what’s
currently on the clipboard, and much more. To get at this data, the computer gives each byte of
memory a uniqueaddress, a number between0 and the number of bytes in memory.

The memory is typically located in chips outside the CPU. Because electricity takes time to
travel, memory is relatively slow. So the CPU also contains a set ofregisters. These are very fast
locations on the CPU used for computation and temporary data storage. They are distinguished
from memory by their physical location, their quick speed, and their small number. As the CPU
executes, it shuttles data between memory and the registers.

Besides data, the memory also holds the program itself. A program is a set ofinstructions.
An instruction is a different data type, a sequence of bits that encodes what the machine should
do. Different types of processors use different ways to encode instructions; each is called a
machine language.

The DLX machine language

We examine a particular machine language calledDLX, designed by John Hennessy and David
Patterson for their popular textbook about computer architecture. DLX is a32-bit machine. The
DLX CPU includes31 registers, labeled r1 through r31, plus r0 which is always0 and cannot
be changed. Each holds32 bits.

Every DLX instruction fits into four bytes. One example is the instruction

001000 00010 00000 0000000000000010 :

When the DLX machine decides to execute an instruction, it reads the instruction from memory
and breaks it into pieces. The above32-bit instruction it would decode as follows.

001000 00010 00000 0000000000000010

op destination source number
code register register

(addi ) (r2) (r0) (2)

Copyright c
1998, Carl Burch. Permission is granted to distribute this chapter provided it is unedited and is in
its entirety. Available athttp://www.cs.cmu.edu/˜cburch/survey/ .



2 Computer hardware

instruction arguments what it does
addi rd, ri, n puts into rd the sum of ri andn
mul rd, ri, rj puts into rd the product of ri and rj
mod rd, ri, rj puts into rd the remainder of dividing ri by rj

slti rd, ri, n puts into rd 1 if r i is less thann, 0 otherwise
sgt rd, ri, rj puts into rd 1 if r i is greater than rj, 0 otherwise
lw rd, a(ri) puts into rd the word of memory beginning at addressa+ ri
sw a(ri), rs puts the contents of rs into the word of memory beginning at addressa + ri

bnez ri, n if r i is not zero, get the next instruction for execution
n bytes beyond the next instruction in memory

trap n tells DLX to stop executing the program ifn is 0

Table 0.1: A subset of DLX operations.

In this case, the first six bits represent theop code. This tells what should be done in this
instruction. In this case, the op code is001000, which on DLX represents anaddi operation,
which means that the sum of the number currently in the source register and the number encoded
in the instruction should be placed into the destination register. In this case the source register
is r0, which is always0, so the DLX machine will add2 to 0 and place the sum (2) into the
destination register r2.

The DLX machine language specifies a number of different operations with corresponding
op codes. We will see a larger sample of DLX operations soon, but first we want to represent
instructions in a way that is easier for humans to read.

Assembly language

Although bit sequences are great for computers, they are hard for humans to use. For this
reason we typically write low-level programs inassembly language, which has a straightforward
translation to machine language. The above machine instruction would have an equivalent
assembly instruction of “addi r2,r0,#2 ”, whereaddi is short forADD Immediate. (The
number in the instruction is called animmediatebecause it is immediately available from the
instruction.)

A human using assembly language would create a file of these instructions and feed them
to a program called anassembler. The assembler translates each line of assembly language
into the equivalent machine language instruction. Then the machine could use this to run the
program.

Of course DLX can do many things besides justaddi instructions. Some of these are
tabulated in Table 0.1. DLX operations fall into three categories: arithmetic, memory-access,
and branch.

The first category contains the arithmetic instructions you would expect—addi , mul ,
mod—plus some that you might not expect—slti (Set if LessThan Immediate) andsgt .
The purpose of these is relatively straightforward; on DLX they always work only with the
numbers in registers or contained in the instruction itself.

The second category of operations includes the memory-access operations. The memory-
access operations provide the mechanism for using data in memory. They can copy data from
memory into registers (like thelw (Load Word) operation) or copy data from registers into
memory (like thesw (StoreWord) operation). The memory address is calculated in a slightly
funny way: It is computed as the sum of an immediate and a register. This turns out to be



3

lw r1, 128(r0) ; load into r1 the number we would like to test (n)
slti r4, r1, #2 ; if the number is less than 2, we want to say it is not prime
bnez r4, #28 ; in this case, skip 7 instructions to first sw instruction
addi r2, r0, #2 ; let r2 be the divisor we would like to test (i)
mul r3, r2, r2 ; let r3 be i squared
sgt r4, r3, r1 ; if this is greater than n, then we can stop; n is prime
bnez r4, #20 ; in this case, skip 5 instructions to second sw instruction
mod r3, r1, r2 ; let r3 be the remainder of n divided by i
bnez r3, #-20 ; if it is not zero, step i and go back to mul instruction
addi r2, r2, #1 ; we add one to i first (this is the delay slot)
sw 132(r31), r0 ; n is not prime; store 0 in memory
trap #0 ; end the program
sw 132(r31), r4 ; n is not prime; store 1 in memory (we got here because r4 was 1)
trap #0 ; end the program

Figure 0.1:Prime-Test-All in DLX assembly.

convenient for large programs.
The final category are thebranch operations, like bnez (Branch if Not Equal toZero).

Normally, a machine executes instructions in sequence. After doing one instruction, it loads the
next instruction in memory, four bytes past the last instruction, and performs it. Then it loads
the next instruction and performs it. And so on. Occasionally, however, we want the machine to
repeat some instructions or skip some instructions. Thebnez permits this by telling the DLX
machine to load the next instructionn bytes beyond the next instruction in memory if the given
register is not equal to zero. (To go backward, we letn be negative.)

A slightlyunusual feature of DLX is that whether or not a branch is taken, it always executes
the instruction just after the branch instruction. This instruction is in thedelay slotof the
branch. DLX includes this so the CPU can begin executing the instruction without waiting to
see whether to take the branch. (Many modern processors go faster bypipelining, working on
several instructions in advance. Delay slots help.)

How does a real program look in assembly language? Table 0.1 has an assembly-language
implementation ofPrime-Test-All, which you should puzzle out to see how it works.


