Computer hardware

The memoryholds the bits associated with the current state of the program; for example,
in word-processing software, the memory would hold the text being edited, along with where
you currently are in the document, where you have your windows, where the cursor lies, what's
currently on the clipboard, and much more. To get at this data, the computer gives each byte of
memory a uniquaddressa number betweehand the number of bytes in memory.

The memory is typically located in chips outside the CPU. Because electricity takes time to
travel, memory is relatively slow. So the CPU also contains a getyisters These are very fast
locations on the CPU used for computation and temporary data storage. They are distinguished
from memory by their physical location, their quick speed, and their small number. As the CPU
executes, it shuttles data between memory and the registers.

Besides data, the memory also holds the program itself. A program is aisetroictions
An instruction is a different data type, a sequence of bits that encodes what the machine should
do. Different types of processors use different ways to encode instructions; each is called a
machine language

The DLX machine language

We examine a particular machine language cdbeX, designed by John Hennessy and David
Patterson for their popular textbook about computer architecture. DLXJgbit machine. The
DLX CPU includes31 registers, labeled rl through r31, plus rO which is alwagsd cannot
be changed. Each holdg bits.

Every DLX instruction fits into four bytes. One example is the instruction

001000 00010 00000 0000000000000010 .

When the DLX machine decides to execute an instruction, it reads the instruction from memory
and breaks it into pieces. The ab@&bit instruction it would decode as follows.

001000 00010 00000 0000000000000010

op destination source number
code register register
(addi) (r2) (r0) @)

Copyright©1998, Carl Burch. Permission is granted to distribute this chapter provided it is unedited and is in
its entirety. Available ahttp://www.cs.cmu.edu/"cburch/survey/

2 Computer hardware

instruction arguments what it does

addi rd, ri,n putsinto ¢ the sum of f andn

mul rd,ri,rj putsinto ¥l the product of fand rj

mod rd, ri,rj putsinto € the remainder of dividingirby rj
slti rd,ri,n putsinto g 1ifriis less tham, 0 otherwise

sgt rd,ri,rj putsintoel 1if riis greater thanji 0 otherwise

Iw rd, a(r{) putsinto € the word of memory beginning at address- ri

sw a(ri),rs puts the contents ofrinto the word of memory beginning at address r:
bnez ri, n if ré is not zero, get the next instruction for execution

n bytes beyond the next instruction in memory

trap n tells DLX to stop executing the programifis 0

Table 0.1: A subset of DLX operations.

In this case, the first six bits represent thye code This tells what should be done in this
instruction. In this case, the op code)il 000, which on DLX represents aaddi operation,
which means that the sum of the number currently in the source register and the number encoded
in the instruction should be placed into the destination register. In this case the source register
is r0, which is alway9, so the DLX machine will ad@ to 0 and place the sun®) into the
destination register r2.

The DLX machine language specifies a number of different operations with corresponding
op codes. We will see a larger sample of DLX operations soon, but first we want to represent
instructions in a way that is easier for humans to read.

Assembly language

Although bit sequences are great for computers, they are hard for humans to use. For this
reason we typically write low-level programsassembly languagehich has a straightforward
translation to machine language. The above machine instruction would have an equivalent
assembly instruction ofdddi r2,r0,#2 ", whereaddiis short forADD Immediate. (The
number in the instruction is called ammediatebecause it is immediately available from the
instruction.)

A human using assembly language would create a file of these instructions and feed them
to a program called aassembler The assembler translates each line of assembly language
into the equivalent machine language instruction. Then the machine could use this to run the
program.

Of course DLX can do many things besides jadti instructions. Some of these are
tabulated in Table 0.1. DLX operations fall into three categories: arithmetic, memory-access,
and branch.

The first category contains the arithmetic instructions you would expadti-, mul,
mod—plus some that you might not expecsit+ (Set if LessThanImmediate) andgt .

The purpose of these is relatively straightforward; on DLX they always work only with the
numbers in registers or contained in the instruction itself.

The second category of operations includes the memory-access operations. The memory-
access operations provide the mechanism for using data in memory. They can copy data from
memory into registers (like thiev (Load Word) operation) or copy data from registers into
memory (like thesw (Store Word) operation). The memory address is calculated in a slightly
funny way: It is computed as the sum of an immediate and a register. This turns out to be

Iw rl, 128(r0) ; load into rl the number we would like to test (n)

slti r4, rl, #2 ; if the number is less than 2, we want to say it is not prime
bnez r4, #28 ; in this case, skip 7 instructions to first sw instruction
addi r2, r0, #2 ; let r2 be the divisor we would like to test (i)

mul r3, r2, r2 ; let r3 be i squared

sgt r4, r3, rl ; if this is greater than n, then we can stop; n is prime

bnez r4, #20 ; in this case, skip 5 instructions to second sw instruction
mod 3, rl, r2 ; let r3 be the remainder of n divided by i

bnez r3, #-20 ; if it is not zero, step i and go back to mul instruction
addi r2, r2, #1 ; we add one to i first (this is the delay slot)

sw 132(r31), rO ; n is not prime; store 0 in memory

trap #0 ; end the program

sw 132(r31), r4 ; n is not prime; store 1 in memory (we got here because r4 was 1)
trap #0 ; end the program

Figure 0.1:Prime-Test-All in DLX assembly.

convenient for large programs.

The final category are thieranch operationslike bnez (Branch if Not Equal to Zero).
Normally, a machine executes instructions in sequence. After doing one instruction, it loads the
next instruction in memory, four bytes past the last instruction, and performs it. Then it loads
the next instruction and performs it. And so on. Occasionally, however, we want the machine to
repeat some instructions or skip some instructions. ez permits this by telling the DLX
machine to load the next instructierbytes beyond the next instruction in memory if the given
register is not equal to zero. (To go backward, we:lée negative.)

A slightly unusual feature of DLX is that whether or not a branch is taken, it always executes
the instruction just after the branch instruction. This instruction is indéky slotof the
branch. DLX includes this so the CPU can begin executing the instruction without waiting to
see whether to take the branch. (Many modern processors go fagigratiyning working on
several instructions in advance. Delay slots help.)

How does a real program look in assembly language? Table 0.1 has an assembly-language
implementation oPrime-Test-All, which you should puzzle out to see how it works.

