Great Theoretical Ideas Steven Rudich
Assignment 6 Due: February 23, 1999

Building a processor from scratch

In this assignment we are going build a computer processor from the ground up, starting with
transistors, and ending with a small but powerful processor. The purpose of this assignment is
to make you more familiar with the notion of logical circuits and the boolean functions which
they implement. It also illustrates the principle of modularity. Starting with very simple
transistor-level circuits, we will work our way up to a complete processor. At each level of the
processor design, we will use the circuits that we have designed at the lower levels as black
boxes, ignoring their implementation details.

You are allowed to draw the circuit diagrams for your solutions by hand. However, you
should take care that your circuit diagrams are eminently readable - anything we can’t read is
wrong. To aid in this as well as to aid in the clarity of your thinking, you should design your
circuits modularly. Once you have shown how to build a piece of circuitry (such as an adder)
it is never again necessary to draw in its implementation: simply use an appropriately labelled
box to represent it. Similarly, you may wish to bundle parallel bunches of wires together into
a single appropriately labelled “n-bit wide” wire. With these techniques, you should be able
to describe very complicated circuits with very simple and elegant circuit diagrams.

Nothing but NAND

The basic building block of our computer will be a two-input NAND gate. The truth table for
a two-input NAND gate is shown below. The output z is 1 if and only if at least one of the
two inputs x and y is 0. (Which is the same as saying that the two outputs are not both 1.)
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As we shall see below, any other gate can be constructed using nothing but NAND gates.
Because of this, we say that NAND gates are complete. It is interesting to note that not all
gates have this property: for example, AND gates are incomplete - that is, there is no way to
construct the other gates using only AND gates.

A NAND gate is drawn schematically as shown below.
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For this assignment, the NAND gate is the lowest level you ever need to worry about.

However, for the curious we will include a little information about how gates are actually
built from transistors. In particular, we will use Complementary Metal Ozxide Semiconductor
(CMOS) transistors, one of the several different types available.



A NAND gate can be implemented in CMOS using four transistors, as shown below. The
horizontal line at the very top of the figure represents a high voltage value (vdd), say 5 volts,
while the three horizontal lines at the bottom of the figure represent the ground voltage, 0
volts. The high voltage value represents a binary 1, while the low voltage value represents 0.
The inputs x and y are each connected to the gates of two transistors. A transistor is basically
a door. Each of the bottom two transistors in this figure is “open” when the voltage on its
gate is high, and “closed” when it is low. Each of the top transistors is open when the voltage
on its gate is low, and closed when it is high. When either of x or y is 0, the path from the
ground to the output z is closed, but at least one path from vdd to z is open, so z takes on
the high voltage. When both = and y are one, there is no path from vdd to z, but there is a
path from the ground to z, so z takes on the low voltage.
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Problem 1 (10 points):

Using a NAND gate as your basic building block, show how to construct circuits that perform
the following functions: NOT, AND, OR, and XOR. You should not draw any transistors —
begin with the NAND gate schematic. You may design the circuits in any order that you want,
and once you have designed a circuit, you may use it in the construction of other circuits (using
the appropriate schematic). The truth tables for these functions, along with their schematics
are shown below.
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3. OR gate
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4. XOR gate
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Building an adder
Problem 2 (5 points):

Now that you have designed a collection of useful gates, you can use them to construct more
sophisticated circuits. Using your collection of gates, draw a ciruit that implements 4-bit
grade school arithmetic, as described in Lecture 7. You do not need to deal with overflow.
You should proceed by first constructing a 1-bit adder, and then showing how to use 1-bit
adders to construct a 4-bit adder.

Multiplexors and demultiplexors

Two types of circuits will come in very handy as we design our processor: multiplezors and
demultiplexors. Intuitively, a multiplexor takes a binary number n and selects the nth one of
its inputs to forward on. A demultiplexor takes a number n and sends its input out on the
nth output line.

The schematic for a 4-way 1-bit multiplexor is shown below.
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It has four data inputs, xgg, o1, 10, €11, two control inputs ag, a;, and one output, y. The
value of y is equal to the input specified by the binary number agay, i.e., y = 245, As an
example, if g9 = 1,201 = 1,210 = 0,211 = 1 and aga; = 10, then y = 10 = 0. A multiplexor
is also called a selector because the control lines select from among the possible inputs.

The schematic for a 4-way 1-bit demultiplexor is shown below. This circuit has a 1-bit
data input z, a 2-bit control input ag, a1, and 4 1-bit outputs, yoo, Yo1, Y10, Y11-
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A demultiplexor works as follows. The value of  is transferred to the output line specified
by ag and ay, i.e., Ya0a, = x. The value on all of the other outputs is 0. As an example, if
x =1, and aga; = 01, then yo; = 1 and yoo = y10 = y11 = 0. As another example, if x = 0,
then independent of the value of agay, Yoo = Yo1 = y10 = y11 = 0.

Problem 3 (10 points):

Using the gates that you’ve designed so far, design a 4-way 1-bit multiplexor.

Problem 4 (10 points):

Using the gates that you’ve designed so far, design a 4-way 1-bit demultiplexor.

Problem 5 (10 points):

A k-way b-bit multiplexor is one in which each of the k-inputs is a group of b bits rather than
a single bit, and the output is a group of b-bits. There are also log, k control bits (let’s assume
k is a power of 2), and these control bits are used to select one of the k groups of b bits rather
than a single bit. A k-way b-bit demultiplexor can be defined in a similar fashion. Fxplain how
to construct a k-way b-bit multiplexor using b k-way 1-bit multiplexors (you do not actually
need to draw a circuit diagram). You should typeset your solution to this problem.

Clocked circuits

The circuits that we have constructed so far use what is called combinational logic. What this
means is that whenever any of the inputs to a circuit change, that change will trickle through
the gates of the circuit all the way to the outputs of the circuit without being held up. This
is good for things like adders where we want to get the answer out the other end as quickly as
possible, but for other things it can be useful to be able to control when circuits change their
values. In the next part of the assignment, we will look at circuits where the flow of data can
be regulated through the use of clocks.
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A clock is a periodic oscillating signal, as above. The high parts indicate a value of 1, and
the low parts a value of 0. These days clocks are very fast, and can oscillate at speeds up to
1 Ghz (1 billion times per second)!

A clock is used in a processor to regulate the order in which calculations are performed.
The circuit shown below is a one-bit clocked NOT gate.
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The clocked NOT gate actually uses two clocks, whose signals are interleaved as shown
below. (Real processors typically have even more than two clock signals.)
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Here’s how the clocked NOT gate works. When clockl goes high, the value at x is carried
over to a’. This causes the output z’ to change (if necessary) to the new value, 2/. When
clock2 goes high, the new value of 2" is carried over to z.

If you find transistors frightening, don’t worry — you don’t really have to understand this
circuit diagram to use a clocked NOT gate in the rest of this assignment. You can simply
draw a schematic like the one below to indicate that a gate is clocked.
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For our purposes, we can ignore the distinctions between the two clocks and view the two
clock transistions as a single pulse. The input x can change anytime before the clock pulse
arrives without affecting the value of z. When the pulse occurs, the value at x is sampled,
and shortly thereafter, z takes on its new value (the opposite of the value that « had before
the pulse occurred). Notice that a clocked NOT gate behaves differently from an unclocked



NOT gate. When the input to an unclocked NOT gate changes, the output will change soon
afterwards, whether or not a pulse occurs.

You might be wondering why we have introduced these clocks. The purpose of the clocks
is to break the computation performed by the circuit into discrete points in time. You can
think of the circuit as being in a stable state between clock pulses, i.e., the output of every
gate holds steady, as does the input to every gate. The value of the output of every clocked
gate, however, is determined by the inputs to the gate before the most recent clock pulse.
When another pulse occurs, the output of each gate takes on a new value based on the input
values that were present before the pulse.

Registers

In modern processors, values that are to be used repeatedly in a calculation are stored in
structures called registers. A schematic for a 4-bit register is shown below.
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Problem 6a (5 points):

Using a combination of clocked and unclocked NOT gates, show how to design a 4-bit register.
The register should accept a 4-bit value on its inputs 1g,11, 2,25 before a clock pulse, and it
should put that value on its outputs og, 01, 02, 03 after the pulse.

Problem 6b (10 points):

Notice that the register from the previous problem only holds values for one clock cycle. A
better design would allow you to store values in the register as long as you wanted. Extend
the register circuit from above so that it accepts an extra input S (for Set). If S is 1, then the
new circuit should behave exactly as above when the clock pulses. However, if S is 0 when
the clock pulses then the register should ignore its inputs, keeping the same outputs as before
the clock pulse.

i0 i1 i2 i3
BB

clocks —= ~— S
RN
00 ol 02 03

Putting it all together

We are now ready to complete our processor design. The processor will have the following
components.

1. 8 32-bit registers, Ry, Ry, ..., R; for holding data



2. 256 16-bit registers Py, Py, ..., Pyss for holding a program
3. a 32-bit adder

4. an 8-bit register PC that will serve as a program counter

It turns out to be convenient to hard-wire register Ry to the value 0, and register R, to 1.

The processor will be very simple. It will have only four types of instructions: add, negate,
load immediate, and jump if zero. (This is a Really Reduced Instruction Set Computer.) A
program consists of a sequence of instructions stored in the 256 program registers. Each of
these registers holds 16 bits. The 16 bits specify the type of instruction and its operands. The
first two bits of each instruction specify the type. The formats of the instructions are shown
below.

The add instruction adds the contents of the registers specified in the R, and R, fields.
Each of these fields consists of three bits, which can be thought of as the index of the register
R, or Ry. For example, if the R, field contains 010, then, since 010 is the binary representation
of 2, the value in the R, specifies Ry. The result of the addition is placed into R.. You do
not need to deal with overflow. This instruction, as well as the negate and load immediate
instructions, also increments the program counter PC' by 1.

01 2 3 45 6 7 8 9 10 11 12 13 14 15

Rc = Rat+Rb;
PC = PC+1: 0 O Ra Rb Rc 0O 0 00O

The negate instruction replaces R, with —R,, using the two’s complement representation
discussed in class. Again, you do not need to deal with overflow.

01 2 3 45 6 7 8 9 10 11 12 13 14 15

Ra=-Ra
pc=pc+1: |0 1| Ra |0 0 0]0 0 000O0O0O

The load immediate instruction places the 8-bit value d in the low order 8-bits of register
R,, and sets the remaining 24 high-order bits of R, to 0.

01 2 3 45 6 7 8 9 10 11 12 13 14 15

Ra=d;
PC = PC+1; 1 0 Ra 0O 0 O d

The jump if zero instruction changes the program counter PC' to the value specified by d
if R, =0, and otherwise it increments the program counter by 1.

if (Ra==0) 01 2 3 45 6 7 8 9 10 11 12 13 14 15

PC=d;
dse 1 1 Ra 0O 0O d
PC = PC+1;

The processor will be clocked. The value of PC when a clock pulse occurs specifies which
of the 256 registers Fy, ..., Pos5 holds the instruction that should be executed. The operations
specified by the instruction is performed, which may include both an operation on data held
in the registers, as well as a change in the program counter.
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Problem 7 (30 points):

Draw a diagram of the entire processor. You may use any of the circuits that we have
designed so far, including gates, adders, multiplexors, demultiplexors, and registers. The
adders, multiplexors, demultiplexors, and registers can be of any size and number. You may
also design and use your own circuits if you so wish. Finally you may use the constant values
0 and 1 as the inputs to any of your circuits, if that is convenient.

Here is some advice. Make your design as simple as possible, and don’t worry too much
about trying to minimize the number or the size of the circuits in your diagram. You should
be able to design the processor using at most two or three adders. The program counter PC
should serve as the control inputs to a multiplexor, as should each of the fields R, and R, of
the current instruction. The registers Ry, ..., R; should be the data inputs to one or more
multiplexors, as should Fy,..., Psss. Also, don’t actually draw 256 registers — just indicate
where they go, and how they are connected to other circuits.

Problem 8 (10 points):

Write a program for this processor to compute F),, the nth Fibonnaci number. Assume that n
is stored in register Ry, and that the final answer is to be placed in register R3. Don’t worry
about overflows. Hint: Don’t write a recursive program!

You should also typeset your solution to this problem. You do not need to write your
program out in binary (in fact, please don’t!) You should write out the sequence of instructions
giving their names and their operands, with a label next to each instruction indicating which
instruction register it occupies. For example, the following program puts 12 in register 2 and
then repeatedly adds -1 to it until it reaches 0, whereupon it repeats itself.

0 add Ry, Ry — Rs
1 neg Rs

2 loit 12 - R;

3 add Ry, Rs — R;
4 gzr Ry — 2

5 gzr Rg — 3



