Construction of efficient BDDs for Bounded
Arithmetic Constraints *

Constantinos Bartzis and Tevfik Bultan

Department of Computer Science
University of California
Santa Barbara CA 93106, USA
{bar,bultan}@cs.ucsb.edu

Abstract. Most symbolic model checkers use BDDs to represent arith-
metic constraints over bounded integer variables. The size of such BDDs
can be exponential on the number and size (in bits) of the integer vari-
ables in the worst case. In this paper we show how to construct linear-
sized BDDs for linear integer arithmetic constraints. We present basic
constructions for atomic equality and inequality constraints and extend
them to handle arbitrary linear arithmetic formulas. We also present
three alternative ways of handling out-of-bounds transitions, and dis-
cuss multiple bounds on integer variables. We experimentally compare
our approach to other BDD-based symbolic model checkers and demon-
strate that the algorithms presented in this paper can be used to improve
their performance significantly.

1 Introduction

Performance of a symbolic model checker depends on the efficiency of the algo-
rithms for the BDD construction and the sizes of the generated BDD representa-
tions. In this paper we address both these issues for linear arithmetic constraints
on bounded integer variables. BDD-based model checkers represent bounded in-
teger variables by mapping them to a set of Boolean variables using a binary
encoding. Our experiments show that the state of the art BDD-based model
checkers use inefficient algorithms for BDD construction from linear arithmetic
constraints and fail to generate compact BDD representations for them [11, 8, 1].
Handling linear arithmetic constraints efficiently is an important problem since
such constraints are common in reactive system specifications. For example, the
distribution files for the BDD-based model checker NuSMV contain specifica-
tions with linear arithmetic constraints, however, the verification time for these
specifications for NuSMV does not scale when the bounds on integer variables
are increased. The algorithms and complexity results presented in this paper
demonstrate that this inefficiency is not inherent to the BDD data structure and
can be avoided.

* This work is supported in part by NSF grant CCR-9970976 and NSF CAREER
award CCR-9984822.

2 Constantinos Bartzis and Tevfik Bultan

We present algorithms for constructing efficient BDD representations from
atomic arithmetic constraints of the form Zle a; - ¢; # ag, where # € {=
,#,>,>,<,<}. We show that the size of the resulting BDD is linear in the
number of variables and the number of bits used to encode each variable. We
also show that the time complexity of the construction algorithm is the same. We
also give bounds for BDDs for linear arithmetic formulas which can be obtained
by combining atomic arithmetic constraints with boolean connectives. We show
that the resulting BDDs for linear arithmetic formulas are still linear in the
number of variables and the number of bits used to encode each variable. We
extend the construction algorithms to handle transitions which can take the
bounded integer variables out-of-bounds. We present three different approaches
for handling out-of-bounds transitions and show that all of them preserve the
complexity results. We also generalize the construction algorithms to multiple
bounds on integer variables. We show that as long as all the bounds are powers of
two the complexity results are preserved. One interesting result is that multiple
bounds which are not powers of two cause the BDD size to be exponential in
the number of variables in the worst case.

The problem of inefficient BDD representation of arithmetic constraints in
symbolic model checkers has been pointed out in [7,12]. In [7], the problem for
SMYV is handled by writing a preprocessor and fixing the BDD variable order.
However, as we show in this paper, this extra step is not necessary since efficient
BDDs can be directly constructed from a set of linear arithmetic constraints. In
[12], the problem is solved only for constraints of the form z + y = z, where z,
y and z can be variables or constants. Even though such constraints arise very
often in practice, our algorithms are more general without sacrificing efficiency.
Binary Moment Diagrams (BMDs) [4] and Hybrid Decision Diagrams (HDDs)
[9] are data structures designed to represent arithmetic expressions and handle
arithmetic operations on word-level verification where an array of binary bits can
be referred as an integer. These data structures can also be used to construct
linear-sized BDDs from linear arithmetic constraints. However, in this paper, we
show that one can construct linear-sized BDDs from linear arithmetic constraints
directly, without using these data structures. Hence, the algorithms we present
can be easily integrated to a BDD-based model checker.

2 Atomic equality constraints

Given a set of v integer variables z;,1 < i < v such that 0 < z; < 2° and a linear
equation of the form Ele a; - x; = ag we construct a BDD with v - b boolean
variables z; j,1 < i <wv,0 < j < b which evaluates to 1 iff }_;_, a; - (Zg;é T
27) = ay. In other words the BDD variables z; ; represent the binary digits of
the integer variables and the BDD evaluates to 1 iff the equation is satisfied by
the valuation z; = E;’-;(l) Zij - 27 for 1 < 4 < v . We show that such a BDD has
O(v-b- 37, |a;]) nodes, i.e. the size of the BDD is linear on the number of
boolean variables. Note that in general the size of a BDD can be exponential on

Construction of efficient BDDs for Bounded Arithmetic Constraints 3

v
BDD construction algorithm for equations Y, a; - x; = ag on b-bit variables
i=1
1 Procedure: node(s, j, ¢)
//Constructs a node in level i of layer j with label ¢
2 BDDnode n
3 n.ander :=j-v+1
4 if(l=vand j=b-1)
5 if (¢=0) nlow:=1
6 else n.low :=0
7 if (¢c+ ay =0) n.high:=1
8 else n.high := 0
9 else if (i = v)

10 if (c is even) n.low := node(1,j + 1,¢/2)

11 else n.low :=0

12 if (¢ + ay is even) n.high := node(1,j + 1, (c + av)/2)
13 else n.high =0

14 else

15 n.low 1= node(i + 1, j, c)

16 n.high = node(i + 1, j, ¢ + ay)

17 return n

18 Main: return node(1,0, —ao)

Fig. 1. BDD construction algorithm for equations

the number of boolean variables and experimental results show that state of the
art model checkers produce exponentially large BDDs.

The algorithm is given in Figure 1. The constructed BDD consists of b layers
of v levels each. The jy, layer corresponds to the ji, least significant bit of
each integer variable and the i, level in a layer corresponds to the ;5 integer
variable. Every node in a level is labeled with an integer ¢ between — Y7 |a;|
and Y7 |a;|. In particular, the label of a node in the 1,; level of the j;; layer
corresponds to a value of the carry ¢ resulting from the computation of Ele a;-
(3374 w5 - 2") — ao, where z; s are the values of the BDD variables along one
of the paths from the root to that node. Furthermore, the label of a node in the
ki level, 2 < k < v, of the jy, layer is the value ¢ + Z;:ll a; - %;,;, where x; ;s
are the values of the BDD variables along one of the paths from the node in the
14 level of the j;; layer with label ¢ to that node.

As an example consider the linear equation 2z — 3y = 1, where z and y
are 4 bits long. Figure 2 shows the structure of a complete intermediate layer
(inside the dashed rectangle) of the corresponding BDD. The nodes outside the
rectangle comprise the first level of the next layer. The complete BDD is shown
in Figure 3. For all Figures, edges not shown point to 0 terminal node. Note
that the BDDs constructed by the algorithms in this paper are not necessarily
reduced. Standard BDD reduction needs to be applied after the construction.

4 Constantinos Bartzis and Tevfik Bultan

Fig. 2. Layer of a BDD for 2z —3y =1

Theorem 1. The algorithm given in Figure 1 constructs a BDD representing
the linear equation Y., a; - x; = ag on b-bit non-negative integer variables. The
time complexity of the algorithm and the size of the resulting BDD is O(v - b -

E;'):1 |ail)-

Proof. For the purposes of the proof we can think of a BDD as a bit-serial
processor as described in [3]. Such a processor computes a Boolean function by
examining the arguments z1,z5, and so on in order, producing output 0 or 1
after the last bit has been read. It requires internal storage to store enough
information about the arguments it has already seen to correctly deduce the
value of the function from the values of the remaining arguments. Trivially it can
store all the values of the arguments it has already seen by using exponentially
large storage. In our case we can show that linear storage is needed. The size of
the storage consumed by the processor translates to the number of nodes in the
BDD.

The ordering of the boolean variables z; ; is lexicographical primarily on j
and secondarily on ¢ or equivalently the index of variable z; ; is j-v+i. The index
of the root is 1. One can easily verify that any internal node with index index
points to a node with index index + 1, except for the nodes with index b - v that
point to the terminal nodes. Thus the constructed BDD is consistent with the
ordering mentioned above. Therefore the bit-serial processor equivalent of the
BDD first processes the least significant bit of the integer variables 1, x2, ..., Zy
in this order, then it processes the second least significant bits and so on. In the
end the processor needs to verify whether or not }_;_, a; - ; = ag or equivalently

D i1 @i (Z?;(l) z;j-27) = ag or

b—1 v
—a0+22j -(Zai-azi,j) =0 (1)
=0 =1

To accomplish this the processor gradually computes the left hand side of equa-
tion (1) bit by bit and compares it against zero. If at any point the comparison
fails it immediately evaluates to 0, otherwise it continues. It starts with an initial
value of —ag and then gradually adds to it a; -z as it reads the values of z1 o up

to z,,0 and stores the intermediate result —ag + 22:1 a; - ;0 every time. Note

Construction of efficient BDDs for Bounded Arithmetic Constraints 5

Fig. 3. BDD for 2z — 3y = 1 for 4-bit variables

that the value stored is shown as the label of each BDD node in the Figures. At
the end of processing layer 0, if the result is an odd number (or the resulting
bit is 1) the processor immediately evaluates to 0, since what remains to add,
namely Z;’;} 29 - (37, a;-), is an even number and there is no chance that
the final result will be zero. Otherwise, the intermediate result at this point di-
vided by two is equal to the remaining carry ¢, i.e. ¢ = (—ao + >_;_, @i - ip)/2.
The value of the carry is the only piece of information that needs to be stored
at this point. If we divide both sides of equation (1) by 2 we will get:

b—1 v
C—}-ZQ]'_I'(Z(M'.CL'Z’,]’):O (2)
j=1 =1

Now the processor needs to verify equation (2) and this task is similar to the
initial one, so the processor continues to operate in a similar manner. In the
end, in order for the final result to be 0 the final carry has to be also 0. In that
case the processor evaluates to 1, otherwise it evaluates to 0. This concludes the
proof of correctness of our construction algorithm.

For the proof of termination and complexity, the fundamental question that
needs to be answered is how many different intermediate results need to be stored
at any point during the operation of the bit-serial processor or in other words
how many BDD nodes are there at any level. The number of nodes at any level

6 Constantinos Bartzis and Tevfik Bultan

v
BDD construction algorithm for inequations Y, a; - ; < ag on b-bit variables
i=1
1 Procedure: node(s, j, ¢)
//Constructs a node in level i of layer j with label ¢
2 BDDnode n
3 n.ander :=j-v+1
4 if(l=vand j=b-1)
5 if (c<0) nlow:=1
6 else n.low :=0
7 if (¢ + ay < 0) n.high:=1
8 else n.high := 0
9 else if (i = v)

10 if (c is even) n.low := node(1,j + 1,¢/2)

11 else n.low := node(1,j +1,(c—1)/2

12 if (¢ + ay is even) n.high := node(1,j + 1, (c + av)/2)
13 else n.high = node(1,j + 1, (c + a, — 1)/2)

14 else

15 n.low 1= node(i + 1, j, c)

16 n.high = node(i + 1, j, ¢ + ay)

17 return n

18 Main: return node(1,0, —ao)

Fig. 4. BDD construction algorithm for inequations

is bounded by the size of the range defined by the least and the greatest label in
that level. If the labels of the nodes at level j-v+1 belong to a range of size n, j,
then level j-v+ 2 has at most no,; = n1,; + |a1| nodes, level j - v+ 3 has at most
ngj = nq,j+|ai|+|az| nodes and so on. Finally level j-v+v+1= (j+1)-v+1has
at most ny j11 = (n1,j + Y., |ai|)/2 nodes because that many are the different
values of the carry that need to be stored, as described earlier. Initially nio =1
and by induction one can prove that no n;; is larger than 2+ 37 | |a;|. There
are v - b levels in the BDD so the total number of nodes is O(v -b- >, |as]),
i.e. the size of the constructed BDD is linear on both v and b. Each node is
created once if we store each of them in a hash table indexed by i,j and ¢ and
the creation of a node requires a fixed amount of work, so the complexity of
our algorithm is O(v-b-Y";_, |a;|). Note that a tighter bound for the BDD size
is O(b->;_;lai| - (1 +v —i)). Interestingly this indicates that the size of the
BDD is minimized if the integer variables are ordered in increasing order of the
absolute values of their coefficients.

3 Atomic inequality constraints

Next we show how to construct BDDs for inequations of the form Y7, a; - z; <
ag, 0 < z; < 2°. Note that we can transform all other kinds of linear inequations

Construction of efficient BDDs for Bounded Arithmetic Constraints 7

Level 1

Level 2

Fig. 5. Layer of a BDD for 22 —3y < 1

(<,>,>) to this form by changing the signs of the coefficients and/or adding 1
to the constant term ag. The algorithm is similar to the one for equations and is
shown in Figure 4. There are only two differences. First, after having processed
an equal number of bits from all integer variables (lines 9-13 of the algorithm) we
do not require the resulting bit to be 0. The bit-serial processor only computes
the correct value of the remaining carry and proceeds to the next level. Second,
in order for the inequality to hold after all bits have been processed (lines 4-8
of the algorithm), the remaining carry has to be negative. Obviously, these two
modifications do not change the bound on the number of nodes in the BDD,
which is again O(v - b->"7_; |a;|). This proves the following theorem.

Theorem 2. The algorithm given in Figure J constructs a BDD representing
the linear inequation 22)21 a; - x; < ag on b-bit non-negative integer variables.
The time complexity of the algorithm and the size of the resulting BDD is O(v -
b3 iy lail).

As an example consider the linear inequation 2z — 3y < 1, where = and y are
4 bits long. Figures 5 and 6 show the structure of an intermediate layer and the
complete BDD before being reduced.

4 Linear arithmetic formulas

In symbolic model checking BDDs are subjected to operations such as intersec-
tion, union, negation, etc. as well as subsumption and equivalence tests. The time
and space complexity of these operations depends on the size of the operands.
The complexity of negation is O(1), as it involves only swapping the terminal
nodes 0 and 1, but the complexity of intersection and union which are very
frequently used operations is O(ny - ny), where n; and mny are the sizes of the
operands. Suppose that one performs one of these operations on two BDDs rep-
resenting the constraints 22’21 a;-x; = ag and E;’:l b; - ; = by whose sizes are
O(v-b-Y"7_, |ai|) and O(v-b->7_, |b;|) respectively, as proved earlier. One would
expect the size of the resulting BDD to be O(v?-b*-3°7_, |a;|-Y ;_; |bi]). Actually
this is a pessimistic estimation. The resulting BDD will have again v - b layers,
corresponding to a bit-serial processor that examines each of the z; ;s one by one

8 Constantinos Bartzis and Tevfik Bultan

Xo
R Layer O
’
Yo 9 0
......... -‘A:- A
HONONO

’ ¢ ¢ Layer 1

Fig. 6. BDD for 2z — 3y < 1 for 4-bit variables

as before. The only difference is that now it needs to remember the intermediate
results from both BDDs and thus every layer will have O(}";_, |ai| - >i— |bi])
nodes and there will be O(v - b- Y7 |ai| - >, |bi]) nodes in total. Clearly
the same argument holds for more than two linear constraints, which proves the
following Theorem.

Theorem 3. Given a linear arithmetic formula on b-bit non-negative integer
variables consisting of n atomic constraints of the form Y. | a;j; - x; = ao;,
1 < j < n and boolean connectives —, A\,V, one can construct a BDD of size O(v-
b-[Tj=1 >oizy lai;|) representing the formula in time O(v-b-[T5_, Y7, lai ;)

The conclusion is that when basic operations are performed by a model checker
on BDDs representing linear arithmetic constraints on bounded integers, the size
of intermediate BDD representations remains linear on the number and size of
the integer variables, i.e. the space and time complexity of operations does not
blow up with respect to these two parameters. This is very important since such
“blow ups” are a common drawback of BDD based model checking.

Note that since satisfiability checking for BDDs can be performed in constant
time, one can decide the satisfiability of n linear constraints on v b-bit integer
variables in time O(v - b - [Tj_; 32;_; |ai,;]), using our construction algorithm.
Hence, the complexity is linear in v and b, and only exponential in the number
of atomic constraints n. This problem is NP-complete even if b = 1 [10], which
implies that there is no algorithm which is polynomial in v, b and n, unless
P=NP.

Construction of efficient BDDs for Bounded Arithmetic Constraints 9

5 Handling multiplication

An inherently unavoidable shortcoming of BDDs is their inability to efficiently
represent arithmetic constraints involving multiplication between variables. In [3]
it has been proven that the size of such BDDs has a lower bound exponential on
b, the size of the integer variables, regardless of the variable ordering. The good
news is that by choosing the variable ordering we defined earlier and by slightly
modifying our construction algorithm one can accommodate multiplication and
keep the size of the produced BDD exponential only in b and the number of
integer variables involved in multiplications which is in many cases less than v,
the total number of integer variables. The idea supporting this argument is the
following. Suppose we want to construct a BDD for an arithmetic formula on
v = m + [integer variables, in which only m variables are multiplied with other
variables in the formula (which we will call m-variables) and the rest [variables
(which we will call [-variables) are only multiplied with constants, forming the
“linear part” of the formula. In the worst case, the bit-serial processor equivalent
of the BDD will need to remember the exact values of the m variables and
the intermediate results ¢ of the computation of the “linear part”, as described
earlier. The number of levels remains the same v - b. At any level, when an m-
variable is processed all nodes are doubled in the next level, thus remembering
the new bit of the m-variable and the various cs are propagated properly. When
an [-variable is processed, the processor behaves exactly as in the linear case.
The number of nodes is doubled m - b times and consequently the size of the
BDD will be O(2™®-1-b-Y"7_, |a;|). Of course this is not an impressive result
but nevertheless indicates a complexity that is exponentially dependent on m
and not v. In many practical cases if m is non-zero it is at least much less than
v. Note that by choosing a different variable ordering one can end up with BDDs
of exponential size in both b and v.

6 Handling overflows

When constructing BDDs to represent the transition relation of a system, special
care is needed in order to handle possible overflows. For example consider a
transition labeled by ' = z + 1, where z is the current state variable and
x' is the next state variable. They are both 2-bit non-negative integers ranging
between 0 and 3. When z = 3 and the transition is taken, what is an appropriate
value of z in the next state, since it cannot be 47 We consider three alternatives:

1. The transition is not taken and the next state is empty.
2. Modular arithmetic is performed and z = 0 in the next state.
3. An “Out of bounds” error is detected and reported.

BDD construction for the transition relation depends on the choice of one of these
three alternative approaches. For our example, an intermediate layer and the
complete BDDs for all three approaches are shown in Figure 7. The construction
algorithm described earlier follows the first approach. The difference between the

10 Constantinos Bartzis and Tevfik Bultan

7

4
’

4
’

3. Detecting overflows 2. Modular arithmetc

Fig. 7. Alternative ways to handle overflows

three approaches is in the edges generated by lines 6 and 8 of the construction
algorithm, which correspond to the case where the b least significant bits of the
variables (in our example b = 2) satisfy the equation but there is a remaining
non-zero carry indicating an overflow. The first approach points all such edges
to the 0 terminal node, thus making the BDD to evaluate to 0 whenever an
overflow occurs. The second approach points all such edges to 1, thus ignoring
overflows and performing modular arithmetic. The third approach is a bit more
involved. There is an extra global boolean variable error in the end of the variable
ordering. All edges generated by lines 6 and 8 of the construction algorithm point
to a node with the index of error’ and low = 0 and high = 1. Initially error is
false. When an overflow occurs, error will become true in the next state. Note
that for all three approaches Theorems 1, 2, and 3 still hold.

In all versions of SMV out-of-bounds errors are checked statically which
means that even unreachable out-of-bound transitions are reported as out-of-
bounds errors. By using alternative 3 presented above one can check if an out-
of-bounds error is reachable and report an out-of-bounds error only when an
out-of-bounds error occurs on some execution path. One can also implement the

Construction of efficient BDDs for Bounded Arithmetic Constraints 11

Fig. 8. Bounds information for 0 <z < 11 and 0 <y < 13

static out-of-bounds error check used in SMV by reporting a potential out-of-
bounds error if a node with the index of the boolean variable error’ appears in
the transition relation BDD.

7 Handling multiple bounds on variables

So far we have studied the construction of BDDs for linear arithmetic constraints
on v integer variables x;,1 < ¢ < v such that 0 < z; < 2”, i.e. all variables were
non-negative and bounded by the same power of two. Now consider the case
where each variable x; has its own general bounds I; < z; < h;, where [; and
h; are (possibly negative) integer constants. As a first step we can eliminate the
lower bounds by replacing every variable z; in every constraint by the variable
X; = z; —l;. Now any constraint of the form Y°7_ a;-x; # ao, where # € {=,#
,>,>,<,<}, becomes Y., a;- X; # ao—> ;. gai-liand 0 < X; < h; —1; = d;.
Now the lower bound of all variables is again 0 as it was initially but the upper
bounds are different and not necessarily powers of two.

Here we will show how to construct BDDs for equations of the form ", a;-
x; = ag, where 0 < z; < d; for 1 < i < v. The construction of BDDs for
inequations is similar. Since there are extra constraints 0 < z; < d; that have
to be satisfied in order for the BDD to evaluate to 1, extra information has
to be “stored” in the nodes: the valid range for the part of every variable that
has not yet been processed. Since the lower bound for every variable is 0, only
the upper bound needs to be stored. At the root node, the upper bound for
each variable z; is d;. After the least significant bit ;¢ of variable z; has been
processed, the upper bound for the rest of z; (i.e. the value of z; with the least
significant bit removed) becomes [(d; — 2;,0)/2]. In general, if the upper bound
u for z; at a node n in level i of layer j is d, then at n.low v = [d/2] and at
n.high u = [(d—1)/2]. As an example, consider the equation 2z —3y = 1, where
0 <z <11 and 0 <y < 13. Figure 8 shows the bounds information for = and
y as described earlier. Figure 9 shows the complete BDD for the equation.

12 Constantinos Bartzis and Tevfik Bultan

Fig.9. BDD for 2z —3y =1 when 0 <z <1l and 0 <y < 13

We can prove that at any level there are at most two different upper bounds,
which differ by one, for each variable. Initially, there is only one bound for
each variable. If at some level the two different upper bounds for a variable
are d and d + 1, then in the next layer those bounds will become [(d — 1)/2]
and [(d + 1)/2]. In general, there can be at most 2 different combinations
of bounds for all v variables at any level. The maximum number of layers is
log, (max(d;)). Consequently, the size of the BDD representing the equation is
O(v-log,(max(d;))-2¥->";_, |a;|), which is exponential in the number of variables
v. Remember that when the upper bounds are powers of two 2° the size of the
BDD is only O(v-b- "7, |as|). Interestingly, this indicates that when modeling
a system and the choice of bounds for the integer variables is independent of the
input specification, it is better to choose bounds that are powers of two.

8 Experimental results

We integrated our construction algorithms to Composite Symbolic Library and
Action Language Verifier [6,13]. Action Language Verifier is an infinite state
CTL model checker and it uses Composite Symbolic Library as its symbolic
manipulator. We created a new version of the Action Language Verifier (ALV)

Construction of efficient BDDs for Bounded Arithmetic Constraints 13

Table 1. Bakery Table 2. Barber
bits| CMU |Cadence|NuSMV|ALV bits| CMU |Cadence NuSMV|ALV
SMV | SMV SMV | SMV
4 | 0.04 0.17 0.07 |0.17 4 | 0.15 0.36 0.3 |0.23
5 | 0.23 0.27 0.26 |0.17 5 | 0.46 0.86 1.09 |0.25
6 | 1.27 0.5 1.71 [0.17 6 | 2.03 2.97 13.47 (0.29
7 | 9.37 1.39 20.52 |0.18 7 |14.14 | 10.42 |1185.92| 0.3
8 | 7887 | 6.12 | 142.82 (0.18 8 |274.89| 38.29 0 0.35
9 |673.11| 21.67 |1186.45(0.18 9 1) 157.58 0 0.39
10 0 84.1 0 0.19 10 1 721.25 1 0.42
11| 1 [32093| 1+ |019 1| 1t + + 044
12 1 |1503.83 0 0.19 12 0 T 0 0.48
100 1 T 0 0.31 100| 1 0 0 5.12

by using BDDs as symbolic representations for bounded integers and integrating
our BDD construction algorithms for linear arithmetic constraints.

We experimented with two specification examples, Bakery and Barber, avail-
able at: http://www.cs.ucsb.edu/“bultan/composite/. Bakery is a mutual exclu-
sion protocol for 2 processes. Barber is a monitor specification for the Sleeping
Barber problem from [2]. We also verified three specification examples, abp,
p-queue and prod-couns, included in the NuSMV distribution. Example abp is
an alternating bit protocol, and p-queue and prod-cons are two different im-
plementations of a buffer where data is inserted, sorted and consumed. We were
able to verify safety and liveness properties for these examples. We run these ex-
periments using three different implementations of the SMV, namely CMU SMV
(version 2.5.4.3), Cadence SMV (version 08-20-01p2) and NuSMV (version 2).
We obtained the experimental results on a SUN ULTRA 10 work station with
768 Mbytes of memory, running SunOs 5.7.

We measured the time required to verify each of the examples for different
sizes of the integer variables from 4 bits to 100 bits. The results are shown
in Tables 1-5. Entries 1 signify that the according experiment did not finish
in 4000 seconds. It is clear that for all current implementations of SMV, the
recorded times are exponential in the size of the integer variables, while for ALV
which uses the construction algorithms presented earlier, the recorded times are
linear in the size of the integer variables. Note that ALV is not a BDD based
model checker, hence SMV may be better optimized for BDD based verification.
However, our point is that the advantages of our construction algorithms can be
exploited by integrating them to any BDD based model checker.

Finally, Figure 10 illustrates the effect of arbitrary bounds on variables as
described in Section 7. We used our construction algorithm to build a BDD for
the equation z1 + 2 — 23 — x4 +T5 — 26 = 7, where 0 < x1, T2, T3, T4, T5, T6 < 2°
and recorded the size of the resulting reduced BDD. Then we gradually changed
the upper bound of each of the variables to some arbitrary unique value less than
28 and recorded the size of the resulting reduced BDD each time. The results

14 Constantinos Bartzis and Tevfik Bultan

Table 3. Alternating Bit Protocol. The property checked is independent of the integer
data field. Since Cadence SMV can detect and verify data independent properties
efficiently, we also verified a data dependent property. The verification time for the
data dependent property stays almost the same for the Action Language Verifier.

bits| CMU Cadence SMV NuSMV ALV

SMV data data data data
independent|dependent independent|dependent

4 0.12 0.21 3.91 2.69 0.23 0.24
5| 0.26 0.2 7.56 2.71 0.23 0.25
6 1.26 0.23 24.11 2.63 0.24 0.24
7 | 30.24 0.18 84.33 3.05 0.23 0.26
8 [147.96 0.19 343.47 3.61 0.23 0.24
9 [693.67 0.2 T 6.6 0.25 0.26
10 [3755.46 0.24 T 24.12 0.23 0.27
11 0 0.27 1 87.62 0.27 0.27
12 0 0.36 0 342.89 0.24 0.27
100 T 1 1 1 0.69 0.72

Table 4. Queue
Table 5. Producer - Consumer

bits| CMU |Cadence|NuSMV| ALV
SMV | SMV bits| CMU |Cadence|NuSMV| ALV

4 0.3 0.57 0.33 | 3.21 SMV | SMV

5 1.75 1.23 1.21 5.63 2 | 5.49 4.61 23.27 |210.44
6 | 24.47 5.37 12.07 | 8.14 3 1216.94| 73.98 |3264.97| 698.93
7 12159.69| 38.8 122.3 | 10.77 4 1 1430.54 1 2600
8 1 318.39 |1125.34| 13.06 5 0 0 0 6062.34
100 1 4 + |440.87

shown in Figure 10 demonstrate the exponential growth of the size of the BDD
described in Section 7.

9 Conclusions

In this paper we have shown experimentally that current implementations of
BDD based symbolic model checkers are inefficient in representing linear arith-
metic constraints on bounded integer variables. We solved this problem by giving
efficient BDD construction algorithms, proving their complexity and experimen-
tally demonstrating their efficiency. These algorithms can be used to improve
the performance of existing BDD based symbolic model checkers. Finally, we
have shown that powers of 2 are a good choice for variable bounds, and choosing
arbitrary bounds for integer variables can cause exponential blow-up in the BDD
size.

Construction of efficient BDDs for Bounded Arithmetic Constraints 15

8000

6000 /
4000 /
2000 /

0

0 2 4 6 8

Fig. 10. Size of the BDD for 1 + 2 — 23 — x4 + 5 — £6 = 7 versus the number of
variables with upper bound different than 2%

References

1.
2.

3.

10.

11.

12.

13.

Cadence SMV. http://www-cad.eecs.berkeley.edu/ kenmcmil/smv.

G. R. Andrews. Concurrent Programming: Principles and Practice. The Ben-
jamin/Cummings Publishing Company, Redwood City, California, 1991.

R. Bryant. Graph-based algorithms for boolean function manipulation. In Pro-
ceedings of the 27th ACM/IEEE Design Automation Conference, 1990.

R.E Bryant and Y.A. Chen. Verification of arithmetic functions with binary mo-
ment diagrams. In Proceedings of the 32nd ACM/IEEE Design Automation Con-
ference, June 1995.

T. Bultan, R. Gerber, and C. League. Composite model checking: Verification with
type-specific symbolic representations. ACM Transactions on Software Engineering
and Methodology, 9(1):3-50, January 2000.

T. Bultan and T. Yavuz-Kahveci. Action language verifier. In Proceedings of the
16th IEEE International Conference on Automated Software Engineering, 2001.
W. Chan, R. J. Anderson, P. Beame, S. Burns, F. Modugno, D. Notkin, and J. D.
Reese. Model checking large software specifications. IEEE Transactions on Soft-
ware Engineering, 24(7):498-520, July 1998.

A. Cimatti, E.M. Clarke, E.Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. Nusmv 2: An opensource tool for symbolic model
checking. In Proceedings of the International Conference on Computer-Aided Ver-
tfication, 2002.

E.M. Clarke, M. Fujita, and X. Zhao. Hybrid decision diagrams - overcoming the
limitations of mtbdds and bmds. In In International Conference of Computer-
Aided Design, pages 159-163, 2000.

M. Garey and D.Jonson. Computers and Intractability: A Guide to the Theory of
NP-completeness. Freeman, 1979.

K. L. McMillan. Symbolic model checking. Kluwer Academic Publishers, Mas-
sachusetts, 1993.

J. Yang, A. K. Mok, and F. Wang. Symbolic model checking for event-driven
real-time systems. ACM Transactions on Programming Languages and Systems,
19(2):386-412, March 1997.

T. Yavuz-Kahveci, M. Tuncer, and T. Bultan. Composite symbolic library. In
Proceedings of the Tth International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, volume 2031 of Lecture Notes in Computer
Science, pages 335—344. Springer-Verlag, April 2001.

