
CSurF: Sparse Lexical Retrieval through Contextualized Surface
Forms

Zhen Fan
Carnegie Mellon University

Pittsburgh, PA, USA
zhenfan@andrew.cmu.edu

Luyu Gao
Carnegie Mellon University

Pittsburgh, PA, USA
luyug@cs.cmu.edu

Jamie Callan
Carnegie Mellon University

Pittsburgh, PA, USA
callan@cs.cmu.edu

ABSTRACT
Lexical exact-match systems perform text retrieval efficiently with
sparse matching signals and fast retrieval through inverted lists,
but naturally suffer from the mismatch between lexical surface
form and implicit term semantics. This paper proposes to directly
bridge the surface form space and the term semantics space in lex-
ical exact-match retrieval via contextualized surface forms (CSF).
Each CSF pairs a lexical surface form with a context source, and
is represented by a lexical form weight and a contextualized se-
mantic vector representation. This framework is able to perform
sparse lexicon-based retrieval by learning to represent each query
and document as a “bag-of-CSFs”, simultaneously addressing two
key factors in sparse retrieval: vocabulary expansion of surface
form and semantic representation of term meaning. At retrieval
time, it efficiently matches CSFs through exact-match of learned
surface forms, and effectively scores each CSF pair via contextual
semantic representations, leading to joint improvement in both
term match and term scoring. Multiple experiments show that this
approach successfully resolves the main mismatch issues in lexical
exact-match retrieval and outperforms state-of-the-art lexical exact-
match systems, reaching comparable accuracy as lexical all-to-all
soft match systems as an efficient exact-match-based system.

CCS CONCEPTS
• Information systems → Document representation; Query repre-
sentation; Retrieval models and ranking; Search engine architec-
tures and scalability.

KEYWORDS
Sparse retrieval, lexical exact match, contextualized surface forms,
deep language models
ACM Reference Format:
Zhen Fan, Luyu Gao, and Jamie Callan. 2023. CSurF: Sparse Lexical Retrieval
through Contextualized Surface Forms. In Proceedings of the 2023 ACM
SIGIR International Conference on the Theory of Information Retrieval (ICTIR
’23), July 23, 2023, Taipei, Taiwan. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3578337.3605126

1 INTRODUCTION
Lexical exact match, or matching query and document based on
overlapping terms, has been widely utilized in text retrieval [37].

This work is licensed under a Creative Commons Attribution
International 4.0 License.

ICTIR ’23, July 23, 2023, Taipei, Taiwan
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0073-6/23/07.
https://doi.org/10.1145/3578337.3605126

The strict and imperfect premise to indifferently match all terms
with identical lexical surface form (e.g. matching all documents
containing the word “Christmas” or “present” to the query “Christ-
mas present”) leads to sparse text sequence representations and
matching signals, which enables fast retrieval via inverted indexing.
However, this premise naturally neglects any information about
the term semantics beneath a surface form, leading to vocabulary
mismatch (same meaning shared by multiple surface forms) and
semantic mismatch (different meanings under the same surface
form) and consequently suboptimal retrieval performance.

The era of neural IR and pretrained language models [8, 42] has
led to several directions of work to train end-to-end lexical match-
ing retrievers. Within the term-weighting premise, SPLADE [11, 12]
and its numerous extension models perform implicit vocabulary
expansion, projecting the original text sequence to a new set of
surface forms with learned term weights, but do not further track
or distinguish the individual semantics of the generated lexical
forms. Other systems propose to augment lexical form matching
with contextualized vector representations and use vector simi-
larity scoring to distinguish semantic agreement between query
and document terms. Gao et al. [15] proposed contextualized in-
verted lists (COIL) to reduce semantic mismatch within the lexical
exact-match framework, but this approach does not change the
vocabulary of the text sequence and thus suffers from vocabulary
mismatch. ColBERT [21, 39] systems further perform soft all-to-
all match, completely removing the lexical form match restriction
and matching all possible query-doc term pairs with vector rep-
resentation scoring. This results in maximum model capacity but
sacrifices the efficiency gain of the exact-match framework, leading
to impractical indexing and storage cost for first-stage retrieval.

The advances and limitations of current systems inspire us to
rethink the lexical text retrieval process. Lexical retrievers judge a
query-document pair by matching query and document terms and
scoring each term pair. In the matching stage, performing exact lex-
ical match via surface form naturally ensures sparse signals, which
is fundamental for retrieval efficiency. In the scoring stage, match-
ing terms by semantic representations produces more precise term
match scores, but this step itself does not determine the correctness
and sparsity of term matching signals. Previous systems utilizing
vector term representations still match terms through the lexical
surface forms of the original text and thus suffer from vocabulary
mismatch of exact match (COIL) or efficiency issues of all-to-all
soft match (ColBERT). On the other hand, SPLADE-based systems
demonstrate the potential to learn new “bag-of-surface-forms” to
overcome the mismatch in query-document vocabulary, but such
learned surface forms are disconnected from the original context.
An ideal end-to-end system should combine the advantage of the

65

https://orcid.org/
https://orcid.org/
https://orcid.org/
https://doi.org/10.1145/3578337.3605126
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3578337.3605126
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3578337.3605126&domain=pdf&date_stamp=2023-08-09

ICTIR ’23, July 23, 2023, Taipei, Taiwan Zhen Fan, Luyu Gao, & Jamie Callan

(a) Model structure and encoding process of CSurF.

(b) Matching process of exact-match retrievers

(c) Matching process of all-to-all soft-match retrievers

(d) Matching process of CSurF

Figure 1: The model structure of the CSurF retriever (left), and the retrieval process of CSurF compared to current lexicon-based
exact match or soft match retrievers(right). CSurF generates Contextualized Surface Forms (CSFs) by pairing lexical forms with
semantic representations of original text terms. CSFs are further indexed in inverted lists and matched based on lexical form.

two sides, to learn to jointly find term matches via surface form,
and further score such matches via term semantic representation.

This paper proposes CSurF, which enables effective sparse re-
trieval through Contextualized Surface Forms. Each contextualized
surface form consists of a lexical surface form with an importance
weight and a context source with a contextualized representation.
We use CSurF to name the retrieval model, and CSF to name the
“contextualized surface form” concept, which is the basic unit of
the sparse lexical match process. Figure 1a demonstrates the model
structure of the CSurF framework, and examples of generated CSFs.
The model represents each query and document using a “bag-of-
CSFs” by first generating a set of lexical surface forms. It grounds all
such surface forms to a contextual semantics source in the original
text to assign each surface form with a vector representation. At
retrieval time, the CSurFmodel first sparsely matches CSFs by exact-
match of lexical surface forms, and further scores each CSF pair
by comparing contextual representation similarity, which assures
both the efficiency and effectiveness of the retrieval process.

Figure 1b-1d further demonstrate the retrieval process of CSurF
compared to lexical exact-match and all-to-all soft-match systems.
CSurF is able to link the original query term “gift” with the docu-
ment term “present” since both the query and document generate
CSFs with surface form “gift” and “present”. From the classic lex-
ical exact-match perspective, CSurF simultaneously incorporates
lexical form expansion and contextualized scoring to resolve vo-
cabulary and semantic mismatch in an end-to-end system. From

the lexical soft-match perspective, CSurF efficiently connects origi-
nal query-doc terms through fast exact-match of projected surface
forms, leading to improved efficiencywithout loss inmodel capacity.
CSurF outperforms current lexical exact-match systems on mul-
tiple in-domain and zero-shot retrieval experiments, consistently
reaching the performance level of state-of-the-art lexical all-to-all
soft-match models, but in an efficient sparse retrieval framework.
We further discuss the effectiveness-efficiency tradeoff of CSurF and
its improvements over current lexical retrieval systems, including
the benefits of context source grounding, vector term representation
extension, and sparse lexical soft match.

The rest of the paper is structured as follows: Section 2 discusses
related work on neural lexical retrieval systems. Section 3 intro-
duces the CSurF framework. Sections 4 and 5 discuss experiments
and analysis of model performance. Section 6 concludes.

2 RELATEDWORK
Before the emergence of pretrained language models, classic text
retrieval systems [37] rely on exact-match signals of query and
document terms to provide relevance judgment. Such systems as-
sign each term with an importance weight estimated from term
frequency, and perform efficient retrieval via inverted indexing.
Traditional approaches to resolve the vocabulary and semantic
mismatch in lexical exact-match systems include rewriting and
expansion of the query and document [1, 3, 4, 43, 47], as well as

66

CSurF: Sparse Lexical Retrieval through Contextualized Surface Forms ICTIR ’23, July 23, 2023, Taipei, Taiwan

n-gram matching [26]. Later systems utilize pretrained word em-
beddings such as Word2vec [27] to calculate term similarity [17],
and propose lexical soft match or all-to-all match [7, 45], performing
complete interaction between query and document terms regard-
less of lexical form, but such systems are thus much less efficient
and often limited to re-ranking settings.

The introduction of BERT-scale pretrained language models [8,
42] provides a natural backbone for text understanding, and has led
to significant improvement in both re-ranking [30] and first-stage
ranking. Pretrained LMs were first used to improve BM25-based
retrieval via improved term-reweighting [6] or document expan-
sion [31, 32]. Later research proposed to directly learn query and
document representations for retrieval. One thread of work in-
volves building dense retrievers to directly encode the query and
document into a single vector representation, and directly pre-
dict relevance based on vector similarity. Main research in dense
retrieval focuses on better training strategies such as negative sam-
pling [46, 48], knowledge distillation [18, 25] and training objective
design [13, 14, 16, 19], as well as retrieval efficiency [20, 49].

This paper mainly focuses on end-to-end lexicon-based retrieval
or learned sparse retrieval [2, 24, 28], which represents the query and
document with a set of vocabulary terms and term representations,
and predicts relevance from aggregating term-level shallow interac-
tions. Some systems follow the exact-match precondition and aim
to perform efficient retrieval with contextualized term importance
weights [12, 24] or semantic vector representations [15, 50]. To
resolve vocabulary mismatch, systems such as SPLADE [12] and its
extensions [11] also introduce the concept of vocabulary expansion
to remap the original bag-of-words to a new set of vocabulary terms.
Such systems further benefit from the speed-up of the inverted list
structure to store the scalar or vector term representations [15].
Another group of LM-augmented lexicon-based systems performs
lexical soft match with all-to-all token interaction and vector scor-
ing, with the most important being ColBERT [21, 39]. Soft-match
retrievers fall on the other side of the capacity-efficiency tradeoff
with high retrieval performance but also more token interactions
required. Recent advances accordingly focus on reducing its stor-
age and computational costs with approaches including residual
compression and centroid pruning [38, 39]. In this paper, we aim
to find a direct approach to both allow and control the soft interac-
tion between original terms with different surface forms, achieving
accurate retrieval with sparse matching signals.

Concurrent with our work, Li et al. [23] proposed CITADEL
which utilizes token-level vocabulary expansion as "routing" to
achieve controlled soft match of original text terms with contextu-
alized vector representations. While this approach is similar to our
CSurF approach, the expanded tokens are solely generated by term-
wise top-k selection of expansion tokens, and rely on post-hoc
pruning of generated expansion tokens to balance retrieval effi-
ciency. This is contrary to CSurF which directly and dynamically
learns a set of surface forms for the input text sequence. Qian et al.
[35] proposed ALIGNER, which directly learns sparse alignment
between query and document terms by predicting token salience,
or whether a given token requires alignment with other tokens.
This leads to direct pruning of the all-to-all soft match matrix of
ColBERT, and thus improved retrieval efficiency.

3 CONTEXTUALIZED SURFACE FORMS
In this section, we first formally define the lexical match and re-
trieval process in Section 3.1. Sections 3.2 and 3.3 introduce the
encoding and retrieval process of CSurF respectively. Section 3.4 dis-
cusses the connection and advances of CSurF compared to current
systems. Section 3.5 discusses model implementation and training.

3.1 Prelimiaries
Given a queryq = {𝑞1, 𝑞2, · · · , 𝑞𝑚} and documentd = {𝑑1, 𝑑2, ..., 𝑑𝑛},
a lexical retriever scores the (q, d) pair by accumulating individual
term match scores, commonly via the "max-sum" framework:

𝑆𝑐𝑜𝑟𝑒 (q, d) =
∑︁
𝑞𝑖 ∈q

max
𝑑 𝑗 ∈d

M(𝑞𝑖 , 𝑑 𝑗)S(𝑞𝑖 , 𝑑 𝑗)

For query term 𝑞𝑖 and document term 𝑑 𝑗 , S(𝑞𝑖 , 𝑑 𝑗) is a term scor-
ing operation, such as term weight multiplication or vector simi-
larity calculation.M(𝑞𝑖 , 𝑑 𝑗) is the term matching criteria, indicat-
ing whether 𝑞𝑖 and 𝑑 𝑗 are matched. The strictness of the selection
mask M directly determines the capacity and efficiency of the
lexical retriever. As shown in Figure 1b, in exact-match systems,
M(𝑞𝑖 , 𝑑 𝑗) = I(𝑞𝑖 = 𝑑 𝑗) and only terms with identical form are
matched. This results in sparse matching signals but suffers from
themismatch in query and document vocabulary. On the other hand,
for all-to-all soft-match systems such as ColBERT, M(𝑞𝑖 , 𝑑 𝑗) ≡ 1
and all possible term pairs are matched regardless of surface form.
This leads to maximum model capacity but at the cost of extremely
high computation and storage cost.

3.2 Contextualized Surface Form Generation
CSurF aims to jointly control the sparsity of matching signalsM
and the precision of the scoring function S through sparse retrieval
of contextualized surface forms (CSF). For each input sequence
(query or document), it generates a bag-of-CSFs by (1) generating
candidate lexical surface forms for the sequence, and (2) pairing
each generated surface form with a term in the original text as its
context source.

CSurF follows Formal et al. [11] and generates candidate lexical
surface forms from the entire vocabulary space. It first encodes
each input sequence (query or document) with a language model
(LM) backbone and separately projects the LM output of each query
and document term to two components: a dense representation
denoting term semantics, and a sparse |𝑉 |-dim vector denoting
expansion weights for each token in the vocabulary.

v𝑞𝑖 = 𝜙𝑣 (𝐿𝑀 (𝑞, 𝑖)) E𝑞𝑖 = 𝜙𝑒 (𝐿𝑀 (𝑞, 𝑖))
v𝑑 𝑗 = 𝜙𝑣 (𝐿𝑀 (𝑑, 𝑗)) E𝑑 𝑗 = 𝜙𝑒 (𝐿𝑀 (𝑑, 𝑗))

For query term 𝑞𝑖 , 𝐿𝑀 (𝑞, 𝑖) denotes its LM output representation.
𝜙𝑣 and 𝜙𝑒 denote the semantic and expansion projection layers,
which we discuss in Section 3.5. v𝑞𝑖 ∈ R |𝑑𝑟𝑒𝑝 | denotes the con-
textual semantics representation for 𝑞𝑖 . E𝑞𝑖 ∈ R |𝑉 | represents
non-negative expansion weights from 𝑞𝑖 to each token in the vocab-
ulary 𝑉 . For instance, E𝑞𝑖 [𝑡] represents the expansion weight from
original term 𝑞𝑖 to surface form 𝑡 ∈ 𝑉 , with higher weight value
denoting higher likelihood of expansion. Query and document term
representations are processed through the same projection layers.

67

ICTIR ’23, July 23, 2023, Taipei, Taiwan Zhen Fan, Luyu Gao, & Jamie Callan

Over the whole query or document sequence, for surface form 𝑡 ,
CSurF performs max-pooling over all expansion weights E𝑞 [𝑡] to se-
lect its sequence importance weight. Additionally, CSurF grounds
the surface form 𝑡 to the original text by tracking the projection
source of the selected expansion weight.

𝑤
𝑞
𝑡 = max

𝑞𝑖 ∈𝑞
E𝑞𝑖 [𝑡] 𝑠

𝑞
𝑡 = argmax

𝑞𝑖 ∈𝑞
E𝑞𝑖 [𝑡]

𝑤𝑑𝑡 = max
𝑑 𝑗 ∈𝑑

E𝑑 𝑗 [𝑡] 𝑠𝑑𝑡 = argmax
𝑑 𝑗 ∈𝑑

E𝑑 𝑗 [𝑡]

Given a query 𝑞 and surface form 𝑡 ,𝑤𝑞𝑡 and 𝑠𝑞𝑡 respectively denote
the final expansion weight and its projection source, i.e. 𝐸𝑠𝑡 ,𝑡 = 𝑤𝑡 .

The grounding step crucially links the lexical surface form space
and the original text semantic space, enabling CSurF to pair each
surface form with a context source and construct CSFs. We denote
a contextualized surface form as 𝐴 = (𝑡𝐴, 𝑠𝐴), where 𝑡𝐴 ∈ 𝑉 is
its lexical surface form with a scalar importance weight𝑤𝑡𝐴 , and
𝑠𝐴 ∈ 𝑞 or 𝑠𝐴 ∈ 𝑑 is its context source with semantic representation
v𝑠𝐴 . This enables CSurF to combine the advantage of lexical form
matching and semantic-based scoring, which we discuss in the
following sections.

For each query and document, the expansion-based “bag-of-CSFs”
E is the set of all CSFs with positive surface form weights.

E𝑞 = {(𝑡, 𝑠𝑞𝑡) | 𝑡 ∈ 𝑉 ,𝑤
𝑞
𝑡 > 0}

E𝑑 = {(𝑡, 𝑠𝑑𝑡) | 𝑡 ∈ 𝑉 ,𝑤𝑑𝑡 > 0}
Additionally, we construct CSFs for all original query and docu-

ment terms to preserve the lexical form information of the original
text. We directly use the term’s self-projection weight 𝐸𝑞𝑞𝑖 ,𝑞𝑖 or
𝐸𝑑
𝑑 𝑗 ,𝑑 𝑗

as its lexical form weight.

O𝑞 = {(𝑞𝑖 , 𝑞𝑖) | 𝑞𝑖 ∈ q, 𝐸𝑞
𝑞𝑖 [𝑞𝑖] > 0}

O𝑑 = {(𝑑 𝑗 , 𝑑 𝑗) | 𝑑 𝑗 ∈ d, 𝐸𝑑
𝑑 𝑗 [𝑑 𝑗] > 0}

where O denotes the original text-based CSFs. The final bag-of-
CSFs C for each query and document is the union of expansion-
based and original text-based CSFs.

C𝑞 = O𝑞 ∪ E𝑞 C𝑑 = O𝑑 ∪ E𝑑

3.3 Indexing and Retrieval
CSurF scores a query-document pair by sparse retrieval through
their bag-of-CSFsC𝑞 andC𝑑 . Specifically, it strictlymatches CSF pairs
through lexical exact match of their surface forms, and scores a
matched CSF pair through vector similarity. For CSFs𝐴 = (𝑡𝐴, 𝑠𝐴) ∈
C𝑞 and 𝐵 = (𝑡𝐵, 𝑠𝐵) ∈ C𝑑 ,

M(𝐴, 𝐵) = I(𝑡𝐴 = 𝑡𝐵)
S(𝐴, 𝐵) = 𝑤𝑡𝐴𝑤𝑡𝐵 f (v𝑠𝐴 , v𝑠𝐵)

𝑆𝑐𝑜𝑟𝑒 (𝐴, 𝐵) = M(𝐴, 𝐵) S(𝐴, 𝐵)
= I(𝑡𝐴 = 𝑡𝐵)𝑤𝑡𝐴𝑤𝑡𝐵 f (v𝑠𝐴 , v𝑠𝐵)

Here, f () denotes a similarity function such as dot-product or
cosine similarity. CSurF jointly utilizes the efficiency of lexical form
match and the accuracy of contextualized term scoring. The exact-
match precondition M limits the density of actual CSF matches,
which enables the model to efficiently index document CSFs in

inverted lists via their lexical surface forms. The contextualized
scoring component further complements lexical match by introduc-
ing term semantics.

CSurF follows the common "max-sum" framework to aggregate
individual CSF match scores. At retrieval time, for each original
query term, it selects the maximum score over all document CSFs.

𝑆𝑐𝑜𝑟𝑒 (𝑞𝑖 , d) = max
𝐴∈Cq

𝑖

max
𝐵∈Cd

𝑆𝑐𝑜𝑟𝑒 (𝐴, 𝐵)

= max
𝐴∈Cq

𝑖

max
𝐵∈Cd

M(𝐴, 𝐵) S(𝐴, 𝐵)

= max
𝐴∈Cq

𝑖

max
𝐵∈Cd

I(𝑡𝐴 = 𝑡𝐵) 𝑤𝑡𝐴𝑤𝑡𝐵 f (v𝑠𝐴 , v𝑠𝐵)

where Cq
𝑖
denotes the subset of CSFs with 𝑞𝑖 as source term. The

final (𝑞, 𝑑) score is the sum of individual query term scores.

𝑆𝑐𝑜𝑟𝑒 (q, d) =
∑︁
𝑞𝑖 ∈q

𝑆𝑐𝑜𝑟𝑒 (𝑞𝑖 , d)

=
∑︁
𝑞𝑖 ∈q

max
𝐴∈Cq

𝑖

max
𝐵∈Cd

M(𝐴, 𝐵)S(𝐴, 𝐵)

=
∑︁
𝑞𝑖 ∈q

max
𝐴∈Cq

𝑖

max
𝐵∈Cd

I(𝑡𝐴 = 𝑡𝐵) 𝑤𝑡𝐴𝑤𝑡𝐵 f (v𝑠𝐴 , v𝑠𝐵)

3.4 Connection to Current Systems
CSurF is a direct extension of current lexicon-based retrieval models.
From the surface form exact-match perspective, CSurF maintains
the exact-match precondition and supports inverted indexing and
sparse retrieval of contextualized surface forms. It simultaneously
addresses the vocabulary and semantic mismatch issues of lexical
exact-match by performing surface form expansion and assigning
a contextualized representation to each surface form. The lexical
exact-match systems COIL-tok and SPLADE can both be viewed as
special cases of CSurF with limitations. COIL-tok is equivalent to
CSurF with only original text-based surface forms Oq and Od and
without expansion, thus suffering in model capacity. SPLADE can
be viewed as CSurF matching surface forms with only term weights
(|v| = 0) and with slightly different score accumulation methods.
Specifically, the CSurF name framework enables SPLADE-based
systems to be expanded to utilize vector term representations, by
explicitly grounding each expanded surface form to the original
context.We analyze the performance of CSurF compared to baseline
lexical retrievers in Sections 5.1 and 5.3.

From the contextualized semantic match perspective, CSurF per-
forms multi-vector lexical retrieval over the vector representations
of query and document terms in the original text, but further intro-
duces the surface form space to efficiently bridge the terms. CSurF is
the equivalent of ColBERT with a strong surface form match con-
straint. It maps each term in the original text sequences to a set
of candidate surface forms, so that original terms can be matched
via expansion surface form overlap. The model is trained to jointly
learn the soft-match constraint M of whether terms should match,
along with the vector scoring S, to filter unnecessary soft matches.
This dramatically reduces the computation and indexing overload
of ColBERT systems and leads to significantly improved efficiency,
which we discuss in Section 5.2.

68

CSurF: Sparse Lexical Retrieval through Contextualized Surface Forms ICTIR ’23, July 23, 2023, Taipei, Taiwan

Table 1: Retrieval results on MSMARCO. Best performance under each training setting is labeled in bold.

Model MSMARCO Dev TREC 19
Retriever Initialization MRR@10 R@1000 NDCG@10 R@1000

Models w/o distillation and hard negative mining
BM25 - 0.187 0.857 0.506 0.745
DocT5Query + BM25 - 0.277 0.947 0.642 0.827
COIL-tok BERT 0.341 0.949 0.660 -
COIL-tok CoCondenser 0.353 0.949 0.692 0.801
SPLADE [12] BERT 0.322 0.955 0.665 0.813
SPLADE [11] BERT 0.342 0.966 0.699 0.815
CoCondenser - 0.357 0.978 - -
COIL-full BERT 0.355 0.963 0.704 -
ColBERT BERT 0.360 0.968 0.694 0.830
CSurF BERT 0.359 0.970 0.702 0.849
CSurF CoCondenser 0.374 0.978 0.704 0.845

Models with distillation and hard negative mining
CoCondenser + HN - 0.382 0.984 0.674 0.820
SPLADE++ CoCondenser 0.380 0.982 0.732 0.875
ColBERT-v2 CoCondenser 0.397 0.984 0.744 0.882
CSurF𝐻𝑁 CoCondenser 0.396 0.985 0.745 0.880

3.5 Model Implementation and Training
Following previous work, CSurF initializes the LM base with co-
Condenser [14], which is trained on a retrieval objective. At the
encoding stage, we follow the implementation of Formal et al. [11]
to generate surface form expansion weights.

𝜙𝑣 (𝑥) = 𝑅𝑒𝐿𝑈 (𝑊𝑇
𝑣 𝑥 + 𝑏𝑇𝑣)

𝜙𝑒 (𝑥) = 𝑙𝑜𝑔(1 + 𝑅𝑒𝐿𝑈 (𝑊𝑇
𝑀𝑥 + 𝑏𝑇𝑀))

The projection layers 𝜙𝑣 and 𝜙𝑒 are used for both the query and
the document. The semantic projection layer𝑊𝑣, 𝑏𝑣 is trained from
scratch, while the expansion projection layer𝑊𝑀 , 𝑏𝑀 can be ini-
tialized from the Masked language modeling (MLM) layer of the
LM base.

CSurF is trained end-to-end on the ranking objective with a
contrastive loss. Given a query 𝑞 and a set of 𝑛 documents 𝐷 =

{𝑑+, 𝑑−1 , ..., 𝑑
−
𝑛−1}, the training loss is

L𝑟𝑒𝑡 = −𝑙𝑜𝑔 𝑒S(𝑞,𝑑+)

𝑒S(𝑞,𝑑+) +∑𝑛−1
𝑖=1 𝑒S(𝑞,𝑑−

𝑖
)

where S is the scoring function. CSurF also applies a FLOPS [33]
regularization loss to control the sparsity of the expansion weight
matrix E, and the number of expanded surface forms. The final loss
is the sum of the retrieval loss and the regularization losses of the
query and document.

Lq
𝑟𝑒𝑔 =

∑︁
𝑡 ∈𝑉

(𝑤q
𝑡)

2 Ld
𝑟𝑒𝑔 =

∑︁
𝑡 ∈𝑉

(𝑤d
𝑡)2

L = L𝑟𝑒𝑡 + 𝜆𝑞Lq
𝑟𝑒𝑔 + 𝜆𝑑Ld

𝑟𝑒𝑔

We first train CSurF on theMSMARCO dataset [29] with training
data sampled from a BM25 ranking. Additionally, we boost model
performance by incorporating hard negative mining and knowledge

distillation [25], where we sample hard negative training triplets
from CSurF itself, utilize a cross-encoder re-ranker teacher1 to
generate (𝑞, 𝑑) scores, and train a new CSurF model on the sampled
training data with an additional KL-divergence loss [36], which
aims to minimize the relevance distributions between the cross-
encoder teacher and the trained CSurF:

𝑠𝑐 (𝑞, 𝑑) =
𝑒S𝑐 (𝑞,𝑑)∑

𝑑𝑖 ∈𝐷 𝑒S𝑐 (𝑞,𝑑𝑖)
𝑠 (𝑞, 𝑑) = 𝑒S(𝑞,𝑑)∑

𝑑𝑖 ∈𝐷 𝑒S(𝑞,𝑑𝑖)

L𝐾𝐿 =
∑︁
𝑑∈𝐷

𝑠 (𝑞, 𝑑)𝑙𝑜𝑔𝑠 (𝑞, 𝑑)
𝑠 (𝑞, 𝑑)

LHN = L𝐾𝐿 + L𝑟𝑒𝑡 + 𝜆𝑞Lq
𝑟𝑒𝑔 + 𝜆𝑑Ld

𝑟𝑒𝑔

where S𝑐 is the score of the cross-encoder teacher. In the rest of
the paper, we use CSurF𝐻𝑁 to refer to CSurF models trained with
hard negatives and distillation.

4 EXPERIMENTAL METHODOLOGY
Implementation. The retrieval framework of CSurF was built

upon the implementation of COIL 2 and with Pytorch [34] and Hug-
gingface [44]. Aside from ablation studies discussed in Section 5.1,
we set the semantic representation dimension |v| = 32 with cosine
similarity scoring. At indexing time, we prune CSFs with lexical
form weight𝑤<1e-8 and organize CSFs in inverted lists in matrix
format. Given a query, CSurF (i) performs score calculation for each
query CSF and all document CSFs with the same lexical form, (ii)
scatters each CSF-CSF match score to the source query-document
term match with max reduction, and (iii) performs max-sum score
aggregation to calculate the final query-document score.

1https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-12-v2
2https://github.com/luyug/COIL

69

ICTIR ’23, July 23, 2023, Taipei, Taiwan Zhen Fan, Luyu Gao, & Jamie Callan

Training. We first train CSurF on BM25 negatives on a single
GPU for 6 epochs, with 6 queries per batch, 8 documents per train-
ing sample (1 positive and 7 negative), and 𝜆𝑞=𝜆𝑑=1e-4. We train
CSurF𝐻𝑁 variants on 4 GPUs for 8 epochs, with 6 queries per
batch and 12 documents per training sample. For simplicity, all
CSurF𝐻𝑁 variants are trained with the same set of hard negatives
sampled from the top 1000 of CSurF rankings on MSMARCO train-
ing queries. For all experiments we utilize in-batch negatives for
better training. We discuss the effect of tuning 𝜆𝑞 and 𝜆𝑑 in Sec-
tion 5.2.

Evaluation. We train and evaluate CSurF’s in-domain retrieval
performance on the MSMARCO passage dataset and on two sets of
queries, the MSMARCO Dev query set, and the TREC DL 2019 [5]
test queries. Following previous work, we report MRR@10 and Re-
call@1000 on MSMARCO dev, and NDCG@10 and Recall@1000 for
TREC 19 queries. We also perform out-of-domain retrieval experi-
ments on the BEIR benchmark [40], which include multiple datasets
with drastically different retrieval settings, domains, and document
content. We report model performance on 13 BEIR datasets, with
NDCG@10 as the official metric.

Baselines. We mainly compare the performance of CSurF to lexi-
cal matching retrieval systems, including: (1) BM25 [37] and BM25
with DocT5Query augmentation [31] (2) lexical exact-match sys-
tems COIL-tok [15] and SPLADE [11, 12] (3) lexical all-to-all soft-
match system ColBERT [21, 39]. Note that in this work we do not
perform extended model and training setup design as discussed in
recent works to improve learned sparse retrieval training [22, 28],
and compare CSurF’s performance to the original results reported
for SPLADE++ and ColBERT-v2, which uses the same or comparable
training setups. We also include the performance of two dense re-
trieval systems [14, 19] and the hybrid COIL systemwhich performs
hybrid retrieval with dense and lexical components. We separately
evaluate and compare systems trained without and with knowledge
distillation and hard negative mining.

5 EXPERIMENTAL RESULTS
In this section, we report CSurF’s in-domain retrieval performance
on MSMARCO in Sections 5.1 and 5.2, respectively focusing on
retrieval effectiveness and efficiency. Section 5.3 discusses out-of-
domain retrieval performance. Section 5.4 concludes the experi-
ments with detailed case study of generated CSFs.

5.1 In-domain passage retrieval effectiveness
Table 1 reports CSurF’s retrieval performance on MSMARCO. With-
out knowledge distillation and under comparable LM settings,
CSurF outperforms current lexical exact match systems, includ-
ing SPLADE and COIL-tok, on both recall and accuracy (MRR@10).
With hard-negative mining and distillation, CSurF still outperforms
SPLADE++ on MRR@10. This demonstrates CSurF’s ability to
bridge the vocabulary and semantic mismatch in lexical exact match.
Furthermore, the sparse retrieval framework CSurF consistently
reaches the performance level of the all-to-all soft-match ColBERT
in all training settings, with much lower retrieval complexity. We
analyze the retrieval cost and effectiveness-efficiency tradeoff for
CSurF in Section 5.2.

Table 2: Ablation study for CSurF and comparison to current
lexical exact-match systems. All models initialized with co-
Condenser. CSurF models are trained with 𝜆𝑞=𝜆𝑑=1e-3. The
"Full" model capacity indicates using CSFs from both original
text and expansion (O + E), and vector scoring with |v| = 32.

Model MSMARCO Dev
Retriever Variant MRR@10 R@1000

CSurF Full 0.374 0.978
CSurF𝐻𝑁 Full 0.395 0.987

COIL-tok 0.353 0.949
CSurF O only 0.359 0.955
CSurF E only 0.369 0.979
CSurF𝐻𝑁 O only 0.374 0.969
CSurF𝐻𝑁 E only 0.391 0.987

SPLADE++ 0.380 0.982
CSurF𝐻𝑁 |v|=32, dot 0.395 0.987
CSurF𝐻𝑁 |v|=32, cos 0.396 0.985
CSurF𝐻𝑁 |v|=4, cos 0.395 0.985
CSurF𝐻𝑁 |v|=0 (𝑤 only) 0.391 0.985

We further perform two sets of ablation studies on model com-
ponents of CSurF, to investigate the connection and comparison
between CSurF and existing lexical exact-match systems. Namely,
we look into the effect of two aspects discussed in Section 3.4: lexical
form expansion and contextual semantics grounding.

Table 2 reports the retrieval performance on MSMARCO for
CSurF variants. To look into the effect of lexical expansion, we
train CSurF models which only generate CSFs from original-text-
based lexical forms O or only from expansion-based lexical forms
E. Compared to solely performing exact-match over the original
text, introducing lexical form expansion improves model perfor-
mance by a wide margin. Specifically, it is the primary source of
gain in recall (0.955 to 0.975 without distillation). Without the ex-
pansion component, the model capacity of CSurF is limited, even
with extra knowledge distillation from the cross-encoder teacher.
This suggests that lexical exact-match signals of original text terms
are naturally not sufficient to accurately predict query-document
relevance, and it is critical to introduce extra matching signals.

To look into the effect of contextualized representations and term
scoring, we experiment with four model variants, which include: (i)
three vector representation settings where |v| = 32 with the term
scoring function f as dot product and cosine similarity, and |v| = 4
with cosine scoring, and (ii) a term weighting-based model variant
where |v| = 0 (i.e. only the lexical expansion weight 𝑤 is used).
We see from Table 2 that all systems perform similarly on recall,
with multi-vector systems outperforming term-weighting systems
in accuracy (MRR@10). This result together with the shown result
in Table 1 demonstrates the benefit of expanding sparse retrieval
systems such as SPLADE to multi-vector systems. We further note
that the lexical weight-only CSurF variant still outperforms the
current SPLADE++ model in accuracy, and is slightly better than
the highest reported results in recent SPLADE-related works [22],

70

CSurF: Sparse Lexical Retrieval through Contextualized Surface Forms ICTIR ’23, July 23, 2023, Taipei, Taiwan

Table 3: Model efficiency analysis. Numbers labeled with ∗ indicate the original MARCO dev query/document lengths after
BERT tokenization. Other lengths stats are calculated after pruning inverted index entries with 0 term weight.

Model MSMARCO Dev Efficiency
Retriever Variant MRR@10 R@1000 Avg. Q Len Avg. D Len Avg Ops

COIL-tok 0.353 0.949 6.9∗ 63.4∗ 2.28
ColBERT-v2 0.397 0.984 6.9∗ 63.4∗ -

CSurF𝐻𝑁 𝜆𝑞=1e-3, 𝜆𝑑=1e-3 0.396 0.985 49.6 230 3.20
CSurF𝐻𝑁 𝜆𝑞=1e-2, 𝜆𝑑=1e-2 0.394 0.984 23.9 98 0.71
CSurF𝐻𝑁 𝜆𝑞=1e-1, 𝜆𝑑=1e-1 0.388 0.983 11.6 37 0.16
CSurF𝐻𝑁 𝜆𝑞=5e-1, 𝜆𝑑=5e-1 0.377 0.977 9.9 22 0.07
CSurF𝐻𝑁 𝜆𝑞=1e-2, 𝜆𝑑=1e-3 0.395 0.986 21.2 207 1.70
CSurF𝐻𝑁 𝜆𝑞=1e-1, 𝜆𝑑=1e-3 0.397 0.984 11.2 173 1.02
CSurF𝐻𝑁 𝜆𝑞=5e-1, 𝜆𝑑=1e-3 0.396 0.984 10.6 174 0.96

(a) MRR@10 (b) Recall@1000 (c) Average operations

Figure 2: Performance of CSurF with different pruning thresholds.

which performs in-depth analysis of applying different model train-
ing techniques, such as regularization and separate query encoder,
to improve SPLADE performance. This demonstrates the effective-
ness of the additional grounding step from lexical form to context
source in CSurF, which allows the match performance of original
terms to directly guide the learning of expansion terms at training
time. This also shows that CSurF’s performance could be poten-
tially further improved with the application of training techniques
discussed above.

5.2 Retrieval Efficiency
This section discusses the effectiveness-efficiency trade-off in the re-
trieval procedure of CSurF. As a sparse retrieval system, CSurF rep-
resents a query or document with a set of CSFs. Without changing
the dimensionality of the semantic representations, the indexing
storage cost of CSurF is directly determined by the number of
CSFs generated per document, and the retrieval computational cost
is further determined by the number of CSF matches given a (𝑞, 𝑑)
pair. Therefore, we report the following metrics to compare the
run cost of CSurF: (i) the average number of terms to represent
the query and document, i.e. |C𝑞 | and |C𝑑 |, and (ii) the average
number of "term matches", or term-scoring operations required
given a (𝑞, 𝑑) pair [12]. For exact-match systems such as CSurF, this
is estimated by E𝑂𝑃𝑆 =

∑
𝑡 ∈𝑉 (𝑛̂

𝑞
𝑡 𝑛̂
𝑑
𝑡) where 𝑛̂

𝑞
𝑡 and 𝑛̂𝑑𝑡 denote the

average number of occurrences for token 𝑡 in a query or document.

At training time, the number of generated CSFs is mainly af-
fected by the regularization weights 𝜆𝑞 and 𝜆𝑑 which control the
FLOPS penalty and thus the sparsity of the expansion weights. We
list the performance of CSurF with different 𝜆𝑞 and 𝜆𝑑 settings
in Table 3. CSurF is able to maintain high model capacity with a
relatively small bag-of-CSFs size, achieving >0.39 MRR@10 with
(3.5×, 1.5×) or (1.5×, 2.7×) the lengths of the original query and
document. More importantly, CSurF learns sparse matching signals
without degradation in model capacity. Compared to current multi-
vector retrievers, CSurF significantly outperforms the exact-match
retriever COIL-tok, while requiring comparable and often fewer re-
trieval time matching operations. On the other hand, CSurF reaches
comparable model effectiveness to ColBERT-v2, with a significantly
lower calculation operation count than all-to-all soft match of all
tokens (>400 ops.), and not requiring further filtering stages of
candidate passage selection as introduced in ColBERT-v2.

We also experiment with post-hoc CSF inverted index pruning,
where we explicitly prune 𝛼 ∈ [0, 1) of the encoded corpus, remov-
ing document CSFs with the lowest lexical form expansion weights.
Figure 2 reports the performance change of two CSurF models
trained with 𝜆𝑞=𝜆𝑑=1e-2 and 𝜆𝑞=𝜆𝑑=1e-3 with cosine similarity
scoring, with different pruning threshold 𝛼 . We see that pruning
further reduces the number of redundant CSFs and match signals
for both models, leading to further retrieval efficiency improvement
while maintaining retrieval capacity (MRR@10>0.39, R@1000>0.98
with 50% of terms pruned).

71

ICTIR ’23, July 23, 2023, Taipei, Taiwan Zhen Fan, Luyu Gao, & Jamie Callan

Table 4: Retreival performance (NDCG@10) on 13 BEIR datasets. Best zero-shot performance on each dataset is labeled in bold.
CSurF𝐻𝑁 (𝛾=0.0) denotes the original CSurF performance without interpolation. CSurF𝐻𝑁 -oracle performance is underlined
when equal to or better than the best baseline.

Model AA CF DB FE FQ HQ NF NQ QU SD SF T2 TC Avg.

BM25 0.441 0.179 0.288 0.648 0.239 0.601 0.297 0.310 - 0.156 0.620 - 0.616 -
Contriever 0.446 0.237 0.413 0.758 0.329 0.638 0.328 0.498 - 0.165 0.677 0.230 0.596 -
ColBERTv2 0.463 0.176 0.446 0.785 0.356 0.667 0.338 0.562 0.854 0.154 0.693 0.263 0.738 0.500
SPLADE++ 0.518 0.237 0.436 0.796 0.349 0.693 0.345 0.533 0.849 0.161 0.710 0.242 0.725 0.507

CSurF𝐻𝑁 (𝛾 = 0.0) 0.521 0.186 0.453 0.720 0.361 0.693 0.351 0.543 0.861 0.158 0.708 0.262 0.726 0.503
CSurF𝐻𝑁 (𝛾 = 1.0) 0.352 0.159 0.420 0.692 0.329 0.690 0.310 0.505 0.833 0.154 0.690 0.232 0.696 0.466
CSurF𝐻𝑁 (oracle) 0.521 0.192 0.458 0.729 0.370 0.713 0.353 0.550 0.867 0.161 0.717 0.264 0.739 0.510

(Best 𝛾) 0.0 0.3 0.1 0.2 0.2 0.4 0.1 0.2 0.2 0.3 0.2 0.2 0.2

Figure 3: Lexical form frequency and weights for CSurF. The
red dotted curve denotes weight distribution. Model trained
with 𝜆𝑞=𝜆𝑑=1e-2. X axis denotes percentage of corpus CSFs.

These experiments demonstrate that the CSurF retrieval process
can be highly efficient due to the sparsity of CSF match signals. To
look into the properties of the CSF generation and matching pro-
cesses, we analyze and plot the distribution of corpus CSFs’ lexical
form frequency and expansion weight in Figure 3. Compared to the
lexical form frequency distribution of the original text, CSurF is
trained to simultaneously expand meaningful lexical surface forms
but also prune existing lexical terms with low term importance,
and removes a significant proportion of tokens with the highest
occurrence frequency, most of which do not carry important contex-
tual meaning such as stop words. This leads to the aforementioned
comparison where CSurF requires lower scoring operations per
query than COIL-tok despite having "longer" queries or documents.
Post-hoc index pruning with 𝛼 = 0.5 further removes redundant
matching signals of lexical forms at all frequencies, resulting in
a significant decrease of matching operations without major in-
fluence in retrieval performance. For instance, after training and
post-hoc pruning, the five most frequent terms in the MSMARCO
passage set ("the", "of", "and", "in", "to") are removed by over 98.5%
compared to their original corpus term frequency.

Finally, we note that CSurF utilizes vector term representations,
and the storage and run cost of CSurF is affected by the repre-
sentation dimension |v| and the computational cost of the actual
term-scoring operation f (). As listed in Table 2, we recognize the

tradeoff in performance where a higher representation dimension
leads to improved performance. Many recent works have also tar-
geted improving the efficiency of representation storage and scoring
in multi-vector retrieval, with proposed methods such as seman-
tic representation clustering and residual compression [10, 38, 39]
also compatible with CSurF. We leave detailed engineering and
optimization of the vector scoring step as future work.

5.3 Out-of-domain retrieval
In this section, we evaluate CSurF on out-of-domain retrieval. Ta-
ble 4 lists the retrieval performance of CSurF on 13 datasets in the
BEIR benchmark. Compared to baseline approaches, CSurF achieves
best performance on 6 of 13 datasets, with a win-loss-tie of 10:3:0
and 8:4:1 compared to ColBERT-v2 and SPLADE++ respectively.
We also observed very different trends in performance across differ-
ent datasets. Specifically, CSurF has low performance on Climate-
Fever [9] and Fever [41]. This may be related to the property of the
retrieval tasks and queries focusing more on exact match of specific
entities, and vector representations introducing noise.

Based on previous work which discusses the effect of original
lexical terms in zero-shot retrieval settings, we utilize CSurF’s capa-
bility to track lexical form source (original text or expansion) and
perform an extra experiment to explicitly introduce and emphasize
the original text lexical form information. We experiment with a
weight-based interpolation approach for CSurF scoring, where at
retrieval time, we modify the lexical form weights of CSFs and
apply a penalty to all CSFs generated solely via expansion, i.e.
𝑤∗
𝐴
= (1 − 𝛾)𝑤𝐴 + 𝛾I(𝐴∈O)𝑤𝐴 , where 𝛾 ∈ [0, 1] is the penalty pa-

rameter. 𝛾 = 0 represents the original CSurF performance without
interpolation, while a higher 𝛾 indicates lower confidence or larger
penalty on expansion-based CSFs.

We test 𝛾=[0.0,0.1,...,0.9,1.0] and list the oracle performance of
CSurF after interpolation and the corresponding 𝛾 in Table 4. On
most datasets, the oracle performance of CSurF is achieved at 𝛾=0.1-
0.3. This demonstrates a mixedmessage: CSurF is overall effective in
expanding meaningful surface forms even in zero-shot settings, but
the LM backbone and expansion component may still suffer from
the change of retrieval domain, and interpolation with an original-
text-only retrieval source or explicitly emphasizing original text
importance can still be helpful.

72

CSurF: Sparse Lexical Retrieval through Contextualized Surface Forms ICTIR ’23, July 23, 2023, Taipei, Taiwan

Table 5: Examples of bag-of-CSFs. We show a query and document from MSMARCO and a query from FEVER in this order.
Original terms are marked in bold. The lexical form and lexical weights of generated CSFs are listed after its source term.
CSFs removed by post-hoc pruning (𝛼 = 0.5) are presented in gray, and remaining CSFs are underlined.

how long (time 2.13) (length 1.64) (duration 1.36) (long 1.19) (hours 0.63) (longest 0.62) (distance 0.47) (times 0.1) (minutes
0.09) is (is 0.45) super (super 2.05) bowl (bowl 2.23) (bowls 1.01) (nfl 0.38) (final 0.01) game (game 1.45)
jefferson (jefferson 2.71) (napoleon 1.13) (adams 0.54) (louis 0.51) (lafayette 0.45) (lewis 0.32) (clark 0.09)
should (should 1.31) (deserved 0.37) (deserve 0.01) right (right 1.35) ##ly be (be 0.31) (best 0.18)
remembered (remembered 2.23) (remember 1.49) (honored 0.93) (forgotten 0.85) (remembering 0.79) (recognized 0.72)
(recalled 0.15) (memory 0.14) (celebrated 0.13) (acknowledged 0.07) for (for 0.83) (because 0.36) the
great (great 1.54) deed (deed 1.74) (deeds 0.36) of purchasing (purchasing 1.56) (buying 0.94) (bought 0.76) (purchased
0.56) (acquiring 0.42) (acquisition 0.22) this (monroe 1.04) (texas 0.34) (france 0.18) (davis 0.14) (west 0.05) (this 0.04)
enormous (enormous 1.47) (massive 0.66) (immense 0.52) (vast 0.27) (expansive 0.19) (extensive 0.18) tract (tract 1.15) of
(expansion 0.34) (conquer 0.2) (of 0.0) land (land 1.68)
death (death 2.89) (died 1.61) (murder 1.2) (deaths 1.17) (suicide 1.13) (fatal 1.04) (dead 0.83) (tragedy 0.65) (die 0.15)
note (note 2.87) (notes 2.04) (##note 1.28) (wo 0.41) is (is 0.43) (manga 0.26) a (genre 0.4)
japanese (japanese 2.04) (japan 1.82) (anime 1.39) (late 0.14) (tokyo 0.14) television (television 1.24) (tv 1.17)
drama (drama 2.0) (comedy 0.11) series (series 1.62) (show 0.21) that (movie 0.5)
first (first 0.74) (debut 0.58) (premiere 0.28) aired (aired 1.8) (air 0.87) (premiered 0.65) (airing 0.07)
in (date 1.51)(episode 0.92) (season 0.84) 2015 (2015 1.91) (singapore 0.33)

5.4 Case study
In this section, we present 3 detailed examples of the generated
bag-of-CSFs in Table 5. We select a query and document from the
MSMARCO passage dataset, and a query from the FEVER dataset.
We observe that CSurF possesses the ability to understand the
context and expand surface forms that are related to the original
term (e.g. plural forms or acronyms), express the same concept
("duration" and "length" expanded from "how long"), or other terms
in related fields ("nfl" and "final" expanded from "super bowl", which
are all related to concepts in American football). It also assigns
higher weights to important CSFs such as core entities, and assigns
lower weights or directly prunes terms like "how", "is" and "the",
matching the analysis in Section 5.2.

We also discuss two interesting observations which points to
directions of further improvement of CSurF. For proper nouns such
as person names, dates or locations, CSurF may not understand the
entity name (e.g. "Death Note" as a TV series), or may over-generate
lexical terms which refer to the same type of entities but irrelevant
to the current context (e.g. generating names from original term
"Jefferson"). These are classic problems in exact-match-based sys-
tems, and potential solutions include injecting external knowledge
to correctly distinguish and generate related entities, and rethinking
and refining the post-hoc pruning stage for CSF-selection. We also
observe that CSurF occasionally generates relevant lexical surface
forms from the seemingly "incorrect" source such as stop words.
This does not effect surface form matching but may affect the ac-
curacy of vector term representation and scoring. In the FEVER
example CSurF learns to prune the original term "a" and "in", but
still generates surface forms "genre" and "date" from such terms.
This calls for a deeper analysis of the lexical expansion step, but
also raises a potential model extension, where we introduce extra
sources to generate lexical forms related to the overall concept or
topic of the text sequence with an independent representation.

6 CONCLUSION
This paper proposes CSurF, which performs sparse lexicon-based re-
trieval through constructing and matching Contextualized Surface
Forms. Its retrieval process combines efficient surface form exact
match and fine-grained contextualized semantic scoring, which
leads to maximized model capacity while maintaining the simplic-
ity and efficiency of exact-match-based retrieval systems.

CSurF extends current term-weight based learned sparse re-
trieval approaches with vector term representations. On experi-
ments across multiple datasets and retrieval settings, CSurF is able
to simultaneously bridge the vocabulary and semantic mismatch in
exact-match retrieval, and achieve state-of-the-art retrieval perfor-
mance for lexical exact-match systems. Ablation studies and analy-
sis further demonstrate CSurF’s ability to jointly expandmeaningful
surface forms and ground surface forms to underlying semantics,
which leads to increased model capacity. We also propose a simple
interpolation approach in out-of-domain retrieval settings, to ana-
lyze the effect of original text vs. expanded surface forms as well
as the quality of lexical form expansion on different retrieval tasks.

Compared to all-to-all soft-match retrievers, CSurF achieves com-
parable performance across all retrieval tasks as an exact-match-
based retrieval system. CSurF is able to learn sparse connections of
the original query and document terms, resolving the key efficiency
issue of lexical soft-match. The retrieval efficiency of CSurF can
also be further optimized with different approaches including train-
ing regularization adjustment, post-hoc index pruning, and vec-
tor representation approximation or dimension control, without
significantly affecting retrieval accuracy. We hope this work en-
courages more research on building effective, efficient, robust and
knowledge-enhanced sparse retrieval systems in the real world, as
well as exploring the connection and distinction among current
retrieval frameworks and systems.

73

ICTIR ’23, July 23, 2023, Taipei, Taiwan Zhen Fan, Luyu Gao, & Jamie Callan

REFERENCES
[1] Nasreen Abdul-Jaleel, James Allan, W Bruce Croft, Fernando Diaz, Leah Larkey,

Xiaoyan Li, Mark D Smucker, and Courtney Wade. 2004. UMass at TREC 2004:
Novelty and HARD. Computer Science Department Faculty Publication Series
(2004), 189.

[2] Yang Bai, Xiaoguang Li, Gang Wang, Chaoliang Zhang, Lifeng Shang, Jun Xu,
Zhaowei Wang, Fangshan Wang, and Qun Liu. 2020. SparTerm: Learning term-
based sparse representation for fast text retrieval. arXiv preprint arXiv:2010.00768
(2020).

[3] Bodo Billerbeck and Justin Zobel. 2005. Document expansion versus query
expansion for ad-hoc retrieval. In Proceedings of the 10th Australasian Document
Computing Symposium. 34–41.

[4] Guihong Cao, Jian-Yun Nie, Jianfeng Gao, and Stephen Robertson. 2008. Select-
ing good expansion terms for pseudo-relevance feedback. In Proceedings of the
31st annual international ACM SIGIR conference on Research and development in
information retrieval. 243–250.

[5] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Ellen M
Voorhees. 2020. Overview of the TREC 2019 deep learning track. arXiv preprint
arXiv:2003.07820 (2020).

[6] Zhuyun Dai and Jamie Callan. 2020. Context-aware document term weighting
for ad-hoc search. In Proceedings of The Web Conference 2020. 1897–1907.

[7] Zhuyun Dai, Chenyan Xiong, Jamie Callan, and Zhiyuan Liu. 2018. Convolutional
neural networks for soft-matching n-grams in ad-hoc search. In Proceedings of the
eleventh ACM international conference on web search and data mining. 126–134.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[9] Thomas Diggelmann, Jordan Boyd-Graber, Jannis Bulian, Massimiliano Ciaramita,
and Markus Leippold. 2020. Climate-fever: A dataset for verification of real-world
climate claims. arXiv preprint arXiv:2012.00614 (2020).

[10] Zhen Fan, Luyu Gao, Rohan Jha, and Jamie Callan. 2023. COILcr: Efficient
Semantic Matching in Contextualized Exact Match Retrieval. In Advances in
Information Retrieval: 45th European Conference on Information Retrieval, ECIR
2023, Dublin, Ireland, April 2–6, 2023, Proceedings, Part I. Springer, 298–312.

[11] Thibault Formal, Carlos Lassance, Benjamin Piwowarski, and Stéphane Clinchant.
2021. SPLADE v2: Sparse lexical and expansion model for information retrieval.
arXiv preprint arXiv:2109.10086 (2021).

[12] Thibault Formal, Benjamin Piwowarski, and Stéphane Clinchant. 2021. SPLADE:
Sparse lexical and expansion model for first stage ranking. In Proceedings of
the 44th International ACM SIGIR Conference on Research and Development in
Information Retrieval. 2288–2292.

[13] Luyu Gao and Jamie Callan. 2021. Condenser: a pre-training architecture for
dense retrieval. arXiv preprint arXiv:2104.08253 (2021).

[14] Luyu Gao and Jamie Callan. 2021. Unsupervised corpus aware language model
pre-training for dense passage retrieval. arXiv preprint arXiv:2108.05540 (2021).

[15] Luyu Gao, Zhuyun Dai, and Jamie Callan. 2021. COIL: Revisit Exact Lexical Match
in Information Retrieval with Contextualized Inverted List. In Proceedings of the
2021 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT 2021, Online, June 6-11,
2021. Association for Computational Linguistics, 3030–3042. https://doi.org/10.
18653/v1/2021.naacl-main.241

[16] Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. Simcse: Simple contrastive
learning of sentence embeddings. arXiv preprint arXiv:2104.08821 (2021).

[17] Jiafeng Guo, Yixing Fan, Qingyao Ai, andWBruce Croft. 2016. Semantic matching
by non-linear word transportation for information retrieval. In Proceedings of the
25th ACM International on Conference on Information and Knowledge Management.
701–710.

[18] Sebastian Hofstätter, Sheng-Chieh Lin, Jheng-Hong Yang, Jimmy Lin, and Allan
Hanbury. 2021. Efficiently teaching an effective dense retriever with balanced
topic aware sampling. In Proceedings of the 44th International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval. 113–122.

[19] Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bo-
janowski, Armand Joulin, and Edouard Grave. 2021. Towards unsupervised dense
information retrieval with contrastive learning. arXiv preprint arXiv:2112.09118
(2021).

[20] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity
search with GPUs. IEEE Transactions on Big Data 7, 3 (2019), 535–547.

[21] Omar Khattab and Matei Zaharia. 2020. Colbert: Efficient and effective passage
search via contextualized late interaction over bert. In Proceedings of the 43rd
International ACM SIGIR conference on research and development in Information
Retrieval. 39–48.

[22] Carlos Lassance and Stéphane Clinchant. 2022. An efficiency study for SPLADE
models. In Proceedings of the 45th International ACM SIGIR Conference on Research
and Development in Information Retrieval. 2220–2226.

[23] Minghan Li, Sheng-Chieh Lin, Barlas Oguz, Asish Ghoshal, Jimmy Lin, Yashar
Mehdad, Wen-tau Yih, and Xilun Chen. 2022. CITADEL: Conditional Token
Interaction via Dynamic Lexical Routing for Efficient and Effective Multi-Vector
Retrieval. arXiv preprint arXiv:2211.10411 (2022).

[24] Jimmy Lin and Xueguang Ma. 2021. A Few Brief Notes on DeepImpact, COIL,
and a Conceptual Framework for Information Retrieval Techniques. CoRR
abs/2106.14807 (2021). arXiv:2106.14807 https://arxiv.org/abs/2106.14807

[25] Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin. 2021. In-batch negatives
for knowledge distillation with tightly-coupled teachers for dense retrieval. In
Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-
2021). 163–173.

[26] Donald Metzler and W Bruce Croft. 2005. A markov random field model for
term dependencies. In Proceedings of the 28th annual international ACM SIGIR
conference on Research and development in information retrieval. 472–479.

[27] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality.
Advances in neural information processing systems 26 (2013).

[28] Thong Nguyen, Sean MacAvaney, and Andrew Yates. 2023. A Unified Framework
for Learned Sparse Retrieval. In Advances in Information Retrieval: 45th European
Conference on Information Retrieval, ECIR 2023, Dublin, Ireland, April 2–6, 2023,
Proceedings, Part III. Springer, 101–116.

[29] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan
Majumder, and Li Deng. 2016. MS MARCO: A human generated machine reading
comprehension dataset. In CoCo@ NIPS.

[30] Rodrigo Nogueira and Kyunghyun Cho. 2019. Passage Re-ranking with BERT.
arXiv preprint arXiv:1901.04085 (2019).

[31] Rodrigo Nogueira, Jimmy Lin, and AI Epistemic. 2019. From doc2query to
docTTTTTquery. Online preprint 6 (2019).

[32] Rodrigo Nogueira, Wei Yang, Jimmy Lin, and Kyunghyun Cho. 2019. Document
expansion by query prediction. arXiv preprint arXiv:1904.08375 (2019).

[33] Biswajit Paria, Chih-Kuan Yeh, Ian EH Yen, Ning Xu, Pradeep Ravikumar, and
Barnabás Póczos. 2020. Minimizing flops to learn efficient sparse representations.
arXiv preprint arXiv:2004.05665 (2020).

[34] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[35] Yujie Qian, Jinhyuk Lee, Sai Meher Karthik Duddu, Zhuyun Dai, Siddhartha
Brahma, Iftekhar Naim, Tao Lei, and Vincent Y Zhao. 2022. Multi-Vector Retrieval
as Sparse Alignment. arXiv preprint arXiv:2211.01267 (2022).

[36] Ruiyang Ren, Yingqi Qu, Jing Liu, Wayne Xin Zhao, Qiaoqiao She, Hua Wu,
Haifeng Wang, and Ji-Rong Wen. 2021. Rocketqav2: A joint training method for
dense passage retrieval and passage re-ranking. arXiv preprint arXiv:2110.07367
(2021).

[37] Stephen Robertson, Hugo Zaragoza, et al. 2009. The probabilistic relevance
framework: BM25 and beyond. Foundations and Trends® in Information Retrieval
3, 4 (2009), 333–389.

[38] Keshav Santhanam, Omar Khattab, Christopher Potts, and Matei Zaharia. 2022.
PLAID: an efficient engine for late interaction retrieval. In Proceedings of the
31st ACM International Conference on Information & Knowledge Management.
1747–1756.

[39] Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, Christopher Potts, and Matei
Zaharia. 2021. Colbertv2: Effective and efficient retrieval via lightweight late
interaction. arXiv preprint arXiv:2112.01488 (2021).

[40] Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna
Gurevych. 2021. BEIR: A heterogenous benchmark for zero-shot evaluation of
information retrieval models. arXiv preprint arXiv:2104.08663 (2021).

[41] James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal.
2018. FEVER: a Large-scale Dataset for Fact Extraction and VERification. In
NAACL-HLT.

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[43] Ellen M Voorhees. 1994. Query expansion using lexical-semantic relations. In
SIGIR’94: Proceedings of the Seventeenth Annual International ACM-SIGIR Confer-
ence on Research and Development in Information Retrieval, organised by Dublin
City University. Springer, 61–69.

[44] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al.
2019. Huggingface’s transformers: State-of-the-art natural language processing.
arXiv preprint arXiv:1910.03771 (2019).

[45] Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power. 2017.
End-to-end neural ad-hoc ranking with kernel pooling. In Proceedings of the 40th
International ACM SIGIR conference on research and development in information
retrieval. 55–64.

[46] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett,
Junaid Ahmed, and Arnold Overwijk. 2020. Approximate nearest neighbor nega-
tive contrastive learning for dense text retrieval. arXiv preprint arXiv:2007.00808
(2020).

[47] Jinxi Xu and W Bruce Croft. 1996. Query expansion using local and global
document analysis. In Proceedings of the 19th annual international ACM SIGIR
conference on Research and development in information retrieval. 4–11.

74

https://doi.org/10.18653/v1/2021.naacl-main.241
https://doi.org/10.18653/v1/2021.naacl-main.241
https://arxiv.org/abs/2106.14807
https://arxiv.org/abs/2106.14807

CSurF: Sparse Lexical Retrieval through Contextualized Surface Forms ICTIR ’23, July 23, 2023, Taipei, Taiwan

[48] Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, and Shaoping
Ma. 2021. Optimizing dense retrieval model training with hard negatives. In
Proceedings of the 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 1503–1512.

[49] Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, and Shaoping Ma.
2022. Learning Discrete Representations via Constrained Clustering for Effective
and Efficient Dense Retrieval. In Proceedings of the Fifteenth ACM International
Conference on Web Search and Data Mining (Virtual Event, AZ, USA) (WSDM

’22). Association for Computing Machinery, New York, NY, USA, 1328–1336.
https://doi.org/10.1145/3488560.3498443

[50] Tiancheng Zhao, Xiaopeng Lu, and Kyusong Lee. 2021. SPARTA: Efficient Open-
Domain Question Answering via Sparse Transformer Matching Retrieval. In
Proceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies. Association for
Computational Linguistics, Online, 565–575. https://doi.org/10.18653/v1/2021.
naacl-main.47

75

https://doi.org/10.1145/3488560.3498443
https://doi.org/10.18653/v1/2021.naacl-main.47
https://doi.org/10.18653/v1/2021.naacl-main.47

	Abstract
	1 Introduction
	2 Related Work
	3 Contextualized Surface Forms
	3.1 Prelimiaries
	3.2 Contextualized Surface Form Generation
	3.3 Indexing and Retrieval
	3.4 Connection to Current Systems
	3.5 Model Implementation and Training

	4 Experimental Methodology
	5 Experimental Results
	5.1 In-domain passage retrieval effectiveness
	5.2 Retrieval Efficiency
	5.3 Out-of-domain retrieval
	5.4 Case study

	6 Conclusion
	References

