Automatically Labeling Hierarchical Clusters

Pucktada Treeratpituk

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213, USA
puck@cs.cmu.edu

ABSTRACT

Government agencies must often quickly organize and analyze
large amounts of textual information, for example comments
received as part of notice and comment rulemaking.
Hierarchical organization is popular because it represents
information at different levels of detail and is convenient for
interactive browsing. Good hierarchical clustering algorithms
are available, but there are few good solutions for automatically
labeling the nodes in a cluster hierarchy.

This paper presents a simple algorithm that automatically
assigns labels to hierarchical clusters. The algorithm evaluates
candidate labels using information from the cluster, the parent
cluster, and corpus statistics. A trainable threshold enables the
algorithm to assign just a few high-quality labels to each cluster.
Experiments with Open Directory Project (ODP) hierarchies
indicate that the algorithm creates cluster labels that are similar
to labels created by ODP editors.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing—L.inguistic processing.

General Terms
Algorithms, Performance, Experimentation.

Keywords

Document hierarchy, cluster labeling.

1. INTRODUCTION

Government agencies, like most modern organizations, must
often quickly organize and analyze large amounts of textual
information. Our research is motivated by notice and comment
rulemaking, in which U.S. regulatory agencies are required to
consider comments submitted by the general public [11]; when
an agency receives hundreds of thousands of unique comments
and edited form letters during a short period of time, quickly
organizing them and identifying the issues raised is a significant

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

dg.02006, May 21-24, 2006, San Diego, California, USA.

Copyright 2004 ACM 1-58113-000-0/00/0004...$5.00.

Jamie Callan

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213, USA
callan@cs.cmu.edu

challenge. However, the problem of organizing large amounts
of text for rapid analysis subsumes notice and comment
rulemaking. The U.S. National Archives and Records
Administration (NARA) and other government agencies face
similar problems. Search engines such as FirstGov* have the
problem on a smaller scale — given a set of texts, how to quickly
organize them and describe their contents.

Hierarchical organization is popular because it represents
information at different levels of detail and is convenient for
interactive browsing (e.g., Yahoo! [17], the Open Directory
Project [13]). At the top of the hierarchy, the collection is
organized into a few general categories; as a person descends
the hierarchy, she gets greater detail about increasingly specific
categories. Typically each document cluster is assigned a
descriptor that describes the documents it contains. One goal of
hierarchical clustering is to improve the users’ ability to browse
the collection, so it is very important that the hierarchy has good
cluster descriptors. These descriptors can be either category
labels, as in Yahoo! Directories, or lists of topical terms.

There is considerable prior research on hierarchical clustering
algorithms and their applications in information retrieval and
data mining research. However, less attention has been paid to
creating good cluster descriptors. Cluster descriptors created
automatically often either fail to provide a comprehensive
description of the cluster, or consist of lists of terms from which
a person must infer a general description.

This paper proposes a simple algorithm that automatically
assigns concise labels to hierarchical clusters. The algorithm
combines statistical features of the cluster, the parent cluster,
and the corpus into a descriptive score. The algorithm is based
on the hypothesis that by comparing the word distribution from
different parts of the hierarchy, it should be possible to assign
appropriate labels to each cluster in the hierarchy.

The rest of this paper is organized as follows. Section 2,
describes the hierarchical clustering and hierarchical clustering
labeling task. It also discusses the characteristic of a good label
for hierarchical clusters. Section 3 presents previous research
on cluster labeling and related tasks. Section 4, describes the
proposed labeling algorithm. Section 5 presents experimental
results. Section 6 summarizes our finding and offers suggestions
about possible future improvements.

L http:/iwww. firstgov.gov/

2. LABELING HIERARCHICAL
CLUSTERS

Hierarchical clustering partitions a document collection into a
small number of clusters, and each cluster is further partitioned
into subclusters in a recursive manner. Hierarchical clusters can
be constructed by agglomerative methods that start with each
document in its own cluster and then repeatedly group similar
clusters into broader clusters; or by divisive methods that start
with all documents in one cluster and then repeatedly divide
each cluster into more detailed subclusters.

In labeling hierarchical clusters, one assumes the existence of a
hierarchy of document clusters. The task is to assign a good
descriptor to each cluster node in the hierarchy. The most
common cluster descriptors are either concise labels, or lists of
terms and phrases. For example, a cluster of documents about
natural language processing might be described by the label
“natural language processing” or the list of terms “tag, text,
linguist, lexicon, corpus, tagger, word, syntax, grammar.” A list
of terms is often less useful than a single category label, because
it requires the user to infer the concept implied by the terms.
However, a list of terms is the most common choice for labeling
clusters automatically because it fails gracefully; a person can
often infer the general description even when a few of the
selected terms are poor choices.

Our goal is an algorithm that selects concise cluster labels that
are similar to what a person might create manually. A good
descriptor for a cluster should not only indicate the main
concept of the cluster, but also differentiate the cluster from its
siblings and its parent cluster. Consider a cluster of “neural
network” documents under a broader “Al” cluster. The parent
cluster “Al” may also have “machine learning” and “fuzzy
logic” child clusters. In another context, a label “computer
science” might be an acceptable descriptor for the “neural
network™ cluster. However, in the context of this hierarchy,
“computer science” does not distinguish the “neural network”
cluster from its siblings. The descriptors appropriate for a given
set of documents will differ under different hierarchies.

We define the labeling task as follows: Given a cluster of
documents in a cluster hierarchy, the goal is to produce
appropriate category labels for the cluster. The algorithm is
allowed to return a list of plausible labels, ranked by its
confidence about how descriptive each label is; the list should
be as short as possible. A ranked list of labels is a compromise
between a single category label and a list of topical terms.

3. RELATED WORK

Although there has been much research in hierarchical
clustering of documents, little focused on labeling the resulting
clusters of documents [2][3][4][5][10]. Clustering algorithms
can naively label their clusters with the most frequent words in
the clusters [2]. Those resulting labels tend to be general, and
usually are not good discriminative descriptors. The algorithm
may choose to represent its clusters of documents with the
documents near each cluster’s centroid. One example of
algorithms that use this representation is Scatter/Gather [3],
which represents a cluster with a list of documents near the
cluster’s centroid and a list of topical terms. The topical terms
are the terms with the highest weights in the cluster centroid. In
one report the algorithm showed approximately the top 10

topical terms to the users. In addition to the shortcomings,
mentioned above, of using lists of terms as descriptors, this
approach does not take into account the hierarchical structure of
the cluster hierarchy. The resulting descriptor might be
descriptive, but might not discriminate the cluster from its
parent or sibling clusters.

There have been attempts to identify cluster labels from word
distribution in the hierarchy. Popescul et al. [10], and Glover et
al. [4] proposed statistical methods in selecting cluster
descriptors, based on the context of the surrounding clusters
(parent cluster and sibling clusters). Popescul proposed to use
the statistical test 32 to detect difference in word distribution
across the hierarchy. At each cluster node in the hierarchy,
starting from the root, the y? test is used to detect a set of words
that is equally likely to occur in any of the subclusters of the
current node. Those words are considered to be non-descriptive
terms for every subcluster of the current node, and thus are
removed from every subcluster. After the y? test is used to
removed non-descriptive words from every cluster node, the
algorithm labels each cluster with the list of the remaining
words at that cluster node ranked by the word frequency.

Glover et al. [4] showed how a simple model based only on
terms’ document frequency statistic can be used to select parent,
child and self descriptors for document clusters, especially for
web pages. The label candidates were extracted from the web
page’s content, anchor texts and extended anchor texts. Anchor
texts of a web page are the hyperlinked words that link to the
web page. Extended anchor texts refer to the words that occur
before and after the anchor texts including the anchor texts
themselves. Labels were selected and ranked using document
frequency and some preset cutoff values. In their experiment,
they found that labels extracted from anchor texts and extended
anchor texts provide better description than ones extracted from
the page’s content. This is because web pages often do not
contain words that describe their categories. However, obtaining
anchor texts and extended anchor texts is an expensive
operation, and requires one to know the hyperlink structure of
the World Wide Web. Furthermore, the hyperlink structure is
generally not available in non-webpage document collection.

Another research area closely related to cluster labeling is
automatic ontology construction. It should be noted that while a
ontology hierarchy has well-defined parent-child relationship,
such as hypernyms-hyponym and meronymy (part-whole), a
document hierarchy of the same collection does not necessary
have to reflect the same parent-child relationship. The higher
flexibility in hierarchal structure of a document hierarchy might
better serve for task such as browsing.

There have been some works on creating ontology hierarchies
using clustering based techniques. These approaches require that
the resulting hierarchy be automatically labeled. Caraballo [1]
constructed a noun hierarchy of hypernyms automatically from
text. The noun hierarchy is constructed using bottom-up
clustering approach, grouping nouns based on conjunction and
apposition. In order to label each internal cluster, a set of
possible hypernyms of every noun in the cluster is extracted
from the text using a linguistic pattern. The noun that has the
largest number of hyponym relations with the noun in the
clusters is assigned as the cluster label.

Pantel et al. [9] automatically assigned label to semantic classes,
generated from their clustering algorithm. For each semantic
class, a subset of concepts in the class that is most likely to
represent the semantic class is selected as class representatives.
These representative concepts are then used to extract label
candidates using some lexical patterns. The label candidate with
the highest mutual information with the class representatives is
assigned as class label.

4, ALGORITHMS

Glover et al. [4] showed that a simple term frequency analysis
could predict the labels of document clusters. Their algorithm is
based on the hypothesis that a word that is very common in the
cluster, but relatively rare in the collection, is likely to be a good
cluster descriptor. They selected cluster descriptor candidates
based on the following criteria:

Candidates = {phrase p | DF¢ / |C| < maxColPos and
DFs/|S| > minSelfPos}

where DF¢ is the number of documents in the collection that
contains the phrase p (“document frequency”), and DFs is the
number of documents in the cluster (the “self cluster” S) that
contain the phrase p. |C| and |S| denote the number of documents
in the collection and in the self cluster. maxColPos and
minSelfPos are thresholds. Phrases that appear more than
minSelfPos times per document, on average, in “self cluster”
documents, and less than maxColPos times per document, on
average, in the collection are considered to be the in the label
candidate set. Phrases in the candidate set are ranked according
to their DFs values. Every phrase in the collection is
considered, without stemming or stopwords removal [4].

There are several limitations to Glover’s threshold-based
method. First, the performance of the algorithm is sensitive to
preset threshold values (maxColPos, minSelfPos), and the
optimal thresholds vary between clusters. Second, multiword
phrases normally have lower DFs/ |S| values than single words,
thus are rarely selected as a descriptors. Third, documents often
do not contain words that describe their categories, so basing the
decision mainly on DFs/ |S| generally does not work well.

Due to these limitations, we propose a more general labeling
algorithm that allows us to incorporate more features in
selecting the cluster descriptors.

Labeling Algorithm:

First, we assume that the algorithm has access to a general
collection of documents E, representing the word distribution in
general English. This English corpus is used primarily in
selecting label candidates, as explained below.

Given a cluster S and its parent cluster P, which includes all of
the documents in S and in the sibling clusters of S, the algorithm
selects labels for the cluster S with the following steps:

1) Collect phrase statistics: For every unigram, bi-
gram, and tri-gram phrase p occurring in the cluster S,
calculate the document frequency and term frequency
statistics for the cluster, the parent cluster and the
general English corpus.

2) Select label candidates: Select the label candidates
from unigram, bi-gram, and tri-gram phrases based on

document frequency in the cluster and in general
English language.

3) Calculate the descriptive score: Calculate the
descriptive score (DScore) for each label candidate,
then sort the label candidates by these scores.

4) Calculate the cutoff point: Decide how many label
candidate to display based on the descriptive scores.

Each step is described in more detail, below.

4.1 Collecting Phrase Statistics

For each phrase appearing in the cluster, collect the following
statistics: document frequency (DF), and term frequency (TF)
with respect to the cluster S, the parent cluster P and the general
English corpus E. Document frequency of a phrase p with
respect to a cluster C, denoted by DFc, is the number of
documents in the cluster that contain p. Term frequency of a
phrase p in a cluster C, denoted by TFc, is total number of
occurrences of p in the cluster.

4.2 Select Label Candidates

Instead of considering every phrase occurring in the cluster, we
hypothesize that, although a good descriptor need not occur in
the majority of the documents in the cluster, it should occur in at
least 20% of the documents in the cluster. Since phrases in
general occur less frequent than single words, the selection
criteria are slightly different in the case of bigrams and trigrams:
The algorithm only considers bigram and trigram phrases that
occur in at least 5% of the documents in the cluster. These
cutoffs improve the efficiency of the algorithm. Low frequency
phrases usually have low weights, thus these thresholds
generally don’t prune phrases that would be ranked highly
otherwise.

Common words (stopwords) are also removed from
consideration. The algorithm considers any words that occur in
more than 20% of the general English corpus to be stopwords.
In the case of the non-unigram phrases, the algorithm considers
any phrases that contain only words that occur in more than
30% of the documents in the general English corpus E to be
stopwords. This cutoff was chosen conservatively by analyzing
the word distribution in general English corpora, trying not to
exclude descriptive words.

4.3 Descriptive Score (DScore)

The descriptiveness of a label with respect to a cluster is
measured by the descriptive score (DScore). For a phrase p, the
descriptive score is based on the features described below.
Normalized Document Frequency (DFc/|C|)

Normalized document frequency is the fraction of the cluster
that contains the phrase p.

DF.

C]

normalized DF; =

In general a label candidate that occurs in more documents in
the cluster is expected to be a better descriptor than one that
rarely occurs. The algorithm computes normalized DF for both
the self cluster S and the parent cluster P (DFs/ |S|, DFp / |P|).
A good descriptor should occur relatively frequent in the parent
cluster, but occur very frequent in the self cluster.

TFIDF

This is similar to a traditional TFIDF value used in information
retrieval.

ICI

TFIDF, =TF, *log(—
C

)

As in traditional IR, a phrase with high TFIDF value is expected
to be important to the cluster, thus possibly is also a good
cluster descriptor. The TFIDF score favors phrases that appear
multiple times per document. The algorithm computes TFIDF
for both the self cluster and the parent cluster (TFIDFs,
TFIDF).

Rank of TFIDF, and nDF (r(TFIDF), r(normalized DF))

Four rankings are computed for every label candidate based on
the features DFs / |S|, DFp / |P|, TFIDFs, and TFIDFp. For
example, for DFg/ |S|, the algorithm sorts every label candidate
according to its DFs/ |S| score; the label with the highest value
is assigned rank 1, denoted by r(DFs / |S]) = 1. The label with
the second highest score is assigned rank 2, and so on. Tied
scores produce tied rankings. A good descriptor is expected to
have a relatively high rank of DFp / |P| and even higher rank of
DFs/|S].

Rank features, e.g. r(DFs / |S]), convey similar information as
their quantitative counterparts, e.g. DFs. However, rank
features may be less sensitive than normalized DF and TFIDF
values, and thus may be more comparable across categories.

Boost in Ranking

Since we hypothesize that a good descriptor probably has a
relatively high rank of normalized DFp (relatively frequent in
the parent cluster), and even higher rank of normalized DFs
(very frequent in the self cluster), we measure this boost in
ranking of nDF with the following measure:

{51)| {31

The algorithm computes the boost in ranking in log-scale
because the change in ranking is more significant at the top of
the ranking (those which have high document frequency). For
example, a label that moves from being the 200" most frequent
phrase in the parent cluster to the 100" most frequent phrase in
the self cluster, is probably less descriptive than another label
that moves from the 100" most frequent phrase in the parent
cluster to the 5™ most frequent phrase in the self cluster.

In addition to the boost in ranking of normalized document
frequency, the algorithm also computes the boost in ranking of
TFIDF, with the following formula:

log[r(TFIDF,)]-log[r(TFIDF)]

If TFIDF is related to the topicality of the phrase, then a good
descriptor is expected to have a higher TFIDF rank in the self
cluster, compared to its TFIDF rank in the parent cluster. The
algorithm also computes the boost in ranking of TFIDF in log-
scale for the same reason as in the case of normalized DF.

Phrase Length (LEN)

The phrase length is the number of terms in the phrase. While
the document frequency feature prefers a shorter phrase to a
longer phrase, LEN prefers the longer phrases to shorter ones.

The algorithm combines every feature into one descriptive score
with a linear model. Thus the algorithm computes how
descriptive a phrase p is as a label for the cluster S, with parent
cluster P with the following formula:

DScore, = c¢,+c *LEN

¢, *DF; /|S|+c,* DF, /|P|

¢, *TFIDF, +c, *TFIDF,

¢, *r(DF /|S)) +¢, *r(DF, /|P))

C, *r(TFIDF,) +c, *r(TFIDF;)

o *[log(r (DF, /|P)) ~ log(r (DF /[S]))]
+ ¢, *[log(r(TFIDF,)) - log(r (TFIDF))]

Each label candidate is sorted by its descriptive score.

+ o+ o+ o+ o+

The weights of each feature are estimated using linear
regression and training data. Linear regression attempts to
estimate the expected value of a variable Y given the values of a
set of features Xi, by assuming a linear relationship between Y
and X;. Thus, Y can be expressed as linear combination of
features Xi:

Y:b0+2biXi+e

where e is a random variable residue (error term), with mean
zero. The coefficients b; for all i are optimized so that the sum of
the residue square in the training data is minimized.

In order to train the linear regression model, since the correct
descriptive score is not known for each label candidate, we have
to estimate the descriptive score of a label candidate. We
estimate each label candidate’s descriptive score based on how
much the label overlaps with the correct category label in a set
of training data. We define the DScore estimate of a label L,
with respect to the correct label CL as:

ma overlap(SL,CL) 3
st esynonym(L) “max{len(SL), len(CL)}

where overlap(SL,CL) is the number of terms that are shared
between SL and CL, and len(X) denotes the length of X. If the
label candidate or a synonym of the label candidate is the same
as the correct category label, then the DScore estimate is 1. The
estimation of DScore that we use to train the linear regression
model is only a heuristic value, because many good descriptors
would have the DScore estimates of zero, since they do not
overlap with the correct label.

4.4 Cutoff Model

By default, the algorithm displays the 5 labels with the highest
descriptive scores as the cluster descriptor. However, we
observe that even in a short list of five labels there is generally a
big drop-off in the descriptive scores at some point. The big
drop-off in the descriptive scores often separates good labels
from bad labels. The algorithm can use this information to
decide how many labels to display. If the top-ranked label has a
very high descriptive score compared to the rest of the label
candidates then the algorithm can be very confident that the top-
ranked label is the correct descriptor, and thus display only the
top-ranked label. On the other hand, if all label candidates have

DScore *=

similarly low DScores (only small gaps between each
consecutive label), there is less certainty about which labels are
best, so more labels are displayed.

The following linear model is used to decide how many labels to
display.

Displayed =c, —c, *(DScore,, — DScore, ,)
—c, *(DScore, , — DScore, ;)
—c, *(DScore, , — DScore, ,)
—c, *(DScore, , — DScore, ;)

The weights in the model are optimized using linear regression
and training data. We expect the optimized C, to be around 5,
while expecting the weights C;, C,, Cs, C4 to be in increasing
order.

The same training data used to train the descriptive score model
in Section 4.3 can be used to generate training instances for the
cutoff model. The cutoff model is trained based on the top-
ranked labels produced by the trained descriptive model. For
each category in the training data, the 5 labels with the highest
predicted descriptive score are determined. The optimal number
of labels to display is defined as the rank of the label (from 1 to
5) that has the maximum overlap with the correct category label.
If there is a tie, then the label furthest down the list is picked.
Thus the cutoff model is trained based on the top-5 predicted
descriptive scores from each training category.

5. EXPERIMENTAL RESULTS

A set of experiments was conducted to evaluate the
effectiveness of the algorithm at selecting labels. We describe
the data and evaluation measures first, followed by descriptions
of the experiments and their results.

5.1 Data Collections

The Open Directory Project® was used as a source of documents
(web pages), hierarchical organization, and “ground truth”
labels assigned by human editors. We randomly sampled 20,462
web pages from the ODP hierarchy to use as background model
representing general English (collection statistics). We
separately sampled another subset of ODP hierarchy to use as
our training and testing ground truth data.

We selected total of 165 subcategories from ODP under 9
categories.

e Computers / artificial intelligence.

e Computers / security.

e Health / alternative.

e Health / medicine.

e Health / medicine / imaging.

e Health / medicine / surgery.

e Health / conditions and diseases.

e Health / conditions and diseases / digestive disorders.

e Business / management.

2 http:/Avww.dmoz.org/

Every subcategory from the 9 parent categories was included,
with the exception of alias subcategories (because those
subcategories mainly belong somewhere else in the hierarchy),
even ones with common words as labels such as Surgery /
General. In total, the constructed hierarchy contains 25,143 web
pages. The selected subcategories vary both in depth (between
level two and level three with respect to the Open Directory
root) and in number of web pages in each cluster. Figure 1
shows a partial snapshot the document hierarchy.

Business (3,318)
- Management (3,318)
o Benchmarking and Best Practices (35)
o Business Process Analysis (41)
o]
Computers (4,982)
- Artificial Intelligence (1,616)
o0 Academic Departments (60)
o Agents (98)
o ..
- Security (3,366)
0 Advisories and Patches (71)
o0 FAQs, Help, and Tutorials (11)
o]
Health (16,843)
- Alternative (5,387)
o Acupuncture and Chinese Medicine (502)
0 Alexander Technique (129)
o ..
- Conditions and Diseases (8,204)
o Allergies (169)
o Blood Disorders (176)
o ..
- Medicine (3,252)
o Imaging (173)
. Computer Tomography Scanning
(11
. Magnetic Resonance Imaging (22)
o Research (107)
o ..
o Surgery (506)
= Cardiothoracic (112)
L] Cosmetic and Plastics (73)
L] General (86)
L] Head and Neck (4)

Figure 1. shows subset of the ODP hierarchy used as
ground truth data, number of documents in each cluster is
showed in the parentheses

5.2 Evaluation Measure

We define the cluster-labeling task as a descriptor-ranking
problem. In the evaluation we need to specify our criteria in
assessing the quality of the ranking produced. In comparing our
labels to the correct ODP label, we use the following two
definitions of a correct label: Exact match and partial match.

5.2.1 Definitions of a correct label
For a given category with self-label S, and parent-label P:

Exact Match: A label L is an exact match of the correct label S
if there exists a synonym SL of L such that SL is equal to “S”,
“S P” or “P S.” For example, for the category “medical /

research,” labels such as “research,” “medical research,” and
“research medical” would be classified as exact match labels.

Partial Match: A label L is a partial match of the correct label
S if there exists a synonym SL of L such that SL shares a term
with “S”, “S P” or “P S.” For example, for the category
“management / business process analysis,” labels such as
“business,” “process,” “business management,” “management
analysis” would be classified as partial matches.

The synonym list for each word was obtained automatically
from WordNet [16]. For both of these definitions of a correct
label, we compute the following evaluation measures.

5.2.2 Match at top N results (Match@N)

Match@N indicates whether the top N results contain any
correct labels. It is a binary indicator, and monotonically
increases as N increases.

5.2.3 Precision at top N results (P@N)
Precision is computed as the number of labels in the top N
results that match the correct categories label divided by N.

P@N measures the percentage of correct answers that are
displayed in ranks 1-N. In general, low precision is undesirable.

5.2.4 Mean Reciprocal Rank (MRR)

Mean reciprocal rank is the mean of the reciprocal of the rank of
the first correct label. If the first correct label is ranked as the 3"
label, then the reciprocal rank (RR) is 1/3. If none of the first N
responses contains a correct label, RR is 0. RR is 1 if the
highest ranked label matches the correct label.

5.2.5 Mean Total Reciprocal Rank (MTRR)
Sometimes there is more than one aspect to a category; for
example, the category “acupuncture and Chinese medicine” has
two correct aspects, “acupuncture” and “Chinese medicine.”
MTRR is similar to MRR, however, instead of considering only
the rank of the first correct label as in MRR, MTRR takes into
account all correct labels. Of the algorithm ranks “acupuncture”
and “Chinese medicine” as the 2" and the 4™ labels, then the
TRR (total reciprocal rank) is %2 + ¥ = % while RR = %.

Our evaluation methodology is extremely strict because it

ODP category labels [parent-label/self-label]

#Docs | Labels

artificial intelligence/agents

84 | agent, software agent

artificial intelligence/conferences and events

conference, artificial intelligence,
72 | international conference

artificial intelligence/genetic programming

65 | genetic, genetic algorithm

artificial intelligence/philosophy

46 | philosophy, mind, science

artificial intelligence/vision

61 | vision, compute vision

security/conferences

14 | secure conference, conference attend

security/honeypots and honeynets

62 | honeypot, attack

security/news and media

73 | attack, vulnerable, hack

alternative/apitherapy

18 | bee, honey

alternative/ear candling

10 | ear candle, ear

alternative/herbs

258 | herb, plant

alternative/iridology

18 | iridology, iris

alternative/non-toxic living

53 | toxic, environmental, safe

alternative/reflexology

95 | reflexology, reflexologist

alternative/urine therapy

6 | urine

conditions and diseases/chronic illness

53 | ill, chronic ill, chronic

digestive disorders/esophagus

35 | reflux, heartburn

digestive disorders/pancreas

10 | pancreas, pancreatiti

conditions and diseases/food and water borne

75 | food, diarrhea

conditions and diseases/musculoskeletal disorders

473 | pain, arthritis, joint

conditions and diseases/skin disorders

383 | skin, treat

medicine/education

continue medical educate, medical educate,
437 | medical school

imaging/computer tomography scanning

11 | tomography, compute tomography, compute

imaging/x-ray

15 | breast cancer, cancer

medicine/reference

119 | database, medical subject head, library

surgery/cryosurgery

7 | cryosurgery, treat, cryotherapy

surgery/orthopedics

19 | orthopaedic, hip

surgery/transplant

36 | transplant, transplantation

management/business process analysis

31 | business process, business process model

management/management science

430 | university, research, paper

management/value based management

8 | shareholder value, consult firm, firm

Figure 2. clusters’ labels predicted by the descriptive score with cut-off model for 31 categories.

measures agreement with the single ODP category label selected
by the human editor, whereas in fact there might be several
equally good category labels. For example, in the category
“cardiovascular disorder,” our algorithm might select “heart”
and “heart disease” as labels for the cluster, which would be
acceptable labels to most human assessors. Our automatic
evaluation would judge *“heart” and “heart disease” as
unacceptable answers. We alleviate some of this problem by
accepting synonymous labels, as defined by WordNet synonym
lists [16] in our evaluation. However, there are still cases such
as “cardiovascular” and *“heart”, which are not actually
synonyms, but which most people would consider acceptable
substitution labels in the context of “heart disease.”

5.3 Experimental Setup & Results

We evaluated our model on the ground truth ODP data of 165
categories, with a total of 25,143 web pages. Each web page
was parsed and all HTML tags, images, and JavaScript were
removed in the preprocessing step. Each term was stemmed
using Krovetz’s stemmer [6]. No stopwords list was used,
because we expected the algorithm to be able to distinguish the
collection-specific stopwords from the content words. The
goals of our experiments were three-fold. First, we wanted to
evaluate the quality of the cluster labels produced by the
algorithm, in comparison with the previous technique. Second,
we wanted to investigate the performance of the model that uses
only rank features. Third, we wanted to investigate how the
model performs if the hierarchical cluster is noisy, as would be
the case when using a hierarchical clustering algorithm to
organize documents.

5.3.1 Performance Comparison

Glover’s threshold-based algorithm was used as the baseline
system. The experiment used five-fold cross-validation; in each
fold, the training data was used to estimate the optimal
parameters for each algorithm. In the case of the threshold-
based model, the training data was used to find the optimal
threshold values. In our algorithm, the training data was used to
learn the weights in the linear model of the descriptive score.
This training data was also used to train the cutoff model to
predict how many labels to show.

In the training phase we first generated training instance-value
pairs for the descriptive score and the feature set training. For
each category in the training data, we estimated the DScore for
each of its label candidates as described in Section 4.3. We also
trained the cutoff model as described in Section 4.4.

The experiment was run on the baseline system and two
versions of our algorithm: One with just the descriptive score,
and another with both the descriptive score and the cutoff
model. Tables 1, 2 and 3 show results for the three algorithms.

Table 1. Match@N with exact, and partial match criteria.

Match@N (exact) | N=1 | N=2 [N=3 | N=4 | N=5

Glover’s 027 | 035 | 042 | 046 |0.50

DScore 036 | 050 | 058 | 062 | 0.64

DScore + Cutoff 037 | 049 | 055 | 055 |0.55

Match@N (partial)

Glover’s 039 | 052 |060 | 0.64 | 0.68

DScore 053 | 063 | 069 |072 |O0.76

DScore + Cutoff 052 | 063 | 066 | 066 | 0.66

Table 2. Precision@N with exact, and partial match criteria.

P@N (exact) N=1|[N=2[N=3[N=4]N=5
Glover’s 0.27 | 018 | 016 |0.13 |O0.12
DScore 0.36 | 0.27 0.22 0.19 0.17
DScore + Cutoff 0.37 0.28 0.27 0.26 0.26
P@N (partial)

Glover’s 039 | 032 |030 |028 |0.25
DScore 053 | 045 | 040 |0.38 |0.35
DScore + Cutoff 0.52 0.46 0.43 0.43 0.43

Table 3. MRR, MTRR, and Average Length statistics.

Exact MRR MTRR Avg. Length
Glover’s 0.35 0.38 5

DScore 0.47 0.53 5

DScore + Cutoff 0.45 0.47 2.6

Partial

Glover’s 0.50 0.68 5

DScore 0.61 0.94

DScore + Cutoff 0.59 0.74 2.6

Both descriptive score models outperform the threshold-based
approach. The Match@1 values are around 0.36 in exact match
and 0.53 in partial match for both descriptive score models,
compared to 0.27 and 0.39 for baseline model. This means that
in almost half the categories, the descriptive score predicts the
correct label with the top rank label. The precision of both
descriptive score models is higher than the baseline model. This
suggests that the lists of labels produced by our descriptive
score contain more good labels than the ones produced by the
baseline. This is also supported by the higher MTRR measure
for the descriptive score model.

The average number of labels displayed with the cutoff model is
2.6. By choosing to display fewer labels, the algorithm with the
cutoff model has a lower number of correct matches (M@N)
and also lower MRR, and MTRR. However, the precision of
the list of labels produced is higher, because the model tries not
to show low-quality labels. We believe that the tradeoff in lower
MRR with higher precision is worthwhile because a shorter list
of labels makes it easier for users to understand the content of
the cluster. However, a user study would be needed to verify
our conjecture.

Figure 2. shows the labels produced by the DScore+Cutoff
model along with the corresponding (“correct”) ODP labels. In
most categories, the labels produced by the model match the
category labels in the ODP. Even when model did not produce
exactly the same labels as the ODP, the labels assigned by the
model provide a similar description. For example, in the
category, security / news and media, the list of labels, “attack,
vulnerable, and hack” describes what most of the documents
discuss.

The algorithm works well in spite of a very heuristic method
used to generate scores for ODP labels during training. We
believe that this effectiveness is because the trained regression
model does not need to predict an exact DScore; it needs only to
produce a relative score for each label that is suitable for
ranking them. One thing to note is that while the algorithm
ranks labels using the relative importance of terms between the
parent cluster and the self cluster, it does not use information
about sibling clusters. The algorithm could potentially rank the
same labels highly for multiple sibling clusters. However, in our
evaluation with the ODP data, this was rarely the case. All
sibling clusters are pooled together to form the parent cluster, so
if the hierarchy is well-formed such that every sibling cluster is
of roughly the same granularity, the highly ranked terms in the
parent cluster are similar to the highly ranked terms of its
children, yielding small relative differences. Comparing a child
to its parent cluster has an indirect effect similar to comparing
against its siblings. We suspect that in a less well-formed
hierarchy the algorithm would need to consider information
about each individual sibling in order to assign discriminative
labels.

5.3.2 Using Only Rank Features

To test the hypothesis that one can identify a good label for a
cluster based only on rank features, the descriptive score
formula in Section 4.1 was modified to use only the rank
features and the boost in ranking. Tables 4, 5, and 6 show the
results.

Table 4. Match@N with exact, and partial match criteria for
rank-features model.

Match@N (exact) | N=1 | N=2 [N=3 | N=4 | N=5

Glover’s 027 | 035 | 042 | 046 |0.50

DScore 0.35 0.52 0.57 0.59 0.64

DScore + Cutoff 035 | 052 |055 |055 |0.55

Match@N (partial)

Glover’s 039 | 052 |060 |064 |0.68

DScore 053 | 064 |072 |073 |0.76

DScore + Cutoff 053 | 063 | 068 | 069 |0.69

P@N (partial)

Glover’s 039 |032 |030 |028 |0.25

DScore 0.53 0.45 0.41 0.37 0.35

DScore + Cutoff 0.53 0.45 0.44 0.44 0.44

Table 6. MRR, MTRR, and Average Length statistics for
rank-features model.

Exact MRR MTRR Avg. Length
Glover’s 0.35 0.38 5

DScore 0.47 0.53 5

DScore + Cutoff 0.44 0.48 2.5

Partial

Glover’s 0.50 0.68 5

DScore 0.62 0.94 5

DScore + Cutoff 0.60 0.77 2.5

Table 5. Precision@N with exact, and partial match criteria
for rank-features model.

P@N (exact) N=1| N=2 | N=3 | N=4 | N=5
Glover’s 027 | 018 | 016 | 0.13 | 0.12
DScore 0.35 0.28 0.22 0.19 0.16
DScore + Cutoff 035 | 029 |027 |027 |O0.27

The learned descriptive model based only on rank features is as
followed:

DScore(p) =0.122
+0.0000* r(DF; /#S)
—0.0001* r(DF, /#P)
+0.0000* r(TFIDF)
—0.0001* r(TFIDF,)
+0.0509 * [log(r(DF; /#P)) —log(r(DF /#S))]
+0.1874*[log(r(TFIDF,)) — log(r(TFIDF))]

The model performs surprisingly well considering that it uses
only ranking features. Its MRR is 0.47 for exact match and 0.62
for partial match definition, which are at the same level
comparing to the models that use all features.

5.3.3 Noise Resistance

So far we have assumed that the document hierarchy given to
the algorithm correctly clusters every document with the same
concept together. However, this is rarely the case, because the
hierarchical clusters that need automatic labeling are usually
produced by imperfect hierarchical clustering algorithms. To
evaluate how the algorithm performs in a more realistic setting,
another experiment was conducted with noise introduced into
our ground truth data.

Consider a cluster P that has the set of subclusters, denoted as
children(P). For each document in any subcluster of P, the
document is reassigned to another subcluster of P with a
probability N (Noise %); with the probability 1-N, the document
remains in the correct subcluster. The probability that a
document is reassigned to a subcluster C of P is proportional to
the size of the cluster C. So the probability that a document d in

a the cluster P is assigned to a subcluster C of P, denoted by
Pr(assigned(d, C)), is:

1-N,ifdeC
Pr(assigned(d,C)) =4 N = ‘C‘ ifdeC
Rechildren(P)and d¢R

where |C| denotes the number of documents that originally
belonged to the cluster C.

0.6

0.5 7

0.4

0.3 7

0.2 4

0.1 -

0% 10% 20% 30% 40% 50%
Noise %

B Glover's W all-features M all-features with cutoff I rank-features

Figure 3. shows MRR for different noise probability levels

Figure 3 shows the performance comparison on exact match
definition between different algorithms at noise levels from 0%
to 50% on 94 categories of the OPD ground truth data. At 0%
noise level, every document is correctly assigned. At 50% noise
level, each cluster has approximately 50% of its documents
correctly assigned, and the rest are documents that should be in
its sibling clusters. We didn’t investigate noise levels higher
than 50% because the cluster identity is no longer coherent
when most of the cluster is assigned incorrectly. In Figure 3,
Glover’s refers the baseline algorithm described in Section
5.3.1; all-features and all-features with cutoff refer to the
models that calculate DScore based on every feature described
in Section 4.3, with and without the cutoff model respectively;
and rank-features refers to the model described in Section 5.3.2,
which only used rank-related features to calculate DScore.

As expected the performance of every algorithm decreases as
more noise is introduced. At 10% to 30% noise level, there is
almost no change in the performance of any model. The MRR
of every model drops around 0.1 with 50% noise. However,
even with 40% noise level, our algorithms still perform at
around 0.5 MRR, which means that on average there is a good
descriptor in the top two labels. The decreases in performance
mostly came from the small categories, which are more easily
disrupted by the introduction of a few documents. In general,
our algorithm was not sensitive to random noise.

One might argue that this result is not surprising, because
randomly assigning documents to sibling clusters does not
change the underlying distribution of words in each cluster. A
more realistic simulation would assign a document to sibling
clusters based on the similarities between the document and
clusters’ centroids. Such a simulation would better reflect the

errors normally produced by a clustering algorithm. Although a
further study is needed to assess the noise tolerance of the model
under this scenario, we believe that our experiment shows
promising initial result.

6. CONCLUSION AND FUTURE WORK
Tools that automatically organize and assist in the analysis of
large amounts of text documents are becoming a requirement in
many organizations. There has been considerable research on
automatically organizing text documents into hierarchical
clusters suitable for interactive browsing, but much less research
on how best to automatically describe or label hierarchies to
support interactive browsing.

This paper presents a simple trainable algorithm that selects a
few 1-3 word labels to describe each cluster in a document
hierarchy. The algorithm dynamically decides how many labels
to select for each cluster; in our experiments, it average about
2.6 labels per cluster. Experiments using Open Directory
Project data demonstrated that the labels produced by the
algorithm often match the labels chosen by human editors.
Preliminary experiments suggest that the algorithm is also
robust with respect to clustering errors, although additional
research is required to settle this question.

Our research and most prior research focused on the use of
statistical features to select and rank features; a distinguishing
feature of our research is the use of statistics from a corpus of
general English, the parent cluster, and the cluster to be labeled.
However, perhaps more interesting is the discovery that the
algorithm can select good descriptors using only rank-based
features, and that rank-based features provide more robust
results than more detailed numeric features.

Error analysis showed that most of errors come from clusters
containing small numbers of documents. The small number of
observations in small clusters can make good and bad labels
indistinguishable; minor variations in vocabulary can also
produce statistical features with spuriously high variance. To
improve the performance of the algorithm on small clusters it
may be necessary to incorporate lexical features, for example
the number of word senses for a candidate label, or positional
features sensitive to where terms occur in a document, for
example in a title or in a lead sentence. The work described
here demonstrates that it is realistic to aim higher than the lists
of characteristic terms that have been the norm in prior research
on automatic labeling, but it is nonetheless just the first step.

7. ACKNOWLEDGEMENTS

This research was supported by a Thai Ministry of Science,
Technology and Environment Scholarship, and by NSF grants
EIA-0327979 and 11S-0429102. Any opinions, findings,
conclusions, or recommendation expressed in this paper are the
authors’, and do not necessarily reflect those of the sponsors.

8. REFERENCES

[1] Caraballo, S. Automatic Acquisition of a hypernym-labeled
noun hierarchy from text. In Proceedings of the
Association for Computational Linguistics Conference,
1999.

[2] Chuang S., and Chien L. A practical web-based approach
to generating topic hierarchy for text segments. In

(3]

(4]

(5]

(6]

(7]

(8]

Proceedings of the 20™ International Conference on
Information and Knowledge Management, 2004.

Cutting D. R., Karger D. R., and Pederson J. O. Constant
interaction-time Scatter/Gather browsing of very large
document collections. In Proceedings of International
ACM Conference on Research and Development in
Information Retrieval, 1993.

Glover, E., Pennock, D., Lawrence, S. and Krovetz, R.
Inferring hierarchical descriptions. In Proceedings of the
20™ International Conference on Information and
Knowledge Management, 2002.

Glover, E., Tsioutsiouliklis, K., Lawrence, S., Pennock, D.,
and Flake, G. Using web structure for classifying and
describing web pages. In Proceedings of International
Conference on World Wide Web, 2002.

Krovetz, R. Viewing morphology as an inference process.
In Proceedings of International ACM Conference on
Research and Development in Information Retrieval, 1993.

Lawrie, D., Croft, W. B., and Rosenberg, A. L. Finding
topic words for hierarchical summarization. In Proceedings
of international ACM conference on research and
development in information retrieval, 2001.

Muller, A., Dorre, J. Gerstl, P., and Seiffert, R. The
TaxGen framework: automating the generation of a
taxonomy for a large document collection. In Proceedings

of the 32" Hawaii International Conference on System
Science, 1999.

[9] Pantel, P., and Ravichandran, D. Automatically labeling
semantic classes. In Proceedings of the Human Language
Technology and North American Chapter of the
Association for Computational Linguistics Conference.
2004.

[10] Popescul, A., and Ungar, L. Automatic labeling of
document clusters. Unpublished manuscript, available at
http://citeseer.nj.nec.com/popescul00automatic.html, 2000.

[11] Yang, H. and Callan, J. Near-duplicate detection for
eRulemaking. In Proceedings of the National Conference
on Digital Government Research (DG.02005), 2005.

[12] Zeng, H., He, Q., Chen Z., Ma, W., and Ma J. Learning to
cluster web search results. In Proceedings of International
ACM Conference on Research and Development in
Information Retrieval, 2004.

[13] Open Directory Project (ODP).

[14] eRulemaking Testbed.
http://hartford.lti.cs.cmu.edu/eRulemaking/Data.html.

[15] Weka, Data Mining Software, University of Waikato.
[16] WordNet, a lexical database for the English language.
[17] Yahoo!

