
Automatically Labeling Hierarchical Clusters 
Pucktada Treeratpituk 

Language Technologies Institute 
School of Computer Science 
Carnegie Mellon University 
Pittsburgh, PA 15213, USA 

puck@cs.cmu.edu 
 

Jamie Callan 
Language Technologies Institute 

School of Computer Science 
Carnegie Mellon University 
Pittsburgh, PA 15213, USA 

callan@cs.cmu.edu 
 

ABSTRACT 
Government agencies must often quickly organize and analyze 
large amounts of textual information, for example comments 
received as part of notice and comment rulemaking.  
Hierarchical organization is popular because it represents 
information at different levels of detail and is convenient for 
interactive browsing. Good hierarchical clustering algorithms 
are available, but there are few good solutions for automatically 
labeling the nodes in a cluster hierarchy.  

This paper presents a simple algorithm that automatically 
assigns labels to hierarchical clusters.  The algorithm evaluates 
candidate labels using information from the cluster, the parent 
cluster, and corpus statistics.  A trainable threshold enables the 
algorithm to assign just a few high-quality labels to each cluster.  
Experiments with Open Directory Project (ODP) hierarchies 
indicate that the algorithm creates cluster labels that are similar 
to labels created by ODP editors.  

Categories and Subject Descriptors 
H.3.1 [Information Storage and Retrieval]: Content Analysis 
and Indexing⎯Linguistic processing.  

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
Document hierarchy, cluster labeling. 

1. INTRODUCTION 
Government agencies, like most modern organizations, must 
often quickly organize and analyze large amounts of textual 
information.  Our research is motivated by notice and comment 
rulemaking, in which U.S. regulatory agencies are required to 
consider comments submitted by the general public [11]; when 
an agency receives hundreds of thousands of unique comments 
and edited form letters during a short period of time, quickly 
organizing them and identifying the issues raised is a significant 

challenge.  However, the problem of organizing large amounts 
of text for rapid analysis subsumes notice and comment 
rulemaking.  The U.S. National Archives and Records 
Administration (NARA) and other government agencies face 
similar problems.  Search engines such as FirstGov1 have the 
problem on a smaller scale – given a set of texts, how to quickly 
organize them and describe their contents. 

Hierarchical organization is popular because it represents 
information at different levels of detail and is convenient for 
interactive browsing (e.g., Yahoo! [17], the Open Directory 
Project [13]).  At the top of the hierarchy, the collection is 
organized into a few general categories; as a person descends 
the hierarchy, she gets greater detail about increasingly specific 
categories.  Typically each document cluster is assigned a 
descriptor that describes the documents it contains.  One goal of 
hierarchical clustering is to improve the users’ ability to browse 
the collection, so it is very important that the hierarchy has good 
cluster descriptors. These descriptors can be either category 
labels, as in Yahoo! Directories, or lists of topical terms.  

There is considerable prior research on hierarchical clustering 
algorithms and their applications in information retrieval and 
data mining research. However, less attention has been paid to 
creating good cluster descriptors.  Cluster descriptors created 
automatically often either fail to provide a comprehensive 
description of the cluster, or consist of lists of terms from which 
a person must infer a general description.  

This paper proposes a simple algorithm that automatically 
assigns concise labels to hierarchical clusters. The algorithm 
combines statistical features of the cluster, the parent cluster, 
and the corpus into a descriptive score. The algorithm is based 
on the hypothesis that by comparing the word distribution from 
different parts of the hierarchy, it should be possible to assign 
appropriate labels to each cluster in the hierarchy.  

The rest of this paper is organized as follows. Section 2, 
describes the hierarchical clustering and hierarchical clustering 
labeling task.  It also discusses the characteristic of a good label 
for hierarchical clusters.  Section 3 presents previous research 
on cluster labeling and related tasks.  Section 4, describes the 
proposed labeling algorithm.  Section 5 presents experimental 
results. Section 6 summarizes our finding and offers suggestions 
about possible future improvements.  

                                                                 
1 http://www.firstgov.gov/ 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
dg.o2006, May 21–24, 2006, San Diego, California, USA. 
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00. 
 



2. LABELING HIERARCHICAL 
CLUSTERS 
Hierarchical clustering partitions a document collection into a 
small number of clusters, and each cluster is further partitioned 
into subclusters in a recursive manner. Hierarchical clusters can 
be constructed by agglomerative methods that start with each 
document in its own cluster and then repeatedly group similar 
clusters into broader clusters; or by divisive methods that start 
with all documents in one cluster and then repeatedly divide 
each cluster into more detailed subclusters.  
In labeling hierarchical clusters, one assumes the existence of a 
hierarchy of document clusters. The task is to assign a good 
descriptor to each cluster node in the hierarchy. The most 
common cluster descriptors are either concise labels, or lists of 
terms and phrases. For example, a cluster of documents about 
natural language processing might be described by the label 
“natural language processing” or the list of terms  “tag, text, 
linguist, lexicon, corpus, tagger, word, syntax, grammar.”  A list 
of terms is often less useful than a single category label, because 
it requires the user to infer the concept implied by the terms. 
However, a list of terms is the most common choice for labeling 
clusters automatically because it fails gracefully; a person can 
often infer the general description even when a few of the 
selected terms are poor choices. 
Our goal is an algorithm that selects concise cluster labels that 
are similar to what a person might create manually.  A good 
descriptor for a cluster should not only indicate the main 
concept of the cluster, but also differentiate the cluster from its 
siblings and its parent cluster. Consider a cluster of “neural 
network” documents under a broader “AI” cluster.  The parent 
cluster “AI” may also have “machine learning” and “fuzzy 
logic” child clusters.  In another context, a label “computer 
science” might be an acceptable descriptor for the “neural 
network” cluster.  However, in the context of this hierarchy, 
“computer science” does not distinguish the “neural network” 
cluster from its siblings.  The descriptors appropriate for a given 
set of documents will differ under different hierarchies. 
We define the labeling task as follows:  Given a cluster of 
documents in a cluster hierarchy, the goal is to produce 
appropriate category labels for the cluster. The algorithm is 
allowed to return a list of plausible labels, ranked by its 
confidence about how descriptive each label is; the list should 
be as short as possible. A ranked list of labels is a compromise 
between a single category label and a list of topical terms.  

3. RELATED WORK 
Although there has been much research in hierarchical 
clustering of documents, little focused on labeling the resulting 
clusters of documents [2][3][4][5][10]. Clustering algorithms 
can naively label their clusters with the most frequent words in 
the clusters [2]. Those resulting labels tend to be general, and 
usually are not good discriminative descriptors. The algorithm 
may choose to represent its clusters of documents with the 
documents near each cluster’s centroid.  One example of 
algorithms that use this representation is Scatter/Gather [3], 
which represents a cluster with a list of documents near the 
cluster’s centroid and a list of topical terms. The topical terms 
are the terms with the highest weights in the cluster centroid. In 
one report the algorithm showed approximately the top 10 

topical terms to the users. In addition to the shortcomings, 
mentioned above, of using lists of terms as descriptors, this 
approach does not take into account the hierarchical structure of 
the cluster hierarchy.  The resulting descriptor might be 
descriptive, but might not discriminate the cluster from its 
parent or sibling clusters.  
There have been attempts to identify cluster labels from word 
distribution in the hierarchy. Popescul et al. [10], and Glover et 
al. [4] proposed statistical methods in selecting cluster 
descriptors, based on the context of the surrounding clusters 
(parent cluster and sibling clusters). Popescul proposed to use 
the statistical test χ2 to detect difference in word distribution 
across the hierarchy. At each cluster node in the hierarchy, 
starting from the root, the χ2 test is used to detect a set of words 
that is equally likely to occur in any of the subclusters of the 
current node. Those words are considered to be non-descriptive 
terms for every subcluster of the current node, and thus are 
removed from every subcluster. After the χ2 test is used to 
removed non-descriptive words from every cluster node, the 
algorithm labels each cluster with the list of the remaining 
words at that cluster node ranked by the word frequency. 
Glover et al. [4] showed how a simple model based only on 
terms’ document frequency statistic can be used to select parent, 
child and self descriptors for document clusters, especially for 
web pages. The label candidates were extracted from the web 
page’s content, anchor texts and extended anchor texts. Anchor 
texts of a web page are the hyperlinked words that link to the 
web page. Extended anchor texts refer to the words that occur 
before and after the anchor texts including the anchor texts 
themselves. Labels were selected and ranked using document 
frequency and some preset cutoff values. In their experiment, 
they found that labels extracted from anchor texts and extended 
anchor texts provide better description than ones extracted from 
the page’s content. This is because web pages often do not 
contain words that describe their categories. However, obtaining 
anchor texts and extended anchor texts is an expensive 
operation, and requires one to know the hyperlink structure of 
the World Wide Web. Furthermore, the hyperlink structure is 
generally not available in non-webpage document collection. 
Another research area closely related to cluster labeling is 
automatic ontology construction. It should be noted that while a 
ontology hierarchy has well-defined parent-child relationship, 
such as hypernyms-hyponym and meronymy (part-whole), a 
document hierarchy of the same collection does not necessary 
have to reflect the same parent-child relationship. The higher 
flexibility in hierarchal structure of a document hierarchy might 
better serve for task such as browsing.  
There have been some works on creating ontology hierarchies 
using clustering based techniques. These approaches require that 
the resulting hierarchy be automatically labeled. Caraballo [1] 
constructed a noun hierarchy of hypernyms automatically from 
text. The noun hierarchy is constructed using bottom-up 
clustering approach, grouping nouns based on conjunction and 
apposition. In order to label each internal cluster, a set of 
possible hypernyms of every noun in the cluster is extracted 
from the text using a linguistic pattern. The noun that has the 
largest number of hyponym relations with the noun in the 
clusters is assigned as the cluster label. 



Pantel et al. [9] automatically assigned label to semantic classes, 
generated from their clustering algorithm. For each semantic 
class, a subset of concepts in the class that is most likely to 
represent the semantic class is selected as class representatives. 
These representative concepts are then used to extract label 
candidates using some lexical patterns. The label candidate with 
the highest mutual information with the class representatives is 
assigned as class label.   

4. ALGORITHMS 
Glover et al. [4] showed that a simple term frequency analysis 
could predict the labels of document clusters. Their algorithm is 
based on the hypothesis that a word that is very common in the 
cluster, but relatively rare in the collection, is likely to be a good 
cluster descriptor. They selected cluster descriptor candidates 
based on the following criteria: 

Candidates = {phrase p | DFC / |C| < maxColPos and 
 DFS / |S| > minSelfPos} 

where DFC is the number of documents in the collection that 
contains the phrase p (“document frequency”), and DFS is the 
number of documents in the cluster (the “self cluster” S) that 
contain the phrase p. |C| and |S| denote the number of documents 
in the collection and in the self cluster. maxColPos and 
minSelfPos are thresholds.  Phrases that appear more than 
minSelfPos times per document, on average, in “self cluster” 
documents, and less than maxColPos times per document, on 
average, in the collection are considered to be the in the label 
candidate set. Phrases in the candidate set are ranked according 
to their DFS values.  Every phrase in the collection is 
considered, without stemming or stopwords removal [4]. 
There are several limitations to Glover’s threshold-based 
method. First, the performance of the algorithm is sensitive to 
preset threshold values (maxColPos, minSelfPos), and the 
optimal thresholds vary between clusters. Second, multiword 
phrases normally have lower DFS / |S| values than single words, 
thus are rarely selected as a descriptors.  Third, documents often 
do not contain words that describe their categories, so basing the 
decision mainly on DFS / |S| generally does not work well. 
Due to these limitations, we propose a more general labeling 
algorithm that allows us to incorporate more features in 
selecting the cluster descriptors. 

Labeling Algorithm: 
First, we assume that the algorithm has access to a general 
collection of documents E, representing the word distribution in 
general English.  This English corpus is used primarily in 
selecting label candidates, as explained below. 
Given a cluster S and its parent cluster P, which includes all of 
the documents in S and in the sibling clusters of S, the algorithm 
selects labels for the cluster S with the following steps: 

1) Collect phrase statistics: For every unigram, bi-
gram, and tri-gram phrase p occurring in the cluster S, 
calculate the document frequency and term frequency 
statistics for the cluster, the parent cluster and the 
general English corpus. 

2) Select label candidates: Select the label candidates 
from unigram, bi-gram, and tri-gram phrases based on 

document frequency in the cluster and in general 
English language. 

3) Calculate the descriptive score: Calculate the 
descriptive score (DScore) for each label candidate, 
then sort the label candidates by these scores. 

4) Calculate the cutoff point: Decide how many label 
candidate to display based on the descriptive scores. 

Each step is described in more detail, below. 

4.1 Collecting Phrase Statistics 
For each phrase appearing in the cluster, collect the following 
statistics: document frequency (DF), and term frequency (TF) 
with respect to the cluster S, the parent cluster P and the general 
English corpus E. Document frequency of a phrase p with 
respect to a cluster C, denoted by DFC, is the number of 
documents in the cluster that contain p. Term frequency of a 
phrase p in a cluster C, denoted by TFC, is total number of 
occurrences of p in the cluster. 

4.2 Select Label Candidates 
Instead of considering every phrase occurring in the cluster, we 
hypothesize that, although a good descriptor need not occur in 
the majority of the documents in the cluster, it should occur in at 
least 20% of the documents in the cluster. Since phrases in 
general occur less frequent than single words, the selection 
criteria are slightly different in the case of bigrams and trigrams: 
The algorithm only considers bigram and trigram phrases that 
occur in at least 5% of the documents in the cluster. These 
cutoffs improve the efficiency of the algorithm.  Low frequency 
phrases usually have low weights, thus these thresholds 
generally don’t prune phrases that would be ranked highly 
otherwise. 
Common words (stopwords) are also removed from 
consideration. The algorithm considers any words that occur in 
more than 20% of the general English corpus to be stopwords. 
In the case of the non-unigram phrases, the algorithm considers 
any phrases that contain only words that occur in more than 
30% of the documents in the general English corpus E to be 
stopwords. This cutoff was chosen conservatively by analyzing 
the word distribution in general English corpora, trying not to 
exclude descriptive words.  

4.3 Descriptive Score (DScore) 
The descriptiveness of a label with respect to a cluster is 
measured by the descriptive score (DScore). For a phrase p, the 
descriptive score is based on the features described below. 
Normalized Document Frequency (DFc / |C|) 
Normalized document frequency is the fraction of the cluster 
that contains the phrase p.  

C
DFDFnormalized C

C =  

In general a label candidate that occurs in more documents in 
the cluster is expected to be a better descriptor than one that 
rarely occurs. The algorithm computes normalized DF for both 
the self cluster S and the parent cluster P (DFS / |S|, DFP / |P|). 
A good descriptor should occur relatively frequent in the parent 
cluster, but occur very frequent in the self cluster.  



 
TFIDF 
This is similar to a traditional TFIDF value used in information 
retrieval. 

)||log(*
C

CC DF
CTFTFIDF =  

As in traditional IR, a phrase with high TFIDF value is expected 
to be important to the cluster, thus possibly is also a good 
cluster descriptor. The TFIDF score favors phrases that appear 
multiple times per document. The algorithm computes TFIDF 
for both the self cluster and the parent cluster (TFIDFS, 
TFIDFP). 

Rank of TFIDF, and nDF (r(TFIDF), r(normalized DF)) 
Four rankings are computed for every label candidate based on 
the features DFS / |S|, DFP / |P|, TFIDFS, and TFIDFP. For 
example, for DFS / |S|, the algorithm sorts every label candidate 
according to its DFS / |S| score; the label with the highest value 
is assigned rank 1, denoted by r(DFS / |S|) = 1.  The label with 
the second highest score is assigned rank 2, and so on.  Tied 
scores produce tied rankings.  A good descriptor is expected to 
have a relatively high rank of DFP / |P| and even higher rank of 
DFS / |S|. 
Rank features, e.g. r(DFS / |S|), convey similar information as 
their quantitative counterparts, e.g. DFS.  However, rank 
features may be less sensitive than normalized DF and TFIDF 
values, and thus may be more comparable across categories. 

Boost in Ranking 
Since we hypothesize that a good descriptor probably has a 
relatively high rank of normalized DFP (relatively frequent in 
the parent cluster), and even higher rank of normalized DFS 
(very frequent in the self cluster), we measure this boost in 
ranking of nDF with the following measure: 

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
||

log
||

log
S

DFr
P

DFr SP  

The algorithm computes the boost in ranking in log-scale 
because the change in ranking is more significant at the top of 
the ranking (those which have high document frequency). For 
example, a label that moves from being the 200th most frequent 
phrase in the parent cluster to the 100th most frequent phrase in 
the self cluster, is probably less descriptive than another label 
that moves from the 100th most frequent phrase in the parent 
cluster to the 5th most frequent phrase in the self cluster. 
In addition to the boost in ranking of normalized document 
frequency, the algorithm also computes the boost in ranking of 
TFIDF, with the following formula:  

log[r(TFIDFP )]− log[r(TFIDFS )] 

If TFIDF is related to the topicality of the phrase, then a good 
descriptor is expected to have a higher TFIDF rank in the self 
cluster, compared to its TFIDF rank in the parent cluster. The 
algorithm also computes the boost in ranking of TFIDF in log-
scale for the same reason as in the case of normalized DF.  

Phrase Length (LEN) 

The phrase length is the number of terms in the phrase. While 
the document frequency feature prefers a shorter phrase to a 
longer phrase, LEN prefers the longer phrases to shorter ones.  
The algorithm combines every feature into one descriptive score 
with a linear model. Thus the algorithm computes how 
descriptive a phrase p is as a label for the cluster S, with parent 
cluster P with the following formula: 

))](log())([log(*
))]/(log())/([log(*

)(*)(*
)/(*)/(*

**
/*/*

*

11

10

98

76

54

32

10

SP

SP

PS

PS

PS

PS

p

TFIDFrTFIDFrc
SDFrPDFrc

TFIDFrcTFIDFrc
PDFrcSDFrc

TFIDFcTFIDFc
PDFcSDFc

LENccDScore

−+
−+

++
++

++
++

+=

 

Each label candidate is sorted by its descriptive score.  
The weights of each feature are estimated using linear 
regression and training data. Linear regression attempts to 
estimate the expected value of a variable Y given the values of a 
set of features Xi, by assuming a linear relationship between Y 
and Xi. Thus, Y can be expressed as linear combination of 
features Xi: 

Y = b0 + ∑ bi Xi + e 
where e is a random variable residue (error term), with mean 
zero. The coefficients bi for all i are optimized so that the sum of 
the residue square in the training data is minimized.  
In order to train the linear regression model, since the correct 
descriptive score is not known for each label candidate, we have 
to estimate the descriptive score of a label candidate. We 
estimate each label candidate’s descriptive score based on how 
much the label overlaps with the correct category label in a set 
of training data. We define the DScore estimate of a label L, 
with respect to the correct label CL as: 

DScoreL*= max
SL∈Synonym(L )

{ overlap(SL,CL)
max{len(SL),len(CL)}

} 

where overlap(SL,CL) is the number of terms that are shared 
between SL and CL, and len(X) denotes the length of X. If the 
label candidate or a synonym of the label candidate is the same 
as the correct category label, then the DScore estimate is 1. The 
estimation of DScore that we use to train the linear regression 
model is only a heuristic value, because many good descriptors 
would have the DScore estimates of zero, since they do not 
overlap with the correct label.  

4.4 Cutoff Model 
By default, the algorithm displays the 5 labels with the highest 
descriptive scores as the cluster descriptor. However, we 
observe that even in a short list of five labels there is generally a 
big drop-off in the descriptive scores at some point. The big 
drop-off in the descriptive scores often separates good labels 
from bad labels. The algorithm can use this information to 
decide how many labels to display. If the top-ranked label has a 
very high descriptive score compared to the rest of the label 
candidates then the algorithm can be very confident that the top-
ranked label is the correct descriptor, and thus display only the 
top-ranked label. On the other hand, if all label candidates have 



similarly low DScores (only small gaps between each 
consecutive label), there is less certainty about which labels are 
best, so more labels are displayed.  
The following linear model is used to decide how many labels to 
display. 

# Displayed = c0 − c1 * (DScoreL1 − DScoreL 2)
−c2 * (DScoreL 2 − DScoreL 3)
−c3 * (DScoreL 3 − DScoreL 4 )
−c4 * (DScoreL 4 − DScoreL 5)

 

The weights in the model are optimized using linear regression 
and training data.  We expect the optimized C0 to be around 5, 
while expecting the weights C1, C2, C3, C4 to be in increasing 
order.  
The same training data used to train the descriptive score model 
in Section 4.3 can be used to generate training instances for the 
cutoff model. The cutoff model is trained based on the top-
ranked labels produced by the trained descriptive model. For 
each category in the training data, the 5 labels with the highest 
predicted descriptive score are determined. The optimal number 
of labels to display is defined as the rank of the label (from 1 to 
5) that has the maximum overlap with the correct category label. 
If there is a tie, then the label furthest down the list is picked. 
Thus the cutoff model is trained based on the top-5 predicted 
descriptive scores from each training category. 

5. EXPERIMENTAL RESULTS 
A set of experiments was conducted to evaluate the 
effectiveness of the algorithm at selecting labels.  We describe 
the data and evaluation measures first, followed by descriptions 
of the experiments and their results. 

5.1 Data Collections 
The Open Directory Project2 was used as a source of documents 
(web pages), hierarchical organization, and “ground truth” 
labels assigned by human editors. We randomly sampled 20,462 
web pages from the ODP hierarchy to use as background model 
representing general English (collection statistics).  We 
separately sampled another subset of ODP hierarchy to use as 
our training and testing ground truth data. 
We selected total of 165 subcategories from ODP under 9 
categories. 

• Computers / artificial intelligence. 

• Computers / security. 

• Health / alternative.  

• Health / medicine.  

• Health / medicine / imaging.  

• Health / medicine / surgery.  

• Health / conditions and diseases.  

• Health / conditions and diseases / digestive disorders. 

• Business / management.  

                                                                 
2 http://www.dmoz.org/ 

Every subcategory from the 9 parent categories was included, 
with the exception of alias subcategories (because those 
subcategories mainly belong somewhere else in the hierarchy), 
even ones with common words as labels such as Surgery / 
General. In total, the constructed hierarchy contains 25,143 web 
pages. The selected subcategories vary both in depth (between 
level two and level three with respect to the Open Directory 
root) and in number of web pages in each cluster. Figure 1 
shows a partial snapshot the document hierarchy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

5.2 Evaluation Measure 
We define the cluster-labeling task as a descriptor-ranking 
problem. In the evaluation we need to specify our criteria in 
assessing the quality of the ranking produced. In comparing our 
labels to the correct ODP label, we use the following two 
definitions of a correct label:  Exact match and partial match.  

5.2.1 Definitions of a correct label 
For a given category with self-label S, and parent-label P: 
Exact Match: A label L is an exact match of the correct label S 
if there exists a synonym SL of L such that SL is equal to  “S”, 
“S P” or “P S.”  For example, for the category “medical / 

Business (3,318) 
- Management (3,318) 

o Benchmarking and Best Practices (35) 
o Business Process Analysis (41) 
o … 

Computers (4,982) 
- Artificial Intelligence (1,616) 

o Academic Departments (60) 
o Agents (98) 
o … 

- Security (3,366) 
o Advisories and Patches (71) 
o FAQs, Help, and Tutorials (11) 
o … 

Health (16,843) 
- Alternative (5,387) 

o Acupuncture and Chinese Medicine (502) 
o Alexander Technique (129) 
o … 

- Conditions and Diseases (8,204) 
o Allergies (169) 
o Blood Disorders (176) 
o … 

- Medicine (3,252) 
o Imaging (173) 

 Computer Tomography Scanning 
(11) 

 Magnetic Resonance Imaging (22) 
o Research (107) 
o … 
o Surgery (506) 

 Cardiothoracic (112) 
 Cosmetic and Plastics (73) 
 General (86) 
 Head and Neck (4) 

 
Figure 1. shows subset of the ODP hierarchy used as 

ground truth data, number of documents in each cluster is 
showed in the parentheses 



 

ODP category labels [parent-label/self-label] #Docs Labels 
artificial intelligence/agents                  84 agent, software agent                                           

artificial intelligence/conferences and events  72 
 conference, artificial intelligence, 
international conference                           

artificial intelligence/genetic programming 65 genetic, genetic algorithm                                   
artificial intelligence/philosophy 46  philosophy, mind, science                                  
artificial intelligence/vision 61  vision, compute vision  
security/conferences   14 secure conference, conference attend                  
security/honeypots and honeynets 62  honeypot, attack                                                  
security/news and media 73 attack, vulnerable, hack                                       
alternative/apitherapy 18  bee, honey                                                           
alternative/ear candling 10  ear candle, ear  
alternative/herbs 258  herb, plant  
alternative/iridology  18 iridology, iris                                                       
alternative/non-toxic living 53 toxic, environmental, safe                                   
alternative/reflexology  95 reflexology, reflexologist                                    
alternative/urine therapy  6 urine                                                                    
conditions and diseases/chronic illness  53 ill, chronic ill, chronic                                         
digestive disorders/esophagus  35 reflux, heartburn                                                  
digestive disorders/pancreas  10 pancreas, pancreatiti                                            
conditions and diseases/food and water borne 75 food, diarrhea                                                      
conditions and diseases/musculoskeletal disorders 473 pain, arthritis, joint                                              
conditions and diseases/skin disorders 383 skin, treat                                                             

medicine/education                              437 
 continue medical educate, medical educate, 
medical school                               

imaging/computer tomography scanning  11 tomography, compute tomography, compute      
imaging/x-ray  15 breast cancer, cancer                                           
medicine/reference  119 database, medical subject head, library               
surgery/cryosurgery  7 cryosurgery, treat, cryotherapy                            
surgery/orthopedics  19  orthopaedic, hip                                                   
surgery/transplant 36 transplant, transplantation                                   
management/business process analysis  31  business process, business process model           
management/management science  430 university, research, paper                                   
management/value based management  8 shareholder value, consult firm, firm                  

Figure 2. clusters’ labels predicted by the descriptive score with cut-off model for 31 categories.  

research,” labels such as “research,” “medical research,” and 
“research medical” would be classified as exact match labels.  
Partial Match: A label L is a partial match of the correct label 
S if there exists a synonym SL of L such that SL shares a term 
with  “S”, “S P” or “P S.” For example, for the category 
“management / business process analysis,” labels such as 
“business,” “process,” “business management,” “management 
analysis” would be classified as partial matches.  
The synonym list for each word was obtained automatically 
from WordNet [16]. For both of these definitions of a correct 
label, we compute the following evaluation measures. 

5.2.2 Match at top N results (Match@N) 
Match@N indicates whether the top N results contain any 
correct labels. It is a binary indicator, and monotonically 
increases as N increases.  

5.2.3 Precision at top N results (P@N) 
Precision is computed as the number of labels in the top N 
results that match the correct categories label divided by N. 

P@N measures the percentage of correct answers that are 
displayed in ranks 1-N. In general, low precision is undesirable.  

5.2.4 Mean Reciprocal Rank (MRR) 
Mean reciprocal rank is the mean of the reciprocal of the rank of 
the first correct label. If the first correct label is ranked as the 3rd 

label, then the reciprocal rank (RR) is 1/3. If none of the first N 
responses contains a correct label, RR is 0.  RR is 1 if the 
highest ranked label matches the correct label.   

5.2.5 Mean Total Reciprocal Rank (MTRR) 
Sometimes there is more than one aspect to a category; for 
example, the category “acupuncture and Chinese medicine” has 
two correct aspects, “acupuncture” and “Chinese medicine.” 
MTRR is similar to MRR, however, instead of considering only 
the rank of the first correct label as in MRR, MTRR takes into 
account all correct labels. Of the algorithm ranks “acupuncture” 
and “Chinese medicine” as the 2nd and the 4th labels, then the 
TRR (total reciprocal rank) is ½ + ¼ = ¾ while RR = ½. 
Our evaluation methodology is extremely strict because it 



measures agreement with the single ODP category label selected 
by the human editor, whereas in fact there might be several 
equally good category labels. For example, in the category 
“cardiovascular disorder,” our algorithm might select “heart” 
and “heart disease” as labels for the cluster, which would be 
acceptable labels to most human assessors. Our automatic 
evaluation would judge “heart” and “heart disease” as 
unacceptable answers. We alleviate some of this problem by 
accepting synonymous labels, as defined by WordNet synonym 
lists [16] in our evaluation. However, there are still cases such 
as “cardiovascular” and “heart”, which are not actually 
synonyms, but which most people would consider acceptable 
substitution labels in the context of “heart disease.” 

5.3 Experimental Setup & Results 
We evaluated our model on the ground truth ODP data of 165 
categories, with a total of 25,143 web pages. Each web page 
was parsed and all HTML tags, images, and JavaScript were 
removed in the preprocessing step.  Each term was stemmed 
using Krovetz’s stemmer [6].  No stopwords list was used, 
because we expected the algorithm to be able to distinguish the 
collection-specific stopwords from the content words.  The 
goals of our experiments were three-fold. First, we wanted to 
evaluate the quality of the cluster labels produced by the 
algorithm, in comparison with the previous technique. Second, 
we wanted to investigate the performance of the model that uses 
only rank features. Third, we wanted to investigate how the 
model performs if the hierarchical cluster is noisy, as would be 
the case when using a hierarchical clustering algorithm to 
organize documents. 

5.3.1 Performance Comparison 
Glover’s threshold-based algorithm was used as the baseline 
system.  The experiment used five-fold cross-validation; in each 
fold, the training data was used to estimate the optimal 
parameters for each algorithm. In the case of the threshold-
based model, the training data was used to find the optimal 
threshold values. In our algorithm, the training data was used to 
learn the weights in the linear model of the descriptive score. 
This training data was also used to train the cutoff model to 
predict how many labels to show. 
In the training phase we first generated training instance-value 
pairs for the descriptive score and the feature set training.  For 
each category in the training data, we estimated the DScore for 
each of its label candidates as described in Section 4.3. We also 
trained the cutoff model as described in Section 4.4. 
The experiment was run on the baseline system and two 
versions of our algorithm:  One with just the descriptive score, 
and another with both the descriptive score and the cutoff 
model. Tables 1, 2 and 3 show results for the three algorithms.  
 

Table 1. Match@N with exact, and partial match criteria. 

Match@N (exact) N = 1 N = 2 N = 3 N = 4 N=5 

Glover’s  0.27 0.35 0.42 0.46 0.50 

DScore 0.36 0.50 0.58 0.62 0.64 

DScore + Cutoff 0.37 0.49 0.55 0.55 0.55 

Match@N (partial)      

Glover’s 0.39 0.52 0.60 0.64 0.68 

DScore 0.53 0.63 0.69 0.72 0.76 

DScore + Cutoff 0.52 0.63 0.66 0.66 0.66 

 
 
 
 
 

Table 2. Precision@N with exact, and partial match criteria. 

P@N (exact) N = 1 N = 2 N = 3 N = 4 N=5 

Glover’s 0.27 0.18 0.16 0.13 0.12 

DScore 0.36 0.27 0.22 0.19 0.17 

DScore + Cutoff 0.37 0.28 0.27 0.26 0.26 

P@N (partial)      

Glover’s  0.39 0.32 0.30 0.28 0.25 

DScore 0.53 0.45 0.40 0.38 0.35 

DScore + Cutoff 0.52 0.46 0.43 0.43 0.43 

 
Table 3. MRR, MTRR, and Average Length statistics. 

Exact MRR MTRR Avg. Length 

Glover’s 0.35 0.38 5 

DScore 0.47 0.53 5 

DScore + Cutoff 0.45 0.47 2.6 

Partial    

Glover’s  0.50 0.68 5 

DScore 0.61 0.94 5 

DScore + Cutoff 0.59 0.74 2.6 

 
Both descriptive score models outperform the threshold-based 
approach. The Match@1 values are around 0.36 in exact match 
and 0.53 in partial match for both descriptive score models, 
compared to 0.27 and 0.39 for baseline model. This means that 
in almost half the categories, the descriptive score predicts the 
correct label with the top rank label. The precision of both 
descriptive score models is higher than the baseline model. This 
suggests that the lists of labels produced by our descriptive 
score contain more good labels than the ones produced by the 
baseline. This is also supported by the higher MTRR measure 
for the descriptive score model. 
The average number of labels displayed with the cutoff model is 
2.6. By choosing to display fewer labels, the algorithm with the 
cutoff model has a lower number of correct matches (M@N) 
and also lower MRR, and MTRR.  However, the precision of 
the list of labels produced is higher, because the model tries not 
to show low-quality labels. We believe that the tradeoff in lower 
MRR with higher precision is worthwhile because a shorter list 
of labels makes it easier for users to understand the content of 
the cluster.  However, a user study would be needed to verify 
our conjecture. 



Figure 2. shows the labels produced by the DScore+Cutoff 
model along with the corresponding (“correct”) ODP labels.  In 
most categories, the labels produced by the model match the 
category labels in the ODP.  Even when model did not produce 
exactly the same labels as the ODP, the labels assigned by the 
model provide a similar description. For example, in the 
category, security / news and media, the list of labels, “attack, 
vulnerable, and hack” describes what most of the documents 
discuss. 
The algorithm works well in spite of a very heuristic method 
used to generate scores for ODP labels during training.  We 
believe that this effectiveness is because the trained regression 
model does not need to predict an exact DScore; it needs only to 
produce a relative score for each label that is suitable for 
ranking them. One thing to note is that while the algorithm 
ranks labels using the relative importance of terms between the 
parent cluster and the self cluster, it does not use information 
about sibling clusters. The algorithm could potentially rank the 
same labels highly for multiple sibling clusters. However, in our 
evaluation with the ODP data, this was rarely the case.  All 
sibling clusters are pooled together to form the parent cluster, so 
if the hierarchy is well-formed such that every sibling cluster is 
of roughly the same granularity, the highly ranked terms in the 
parent cluster are similar to the highly ranked terms of its 
children, yielding small relative differences.  Comparing a child 
to its parent cluster has an indirect effect similar to comparing 
against its siblings. We suspect that in a less well-formed 
hierarchy the algorithm would need to consider information 
about each individual sibling in order to assign discriminative 
labels.  

5.3.2 Using Only Rank Features 
To test the hypothesis that one can identify a good label for a 
cluster based only on rank features, the descriptive score 
formula in Section 4.1 was modified to use only the rank 
features and the boost in ranking.  Tables 4, 5, and 6 show the 
results. 
Table 4. Match@N with exact, and partial match criteria for 

rank-features model. 

Match@N (exact) N = 1 N = 2 N = 3 N = 4 N=5 

Glover’s 0.27 0.35 0.42 0.46 0.50 

DScore 0.35 0.52 0.57 0.59 0.64 

DScore + Cutoff 0.35 0.52 0.55 0.55 0.55 

Match@N (partial)      

Glover’s 0.39 0.52 0.60 0.64 0.68 

DScore 0.53 0.64 0.72 0.73 0.76 

DScore + Cutoff 0.53 0.63 0.68 0.69 0.69 

 
Table 5. Precision@N with exact, and partial match criteria 

for rank-features model. 

P@N (exact) N = 1 N = 2 N = 3 N = 4 N=5 

Glover’s 0.27 0.18 0.16 0.13 0.12 

DScore 0.35 0.28 0.22 0.19 0.16 

DScore + Cutoff 0.35 0.29 0.27 0.27 0.27 

P@N (partial)      

Glover’s 0.39 0.32 0.30 0.28 0.25 

DScore 0.53 0.45 0.41 0.37 0.35 

DScore + Cutoff 0.53 0.45 0.44 0.44 0.44 

 
 
 
 
 
 

Table 6. MRR, MTRR, and Average Length statistics for 
rank-features model. 

Exact MRR MTRR Avg. Length 

Glover’s 0.35 0.38 5 

DScore 0.47 0.53 5 

DScore + Cutoff 0.44 0.48 2.5 

Partial    

Glover’s  0.50 0.68 5 

DScore 0.62 0.94 5 

DScore + Cutoff 0.60 0.77 2.5 

 
The learned descriptive model based only on rank features is as 
followed: 

DScore( p) = 0.122
+0.0000* r(DFS /# S)
−0.0001* r(DFP /# P)
+0.0000* r(TFIDFS )
−0.0001* r(TFIDFP )
+0.0509*[log(r(DFP /# P))− log(r(DFS /# S))]
+0.1874 *[log(r(TFIDFP ))− log(r(TFIDFS ))]

  

The model performs surprisingly well considering that it uses 
only ranking features. Its MRR is 0.47 for exact match and 0.62 
for partial match definition, which are at the same level 
comparing to the models that use all features.  

5.3.3 Noise Resistance 
So far we have assumed that the document hierarchy given to 
the algorithm correctly clusters every document with the same 
concept together. However, this is rarely the case, because the 
hierarchical clusters that need automatic labeling are usually 
produced by imperfect hierarchical clustering algorithms. To 
evaluate how the algorithm performs in a more realistic setting, 
another experiment was conducted with noise introduced into 
our ground truth data.  
Consider a cluster P that has the set of subclusters, denoted as 
children(P). For each document in any subcluster of P, the 
document is reassigned to another subcluster of P with a 
probability N (Noise %); with the probability 1-N, the document 
remains in the correct subcluster.  The probability that a 
document is reassigned to a subcluster C of P is proportional to 
the size of the cluster C.  So the probability that a document d in 



a the cluster P is assigned to a subcluster C of P, denoted by 
Pr(assigned(d, C)), is: 

⎪
⎪
⎩

⎪⎪
⎨

⎧

∉

∈−

=
∑

∉∈

Cd
R

C
N

CdN

Cdassigned

PhildrenR

 if ,*

 if ,1

)),(Pr(

Rd  and )(c

 

where |C| denotes the number of documents that originally 
belonged to the cluster C. 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0% 10% 20% 30% 40% 50%

Noise %

Glover's all-features all-features with cutoff rank-features  
Figure 3. shows MRR for different noise probability levels 

Figure 3 shows the performance comparison on exact match 
definition between different algorithms at noise levels from 0% 
to 50% on 94 categories of the OPD ground truth data. At 0% 
noise level, every document is correctly assigned. At 50% noise 
level, each cluster has approximately 50% of its documents 
correctly assigned, and the rest are documents that should be in 
its sibling clusters. We didn’t investigate noise levels higher 
than 50% because the cluster identity is no longer coherent 
when most of the cluster is assigned incorrectly. In Figure 3, 
Glover’s refers the baseline algorithm described in Section 
5.3.1; all-features and all-features with cutoff refer to the 
models that calculate DScore based on every feature described 
in Section 4.3, with and without the cutoff model respectively; 
and rank-features refers to the model described in Section 5.3.2, 
which only used rank-related features to calculate DScore. 
As expected the performance of every algorithm decreases as 
more noise is introduced. At 10% to 30% noise level, there is 
almost no change in the performance of any model. The MRR 
of every model drops around 0.1 with 50% noise. However, 
even with 40% noise level, our algorithms still perform at 
around 0.5 MRR, which means that on average there is a good 
descriptor in the top two labels. The decreases in performance 
mostly came from the small categories, which are more easily 
disrupted by the introduction of a few documents. In general, 
our algorithm was not sensitive to random noise.  
One might argue that this result is not surprising, because 
randomly assigning documents to sibling clusters does not 
change the underlying distribution of words in each cluster.  A 
more realistic simulation would assign a document to sibling 
clusters based on the similarities between the document and 
clusters’ centroids. Such a simulation would better reflect the 

errors normally produced by a clustering algorithm. Although a 
further study is needed to assess the noise tolerance of the model 
under this scenario, we believe that our experiment shows 
promising initial result.  

6. CONCLUSION AND FUTURE WORK 
Tools that automatically organize and assist in the analysis of 
large amounts of text documents are becoming a requirement in 
many organizations.  There has been considerable research on 
automatically organizing text documents into hierarchical 
clusters suitable for interactive browsing, but much less research 
on how best to automatically describe or label hierarchies to 
support interactive browsing. 
This paper presents a simple trainable algorithm that selects a 
few 1-3 word labels to describe each cluster in a document 
hierarchy.  The algorithm dynamically decides how many labels 
to select for each cluster; in our experiments, it average about 
2.6 labels per cluster.  Experiments using Open Directory 
Project data demonstrated that the labels produced by the 
algorithm often match the labels chosen by human editors.  
Preliminary experiments suggest that the algorithm is also 
robust with respect to clustering errors, although additional 
research is required to settle this question. 
Our research and most prior research focused on the use of 
statistical features to select and rank features; a distinguishing 
feature of our research is the use of statistics from a corpus of 
general English, the parent cluster, and the cluster to be labeled.  
However, perhaps more interesting is the discovery that the 
algorithm can select good descriptors using only rank-based 
features, and that rank-based features provide more robust 
results than more detailed numeric features. 
Error analysis showed that most of errors come from clusters 
containing small numbers of documents.  The small number of 
observations in small clusters can make good and bad labels 
indistinguishable; minor variations in vocabulary can also 
produce statistical features with spuriously high variance.  To 
improve the performance of the algorithm on small clusters it 
may be necessary to incorporate lexical features, for example 
the number of word senses for a candidate label, or positional 
features sensitive to where terms occur in a document, for 
example in a title or in a lead sentence.  The work described 
here demonstrates that it is realistic to aim higher than the lists 
of characteristic terms that have been the norm in prior research 
on automatic labeling, but it is nonetheless just the first step. 

7. ACKNOWLEDGEMENTS 
This research was supported by a Thai Ministry of Science, 
Technology and Environment Scholarship, and by NSF grants 
EIA-0327979 and IIS-0429102. Any opinions, findings, 
conclusions, or recommendation expressed in this paper are the 
authors’, and do not necessarily reflect those of the sponsors. 

8. REFERENCES 
[1] Caraballo, S. Automatic Acquisition of a hypernym-labeled 

noun hierarchy from text. In Proceedings of the 
Association for Computational Linguistics Conference, 
1999.  

[2] Chuang S., and Chien L. A practical web-based approach 
to generating topic hierarchy for text segments. In 



Proceedings of the 20th International Conference on 
Information and Knowledge Management, 2004. 

[3] Cutting D. R., Karger D. R., and Pederson J. O. Constant 
interaction-time Scatter/Gather browsing of very large 
document collections. In Proceedings of International 
ACM Conference on Research and Development in 
Information Retrieval, 1993. 

[4] Glover, E., Pennock, D., Lawrence, S. and Krovetz, R. 
Inferring hierarchical descriptions. In Proceedings of the 
20th International Conference on Information and 
Knowledge Management, 2002. 

[5] Glover, E., Tsioutsiouliklis, K., Lawrence, S., Pennock, D., 
and Flake, G. Using web structure for classifying and 
describing web pages. In Proceedings of International 
Conference on World Wide Web, 2002.  

[6] Krovetz, R. Viewing morphology as an inference process. 
In Proceedings of International ACM Conference on 
Research and Development in Information Retrieval, 1993. 

[7] Lawrie, D., Croft, W. B., and Rosenberg, A. L. Finding 
topic words for hierarchical summarization. In Proceedings 
of international ACM conference on research and 
development in information retrieval, 2001. 

[8] Muller, A., Dorre, J. Gerstl, P., and Seiffert, R. The 
TaxGen framework: automating the generation of a 
taxonomy for a large document collection. In Proceedings 

of the 32nd Hawaii International Conference on System 
Science, 1999. 

[9] Pantel, P., and Ravichandran, D. Automatically labeling 
semantic classes. In Proceedings of the Human Language 
Technology and North American Chapter of the 
Association for Computational Linguistics Conference. 
2004. 

[10] Popescul, A., and Ungar, L. Automatic labeling of 
document clusters. Unpublished manuscript, available at 
http://citeseer.nj.nec.com/popescul00automatic.html, 2000. 

[11] Yang, H. and Callan, J. Near-duplicate detection for 
eRulemaking. In Proceedings of the National Conference 
on Digital Government Research (DG.02005), 2005. 

[12] Zeng, H., He, Q., Chen Z., Ma, W., and Ma J. Learning to 
cluster web search results. In Proceedings of International 
ACM Conference on Research and Development in 
Information Retrieval, 2004. 

[13] Open Directory Project (ODP). 
[14] eRulemaking Testbed. 

http://hartford.lti.cs.cmu.edu/eRulemaking/Data.html. 
[15] Weka, Data Mining Software, University of Waikato. 
[16] WordNet, a lexical database for the English language. 
[17] Yahoo! 

 


