
Constructing Quantified Invariants via Predicate
Abstraction

�

Shuvendu K. Lahiri and Randal E. Bryant

Carnegie Mellon University, Pittsburgh, PA
shuvendu@ece.cmu.edu,Randy.Bryant@cs.cmu.edu

Abstract. Predicate abstraction provides a powerful tool for verifying properties
of infinite-state systems using a combination of a decision procedure for a sub-
set of first-order logic and symbolic methods originally developed for finite-state
model checking. We consider models where the system state contains mutable
function and predicate state variables. Such a model can describe systems con-
taining arbitrarily large memories, buffers, and arrays of identical processes. We
describe a form of predicate abstraction that constructs a formula over a set of
universally quantified variables to describe invariant properties of the function
state variables. We provide a formal justification of the soundness of our ap-
proach and describe how it has been used to verify several hardware and software
designs, including a directory-based cache coherence protocol with unbounded
FIFO channels.

1 Introduction

Graf and Saı̈di introduced predicate abstraction [10] as a means of automatically de-
termining invariant properties of infinite-state systems. With this approach, the user
provides a set of

�
Boolean formulas describing possible properties of the system state.

These predicates are used to generate a finite state abstraction (containing at most ���
states) of the system. By performing a reachability analysis of this finite-state model,
a predicate abstraction tool can generate the strongest possible invariant for the sys-
tem expressible in terms of this set of predicates. Prior implementations of predicate
abstraction [10, 7, 1, 8] required making a large number of calls to a theorem prover
or first-order decision procedure and hence could only be applied to cases where the
number of predicates was small. More recently, we have shown that both BDD and
SAT-based Boolean methods can be applied to perform the analysis efficiently [12].

In most formulations of predicate abstraction, the predicates contain no free variables;
they evaluate to true or false for each system state. The abstraction function � has a
simple form, mapping each concrete system state to a single abstract state based on the
effect of evaluating the

�
predicates. The task of predicate abstraction is to construct a

formula ��� consisting of some Boolean combination of the predicates such that �	��
���
holds for every reachable system state � .
�

This research was supported in part by the Semiconductor Research Corporation, Contract
RID 1029.

To verify systems containing unbounded resources, such as buffers and memories of
arbitrary size and systems with arbitrary number of identical, concurrent processes,
the system model must support state variables that are functions or predicates [11, 4].
For example, a memory can be represented as a function mapping an address to the
data stored at an address, while a buffer can be represented as a function mapping an
integer index to the value stored at the specified buffer position. The state elements of
a set of identical processes can be modeled as functions mapping an integer process
identifier to the state element for the specified process. In many systems, this capability
is restricted to arrays that can be altered only by writing to a single location [7, 11]. Our
verifier allows a more general form of mutable function, where the updating operation
is expressed using lambda notation.

In verifying systems with function state variables, we require quantified predicates to
describe global properties of state variables, such as “At most one process is in its
critical section,” as expressed by the formula ���������
	�����
�� ���	�����
�� �������� .
Conventional predicate abstraction restricts the scope of a quantifier to within an indi-
vidual predicate. System invariants often involve complex formulas with widely scoped
quantifiers. The scoping restriction implies that these invariants cannot be divided into
small, simple predicates. This puts a heavy burden on the user to supply predicates that
encode intricate sets of properties about the system. Recent work attempts to discover
quantified predicates automatically [7], but it has not been successful for many of the
systems that we consider.

In this paper we present an extension of predicate abstraction in which the user supplies
predicates that include free variables from a set of index variables � . The predicate
abstraction engine constructs a formula � � consisting of a Boolean combination of these
predicates, such that the formula ��� � �
 � holds for every reachable system state � .
With this method, the predicates can be very simple, with the predicate abstraction tool
constructing complex, quantified invariant formulas. For example, the property that at
most one process can be in its critical section could be derived by supplying predicates
	�����
�� , 	�����
�� , and �!� , where and � are the index symbols. Encoding these
predicates in the abstract system with Boolean variables 	" , 	#� , and $%&� , respectively,
we can verify this property by using predicate abstraction to prove that 	"'�(#�)�*$+&�
holds for every reachable state of the abstract system.

Flanagan and Qadeer use a method similar to ours [8] for constructing universally quan-
tified loop invariants for sequential software, and we briefly described our method in an
earlier paper [12]. Our contribution in this paper is to describe the method more care-
fully, explore its properties, and to provide a formal argument for its soundness. The
key idea of our approach is to formulate the abstraction function � to map a concrete
system state � to the set of all possible valuations of the predicates, considering the
set of possible values for the index variables � . The resulting abstract system is un-
usual; it is not characterized by a state transition relation and hence cannot be viewed
as a state transition system. Nonetheless, it provides an abstract interpretation of the
concrete system [6] that can be used to find invariant system properties.

Assuming a decision procedure that can determine the satisfiability of a formula with
universal quantifiers, we can prove the following completeness result for our formula-

tion: Predicate abstraction can prove any property that can be proved by induction on
the state sequence using an induction hypothesis expressed as a universally quantified
formula over the given set of predicates. For many modeling logics, this decision prob-
lem is undecidable. By using quantifier instantiation, we can implement a sound, but
incomplete verifier.

As an extension, we show that it is easy to incorporate axioms into the system, proper-
ties that must hold universally for every system state. Axioms can be viewed simply as
quantified predicates that must evaluate to true on every step. For brevity, this paper only
sketches the main proofs. We conclude the paper by describing our use of predicate ab-
straction to verify several hardware and software systems, including a directory-based
cache coherence protocol devised by Steven German [9]. We believe we are the first to
verify the protocol for a system with an unbounded number of clients, each communi-
cating via unbounded FIFO channels.

2 Preliminaries

We assume the concrete system is defined in terms of some decidable subset of first-
order logic. Our implementation is based on the CLU logic [4], supporting expressions
containing uninterpreted functions and predicates, equality and ordering tests, and addi-
tion by integer constants, but the ideas of this paper do not depend on the specific mod-
eling formalism. For discussion, we assume that the logic supports Booleans, integers,
functions mapping integers to integers, and predicates mapping integers to Booleans.

2.1 Notation

Rather than using the common indexed vector notation to represent collections of values
(e.g., � �� ����� � ��� � �	�
� � ����), we use a named set notation. That is, for a set of symbols�

, we let � indicate a set consisting of a value
���

for each ��� � .

For a set of symbols
�

, let �	� denote an interpretation of these symbols, assigning to
each symbol ��� � a value � �
�� of the appropriate type (Boolean, integer, function,
or predicate). Let � � denote the set of all interpretations � � over the symbol set

�
.

For interpretations �	� and ��� over disjoint symbol sets
�

and � , let �
������� denote an
interpretation assigning either �	�
�� or ���
�� to each symbol ��� ��� � , according to
whether ��� � or ��� � .

For symbol set
�

, let !
 � denote the set of all expressions in the logic over
�

. For any
expression " �#!
 � and interpretation �	�$�%�&� , let the valuation of " with respect
to �	� , denoted

� " �('*) be the (Boolean, integer, function, or predicate) value obtained by
evaluating " when each symbol �+� � is replaced by its interpretation �,�	
�� .
Let � be a named set over symbols

�
, consisting of expressions over symbol set � .

That is,
� � �-!
.� for each �#� � . Given an interpretation �
� of the symbols in � ,

evaluating the expressions in � defines an interpretation of the symbols in
�

, which we
denote

� � �/'10 . That is,
� � �/'20 is an interpretation �	� such that ���
�� � �.� � �3'20 for each

��� � .

A substitution � for a set of symbols
�

is a named set of expressions over some set
of symbols � (with no restriction on the relation between

�
and � .) That is, for each

�$� � , there is an expression � � � !
.� . For an expression " � !
 � ��� , we
let "�� ��� �	� denote the expression "�
 ��!
�� ��� resulting when we (simultaneously)
replace each occurrence of every symbol � � � with the expression � � .
2.2 System Model

We model the system as having a number of state elements, where each state element
may be a Boolean or integer value, or a function or predicate. We use symbolic names
to represent the different state elements giving the set of state symbols . We introduce
a set of initial state symbols � and a set of input symbols � representing, respectively,
initial values and inputs that can be set to arbitrary values on each step of operation.
Among the state variables, there can be immutable values expressing the behavior of
functional units, such as ALUs, and system parameters such as the total number of pro-
cesses or the maximum size of a buffer. Since these values are expressed symbolically,
one run of the verifier can prove the correctness of the system for arbitrary functionali-
ties, process counts, and buffer capacities.

The overall system operation is characterized by an initial-state expression set ��� and
a next-state expression set � . The initial state consists of an expression for each state
element, with the initial value of state element � given by expression ���� � !
�� .
The transition behavior also consists of an expression for each state element, with the
behavior for state element � given by expression � � ��!
� � � . In this expression,
the state element symbols represent the current system state and the input symbols
represent the current values of the inputs. The expression gives the new value for that
state element.

We will use a very simple system as a running example throughout this presentation.
The only state element is a function � . An input symbol determines which element of� is updated. Initially, � is the identify function: ���� ����� � � . On each step, the value
of the function for argument is updated to be �
�! #"� . That is, � � �$�%� � ITE
&� �
 �'�
�()" �*�
&� , where the if-then-else operation ITE selects its second argument
when the first one evaluates to true and the third otherwise.

2.3 Concrete System

A concrete system state assigns an interpretation to every state symbol. The set of states
of the concrete system is given by �,+ , the set of interpretations of the state element
symbols. For convenience, we denote concrete states using letters � and - rather than
the more formal � + .

From our system model, we can characterize the behavior of the concrete system in
terms of an initial state set .,�/10 �2+ and a next-state function operating on sets3 / �54
2�2+ �6 4
*�2+ . The initial state set is defined as . � / ��1798:� ��; '=<?> �A@ �
�	@�B , i.e., the set of all possible valuations of the initial state expressions. The next-state
function

3 / is defined for a single state � as
3 /
 � ��C7 � � �ED:F '�G > �:H � ��HIB , i.e., the set

of all valuations of the next-state expressions for concrete state � and arbitrary input.
The function is then extended to sets of states by defining

3 /
�� / ��� D����	� 3 /
��� .
We can also characterize the next-state behavior of the concrete system by a transition
relation
 where
 � � - ��
 when - � 3 /
 � .
We define the set of reachable states � / as containing those states � such that there is
some state sequence � � � � � � �
�	� � � � with � � ��.	�/ , � � � � , and ���� � � 3 /
���� for all
values of � such that ��� ����� . We define the depth of a reachable state � to be the
length � of the shortest sequence leading to � . Since our concrete system has an infinite
number of states, there is no finite bound on the maximum depth over all reachable
states.

With our example system, the concrete state set consists of integer functions � such that�
&� "�����
�� �� � for all � and �
&� � � for infinitely many arguments of � .

3 Predicate Abstraction

We use quantified predicates to express constraints on the system state. To define the
abstract state space, we introduce a set of predicate symbols � and a set of index sym-
bols � . The predicates consist of a named set � , where for each ��� � , predicate !#" is
a Boolean formula over the symbols in � � .

Our predicates define an abstract state space �%$, consisting of all interpretations �&$ of
the predicate symbols. For

� �� > � > , the state space contains � � elements.

As an illustration, suppose for our example system we wish to prove that state element� will always be a function � satisfying �
&� '��� for all �(�)� . We introduce an index
variable � and predicate symbols � �C7&���+* B , with ! " �� �
�� ,�)� and !%- ����.��� .
We can denote a set of abstract states by a Boolean formula �-� !
/� . This expression
defines a set of states

� � � �� 7�� $ > � � �/'�0 �21&35476 B . As an example, our two predicates!8" and ! - generate an abstract space consisting of four elements, which we denote FF,
FT, TF, and TT, according to the interpretations assigned to � and * . There are then 16
possible abstract state sets, some of which are shown in Table 1. In this table, abstract
state sets are represented both by Boolean formulas over � and * , and by enumerations
of the state elements.

Abstract System Concrete System
Formula State Set System Property State Set9 :<;>=�?@9BA CEDF9HG :EI =�JLKM:<;ON
P,QSR T TT U CWVFXZYWK@V	N\[(] Q V^[(] _
P`QSaLR T TF U C8VFX�YWK@V	N\[(] Q V^b(] _
a#R T FF c TF U C8VFXZV^b(] _
P T TF c TT U C8VFXZYdK@V	N7[�] Tfe#g C8hiX e K@h8N\[(] UP`jSaLR T FF c TF c TT U C8VFXZVF[�]`klYWK@V	N\[�] Tfe#g CWh.X�hm[(]`k e K@h<Nn[�] U

Table 1. Example abstract state sets and their concretizations Abstract state elements are
represented by their interpretations of P and R . The terms are interpreted over o .

We define the abstraction function � to map each concrete state to the set of abstract
states given by the valuations of the predicates for all possible values of the index vari-
ables:

�
 � ���� � � � D F '�� > ��� � ����� (1)

Since there are multiple interpretations �	� , a single concrete state will generally map to
multiple abstract states. This feature is not found in most uses of predicate abstraction,
but it is the key idea for handling quantified predicates. We then extend the abstraction
function to apply to sets of concrete states in the usual way: �
 � / �� � D���� � �
�� . We
can see that � is monotonic, i.e., that if � / 0
 / , then �
�� / %0 �
/
 / .
Working with our example system, consider the concrete state given by the function�%� � � . When we abstract this function relative to predicates ! " and !%- , we get two
abstract states: TT, when � � � , and FF, when � ��� . This abstract state set is then
characterized by the formula ��
 * .
We define the concretization function � to require universal quantification over the in-
dex symbols. That is, for a set of abstract states �� 0-� $:

�
 � �� � � > � ����� ��� � � � �ED:F ' � � � �� (2)

The universal quantifier in this definition has the consequence that the concretization
function does not distribute over set union. In particular, we cannot view the con-
cretization function as operating on individual abstract states, but rather as generating
each concrete state from multiple abstract states. Nonetheless, � is montonic, i.e., if�� 0)
� , then �
 �� 0��
M
� .
Consider our example system with predicates ! " and !%- . Table 1 shows some example
abstract state sets � and their concretizations �
 � . As the first three examples show,
some (altogether 6) nonempty abstract state sets have empty concretizations, because
they constrain � to be either always negative or always non-negative. On the other hand,
there are 9 abstract state sets having nonempty concretizations. We can see by this that
the concretization function is based on the entire abstract state set and not just on the
individual values. For example, the sets 7 TF B and 7 TT B have empty concretizations,
but 7 TF � TT B concretizes to the set of all non-negative functions.

Theorem 1. The functions
 � ��� form a Galois connection 1, i.e., for any sets of con-
crete states � / and abstract states � :

�
 � / �0����
 � / 0��
��� (3)

The proof follows by observing that both the left and the right-hand sides of (3) hold
precisely when for every �	� � ��� and every � � � / , we have

� � �ED:F ' � � � .

1 This is one of several logically equivalent formulations of a Galois connection [6].

A Galois connection also satisfies the property (follows from (3)) that for any set of
concrete states � / :

� / 0 �
 �
�� / � (4)

The containment relation in (4) can be proper. For example, the concrete state set con-
sisting of the single function �%� � � abstracts to the state set �
 * , which in turn
concretizes to the set of all functions � such that �
&� ,� ��
 � �)� .

4 Abstract System

Predicate abstraction involves performing a reachability analysis over the abstract state
space, where on each step we concretize the abstract state set via � , apply the concrete
next-state function, and then abstract the results via � . We can view this process as
performing reachability analysis on an abstract system having initial state set . � ��
�
 .	�/ and a next-state function operating on sets:

3
�� �� �
 3 /
 �
 � . Note
that there is no transition relation associated with this next-state function, since � cannot
be viewed as operating on individual abstract states.

It can be seen that
3 provides an abstract interpretation of the concrete system [6, 5]:

1.
3 is null-preserving:

3
 � '� �

2.
3 is monotonic: �� 0
� � 3
 �� %0 3
M

3.
3 simulates

3 / (a simulation relation defined by �): �
 3 /
�� / �0 3
 �
�� /
We perform reachability analysis on the abstract system using

3 as the next-state
function:

� � � . � (5)

� �
�

 � � � 3
 � (6)

Since the abstract system is finite, there must be some � such that � � � �
� � � . The

set of all reachable abstract states �� is then � � . By induction on � , it can be shown
that if � is a reachable state in the concrete system with depth �2� , then �
 � ,0 � � .
From this it follows that �
�� 0 �� for any concrete reachable state � , and therefore
that �
 � / 0 � . Thus, even though determining the set of reachable concrete states
would require examining paths of unbounded length, we can compute a conservative
approximation to this set by performing a bounded reachability analysis of the abstract
system.

It is worth noting that we cannot use the standard “frontier set” optimization in our
reachability analysis. This optimization, commonly used in symbolic model checking,
considers only the newly reached states in computing the next set of reachable states.
In our context, this would mean using the computation � ��

�
 � � � 3
M� �� � ��

�

rather than that of (6). This optimization is not valid, due to the fact that � , and therefore3 , does not distribute over set union.

As an illustration, let us perform reachability analysis on our example system. In the
initial state, state element � is the identity function, which we have seen abstracts to the
set represented by the formula �
 * . This abstract state set concretizes to the set of
functions � satisfying �
&� ,���
 � �)� . Let � denote the value of � in the next state.
If input is � " , we would �
 � " '� �
 � ���� , but we can still guarantee that �
&� ,� �
for � � � . Applying the abstraction function, we get � � characterized by the formula�����* (see Table 1.) For the second iteration, the abstract state set characterized by the
formula �����* concretizes to the set of functions � satisfying �
&� � � when � � � ,
and this condition must hold in the next state as well. Applying the abstraction function
to this set, we then get � � � � � , and hence the process has converged.

5 Verifying Safety Properties

A Boolean formula � � !
@� defines a property of the abstract state space. The prop-
erty is said to hold for the abstract system when it holds for every reachable abstract
state. That is,

� � � ' 0 ��1&35476 for all � $%��� .

For Boolean formula � �#!
/� , define the formula � ���#!
� � � to be the result
of substituting the predicate expression !%" for each predicate symbol �#� � . That is,
viewing � as a substitution, we have � � �� � � �%��� � . Formula � � defines a property
��� � � of the concrete states. The property holds for concrete state � , written � � � �
��� ,
when

� � � � D:F ' � � 1f354n6 for every � ������� . The property holds for the concrete system
when ��� � �
 � holds for every reachable concrete state � � � / . Table 1 shows the
concrete system properties given by different abstract state formulas � .

Theorem 2. For a formula �-� !
@� , if property � holds for the abstract system, then
property ��� � � holds for the concrete system.

This follows by the definition of � and the fact that �
 � / 0)� .

With our example system, letting formula � �� �����* , and noting that �����*
	 * � � ,
we get the property � � ��� � �)� �
�� ,�)� .
Using predicate abstraction, we can possibly get a false negative result, where we fail
to verify a property � � � � , even though it holds for the concrete system, because the
given set of predicates does not adequately capture the characteristics of the system
that ensure the desired property. Thus, this method of verifying properties is sound, but
possibly incomplete.

We can precisely characterize the class of properties for which the predicate abstraction
is both sound and complete, assuming we have a decision procedure that can determine
whether a universally quantified formula in the underlying logic is satisfiable. A prop-
erty ��� � � is said to be inductive for the concrete system when it satisfies the following
two properties:

1. Every initial state � �#.,�/ satisfies � � � �
 � .
2. For all concrete states � and - � 3 /
 � , if ��� � �
 � holds, then so does ��� � �
&- .

Clearly an inductive property must hold for every reachable concrete state and therefore
for the concrete system. It can also be shown that if � � � � is inductive, then � holds for
the abstract system. That is, if we present the predicate abstraction engine with a fully
formed induction hypothesis, it can prove that it holds.

For formula � � !
@� and predicate set � , the property ��� � � is said to have an
induction proof over � when there is some formula � ��!
@� , such that � � � and
����� � is inductive. That is, there is some way to strengthen � into a formula � that can
be used to prove the property by induction.

Theorem 3. A formula �-� !
/� is a property of the abstract system if and only if the
concrete property ��� ��� has an induction proof over the predicate set � .

This theorem precisely characterizes the capability of our formulation of predicate
abstraction—it can prove any property that can be proved by induction using an in-
duction hypothesis expressed in terms of the predicates. Thus, if we fail to verify a
system using this form of predicate abstraction, we can conclude that either 1) the sys-
tem does not satisfy the property, or 2) we did not provide an adequate set of predicates
to construct an universally quantified induction hypothesis, provided one exists.

6 Quantifier Instantiation

For many subsets of first-order logic, there is no complete method for handling the uni-
versal quantifier introduced in function � (Equation 2). For example, in a logic with
uninterpreted functions and equality, determining whether a universally quantified for-
mula is satisfiable is undecidable [3]. Instead, we concretize abstract states by consid-
ering some limited subset of the interpretations of the index symbols, each of which
is defined by a substitution for the symbols in � . Our tool automatically generates
candidate substitutions based on the subexpressions that appear in the predicate and
next-state expressions [13]. These subexpressions can contain symbols in , � , and � .
These instantiated versions of the formulas enable to verifier to detect specific cases
where the predicates can be applied. Flanagan and Qadeer use a similar technique [8].

More precisely, let � be a substitution assigning an expression � � ��!
� � � � �
for each � � � . Then !E" � ���#� � will be a Boolean expression over symbols , � , and� that represents some instantiation of predicate !%" . For a set of substitutions � and
interpretations � � � ��� and � H ����H , we define the concretization function ��� as:

���
 � �/� �
�/�:H �� � � > � � ��� � � � � � �&� � � D F ' � F '�G ��� � (7)

It can be seen that ��� is an overapproximation of � , i.e., that �
 � �0����
 � � ��� �/�:H
for any abstract state � , set of substitutions � , and interpretations �	� and � H . From
(4), it then follows that

� / 0 � �
 �
�� / �/� � � � H � (8)

and hence the functions
 � ����� satisfy property (4) of a Galois connection, even though
they are not a true Galois connection.

We can use ��� as an approximation to � in defining the behavior of the abstract system.
That is, define

3
� over sets of abstract states as:3

�
��� '� � � � � � �� � � D:F ' � F ' G > � � � � � �/� H � � H � � � � �
��� �/� � � � H � (9)

Observe in this equation that !E" � � �� � is an expression describing the evaluation of
predicate !E" in the next state. It can be seen that

3
�
 �� �� 3
��� for any set of

abstract states � . As long as � is nonempty (required to guarantee that
3
� is null-

preserving), it can be shown that the system defined by
3
� is an abstract interpretation

of the concrete system. We can therefore perform reachability analysis:

� �� � . � (10)

� ��
�

� � � � � 3 �
 � � (11)

These iterations will converge to a set � � . For every step � , we can see that � � �)� ,
and therefore we must have � ��� � .

Theorem 4. For a formula � � !
@� , if
� � � ' 0 � 1&354n6 for every � $ � � � , then

property ��� � � holds for the concrete system.

This demonstrates that using quantifier instantiation during reachability analysis yields
a sound verification technique. However, when the tool fails to verify a property, it could
mean, in addition to the two possibilities listed earlier, that 3) it used an inadequate set of
instantiations, or 4) that the property cannot be proved by any bounded set of quantifier
instantiations.

7 Symbolic Formulation of Reachability Analysis

We are now ready to express the reachability computation symbolically, where each step
involves finding the set of satisfying solutions to an existentially quantified formula. On
each step, we generate a Boolean formula � � , that characterizes � � . That is 8 � � ; �� � . The formulas directly encode the approximate reachability computations of (10)
and (11).

Observe that by composing the predicate expressions with the initial state expressions,��� �!������ , we get a set of predicates over the initial state symbols � indicating the
conditions under which the predicates hold in the initial state. We can therefore start the
reachability analysis by finding solutions to the formula� � �
@� '�	�*�
� ���" � $ �
 ! "� � � �� � (12)

The formula for the next-state computation combines the definitions of
3
� (9) and � �

(7): � � ��
/� '��� �
/� �
�'�� ����� �� �� � ��� � � � � �Z� ��� � � �#� � � �" � $ ��
 !<" � � �� ���� � (13)

To understand the quantified term in this equation, note that the left-hand term is the
formula for � �
 � � �/��� � �:H , while the right-hand term expresses the conditions under
which each abstract state variable � will match the value of the corresponding predicate
in the next state.

Let us see how this symbolic formulation would perform reachability analysis for our
example system. Recall that our system has two predicates ! " �� �
.� �� � and !%- ��
� � � . In the initial state, � is the function �%� � � , and therefore ! " � �!� �� � simply
becomes � � � . Equation (12) then becomes � �	�
/�
 �>�)� ��
 *
 � � � � , which
reduces to �
 * .
Now let us perform the first iteration. For our instantiations we require two substitutions� and ��
 with � � � � and �
� � ?" . For �9� �
/���+* � �
 * , the left-hand term of
(13) instantiates to
��
�� � �
 � � � �
&�
 ! "� � �
 ?"m� � . Substituting�%� � ITE
&��� �'�
� �"� �9�
�� for � in ! " gives
.� � +���
� �"��� � �
�� �� +�%�
�� ��� .
The quantified portion of (13) for � ��
@���+* then becomes

� ���(��� � �� �
�� �����
 �.��� � �
 "���)��
 " �)�
� �
 �
.� � �� �
 " H��� �
�� �� �� �
�� ��)� �
��*
 �>���

��
The only values of � and * where this formula cannot be satisfied is when � is false and* is true.

As shown in [12], we can generate the set of solutions to (12) and (13) by first trans-
forming the formulas into equivalent Boolean formulas and then performing Boolean
quantifier elimination to remove all Boolean variables other than those in � . This quan-
tifier elimination is similar to the relational product operation used in symbolic model
checking and can be solved using either BDD or SAT-based methods.

8 Axioms

As a special class of predicates, we may have some that are to hold at all times. For
example, we could have an axiom �
�� �� � to indicate that function � is always pos-
itive, or �
����	� �
�
�� ��� to indicate that � is commutative. Typically, we want these
predicates to be individually quantified, but we can ensure this by defining each of them
over a unique set of index symbols, as we have done in the above examples.

We can add this feature to our analysis by identifying a subset of the predicate sym-
bols � to be axioms. We then want to restrict the analysis to states where the axiomatic
predicates hold. Let ���$ denote the set of abstract states � $ where � $
/� ��1&35476 for
every � �� . Then we can apply this restriction by redefining �
��� (Equation 1) for
concrete state � to be:

�
 � ���� � � � D F '�� > � � � � � ��� ���$ (14)

and then using this definition in the extension of � to sets, the formulation of the reach-
ability analysis (Equations 5 and 6), and the approximate reachability analysis (Equa-
tions 10 and 11).

9 Applications

We have used our predicate abstraction tool to verify safety properties of a variety of
models and protocols. Some of the more interesting ones include:

– A microprocessor out-of-order execution unit with an unbounded retirement buffer.
Prior verification of this unit required manually generating 13 invariants [13].

– A directory-based cache protocol with unbounded channels, devised by Steven Ger-
man of IBM [9], as discussed below.

– A version of Lamport’s bakery algorithm [14] that allows arbitrary number of pro-
cesses and nonatomic reads and writes.

– Selection sort algorithm for sorting an arbitrary large array. We prove the property
that upon termination, the algorithm produces a sorted array.

For the directory-based German’s cache-coherence protocol, an unbounded number of
clients (�� 	 � $), communicate with a central home process to gain exclusive or shared
access to a memory line. The state of each 	��%	 � $ can be 7 INVALID, SHARED, EXCLU-
SIVE B . The home maintains explicit representations of two lists of clients: those sharing
the cache line (

����� $ � � � � $ � �%	���) and those for which the home has sent an invalida-
tion request but has not received an acknowledgement (

���
� $ �����%���#� $ �%	���).
The client places requests 7 REQ SHARED, REQ EXCLUSIVE B on a channel 	 � �

and the
home grants 7 GRANT SHARED, GRANT EXCLUSIVE B on channel 	 � �

. The home also
sends invalidation messages INVALIDATE along 	 � �

. The home grants exclusive access
to a client only when there are no clients sharing a line, i.e. � � ���
� $ � � � �"$ � �%	���
� �������� 6 . The home maintains variables for the current client (

���
� $ 	
� � � $��"� 	�� &$��"�)
and the request it is currently processing (

����� $ 	��"� � $�� � 	 �
��� ����). It also maintains
a bit

����� $ $ � 	������
� $ � �����"� $	� to indicate that some client has exclusive access. The
cache lines acknowledge invalidation requests with a INVALIDATE ACK along another
channel 	 � �

. Details of the protocol operation with single-entry channels can be found
in many previous works including [15].

In our version of the protocol, each 	��%	 � $ communicates to the home process through
three directed unbounded FIFO channels, namely the channels 	 � � � 	 � � � 	 � �

. Thus,
there are an unbounded number of unbounded channels, three for each client2. It can
be shown that a client can generate an unbounded number of requests before getting a
response from the home.

To model the protocol in CLU, we need to change the predicate state variable rep-
resentation of

���
� $ � � � � $ � �%	��� . Since the transition functions are expressed over
quantifier-free logic, we cannot support a universal quantifier in the model. Instead, we
model

���
� $ � � � �"$ � � 	��� as a set, using (1) a queue
� ��� * �� � * � � �+����� � to store all

cache indices for which
���
� $ � � �#� $ � �%	���
 � � 1&354n6 and (2) an array

� ��� � � �
to map a cache index to the position in the queue, if � � ��� * . This representation
can support addition, deletion, membership-check and emptiness-check, which are the
operations required for this protocol. In addition, this representation also allows us to
enumerate the cache indices for which

���
� $ � � � �"$ � � 	���
��'� 1f3Z476 .
2 The extension was suggested by Steven German himself

We had previously verified the cache-coherence property of the protocol with 31 non-
trivial, manually constructed invariants. In contrast, the predicate abstraction constructs
the strongest inductive invariant automatically with 29 predicates, all of which are sim-
ple and do not involve any Boolean connectives. There are 2 index variables in � to
specify the predicates. The abstract reachability took 19 iterations and 263 minutes to
produce the inductive invariant 3. For the simpler version which has single-entry chan-
nels for communication, our method finds the inductive invariant in 85s using 17 predi-
cates in 9 iterations. All experiments were performed on a 2.1 GHz Linux machine with
1GB of RAM. The main difficulty of making the channels unbounded is the presence
of two-dimensional arrays in the model, and additional state variables for the head and
tail pointers for each of the unbounded queues.

For space considerations, we will only describe the nature of predicates used for the
model with single-entry channels. A few predicates did not require any index symbol.
These include:

����� $ $��+	������"�� $ � ����� � $	� ,
����� $ 	��"� � $�� � 	 �
��� ���� = REQ SHARED,���
� $ 	
�"� � $��"� 	 �
��� ����� = REQ EXCLUSIVE,

� ��� ��� and
� � � ��� . For most pred-

icates, we required a single index variable � � , to denote an arbitrary cache in-
dex. They include:

���
� $ �������%���� � $ �%	��� (), 	��%	 � $ () = EXCLUSIVE, 	��%	 � $ () =
SHARED, 	 � �

() = GRANT EXCLUSIVE, 	 � �
() = GRANT SHARED, 	 � �

() = IN-
VALIDATE, 	 � �

() = INVALIDATE ACK and = *
 � � . We also required another index
variable ��� � to range over the entries of the queue

� ��� * . The predicates over � are� �m� � and �>� ��� . Finally, to relate the entries in
� ��� * and

� ��� � � � , we needed the
predicates � * (�) and �)� � ��� � � � ().
Most of the predicates are fairly easy to find from the model and from counterexamples.
Predicate abstraction constructs an inductive invariant of the form � � � � � �
� � � ,
which implies the cache-coherence property. This implication is checked automatically
with a sound decision procedure in UCLID [4], using quantifier instantiation.

Previous attempts at using predicate abstraction (with locally quantified predicates),
for a version of the protocol with single-entry channels required complex quantified
predicates [7, 2], sometimes as complex as an invariant. However, Baukus et al. [2]
proved the liveness of the protocol in addition to the cache-coherence property. Pnueli
et al. [15] have used the method of invisible invariants to derive the inductive invariant
for the model with single-entry channels, but it is not clear if their formalism can model
the version with unbounded channels per client.

10 Conclusions

We have found quantified invariants to be essential in expressing the properties of sys-
tems with function state variables. The ability of our tool to automatically generate
quantified invariants based on small and simple predicates allows us to deal with much
more complex systems in a more automated fashion than previous work. A next step
would be to automatically generate the set of predicates used by the predicate abstrac-
tion tool. Other tools generate new predicates based on the counterexample traces from
the abstract model [1, 7]. This approach cannot be used directly in our context, since our

3 There is a lot of scope for optimizing the performance of our procedure.

abstract system cannot be viewed as a state transition system, and so there is no way to
characterize a counterexample by a single state sequence. We are currently looking at
techniques to extract relevant predicates from the proof of unsatisfiable formulas which
represent that an error state can’t be reached after any finite number of steps.

Acknowledgments We wish to thank Ching-Tsun Chou for his detailed comments on
an early draft of this paper.

References

1. T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicate abstraction
of C programs. In Programming Language Design and Implementation (PLDI ’01), pages
203–213, 2001.

2. K. Baukus, Y. Lakhnech, and K. Stahl. Parameterized Verification of a Cache Coherence Pro-
tocol: Safety and Liveness. In A. Cortesi, editor, Verification, Model Checking, and Abstract
Interpretation, (VMCAI ’02), LNCS 2294, pages 317–330, January 2002.

3. E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem. Springer-Verlag,
1997.

4. R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Modeling and verifying systems using a logic of
counter arithmetic with lambda expressions and uninterpreted functions. In E. Brinksma and
K. G. Larsen, editors, Computer-Aided Verification (CAV ’02), LNCS 2404, pages 78–92,
2002.

5. C. T. Chou. The mathematical foundation fo symbolic trajectory evaluation. In N. Halbwachs
and D. Peled, editors, Computer-Aided Verification (CAV’99), LNCS 1633, pages 196–207,
1999.

6. P. Cousot and R. Cousot. Abstract interpretation : a unified lattice model for the static analy-
sis of programs by construction or approximation of fixpoints. In Principles of Programming
Languages (POPL ’77), pages 238–252, 1977.

7. S. Das and D. L. Dill. Counter-example based predicate discovery in predicate abstraction.
In M. D. Aagaard and J. W. O’Leary, editors, Formal Methods in Computer-Aided Design
(FMCAD ’02), LNCS 2517, pages 19–32, 2002.

8. C. Flanagan and S. Qadeer. Predicate abstraction for software verification. In J. Launchbury
and J. C. Mitchell, editors, Principles of Programming Languages (POPL ’02), pages 191–
202, 2002.

9. S. German. Personal communication.
10. S. Graf and H. Saı̈di. Construction of abstract state graphs with PVS. In O. Grumberg, editor,

Computer-Aided Verification (CAV ’97), LNCS 1254, pages 72–83, 1997.
11. C. N. Ip and D. L. Dill. Verifying systems with replicated components in Mur � . In R. Alur

and T. A. Henzinger, editors, Computer-Aided Verification (CAV ’96), LNCS 1102, pages
147–158, 1996.

12. S. K. Lahiri, R. E. Bryant, and B. Cook. A symbolic approach to predicate abstraction.
In W. A. Hunt, Jr. and F. Somenzi, editors, Computer-Aided Verification (CAV ’03), LNCS
2725, pages 141–153, 2003.

13. S. K. Lahiri, S. A. Seshia, and R. E. Bryant. Modeling and verification of out-of-order
microprocessors in UCLID. In M. D. Aagaard and J. W. O’Leary, editors, Formal Methods
in Computer-Aided Design (FMCAD ’02), LNCS 2517, pages 142–159, 2002.

14. L. Lamport. A new solution of Dijkstra’s concurrent programming problem. Communica-
tions of the ACM, 17:453–455, August 1974.

15. A. Pnueli, S. Ruah, and L. Zuck. Automatic deductive verification with invisible invariants.
In T. Margaria and W. Yi, editors, Tools and Algorithms for the Construction and Analysis of
Systems (TACAS ’01), LNCS 2031, pages 82–97, 2001.

