Formal Verification of an ARM processor

Vishnu A. Patankar Alok Jain Randal E. Bryant

Department of ECE Cadence Design Systems School of Computer Science

Carnegie Mellon University Noida Export Processing Zone Carnegie Mellon University
Pittsburgh, PA 15213 Noida, India 201305 Pittsburgh, PA 15213

Email: vishnup@ece.cmu.edu Email: alokj@cadence.com Email: randy.bryant@cs.cmu.edu
Abstract

This paper presents a detailed description of the application of a formal verification methodology to an
ARM processor. The processor, a hybrid between the ARM7 and the StrongARM processors, uses features
such as a 5-stage instruction pipeline, predicated execution, forwarding logic and multi-cycle instructions.
The instruction set of the processor was defined as a set of abstract assertions. An implementation mapping
was used to relate the abstract states in these assertions to detailed circuit states in the gate-level
implementation of the processor. Symbolic Trajectory Evaluation was used to verify that the circuit fulfills
each abstract assertion under the implementation mapping. The verification was done concurrently with the
design implementation of the processor. Our verification did uncover 4 bugs that were reported back to the

designer in atimely manner.

1. Introduction

Processor evolution has had the effect of increasing performance by the use of design techniques such as
pipelining and paralelism. The complexities resulting from such techniques manifest as interactions
between operations and contention for resources. Simulation has been used in industry to validate such
designs. In order to claim that simulation exercises all possible behaviors of the design, we would require to
exhaustively simulate the design. Exhaustive simulation is prohibitively expensive in time and space.
Hence, industry relies on simulating a limited number of patterns which exercise a small fraction of the
circuit. But such a validation procedure could lead to undetected bugs. This weakness leads us to think
about formal verification. Formal verification uses a set of languages, tools and techniques to
mathematically reason about the hardware system.

Our verification methodology, based on Symbolic Trajectory Evaluation, is able to verify an RTL, gate or
switch-level implementation of a processor against its instruction set architecture. This paper focuses on the
application of this methodology to verify the ARM core. This processor has many complicated features
such as forwarding logic, instruction pipeline, pipeline interlock, multiple cycle instructions and
conditionally executed instructions. A practical consideration in choosing this processor was that the ARM
designers were available at CMU to provide descriptions of the design.

A high-level overview of our methodology and some of the related work is presented in Section 2. Section
3 discusses the architecture and implementation details of the ARM. An example of instruction execution

and timing in the pipeline is detailed in this section. The steps required by our methodology to verify the

ARM are detailed in Section 4. The abstract assertion and the implementation mapping for a representative
immediate bitwise-OR instruction is detailed in this section. The bugs discovered are presented in Section 5.

2. Verification M ethodology

Our verification methodology can be used to show that an implementation correctly fulfills an abstract
specification of the desired system behavior. The abstract specification defines the instruction set
architecture of the processor. The specification is a set of abstract assertions defining the effect of each
instruction on the user-visible state elements. The verification process has to bridge a wide gap between the
detailed processor implementation and the abstract specification. To bridge this gap, the verification process
requires some additional mapping information. The implementation mapping relates the abstract
specification to the complex temporal and spatial behavior of the pipelined implementation. In effect, the
mapping exposes the micro-architecture of the processor. The implementation mapping is a
nondeterministic mapping defined in terms of state diagrams. As an example, an instruction might stall in a
pipeline stage waiting to obtain the necessary resources. The order and timing in which these resources are
granted vary, leading to nondeterministic behavior. Our methodology will verify the implementation under
all possible order and timing.

The abstract specification and the implementation mapping are used to generate the trajectory specification.
The trajectory specification consists of a set of trajectory assertions. Each abstract assertion gets mapped
into a trajectory assertion. A modified form of symbolic simulation called Symbolic Trajectory Evaluation
(STE) [1] isused to verify the set of trajectory assertions on the implementation.

The reader isreferred to [2][3] for amore detailed description of our verification methodology.

2.1 Related Work

Beatty[4] laid down the foundation of our methodology for formal verification of processors. He used the
methodology to verify the Hector microprocessor. A switch-level implementation of the processor was
verified against its instruction set architecture. Hector was a simple non-pipelined processor whereas the
ARM has a 5-stage pipeline.

Nelson[5] used our methodology to verify parts of a PowerPC implementation called the Cobra-Lite
processor. This was a post-facto verification that was done after the Cobra-Lite processor had been
designed and fabricated. Cobra-Lite is implemented as a set of interconnected functional units - the fixed
point unit or integer unit (FXU), the Load Store Unit (LSU), the Branch Processing Unit (BPU) and the
floating point unit (FPU). The FXU is responsible for executing al fixed point instructions other than loads
and stores and it processes instructions in three stages - dispatch, decode and execute. Since the Cobra-Lite
verification was effected by verifying individual functional units, complete processor verification would
constitute modeling protocols on the interface signals between the unit under verification (UUV) and units

that interact with the UUV and later reasoning that - since individual UUV’s work correctly - the overall

system works correctly. In contrast to this, the entire ARM core was verified as a single unit without
decomposing the verification task into smaller subtasks. The ARM verification was done concurrently with
the design implementation leading to considerable overlap of the two phases. Another differentiating factor
is that we used the Efficient Memory Modeling (EMM)[11] technique to reduce the system memory
demands of the verification task.

Srivag[6] used PV Sto verify the AAMP5 microprocessor. The AAMP5 has alarge complex instruction set,
multiple data types and addressing modes and a microcoded, pipelined implementation. Srivas decomposed
the verification problem into three sub-problems; 1. A part that reasons about stalling behavior, 2. A part
that reasons about individua instructions in the absence of stalling, 3. A part that combines the first two
parts.

Sawada[7] used the ACL2 theorem prover to verify an out-of-order pipelined processor. The processor
includes out-of-order execution and speculative instruction fetch. Sawada used a table to store an execution
trace of instructions representing states in the implementation. The table representation helps to easily
define various pipeline properties such as the absence of WAW-hazards. In a sense, the table captures the
past history of the processor. In Symbolic Trajectory Evaluation, the initial state of the circuit is set to the
most general state that reflects all possible past histories for the processor.

3. ARM Processor Architecture
The ARM CPU core is a 32-bit RISC processor macro-cell upon which the current generation of ARM

processors is based. It has 32-bit data and address buses. It has a single 32-bit external data interface
through which both instructions and data pass during execution. It includes 15 general purpose registers. A
5-stage pipeline is employed to speed the execution of instructions. Because branches cause the sequential
flow of instructions to be interrupted, it is usual to employ the ARM’s conditional execution facility when
possible. The ability of every instruction to be conditionally executed increases the chance that the program
address references will run sequentially thereby allowing the memory sub-system to make predictions about
the next address required. Non-sequential addresses are held for two cycles.

The implementation we used was a hybrid between the ARM7 [8] and StrongARM [9] cores. The memory
interface was derived from the ARM7. The pipeline structure was derived from the StrongARM core.
Figure 1 shows the core functional blocks and the pipeline organization that corresponds to the description

in the next two sections.

INTERFACE IF/1D ID/EX EX/IM M/WB

Datain/ > Prefetch™ P> > —
Instr. Logic » i
Reglster | N L
—»| File
- >
Dataout| ' ;\(
—_—— —
- >
»-|Barrel
: | Shifter
N
O]
P pc > >
L | > Multiplier T
> A .
—] X
—> » O >
>
- O] —» O » O > J
A —| r A A A

Figure 1. ARM pipeine and main functional blocks

3.1 CPU Core Functional Blocks

This section briefly explains some of the mgjor functional blocks in the ARM such as the Register File, the
Barrel Shifter, the ALU, the Booth’s multiplier and the Control Logic.

Register File and other Registers: The ARM CPU core has a total of 16 registers comprising 15 general
purpose 32-bit registers. The implementation of the register file has two read ports and one write port.
Register R15 is the Program Counter. Because the PC is accessible to programmers, it can be included in
standard instructions, and as a base for load and store instructions. This permits the easy generation of
position independent code.

A further register, the Current Program Status Register (CPSR) is also accessible to programmers. This
register stores the condition code flags. The condition codes flags are Negative/Less than (N), Zero (2),
Carry/Borrow/Extend (C) and Overflow (O). These flags may be changed as a result of arithmetic, logical
and comparison operations in the CPU and which may be tested by all instructions to determine whether
execution is to take place. Some of the other 28 bits of the 32-bit CPSR can be used for storing the CPU
mode bits in future implementations of the ARM[10]. The current implementation of the ARM operates in

the User Mode only.

The Barrel Shifter: The 32-bit Barrel Shifter implements shift/rotate logic of its input by any amount to
produce an output within a fixed period. It has associated logic to allow values to be arithmetic shifted
(preserving the sign-bit) or rotated through the carry bit (to give a 33-hit shift register).

The ALU: The ALU performs all arithmetic, logical and comparison operations on two input operands.
There is a carry look-ahead within each 4-bit ALU block. A second level carry look-ahead option provides
16-hit carry look-ahead capability increasing the speed of the ALU at the expense of area.

The Multiplier: We did not verify the multiplier due to the exponential memory complexity associated
with representing multipliers using BDDg[13]. Section 6 mentions as future work some word-level

techniques that could be used to verify the multiplier.

3.2 Pipelining
The ARM uses a 5 stage instruction pipéline - Instruction Fetch (IF), Instruction Decode (D), Execute
(EX), Memory (M) and Write-back (WB).
The ARM completes an instruction every clock cycle under most circumstances. The instruction set allows
instructions to execute conditionally, since spending a single cycle not executing a conditional instruction is
clearly quicker than a 3 cycle pipeline refill.
The pipeline has features like data forwarding and stalling to achieve maximal concurrency in instruction
execution. Data forwarding can occur from EX [0 ID and M O ID. Since the PC (shown in the IF/ID pipe
register) can be the target of a particular instruction, three other forwarding paths existi.e. EX 0 PC, M O
PCandID O PC. ThelD O PC forwarding path is activated when an instruction like MOVAL PC ~ RI10,
LSL Ois executed (the AL mnemonic encodes that the instruction is aways executed, and LSL O implies
that R10 is moved as is - consequently the EX stage is not necessary for shifting). An instruction stallsiin a
particular stage when an earlier instruction in the pipeline takes multiple cycles or it has not got its
operands.
The critical path of the processor is the ID stage since this is where many control decisions are made. Most
instructions normally spend a single cycle in each stage. The cases in which the instruction spends more
time in a particular stage are:

1. Theinstruction is waiting for the result of a previous instruction i.e. a data dependency.

2. The instruction inherently takes more than one cycle e.g. a multiply instruction which depending on its

arguments, may spend up to 3 cyclesin the multiplier.

3. Theinstruction is doing a memory access and this takes more than 1 cycle.
If, as a result of an instruction spending more than one cycle in a pipeline stage, the next pipeline stage
becomes empty, then the processor will place a null instruction in this next pipeline stage. Once a null
instruction is in the pipeline, it will spend one cycle in each remaining pipeline stage unless the pipeline is
stalled. If an instruction completes its current instruction before the next pipeline stage is available, it will

stall in the current pipeline stage. This will normally stall al previous pipeline stages. If, however, a

previous pipeline stage is executing a multi-cycle operation, then that stage will not stall until the multi-
cycle operation completes. In some instructions like long multiplies, the processor fetches and decodes the
instructions as a single instruction but the ID stage passes multiple instructions in the E, M and WB stages.
Also, in the case of a load instruction, since the off chip memory places the restriction that the address
should be held for 2 cycles, the ID stage splits this load instruction into two. Splitting of the load instruction
serves another purpose - base write-back (if the write-back bit is asserted) is done when the first copy of the
instruction isin the WB stage and the actual data isloaded when the second copy of the instruction isin the
M stage. Incidentally, this obviates the need to have two write ports in the register file despite the fact that a
load instruction could potentially update two registers.
For the sake of exposition, the Figure 2 shows a trace of the flow of two consecutive load instructions in the
pipeline. Assume that L1 uses the data loaded by LO and 12 is independent of LO and L1 and that base
write-back is specified for LO. Some micro-achitectural features of the processor worth noting from the
execution trace are:
1. L1 splits into two in the ID stage. This is because the memory system places the restriction that the
address should be held for two cycles.
2. LO does not advance into the M stage in cycle 4. The reason for this is that instruction 12 is being
fetched at this time and both address and data share abusin the ARM.
3. L1 does not advance into EX until LO exitsthe M stage in cycle 6. This is because L1’s effective address
cannot be calculated since it depends on the data forwarded by LO in cycle 6.
4. Two copies of LO are in the WB stage - when the first copy of LO is in WB the base is written back to the

register file and when the second copy of LO is in the WB stage loaded data is written back to the

register file.

Cycle IF ID EX M WB
1 Lo
2 L1 LO
3 L1 LO LO
4 12 L1 LO -
5 12 L1 - LO
6 12 L1 - LO LO 3
7 12 LIQé L1 - LO
8 12 12 L1 - -
9 12 12 12 L1 -

Figure 2. Exampletrace of an interesting case

4. ARM Processor Vegfication

This section applies our methodology to verify the ARM processor.

4.1 Abstract Specification
The first step is to define the instruction set of the ARM as a set of abstract assertion in a Hardware
Specification Language. The exact syntax and associated formal semantics of this language is described in a
companion paper submitted to this conference[17]. For the purposes of this paper, an abstract assertion is of
the form: P LEADSTO Q, where P serves as the precondition and Q as the postcondition. P and Q are
conjunction of clauses where each clause is an assignment to an abstract state element. As an example the
abstract assertion for immediate bitwise-OR instruction is as follows:

(op IS ORand(RA IS ra)and(RT IS rt)

and(lmm 1S immand(Reg[ra] |IS dataA)

LEADSTO

(Reg[rt] IS dataA | inmm
The first two lines constitute the precondition of the abstract assertion. The clause (op 1S OR) specifies
that the opcode must be that for the immediate bitwise-OR instruction. Theclauses (RA | S ra) and (RT
I'S rt) specify that the source and destination register identifiers maybe some symbolic values. The clause
(I'mm 1S inmm saysthat theimmediate source isthe symbolic valuei mnm Theclause (Reg[ra] IS
dat aA) specifies that the content of Reg[r a] isthe symbolic value dat aA. The last line specifiesthat in
the postcondition, the content of the target register will contain the bitwise-OR of the immediate data and

the register data.

4.2 Implementation M apping

The next step is to define the implementation mapping. The implementation mapping has to relate the high-
level information flow to a transfer of logic values on actual signals in the circuit. Our intention is to verify
the instruction under verification (IUV) under every possible sequence of leading instructions. One possible
way to represent all leading instruction streams, is to issue two completely symbolic instructions before
fetching the 1UV into the IF stage of the ARM pipeline since, potentially, the longest span of the
forwarding is two instructions away from the IUV. The problem with this approach is that the symbolic
computation required for the leading instructions is prohibitively large. Hence, we capture al possible
leading instruction streams by exposing and asserting some of the interna state elements in the ARM
pipeline. We get savings in symbolic computation because the IUV interacts with only a limited number of
internal state elements but we still capture every possible sequence of leading instructions.

The implementation mapping consists of a main machine and a set of map machines. The main machine
defines the flow of control of a generic instruction. The map machines define a mapping for each abstract
state element in the abstract specification. The main machine and the map machines are modeled as control
graphs. Control graphs are state diagrams with the capability of synchronization at specific time points. A
control graph has two sets of vertices. 1. State vertices that represent some non-zero duration of timeand 2.

Event vertices that represent instantaneous time points. A control graph has a source, an event vertex with

no incoming edges, and a sink, an event vertex with no outgoing edges. Nondeterminism is modeled as

multiple outgoing edges from a vertex.

Main Machine

The main machine for the ARM is shown in Figure 3. The vertices labelled IF, 1D, EX, M and WB are
state vertices that represent the five pipeline stages in the ARM. The rest of the vertices in the figure are
event vertices. Essentially, an instruction can spend 1-4 cyclesin IF, 1-4 cyclesin 1D, 1-2 cyclesin EX, 1-2
cyclesin M and 1-2 cycles in WB. An instruction can stay in a particular stage for a nondeterministic
number of cycles - for example the vertices | F4, | F», | F3, | F4 represent that an instruction can stay in the | F
stage for 1 or 2 or 3 or 4 cycles. The reason for this nondeterminism is that there might be preceding
instructions in later stages that cause the current instruction to stall. For instance, in the example in section
2.2, L0 spends 1 cyclein IF (IF,), L1 spends 2 cyclesin IF (IF4, IF,) and 12 spends 4 cyclesin IF (1F4,
IF,, 1F3, | F,). Essentially, the main machine has to capture the behaviors of all instructionsin various stages
of the processor. As the nextmarker shows, a successive instruction can be started at event vertex Fetched,

thus overlapping the I D stage of the current instruction with the | F stage of the successive instruction.

nextmarker nextmarker nextmarker nextmarker nextmarker

_!» Writeback _!.

(WB)

Written_back

shorthand
for
» / l Mo Feiched

Figure 3. Main machine for the ARM

|F Stage Map M achines
The map machines relate abstract clauses to assignments on detailed circuit states in the implementation.

The map machine for the abstract clause (op | S OR) sets the opcode for the bitwise-OR instruction in the

I F/ID pipe register during the | F stage of the main machine. Bits 21-24 of the pipe register are set to 1100
to reflect a bitwise-OR operation as shown in Figure 4. The map machines for the register addresses (RA
ISra)and(RT IS rt) setbits16-19 and 12-15 respectively of the pipe register. The map machine for
theimmediate field (I rm | S i nm) setsthe lower order bits 0-7 of the pipe.

24 21 19 16 15 12 7

0
lloommll ra rt mﬂl imm mmml

Figure 4. IF/1D Pipe Register

ID and EX Stage Map Machines

The decision to fetch the source operands from the register file or forward the data from one of two stages

(EX or M) is made in the ID stage. Forwarding is dependent on two previous instructions. The three

instructions involved in the decision are the previous instruction in the ID stage, the previous-to-previous

instruction in the EX stage and the IUV in the | F stage. Eventually, the previous instruction will move into

the EX stage and the previous-to-previous instruction will move into the M stage and forward the data to

the lUV inthe I D stage.

The map machine for the abstract clause (Reg[ra] | S dat aA) isshownin Figure 5. The control graph

is aligned with the 1D stage of the main machine. The node assignments in the upper half of the state vertex

are asserting signals in the implementation based on the following criteria

1. If the addressr a is the same as the target of the previous instruction pr ev_rt then the hold register
in EX stageisasserted to the value dat aA.

2. Elseif the address r a is the same as the target of the previous-to-previous instruction then the hold
register in the M stage is asserted to the value dat aA.

3. Elsetheregister file modelled as an EMM stores the data at the address location r a.

The abstract clause (Reg[rt] 1S dataA|i m) appears in the postcondition. The map machine for

this clause is automatically derived during the trgjectory generation phase. The derived map machine is

shown in Figure 5. The map machine is shifted by the nextmarker so that it gets aligned with the EX stage

of the main machine. The lower half of the state vertex defines the desired response from the processor. The

desired response is that the hold register in the EX stage should be assigned the bitwise-OR of dat aA and

the immediate operand.

This section has presented a somewhat simplified view of forwarding in the ARM. A few more internal

states had to be exposed to set up al the necessary conditions for data forwarding.

[}
Fetclhed
[}

(ra==prev_rt) ? hold_EX IS dataA :

(ra==prevprev_rt) ? hold M |SdataA : Stimulus for STE

]
[}
]
]
[}
1
:
! EMM[ra] IS dataA

Map (Reg[ra] | S dataA)

Map (Reg[rt] IS dataA|imm)

Hold_EX IS dataAfimm Desired Response for STE

Figure5. Map machinesfor the ID and EX stages.

4.3 Complexity M anagement

Several steps were undertaken to manage the complexity of the verification task:

Efficient Memory Model: Simulation models for memory arrays normally explicitly represent each
memory bit. Symbolic simulation requires a symbolic variable for each bit of memory. A bit-level symbolic
model checker would require the next-state function for each memory bit. This could prove to be
prohibitive for large embedded memory arrays. In our verification, we replaced the Register File with a
behavioral model called the Efficient Memory Model (EMM)[11], where the number of variables used to
characterize the initial state of the memory is proportional to the number of memory accesses. Researchers
have shown that It has been shown that EMM significantly outperforms the transistor level memory model
when verifying simple pipelined datapaths[11].

Separate Functional Unit Verification: Some of the functional units like the PC, the ALU and the barrel-
shifter were independently and separately verified. This reduced the memory requirements during the
instruction verification phase which could now focus on verifying the control. The PC in the ARM pipeline
can be updated in 6 different ways. This was verified by asserting certain internal and off-chip signals to
symbolic values and checking if the PC is updated correctly in the next cycle. The ALU has 16 modes of
operation which were all independently verified. The barrel shifter performs four types of shifts. Logical
Shift Left (LSL), Logical Shift Right (LSR), Arithmetic Shift Right (ASR), Rotate Right and Rotate Right

10

Extended (actually a 33-bit rotation with the carry aso taking part). If the shift amount is more than 32, the
ARM shifts by amount mod 32.

4.4, Trajectory Generation

Section 4.2 gave a flavor of the map machines that were specified for the ARM processor. A total of 10
map machines were required for the processor. The abstract assertion for the immediate bitwise-OR
operation and the implementation mapping were used to automatically generate the trajectory assertion. The
trajectory assertion corresponds to the composition of the 10 map machines defined in the implementation
mapping. Composition amounts to taking the cross-product of these aligned map machines under

restrictions placed by the synchronization function.

4.5 Symbolic Trajectory Evaluation

Symbolic Trajectory Evaluation was used to verify the immediate bitwise-OR trgjectory assertion on a gate-
level model of the ARM processor. The node assignments in the upper half of the state vertices define the
stimulus for the ssmulator. The node assignments in the lower half of the state vertex define the desired
response and state transitions.

The verification process uncovered afew bugs that are discussed in detail in the next section.

5. Bugs Uncovered

McMillan[12] noted that the measure of success in integrating formal hardware verification methodologies
is not the ability to provide formal guarantees of correctness, but the ability to detect design errorsin a
timely manner, as the design evolves.

We discovered four bugs in the ARM core. Three of them were corner cases that resulted from designer

oversight. Section 5.1 gives a background that helps to bring these bugs into context.

5.1 Background

All data processing instructions in the ARM accept one or more registers as their operands and always
return the result to a register, optionally setting the condition code flags according to the result. The first
source operand of a data processing instruction is (except for MOV and MVN) is always a register and is
known in syntax definitions as Rn. Any register may be specified, including the PC (R15). The second
operand (the only operand of MOV and MV N) may either be a register Rmthat is optionally shifted before
use, or an 8-bit immediate constant optionally rotated before use. The shifted register forms allow one of the
following types of multi-bit shifts:

LSL - Logical Shift Left

LSR - Logical Shift Right

ASR - Arithmetic Shift Right

11

ROR - Rotate Right

In each case, the number of bits to shift by is supplied by either as a constant or by another register. One
further shift type is available - Rotate Right Extended (RRX) which performs a single bit rotation of the
operand through the Carry Flag.

Inan LSL operation, the contents of the register Rmare moved by the number of bits specified by the shift
amount to more significant bit positions. The least significant bits thus revealed are filled with zeros and the
most significant bits are discarded except that the least significant discarded bit becomes the shifter carry
output (which may later set the Carry Flag in the CPSR). An LSL with a shift amount of O is treated as a
special case - the shifter carry output is simply the old value of the Carry Flag and the contents of the
operand register Rmare passed through unshifted.

The LSR, ASR and ROR operations behave like the LSL operation but for the shift direction and shift by 0.
Since LSR by 0, ASR by 0 and ROR by 0 would duplicate the effect of LSL by 0, the ARM avoids this
redundancy by doing the following. LSR by O is reserved and is used to encode LSR by 32, ASR by O is
reserved and is used to encode ASR by 32 and ROR by 0 isreserved and is used to encode RRX. LSR by
32 yields a result of O but makes the shifter carry output become bit-31 of the source register. ASR by 32
duplicates the sign bit (bit-31) of the source register throughout the result (i.e. in 2’s complement the result
is a -1 or a 0) and the shifter carry output also takes the values of bit-31. ROR by 0 encodes the special case
which performs RRX - the contents of the 33-bit shift register formed by concatenating the Carry Flag and
Rmis rotated by a single bit to less significant bit positions and the new shifter carry output becomes the

original bit-0.

5.2 TheBugs

Three of the bugs were shift-class bugs. The expected (specified) behavior of LSR by 0, ASR by 0 and
ROR by 0 were unimplemented in the ARM processor design. On talking with the designer about these
bugs, it became clear that this was due to oversight of what could be termed as the typical corner cases.
These bugs went unnoticed when the ARM model was tested by the Dhrystone simulation benchmarks.

The fourth - a datapath-class bug - related to the conditional execution feature in the ARM. In the
specification, condition code 1001 in an instruction represents that the instruction is executed if the C flag is
cleared or the Z flag is set (unsigned lower or same). Instead, the implementation misinterpreted this
condition code to represent the case that the instruction is executed if C flag is cleared and the Z flag is set.
We were able to detect design errors in a timely manner as the design evolved and provide valuable

feedback to the designers.
6. Conclusion

This paper has shown the applicability of our methodology for formal verification of an ARM core using

Symbolic Trajectory Evaluation. The user specified the instruction set architecture as a set of abstract

12

assertions. An implementation mapping captured the micro-architecture of the processor. The abstract
specification and the implementation mapping were used to generate a set of trgjectory assertions. The
trajectory assertion captures all possible nondeterministic interactions that can arise in the implementation
due to an instruction. Symbolic Trajectory Evaluator was used to verify the trajectory assertion on a gate-
level implementation of the ARM processor. The verification process uncovered four bugs that were

reported back to the designers.

6.1 Future Work

Complexity of implementation mapping: It has been our experience that the implementation mapping for
the ARM can become quite complex. An area of focus for future work would be to simplify or automate the
generation of the mapping information as much as possible. Jain[2] has suggested that annotated timing
diagrams could serve as an alternative for expressing the mapping.

Other instructions. Current work has concentrated on verifying the bitwise-OR instruction in the ARM
processor. The next step is to verify an instruction from each of the other two instruction classes - Data-
transfer and Branch instructions. We did not verify instructions that involve multiplication due to the
exponential memory complexity associated with representing multipliers using BDDS[13]. It would be
interesting to use word-level techniques [14] to verify these instructions.

Complexity of verification: Animportant area of future would be to study various techniques to reduce the
complexity of verification using STE. We used the Efficient Memory Modeling technique to reduce the
system memory demands of the verification task. Currently, our tools use a simple minded user-defined
variable ordering. Future work would involve exploring various automated techniques such as dynamic
variable ordering [15] and group sifting [16].

Counterexample facility: In the case of a counterexample, STE spits out a sum-of-products form of the
BDD that represents the check failure. Sometimes, it is difficult to reverse engineer the counterexample to
trace a potential bug. In this direction, one could incorporate into STE automatic advice-generation for
reverse engineering based on hints given by the user.

Languages: During the verification of the shifter, we had to emulate the divide operation by splitting the
divide of an 8-bit quantity by 32 into 7 cases. It would be helpful if the mod, multiply and divide operations
would be supported by the language.

References

[1] R. E. Bryant, D. L. Beatty and C. J. H. Seger, “Formal Hardware Verification by Symbolic Ternary
Trajectory Evaluation,” 28" Design Automation Conference, pp. 397-402, June 1991.

13

[2] A. Jain, “Formal Hardware Verification by Symbolic Trajectory Evaluation,” Ph.D. Thesis, Electrical
and Computer Engineering Department, Carnegie Mellon University, August 1997.

[3] A. Jain, K. Nelson, and R. E. Bryant, “Verifying Nondeterministic Implementations of Deterministic
Systems”, Lecture Notes in Computer Science, Formal Methods in Computer Aided Design, pp. 109-125,
November 1996.

[4] D.L. Beatty, “A Methodology for Formal Hardware Verification with Application to Microprocessors,”
Ph.D. Thesis, Technical Report CMU-CS-93-190, School of Computer Science, Carnegie Mellon
University, August 1993

[5] K. Nelson, A. Jain and R. E. Bryant, “Formal Verification of a Superscalar Execution Unit,” 34" Design
Automation Conference, pp. 161-166, June 1997.

[6] M. K. Srivas and S. P. Miller, “Applying Formal Verification to the AAMP5 Microprocessor: A Case
Study in the Industrial Use of Formal Methods,” Formal Methods in System Design, 8(2), pp. 153-188,
March 1996.

[7] J. Sawada and W. A. Hunt Jr. , “Trace Table Based Approach for Pipelined Microprocessor
Verification,” Computer Aided Verification, CAV-97, pp. 364-375, June 1997.

[8] ARM 7 Data Sheet, ARM DDI 0020C, Advanced RISC Machines Ltd. (ARM), 1994.
[9] ARM 8 Data Sheet, ARM DDI 0080C, Advanced RISC Machines Ltd. (ARM), 1996.

[10] A. van Someren and C. Atack, “The ARM RISC Chip. A Programmer’s Guide,” Addison-Wesley
Publishing Company, 1995.

[11] M. Velev, R. E. Bryant and A. Jain, “Efficient Modeling of Memory Arrays in Symbolic Simulation,”
Computer Aided Verification, CAV-97, pp. 388-399, June 1997.

[12] K. L. McMillan, “Fitting Formal Methods into the Design Cycle,” 31% Design Automation Conference,
pp. 314-319, June 1994.

[13] R. E. Bryant, “On the complexity of VLSI implementations and graph representations of boolean
functions with application to integer multiplication,” IEEE Transactions on Computers, 40(2):pp. 205-213,
1991.

[14] Y. A. Chen and R. E. Bryant, "ACV: An Arithmetic Circuit Verifier", Proceedings of International
Conference of Computer-Aid Design, Nov. 1996, pp. 361-365.

[15] R. Rudell, “Dynamic Variable Ordering for Ordered Binary Decision Diagrams”, Proceedings of
International Conference of Computer-Aid Design, Nov. 1993, pp. 42-47.

[16] S. Panda and F. Somenzi, “Who Are the Variables in Your Neighborhood”, Proceedings of
International Conference of Computer-Aid Design, Nov. 95, pp. 74-77.

[17] A. Jain, “A Case for Hardware Specification Languages,” Submitted for acceptance to VLSI design
conference, January 99.

14

