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The logic of Equality with Uninterpreted Functions (EUF) provides a means of abstracting the
manipulation of data by a processor when verifying the correctness of its control logic. By reducing
formulas in this logic to propositional formulas, we can apply Boolean methods such as ordered
Binary Decision Diagrams (BDDs) and Boolean satisfiability checkers to perform the verification.
We can exploit characteristics of the formulas describing the verification conditions to greatly
simplify the propositional formulas generated. We identify a class of terms we call “p-terms” for
which equality comparisons can only be used in monotonically positive formulas. By applying
suitable abstractions to the hardware model, we can express the functionality of data values and
instruction addresses flowing through an instruction pipeline with p-terms. A decision procedure
can exploit the restricted uses of p-terms by considering only “maximally diverse” interpretations
of the associated function symbols, where every function application yields a different value except
when constrained by functional consistency. We present two methods to translate formulas in EUF
into propositional logic. The first interprets the formula over a domain of fixed-length bit vectors
and uses vectors of propositional variables to encode domain variables. The second generates
formulas encoding the conditions under which pairs of terms have equal valuations, introducing
propositional variables to encode the equality relations between pairs of terms. Both of these
approaches can exploit maximal diversity to greatly reduce the number of propositional variables
that need to be introduced and to reduce the overall formula sizes. We present experimental
results demonstrating the efficiency of this approach when verifying pipelined processors using
the method proposed by Burch and Dill. Exploiting positive equality allows us to overcome the
exponential blow-up experienced previously when verifying microprocessors with load, store, and
branch instructions.
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1. INTRODUCTION

For automatically reasoning about pipelined processors, Burch and Dill [1994]
demonstrated the value of using propositional logic, extended with uninterpreted
functions, uninterpreted predicates, and the testing of equality. Their approach
involves abstracting the data path as a collection of registers and memories stor-
ing data, units such as ALUs operating on the data, and various connections and
multiplexors providing methods for data to be transferred and selected. The ini-
tial state of each register is represented by a domain variable indicating an ar-
bitrary data value. The operation of units that transform data is abstracted as
blocks computing functions with no specified properties other than functional con-
sistency, i.e., that applications of a function to equal arguments yield equal results:
z =y = f(zr) = f(y). The state of a register at any point in the computation
can be represented by a symbolic term, an expression consisting of a combination
of domain variables, function and predicate applications, and Boolean operations.
Verifying that a pipelined processor has behavior matching that of an unpipelined
instruction set reference model can be performed by constructing a formula in this
logic that compares for equality the terms describing the results produced by the
two models and then proving the validity of this formula.

In their 1994 paper, Burch and Dill also described the implementation of a de-
cision procedure for this logic based on theorem-proving search methods. Their
procedure builds on ones originally described by Shostak [1979] and by Nelson and
Oppen [1980], using combinatorial search coupled with algorithms for maintaining
a partitioning of the terms into equivalence classes based on the equalities that hold
at a given step of the search. More details of their decision procedure are given in
Jones et al. [1995].

Burch and Dill’s work has generated considerable interest in the use of uninter-
preted functions to abstract data operations in processor verification. A common
theme has been to adopt Boolean methods, either to allow integration of uninter-
preted functions into symbolic model checkers [Damm et al. 1998; Berezin et al.
1998], or to allow the use of Binary Decision Diagrams (BDDs) [Bryant 1986] in the
decision procedure [Hojati et al. 1997; Goel et al. 1998; Velev and Bryant 1998].
Boolean methods allow a more direct modeling of the control logic of hardware
designs and thus can be applied to actual processor designs rather than highly ab-
stracted models. In addition to BDD-based decision procedures, Boolean methods
could use some of the recently developed satisfiability procedures for propositional
logic. In principle, Boolean methods could outperform decision procedures based
on theorem-proving search methods, especially when verifying processors with more
complex control logic, e.g., due to superscalar or out-of-order operation.
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Boolean methods can be used to decide the validity of a formula containing terms
and uninterpreted functions by interpreting the formula over a domain of fixed-
length bit vectors. Such an approach exploits the property that a given formula
contains a limited number of function applications and therefore can be proved
to be universally valid by considering its interpretation over a sufficiently large,
but finite domain [Ackermann 1954]. If a formula contains a total of m function
applications, then the set of all bit vectors of length k forms an adequate domain
for k > log, m. The formula to be verified can be translated into one in proposi-
tional logic, using vectors of propositional variables to encode the possible values
generated by function applications [Hojati et al. 1997]. Our implementation of
such an approach [Velev and Bryant 1998] as part of a BDD-based symbolic sim-
ulation system was successful at verifying simple pipelined data paths. We found,
however, that the computational resources grew exponentially as we increased the
pipeline depth. Modeling the interactions between successive instructions flowing
through the pipeline, as well as the functional consistency of the ALU results, pre-
cludes having an ordering of the variables encoding term values that yields compact
BDDs. Similarly, we found that extending the data path to a complete processor
by adding either load and store instructions or instruction fetch logic supporting
jumps and conditional branches leads to impossible BDD variable ordering require-
ments. When modeling symbolic operations on a memory using BDDs, one must
generally order the variables encoding addresses before those encoding any data.
In a processor, however, the data retrieved by a load instruction can be used as the
address for a subsequent store instruction. Similarly, the target address for a jump
instruction is fetched as part of the instruction memory data. Hence, there is no
way to maintain a separation between address and data variables.

Goel et al. [1998] present an alternate approach to using BDDs to decide the
validity of formulas in the logic of equality with uninterpreted functions. In their
formulation they introduce a propositional variable e;; for each pair of function
application terms T; and 7}, expressing the conditions under which the two terms
are equal. They add constraints expressing both functional consistency and the
transitivity of equality among the terms. Their experimental results were also
somewhat disappointing. For all previous methods of reducing EUF to propositional
logic, Boolean methods have not lived up to their promise of outperforming ones
based on theorem-proving search.

In this paper, we show that the characteristics of the formulas generated when
modeling processor pipelines can be exploited to greatly reduce the number of
propositional variables that are introduced when translating the formula into propo-
sitional logic. We distinguish a class of terms we call p-terms for which equality
comparisons can be used only in monotonically positive formulas. Such formulas
are suitable for describing the top-level correctness condition, but not for modeling
any control decisions in the hardware. By applying suitable abstractions to the
hardware model, we can express the functionality of data values and instruction
addresses with p-terms.

A decision procedure can exploit the restricted uses of p-terms by considering
only “maximally diverse” interpretations of the associated “p-function” symbols,
where every function application yields a different value except when constrained
by functional consistency. We present a method of transforming a formula con-
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taining function applications into one containing only domain variables that differs
from the commonly used method described by Ackermann [1954]. Our method
allows a translation into propositional logic that uses vectors with fixed bit pat-
terns rather than propositional variables to encode domain variables introduced
while eliminating p-function applications. This reduction in propositional variables
greatly simplifies the BDDs generated when checking tautology, often avoiding the
exponential blow-up experienced by other procedures. The impossible variable or-
dering problem is avoided, since we can encode both the data and the addresses
for the data memory with fixed bit patterns. As a result, Velev and Bryant [1999a]
were for the first time able to use Boolean methods to verify a complete pipelined
processor using Burch and Dill’s method. Alternatively, we can use an encoding
scheme similar to Goel et al. [1998], but with many of the e; ; values set to false
rather than to Boolean variables.

Others have recognized the value of restricting the testing of equality when mod-
eling the flow of data in pipelines. Berezin et al. [1998] generate a model of an
execution unit suitable for symbolic model checking in which the data values and
operations are kept abstract. In our terminology, their functional terms are all p-
terms. They use fixed bit patterns to represent the initial states of registers, much
as we replace p-term domain variables by fixed bit patterns. To model the outcome
of each program operation, they generate an entry in a “reference file” and refer to
the result by a pointer to this file. These pointers are similar to the bit patterns
we generate to denote the p-function application outcomes. This paper provides
an alternate, and somewhat more general, view of the efficiency gains allowed by
p-terms.

Damm et al. [1998] consider an even more restricted logic such that in the terms
describing the computed result, no function symbol is applied to a term that already
contains the same symbol. As a consequence, they can guarantee that an equality
between two terms holds universally if it holds over the domain {0,1} and with
function symbols having four possible interpretations: constant functions 0 or 1,
and projection functions selecting the first or second argument. They can therefore
argue that verifying an execution unit in which the data path width is reduced to a
single bit and in which the functional units implement only four functions suffices to
prove its correctness for all possible widths and functionalities. Their work imposes
far greater restrictions than we place on p-terms, but it allows them to bound the
domain that must be considered to determine universal validity independently from
the formula size.

In comparison to both of these other efforts, we maintain the full generality
of the unrestricted terms of Burch and Dill while exploiting the efficiency gains
possible with p-terms. In our processor model, we can abstract register identifiers
as unrestricted terms, while modeling program data and instruction data as p-
terms. As a result, our verifications cover designs with arbitrarily many registers.
In contrast, both Berezin et al. [1998] and Damm et al. [1998] used bit encodings of
register identifiers and were unable to scale their verifications to a realistic number
of registers.

In a recent paper, Pnueli et al. [1999] also propose a method to exploit the polar-
ity of the equations in a formula containing uninterpreted functions with equality.
They describe an algorithm to generate a small domain for each domain variable
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term = ITE(formula, term, term)
| function-symbol(term, . .., term)
formula = true | false | =formula

| (formula A formula) | (formula V formula)
| (term=term)

| predicate-symbol(term, . .., term)

Fig. 1. Syntax rules for the logic of Equality with Uninterpreted Functions (EUF).

such that the universal validity of the formula can be determined by considering only
interpretations in which the variables range over their restricted domains. A key dif-
ference of their work is that they examine the equation structure after replacing all
function application terms with domain variables and introducing functional consis-
tency constraints as described by Ackermann [1954]. These consistency constraints
typically contain large numbers of equations—far more than occur in the original
formula—that mask the original p-term structure. As an example, comparing the
top and bottom parts of Figure 6 illustrates the large number of equations that
may be generated when applying Ackermann’s method. By contrast, our method
is based on the original formula structure. In addition, we use a new method of
replacing function application terms with domain variables. Our scheme allows
us to exploit maximal diversity by assigning fixed values to the domain variables
generated while expanding p-function application terms. Quite possibly, a variant
of their method could be used to generate a small domain for each of the other
variables in the formula.

The remainder of the paper is organized as follows. We define the syntax and
semantics of our logic by extending that of Burch and Dill’s. We describe a simple
procedure for automatically converting a formula from Burch and Dill’s logic to
ours. We prove our central result concerning the need to consider only maximally
diverse interpretations when deciding the validity of formulas in our logic. As
a first step in transforming our logic into propositional logic, we describe a new
method of eliminating function application terms in a formula. Building on this, we
describe two methods of translating formulas into propositional logic and show how
these methods can exploit the properties of p-terms. We discuss the abstractions
required to model processor pipelines in our logic. Finally, we present experimental
results showing our ability to verify a simple, but complete, pipelined processor.
More complete details on an implementation that has successfully verified several
superscalar processor designs are presented in Velev and Bryant [1999b].

2. LOGIC OF EQUALITY WITH UNINTERPRETED FUNCTIONS (EUF)

The logic of Equality with Uninterpreted Functions (EUF) presented by Burch and
Dill [1994] can be expressed by the syntax given in Figure 1. In this logic, formulas
have truth values while terms have values from some arbitrary domain. Terms
are formed by application of uninterpreted function symbols and by applications
of the ITE (for “if-then-else”) operator. The ITE operator chooses between two
terms based on a Boolean control value, i.e., ITE(true,z1,z2) yields z1 while
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Table I. Evaluation of EUF Formulas and Terms

Form E Valuation I[E]
true true
false false
-F —I[F]
F1 A F> I[F1] A I[F5]
p(T1,..., k) | 1)), I[Tk))
Ty =T> I =1I[T»]
ITE(F,T1,T») | ITE(I[F],I[T1],1[T2])
ATy, T | IO, - T3]

ITE(false, z1,z2) yields z2. Formulas are formed by comparing two terms with
equality, by applying an uninterpreted predicate symbol to a list of terms, and
by combining formulas using Boolean connectives. A formula expressing equality
between two terms is called an equation. We use expression to refer to either a term
or a formula.

Every function symbol f has an associated order, denoted ord(f), indicating the
number of terms it takes as arguments. Function symbols of order zero are referred
to as domain variables. We use the shortened form v rather than v() to denote an
instance of a domain variable. Similarly, every predicate p has an associated order
ord(p). Predicates of order zero are referred to as propositional variables, and can
be written a rather than a().

The truth of a formula is defined relative to a nonempty domain D of values and
an interpretation I of the function and predicate symbols. Interpretation I assigns
to each function symbol of order k a function from D* to D, and to each predicate
symbol of order k a function from D* to {true, false}. For the special case of order
0 symbols, i.e., domain (respectively, propositional) variables, the interpretation
assigns an element of D (respectively, {true, false}.) Given an interpretation I of
the function and predicate symbols and an expression F, we can define the valuation
of E under I, denoted I[E], according to its syntactic structure. The valuation is
defined recursively, as shown in Table I. I[E] will be an element of the domain
when F is a term, and a truth value when FE is a formula.

A formula F is said to be true under interpretation I when I[F] = true. It is
said to be wvalid over domain D when it is true over domain D for all interpretations
of the symbols in F. F' is said to be universally valid when it is valid over all
domains. A basic property of validity is that a given formula is valid over a domain
D iff it is valid over all domains having the same cardinality as D. This follows
from the fact that a given formula has the same truth value in any two isomorphic
interpretations of the symbols in the formula. Another property of the logic, which
can be readily shown, is that if F' is valid over a suitably large domain, then it is
universally valid [Ackermann 1954]. In particular, it suffices to have a domain as
large as the number of syntactically distinct function application terms occurring
in F'. We are interested in decision procedures that determine whether or not a
formula is universally valid; we will show how to do this by dynamically constructing
a sufficiently large domain as the formula is being analyzed.
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g-term = ITE(g-formula, g-term, g-term)
| g-function-symbol(p-term, ..., p-term)
p-term 1= g-term

| ITE(g-formula, p-term, p-term)

| p-function-symbol(p-term, ..., p-term)

g-formula = true | false | ~g-formula
| (g-formula A g-formula) | (g-formula V g-formula)
| (g-term= g-term)
| predicate-symbol(p-term, . .., p-term)

p-formula ::= g-formula

| (p-formula A p-formula) | (p-formula V p-formula)

| (p-term=p-term)

Fig. 2. Syntax rules for the logic of Positive Equality with Uninterpreted Functions (PEUF).

3. POSITIVE EQUALITY WITH UNINTERPRETED FUNCTIONS (PEUF)

We can improve the efficiency of validity checking by treating positive and negative
equations differently when reducing EUF to propositional logic. Informally, an
equation is positive if it does not appear negated in a formula. In particular, a
positive equation cannot appear as the formula that controls the value of an ITE
term; such formulas are considered to appear both positively and negatively.

3.1 Syntax

PEUF is an extended logic based on EUF; its syntax is shown in Figure 2. The
main idea is that there are two disjoint classes of function symbols, called p-function
symbols and g-function symbols, and two classes of terms.

General terms, or g-terms, correspond to terms in EUF. Syntactically, a g-term
is a g-function application or an ITFE term in which the two result terms are hered-
itarily built from g-function applications and ITEs.

The new class of terms is called positive terms, or p-terms. P-terms may not
appear in negated equations, i.e., equations within the scope of a logical negation.
Since p-terms can contain p-function symbols, the syntax is restricted in a way
that prevents p-terms from appearing in negative equations. When two p-terms
are compared for equality, the result is a special, restricted kind of formula called
a p-formula.

Note that our syntax allows any g-term to be “promoted” to a p-term. Through-
out the syntax definition, we require function and predicate symbols to take p-terms
as arguments. However, since g-terms can be promoted, the requirement to use p-
terms as arguments does not restrict the use of g-function symbols or g-terms. In
essence, g-function symbols may be used as freely in our logic as in EUF, but the p-
function symbols are restricted. To maintain the restriction on p-function symbols,
the syntax does not permit a p-term to be promoted to a g-term.
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PoROam—

Xy

Fig. 3. Schematic representation of Feg. Domain values are shown as solid lines, while truth
values are shown as dashed lines.

A g-formula is a Boolean combination of equations on g-terms and applications
of predicate symbols. G-formulas in our logic serve as Boolean control expressions
in ITE terms. A g-formula can contain negation, and ITFE implicitly negates its
Boolean control, so only g-terms are allowed in equations in g-formulas.

Finally, the syntactic class p-formula is the class for which we develop validity-
checking methods. p-formulas are built up using only the monotonically positive
Boolean operations A and V. P-formulas may not be placed under a negation sign
and cannot be used as the control for an ITFE operation. As described in later
sections, our validity-checking methods will take advantage of the assumption that
in p-formulas, the p-terms cannot appear in negative equations.

As a running example for this paper, we consider the formula

r=y = h(g(z),9(g(x)))=h(9(y),9(9(x))),

which would be transformed into a p-formula Fi, by eliminating the implication

Fog = =(z=y) VvV h(g(z),9(g9(z)))=h(g9(y),9(g(z)))- (1)

Domain variables z and y must be g-function symbols so that we can consider
the equation xz = y to be a g-formula, and hence it can be negated to give g-
formula —(x = y). We can promote the g-terms z and y to p-terms, and we
can consider function symbols g and h to be p-function symbols, giving p-terms
9(z), 9(¥), 9(9(z)), h(g(z),9(9(x))), and h(g(y),9(g9(z))). Thus, the equation
h(g(x),g(g9(x))) =h(g(y), g(g(x))) is a p-formula. We form the disjunction of this
p-formula with the p-formula obtained by promoting —(z=y) giving p-formula F,,.

Figure 3 shows a schematic representation of Fg,, using drawing conventions
similar to those found in hardware designs. That is, we view domain variables as
inputs (shown along bottom) to a network of operators. Domain values are denoted
with solid lines, while truth values are denoted with dashed lines. The top-level
formula then becomes the network output, shown on the right. The operators in
the network are shared whenever possible. This representation is isomorphic to
the traditional directed acyclic graph (DAG) representation of an expression, with
maximal sharing of common subexpressions.
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3.2 Extracting PEUF from EUF

Observe that PEUF does not extend the expressive power of EUF—we could trans-
late any PEUF expression into EUF by considering both the p-terms and g-terms
to be terms and both the p-formulas and g-formulas to be formulas. Instead, the
benefit of PEUF is that by distinguishing some portion of a formula as satisfy-
ing a restricted set of properties, we can radically reduce the number of different
interpretations we must consider when proving that a p-formula is universally valid.

In fact, we can automatically extract the PEUF syntax from an EUF formula
by the following process, and hence our decision procedure can be viewed as one
that automatically exploits the polarity structure of equations in an arbitrary EUF
formula Fyqp. The main task is to classify the function symbols as either p-function
or g-function symbols.

We assume our EUF formula Fiqy, is in negation-normal form, meaning that
the negation operation — is applied only to equations and predicate applications.
We can convert an arbitrary formula into negation-normal form by applying the
following syntactic transformations:

-true — false
—false — true
-—F = F
ﬁ(Fl /\Fz) — =k V-F,
—(F1VF) - -Fi A—F

To formalize the relationship between EUF expressions and PEUF expressions,
we introduce a tree representation of EUF expressions. The rules for the tree
representation are as follows:

(1) If E is an EUF expression having no proper subexpressions (true, false, a
domain variable, or a propositional variable), then E is represented by a tree
consisting of a single node labeled with E.

(2) If E is an EUF expression having n proper subexpressions, then FE is represented
by a tree whose root node is labeled with the main operator (=, ITE, A, V, —,
predicate symbol, function symbol). Attached to the root node are n subtrees,
where the ith subtree represents the ith proper subexpression.

We define a parsing of an EUF expression as a PEUF expression. Let ¢ be a
tree representing an EUF expression E. A parsing of E as a PEUF expression is a
function that assigns to each node of ¢ a set of syntax classes in the formal syntax
of PEUF, such that the syntax rules of PEUF (Figure 2) are satisfied. Note that
this definition allows multiple syntax classes to be assigned to a given tree node.
This multiplicity arises due to the two syntax rules: p-formula ::= g-formula, and
p-term ::= g-term. That is, every tree node that can be classified as a g-formula
(respectively, g-term) can also be classified as a p-formula (respectively, p-term).

We say there is a parsing of an EUF expression E as a PEUF expression of a
given syntax class cl, if there is a parsing of a tree representing E that satisfies the
PEUF syntax rules, and ¢l is in the set of syntax classes assigned to the root node
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of the tree.

To state the main result of this section about parsing, we first define several sets of
expressions. Let @ (respectively ©) be the set of all syntactically distinct formulas
(respectively, terms) occurring in Fi,,. We define the set ®~ C & of negative
formulas to be the smallest set of formulas satisfying the following conditions:

(1) For every formula —~F in ®, formula F is in ®~.

(2) For every term ITE(F,Ty,T>) in O, formula F' is in &~.

(3) For every formula F; A Fy in &~ formulas F; and F; are in ®~.
(4) For every formula F; V F in &~ formulas F; and F; are in &~.

We define the set ©~ C © of negative terms to be the smallest set of terms
satisfying the following:

(1) For every equation Ty =T5 in &~ terms T} and T are in ©~.
(2) For every term ITE(F,Ty,T») in ©, terms Ty and T are in © .

Finally, we partition the set of all function symbols F into disjoint sets F, and
Fp as follows. If there is some term in ©~ of the form f(T,...,T%), then f is in
Fy. If there is no such term, then f is in Fp.

THEOREM 3.1. For any negation-normal EUF formula Ftop’ there is a parsing
of Ftop as a PEUF p-formula such that each function symbol in F, is a g-function
symbol, and each function symbol in Fp, is a p-function symbol.

PRrOOF. For the remainder of this proof, we consider a fixed EUF formula Ftop-
We will only consider a function to be a parsing if it is a parsing when the set of
g-function symbols is F, and the set of p-function symbols is F.

We prove this theorem by induction on the syntactic structure of Fyo,. Our
induction hypothesis consists of four assertions, two for terms and two for formulas:

(1) For T € © such that T € ©~ or T is a function application with a function
symbol in Fg, there is a parsing of T" as a g-term.
(2) For T € O, there is a parsing of T as a p-term.
(3) For F € & satisfying one of the following conditions:
(a) F is true or false,
(b) F is a formula of the form —Fj,
(c) F is a predicate application,
(d) Fisin &,
there is a parsing of F' as a g-formula.
(4) For F € ®, there is a parsing of F' as a p-formula.

Recall that the syntax of PEUF allows any g-formula to be promoted to a p-
formula, and any g-term to be promoted to a p-term. These promotion rules will
be used several times in the proof.

For the base cases, we consider expressions having no proper subexpressions:

(1) For a domain variable v, if v € ©~, then v € F, so there is a parsing of v as a
g-term and a parsing as a p-term.

(2) For a domain variable v € ® — ©~, v is in F,, so there is a parsing of v as a
p-term.
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(3) EUF formulas true and false can be parsed as either g-formulas or p-formulas.

(4) For a propositional variable p, there is a parsing of p as a g-formula or as a
p-formula.

For the inductive argument, we prove the following cases for EUF expressions,
assuming that all proper subexpressions obey the induction hypothesis.

(1) Terms in ©:

(a) Consider T' = ITE(F,T1,T2). If T € ©—, then by definition, F' € &~ and
T1,T5 € ©~. Thus, by the inductive hypothesis, there are parsings of F' as
a g-formula and of 77 and T» as g-terms. This means there is a parsing of
T as a g-term.

If T € O, then by the inductive hypothesis, there are parsings of F' as a
g-formula and of 77 and T, as p-terms. Thus there is a parsing of 7" as a
p-term.

(b) Consider T' = f(T1,...,T})). By the inductive hypothesis, there are pars-
ings of 11,..., T} as p-terms. When f € F,, there are parsings of T" as a
g-term and, by promotion, as a p-term. When f € F,, there is a parsing
of T as a p-term. Thus, there is a parsing of T as a p-term in either case.
In addition, when T' € ©~, we must have f € F,, and hence there is also
a parsing of T' as a g-term.

(2) Formulas in ®:

(a) Consider F = —F;. We have F; € &, so there is a parsing of F} as a
g-formula. Hence F' can be parsed as a g-formula or a p-formula.

(b) Consider FF = Fiy A F5. If F is in &, then Fi, F> are in &, so Fy, F»
can be parsed as g-formulas and F' can be parsed as a g-formula or as a
p-formula.

If Fis in @, then F}, F5 can be parsed as p-formulas, so F' can be parsed
as a p-formula.

(c) Consider F' = F; V Fy. Similar to previous case.

(d) Consider FF =Ty =T,. If FF € &, then T1,T> € ©~ and hence T} and
T, can be parsed as g-terms, so F' can be parsed as a g-formula or as a
p-formula.

If F € ®, then T7 and T5 can be parsed as p-terms, so F' can be parsed as
a p-formula.

(e) Consider F' = p(T1y,...,T%). By the inductive hypothesis, there are pars-
ings of Ty, ..., T, as p-terms. Thus there is a parsing of F' as a g-formula,
and by promotion, as a p-formula.

The theorem follows directly from the induction hypothesis. 0O

3.3 Diverse Interpretations

Let 7 be a set of terms, where a term may be either a g-term or a p-term. We
consider two terms to be distinct only if they differ syntactically. An expression
may therefore contain multiple instances of a single term. We classify terms as
either p-function applications, g-function applications, or ITE terms, according to
their top-level operation. The first two categories are collectively referred to as
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Table II. Example Partitionings of Terms z, y, g1 = g(z), 92 = 9(y), 93 =
9(g(x)), h1 = h(g(x), g(g(x))), and ha = h(g(y), g(g(x)))

In {z,y},{91}{92}, {93}, {h1}, {h2} Inconsistent
12 | {z},{y},{91,92}, {g3}, {h1}, {ho} Inconsistent
Cl | {z},{y},{91,92},{g3}, {h1, ho} Diverse w.r.t. z,y,h

C2 | {z,93},{y}, {91}, {92}, {h1}, {h2} Diverse w.r.t. y, h
D1 | {z},{y},{91},{92},{93},{h1},{h2} | Diverse w.r.t. z, y, g, h
D2 | {z,y},{91,92};{g3}, {h1, ha} Diverse w.r.t. g, h

function application terms. For any g-formula or p-formula F', define T (F) as the
set of all function application terms occurring in F'.

An interpretation I partitions a term set 7 into a set of equivalence classes,
where terms Ty and T» are equivalent under I, written T ~1 T» when I[T}] = I[T3].
Interpretation I' is said to be a refinement of I for term set 7 when Ty ~p Ty =
T, =1 T, for every pair of terms Ty and T, in 7. I' is a proper refinement of I for
T when it is a refinement and there is at least one pair of terms 77,75 € T such
that T1 ~r TZ, but T1 %[! T2.

Let X denote a subset of the function symbols in p-formula F'. An interpretation I
is said to be diverse for F' with respect to ¥ when it provides a maximal partitioning
of the function application terms in 7 (F') having a top-level function symbol from
relative to each other and to the other function application terms, but subject to the
constraints of functional consistency. That is, for Ty of the form f(T11,...,T1 k),
where f € ¥, an interpretation [ is diverse with respect to X if I has T} ~j T3 only
in the case where T is also a term of the form f(T51,...,To%), and T1; =1 Ta;
for all ¢ such that 1 < 4 < k. If we let ¥,(F) denote the set of all p-function
symbols in F', then interpretation I is said to be mazimally diverse when it is
diverse with respect to X,(F). Note that in a maximally diverse interpretation,
the p-function application terms for a given function symbol must be in separate
equivalence classes from those for any other p-function or g-function symbol.

As an example, consider the p-formula Fiz given in (1). There are seven distinct
function application terms identified as follows:

T |yl ¢ g2 g3 hy ho
z |y | 9= | gly) | g(gl@) | hg(z),g(g())) | h(g(y),9(g(x)))

Table IT shows 6 of the 877 different ways to partition seven objects into equivalence
classes. Many of these violate functional consistency. For example, the partitioning
I1 describes a case where = and y are equal, but g(z) and g(y) are not. Similarly,
partitioning I2 describes a case where g(z) and g(y) are equal, but h(g(z), g(g9(z)))
and h(g(y), 9(g(x))) are not.

Eliminating the inconsistent cases gives 384 partitionings. Many of these do not
arise from maximally diverse interpretations, however. For example, partitioning
C1 arises from an interpretation that is not diverse with respect to g, while parti-
tioning C2 arises from an interpretation that is not diverse with respect to h. In
fact, there are only two partitionings: D1 and D2 that arise from maximally diverse
interpretations. Partition D1 corresponds to an interpretation that is diverse with
respect to all of its function symbols. Partition D2 is diverse with respect to both
g and h, even though terms g; and g» are in the same class, as are h; and hs.
Both of these groupings are forced by functional consistency: having x = y forces

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.



Processor Verification Using Efficient Reductions . 13

9(z) = g(y), which in turn forces h(g(z), 9(g(x))) = h(g(y),g(g(z))). Since g and
h are the only p-function symbols, D2 is maximally diverse.
The following is the central result of the paper.

THEOREM 3.2. A p-formula F' is universally valid if and only if it is true in all
mazimally diverse interpretations.

First, it is clear that if F' is universally valid, F is true in all maximally diverse
interpretations. We prove via the following two lemmas that if F' is true in all
maximally diverse interpretations it is universally valid.

LeMMA 3.3. If interpretation J is not maximally diverse for p-formula F', then
there is an interpretation J' that is a proper refinement of J such that J'[F| = J[F].

PROOF. Let T be a term of the form fy (T} 1, ..,T1,k,) occurring in F', where f;
is a p-function symbol. Let T3 be a term of the form fo(Ts 1, ..., T2 k,) occurring in
F, where fy may be either a p-function or a g-function symbol. Assume furthermore
that J[T1] and J[T»] both equal z, but that either symbols f; and f, differ, or
J[T1,;] # J[T2,] for some value of i.

Let 2’ be a value not in D, and define a new domain D' = DU{z'}. Our strategy
is to construct an interpretation J' over D' that partitions the terms in 7(F) in
the same way as J, except that it splits the class containing terms 77 and 7% into
two parts—one containing 77 and evaluating to z’, and the other containing T and
evaluating to z.

Define function 7: D' — D to map elements of D’ back to their counterparts in
D, i.e., 7(2') = z, while all other values of z give 7(x) equal to x.

For p-function symbol fi, define J'(f1) as

’l . ZI, T(.Z'z) = J[Tl,i], 1 S 7 S kl
T )@ ) = {J(fl)(T(xl),...,T(xkl)), otherwise.

For other function and predicate symbols, J' is defined to preserve the func-
tionality of interpretation J, while also treating argument values of z' the same
as z. That is, J'(f) for function symbol f having ord(f) equal to k is defined
such that J'(f)(z1,...,zx) = J(f)(r(21),...,7(zx)). Similarly, J'(p) for predi-
cate symbol p having ord(p) equal to k is defined such that J'(p)(z1,...,zx) =

J(p)(r(21),. .., (1))
We claim the following properties for the different forms of subexpressions oc-
curring in F:
(1) For every g-formula G: J'[G] = J[G]
(2) For every g-term T: J'[T] = J[T]
(3) For every p-term T: 7(J'[T]) = J[T]
(4) For every p-formula G: J'[G] = J[G]
(5) J'[T1] = 7' and J'[T3] = =.
Informally, interpretation J’ maintains the values of all g-terms and g-formulas

as occur under interpretation J. It also maintains the values of all p-terms, except
those in the class containing terms 77 and 75. These p-terms are split into some
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having valuation z and others having valuation 2’. With respect to p-formulas,
consider first an equation of the form S; =S, where S; and S> are p-terms. The
equation will yield the same value under both interpretations except under the
condition that S; and S» are split into different parts of the class that originally
evaluated to z, in which case the equation will yield true under J, but false
under J'. Thus, although this equation can yield different values under the two
interpretations, we always have that J'[S; = Sa2] = J[S1 = S2]. This implication
relation is preserved by conjunctions and disjunctions of p-formulas, due to the
monotonicity of these operations.

We will now present this argument formally. Most of the cases are straightfor-
ward; we indicate those that are “interesting.” We prove hypotheses (1) through
(4) above by simultaneous induction on the expression structures.

For the base cases, we have the following:

(1) G-formula: J'[true] = J[true|, J'[false] = J[false], and J'[a] = J[a] for any
propositional variable a.

(2) G-term: If v is a g-function symbol of zero order, then J'(v) = J(v).

(3) P-term: If v is a p-function symbol of zero order, then by the definition of J’,

7(J'(v) = J().

(4) P-formula: same as g-formula.

For the inductive step, we prove that hypotheses (1) through (4) hold for an
expression given that they hold for all of its subexpressions.

(1) G-formula: There are several cases, depending on the form of G.

(a) Suppose G has one of the forms =Gy, G1 A G2, G1 V G2, where G; and G»
are g-formulas. By the inductive hypothesis, J'[G1] = J[G1], and J'[G2] =
J[G2]. Tt follows that J'[-G1] = J[~Gi], J'[G1 A G2] = J[G1 A G2], and
J'[G1 \% GQ] = J[Gl Vv GQ]

(b) Suppose G has the form S; =S», where S1, S3 are g-terms. By the inductive
hypothesis on g-terms, J'[S1] = J[S1], and J'[S2] = J[S2]. It follows that
J'[S1=252] = J[S1=52].

(c) Suppose G is a predicate application of the form p(Si,..., Sk), where p is a
predicate symbol of order k, and Sy, ..., Sk, are p-terms. By the inductive
hypothesis for p-terms, we have 7(J'[S;]) = J[S;], for i = 1...k. By the
definition of J',

J'p(S1,--,Se)] = J'®)(J'[S1],.- -, J'[Sk])
J@)(r(I'[S1]), .., (J[SK])
= Jp g(J[Sﬂ JISH))

Jp(S1, )].

(2) G-term: There are two cases.
(a) Suppose T has the form ITE(G,Si,S2), where G is a g-formula, and
S1 and Sy are g-terms. By the inductive hypothesis, we have J'[G] =
J[G], J'[S1] = J[S1], and J'[Sz] = J[Sg] Then J'[ITE(G,S1,SQ)] =
J[ITE(G, S1,S2)].
(b) Suppose T has the form f(Si,...,Sk), where f is a g-function symbol of or-
der k and Sy,. .., Sy are p-terms. By the inductive hypothesis, 7(J'[S;]) =
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J[S;], for i =1,... k. Then we have,

PGSt 50] = (OIS, .. IS
= J()(T(J'[S1]), .-, T(J'[Sk]))

J[f(S1,...,8k)]

(3) P-term: There are three cases.

(a)
(b)

Suppose T is a g-term. By the inductive hypothesis, J'[T] = J[T']. Since
J[T'| cannot be equal to 2', it must be the case that 7(J'[T]) = J[T].
Suppose T has the form ITE(G, Sy, S2), where G is a g-formula, and S; and
Sy are p-terms. By the inductive hypothesis, J'[G] = J[G], 7(J'[S1]) =
J[S1], and 7(J'[S2] = J[S2]). It follows that

7(J'[ITE(G, S1,52)]) = if J'[G] then 7(J'[S1]) else 7(J'[S2])
= if J[G] then J[Si] else J[Ss]
JUITE(G, 81, 55)].

[Important case:] Suppose that T has the form f(Si,...,Sk), where f is
a p-function symbol of order k£ and Si,..., Sy are p-terms. Here, we have
to consider two cases. The first case is that the following two conditions
hold: (1) f is the function symbol fi, i.e., the function symbol of the
term 77 mentioned at the beginning of the proof of this lemma, and (2)
7(S:) = J[T1,4], for 1 < i < k. If these two conditions hold, then by the
definition of J', J'[f1(S1,...,Sk)] = 2', while J[f1(S1,-..,Sk)] = 2. Since
7(2') = z, we have 7(J'[f1(S1,...,Sk)]) = J[f1(S1,...,Sk)]-

The second case is when one of the two conditions mentioned above does
not hold. The proof of this case is identical to the proof of case 2(b) above.

(4) P-formula: There are three cases.

(a)
(b)

If the p-formula G is a g-formula, then by the inductive hypothesis, J'[G] =
J[G], so J'|G] = J[G].

Suppose G has one of the forms Gy A Gz, or G V G2, where G1,G4 are
p-formulas. By the inductive hypothesis, J'[G1] = J[G1], and J'[G2] =
J[G>]. Thus we have

TGy AGs] = J[Ga] A T[]
= J[Gl] A J[Gz]
= J[G1 A GQ],

so J'[G1 A G3] = J[G1 A Gs]. The proof for G V G5 is the same.

[Important case:] Finally, we consider the case that G is a p-formula
of the form S; = S, where S; and S», are p-terms. By the inductive
hypothesis, we have that if J'[S;] = 2/, then J[S;] = z, for i = 1,2. Also,
by the definition of h, we have that if J'[S;] does not equal 2', then J'[S;] =
J[S;]. Now, we consider cases depending on whether J'[S;] or J'[S2] are
equal to z'. If both terms are equal to 2’ in J', then both J[S1] and J[S5]
must be equal to 2, so the equation is true in both J' and J. If neither
J'[S1] nor J'[S.] is equal to 2/, then J'[S1] = J[S1] and J'[Sa] = J[S2], so
the equation has the same truth value in J' and J. The last case is that
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exactly one of the p-terms is equal to 2’ in J'. In this case, the equation is
false in J', so we have J'[G] = J[G]. This completes the inductive proof.

Property (5) above, which implies that J' is a proper refinement, is a consequence
of the definition of J' and the inductive properties (2) and (3). First, we show that
J'[T1] = 2'. By definition, J'[T1] = J'(f1)(J'[T1,1],-- -, J'[T1,k])- By property (3)
on p-terms, we can assume 7(J'[T1;]) = J[T1,5], for all 7 in the range 1 <4 < k;.
By the definition of J'(f1), we have J'(f1)(J'[T1,1],---, S [T1,k]) = 2’

The proof that J'[T3] = z is in two cases, depending on whether T} and T, are
applications of the same function symbol.

(1) Consider the case where T1 = fl(Tl,I; . 7T1,k1) and T2 = f2(T2,17 .. -;T2,k2);
where f; and f» are different function symbols. In this case,

J'[Ts) J' (f2)(J'[T2n],- - T [Toks))

J(f2)(T(J'[T>7]),- -, 7(J' [T2,,])), by the definition of J'(f2)
J(f2)(J[T21],-- -, J[T2,k,]), by the inductive hypothesis

J[f2 (T2,15 v >T2,k2 )]

= 2.

(2) Consider the case where f; and f2 are the same function symbol, and there is
some value of [ with 1 <1 < ky, such that J[T},] does not equal J[T>,]. Here,
we have

Tf1(T2s-- - Toe,)] = T (f)(T[Ton); - -5 T [T2ka)-
By property (3), 7(J'[T»,]) = J[T2], for all i such that 1 < i < k;. Since
J[T1,] does not equal J[T>,], the value of the above application of J'(f1) is
T ()T [T2als -5 T'[Tows]) = J(E) (T [T2al)s - - - 7(T [T2k0]))
J(f1)(J[T2al;-- -, T[T ko))
Jfi(Ton,- - Tos)]

= Z.

Il

O

LEMMA 3.4. For any interpretation I and p-formula F, there is a mazimally
diverse interpretation I* for F such that I*[F] = I[F].

PROOF. Starting with interpretation Iy equal to I, we define a sequence of inter-
pretations Iy, I1,... by repeatedly applying the construction of Lemma 3.3. That
is, we derive each interpretation ;1 from its predecessor I; by letting J = I; and
letting I;11 = J'. Interpretation I;y; is a proper refinement of its predecessor I;
such that I;11[F] = L;[F]. At some step n, we must reach a maximally diverse
interpretation I, because our set 7 (F) is finite and therefore can be properly
refined only a finite number of times. We then let I* be I,,. We can see that
I*[F] = I,[F] = --- = Ih[F] = I[F], and hence I*[F] = I[F]. O

The completion of the proof of Theorem 3.2 follows directly from Lemma 3.4.
That is, if we start with any interpretation I for p-formula F', we can construct a
maximally diverse interpretation I* such that I*[F] = I[F]. Assuming F' is true
under all maximally diverse interpretations, I*[F] must hold, and since I*[F] =
I[F], I[F] must hold as well.
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3.4 Exploiting Positive Equality in a Decision Procedure

A decision procedure for PEUF must determine whether a given p-formula is uni-
versally valid. The procedure can significantly reduce the range of possible inter-
pretations it must consider by exploiting the maximal diversity property. Theorem
3.2 shows that we can consider only interpretations in which the values produced by
the application of any p-function symbol differ from those produced by the applica-
tions of any other p-function or g-function symbol. We can therefore consider the
different p-function symbols to yield values over domains disjoint with one another
and with the domain of g-function values. In addition, we can consider each appli-
cation of a p-function symbol to yield a distinct value, except when its arguments
match those of some other application.

4. ELIMINATING FUNCTION APPLICATIONS

Most work on transforming EUF into propositional logic has used the method
described by Ackermann [1954] to eliminate applications of functions of nonzero
order. In this scheme, each function application term is replaced by a new domain
variable, and constraints are added to the formula expressing functional consistency.
Our approach also introduces new domain variables, but it replaces each function
application term with a nested ITFE structure that directly captures the effects
of functional consistency. As we will show, our approach can readily exploit the
maximal diversity property, while Ackermann’s cannot.

In the presentation of our method for eliminating function and predicate appli-
cations, we initially consider formulas in EUF. We then show how our elimination
method can exploit maximal diversity in PEUF formulas.

4.1 Function Application Elimination Example

We demonstrate our technique for replacing function applications by domain vari-
ables using formula F; (1) as an example, as illustrated in Figure 4. First consider
the three applications of function symbol g: g(z), g(y), and g(g(x)), which we iden-
tify as terms T3, Ty, and T3, respectively. Let vg,, vg,, and vgs be new domain
variables. We generate new terms Uy, Us, and Us as follows:

U, = v91 (2)
U2 = ITE(yZZ',’Ugl,Ug2)
Us = ITE(vgy =z, v9,, ITE(vg1 =y, vg, vg3))

We use variable vg;, the translation of g(z), to represent the argument to the
outer application of function symbol g in the term g(g(z)). In general, we must
always process nested applications of a given function symbol working from the
innermost to the outermost. Given terms Uy, Us, and Us, we eliminate the function
applications by replacing each instance of T; in the formula by U; for 1 < i < 3,
as shown in the middle part of Figure 4. We use multiplexors in our schematic
diagrams to represent ITFE operations.

Observe that as we consider interpretations with different values for variables
vgy, Vgs, and vgs in (2), we implicitly cover all values that an interpretation of
function symbol g in formula Foz may yield for the three arguments. The nested
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Initial formula:

(9)
O

Xy

After removing applications of function symbol g:

Xy vg Vg, Vg,

After removing applications of function symbol h:

Xy vg vg, Vo, vh, vh,
Fig. 4. Removing function applications from Feg.
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Table III. Possible Valuations of Terms in (2) when
Each Variable vg; is Assigned Value ¢
~r T, T'[02]_T'[Us]
ot v}, (9@}
{z,v},{9(z)}
{z}:{y, 9(=)}
{z,9(2)}, {y}
{z,9,9(x)}

e e e
= NN N
== N W W

ITE structure shown in (2) enforces functional consistency. For example, consider
an arbitrary interpretation I of the symbols in Feg. Define interpretation I’ to be
identical to I for the symbols in Fi,; and in addition to assign values 1, 2, and 3
to domain variables vg,, vg,, and vgs, respectively. Table III shows the possible
valuations of the three terms of (2) under I'. For each possible partitioning by I*
of arguments z, y, and g(z) into equivalence classes, we get I'[U;] = I'[U;] if an
only if the arguments to function application terms T; and T} are equal under I.

We remove the two applications of function symbol h by a similar process. That
is, we introduce two new domain variables vhy and vha. We replace the first ap-
plication of h by vhy and the second by an ITFE term that compares the arguments
of the two function applications, yielding vh; if they are equal and vh if they are
not. The final form is illustrated in the bottom part of Figure 4. The translation
of predicate applications is similar, introducing a new propositional variable for
each application. After removing all applications of function and predicate sym-
bols of nonzero order, we are left with a formula Fg, containing only domain and
propositional variables.

4.2 Algorithm for Eliminating Function and Predicate Applications

The general translation procedure follows the form shown for our example. It
iterates through the function and predicate symbols of nonzero order. On each
iteration it eliminates all occurrences of a given symbol. At the end we are left
with a formula containing only domain and propositional variables.

The following is a detailed description of the process required to eliminate all
instances of a single function symbol f having order k£ > 0 from a formula G. We
use the variant of formula F,, shown schematically at the top of Figure 5. In this
variant, we have replaced function symbol g with f. In the sequel, if F is an expres-
sion and T and U are terms, we will write E[T < U] for the result of substituting U
for each instance of T in E. Let T1,...,T, denote the syntactically distinct terms
occurring in formula G having the application of f as the top-level operation. We
refer to these as “f-application” terms. Let the arguments to f in f-application
term T; be the terms S,',l, .. .,S,',k, so that T; has the form f(Sz',l, .. -,Sz‘,k)- As-
sume the terms T, ..., T, are ordered such that if T; occurs as a subexpression of
Tj then ¢ < j. In our example the f-application terms are Ty = f(x), T> = f(y) and
T3 = f(f(x)). These terms have arguments S11 =z, S2;1 =y, and S31 = f(x).

The translation processes the f-application terms in order, such that on step i it
replaces all occurrences of the ¢ th application of function symbol f by a nested ITE
term. Let vfy,...,vf, be a new set of domain variables not occurring in F. We
use these to encode the possible values returned by the f-application terms. For
any subexpression E in G, we define its integer-valued f-order, denoted o¢(E), as
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Initial p-formula showing f-order contours:

f-order: 3

o/1/2/3
Xy

After removing applications of function symbol f:

Fig. 5. Ilustration of function application removal.

the highest index i of an f-application term T; occurring in E. If no f-application
terms occur in E, its f-order is defined to be 0. By our ordering of the f-application
terms, any argument S;; to f-application term T; must have o7(S;,;) < o7(T}), and
therefore o(T;) = i. For example, the contour lines shown in Figure 5 partition
the operators according to their f-order values.

The transformations performed in replacing applications of function symbol f
can be expressed by defining the following recurrence for any subexpression E of
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G:
EO = E
E® = BT Uy, 1<i<n (3)
E = Em), where m = 0¢(E)

In this equation, term T(z Y is the form of the i th f-application term T; after all
but the topmost apphcatlon of f have been eliminated. Term U; is a nested ITE
structure encoding the possible values returned by T; while enforcing its consistency
with earlier applications. U; does not contain any applications of function symbol f.
For a subexpression E with of(E) = m, its form E(™) will contain no applications
of function symbol f. We denote this form as E. Observe that for any i > og(E),
term 7" does not occur in E®, and hence E® = E for all i > o;(E). Observe

also that for f-application term T;, we have T; = Ti(i) =U;.
U; is defined in terms of a recursively defined term V; ; as follows:

‘/z',iivfz’, 1<i<n
Vij = ITE(Ci,bvfjJVi,j+l)a 1<j<i<n 4)
U; = Viq, 1<i<n

where for each j < 4, formula C; ; is true iff the (transformed) arguments to the
top-level application of f in the terms T; and T} have the same values:

Cij = /\ Sii=Sj1 (5)
1<I<k
Observe that the recurrence of (4) is well-defined, since for all argument terms of
the form S;; for 1 < j <iand 1 <[ <k, we have 0(Sj,;) < i, and hence terms of
the form Sj’l and S’i,l, as well as term V; j11, are available when we define V; ;.
The lower part of Figure 5 shows the result of removing the three applications of
f from our example formula. First, we have U; = uf,, giving translated function
arguments 5’1,1 =z, 5’2,1 =y, and 5’3,1 = vf,. The comparison formulas are then
Co1 = (y=2), C31 = (vf;=2x), and Cs 2 = (vf; =y). From these we get translated
terms:

Uz = ITE(y=x=,vfy, vf5)
Us ITE(vf =z, vf 1, ITE(vfy =y, vf 5, vf 3))
We can see that formula G = G(™ will no longer contain any applications of
function symbol f. We will show that G is universally valid if and only if G is.

In the following correctness proofs, we will use a fundamental principle relating
syntactic substitution and expression evaluation:

PROPOSITION 4.1. For any expression E, pair of terms T, U, and interpretation
I of all of the symbols in E, T, and U, if I[T] = I[U] then I[E[T « U]] = I[E].

We will also use the following characterization of (4). For value ¢ such that
1 < i < n and for interpretation I of the symbols in U;, the least matching value of
¢ under interpretation I, denoted Im Igz is defined as the minimum value j in the
range 1 < j < i such that I[8;;] = I[S;, l] for all [ in the range 1 < < k. Observe
that this value is well-defined, since i forms a feasible value for j in any case.
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LEMMA 4.2. For any interpretation I, I[U;] = I(vf;), where j = Imy(i).

PROOF. For value m in the range 1 < m < i define Im;(m, ) as the minimum
value of j in the range m < j < ¢ such that I[S;;] = I[S;;] for all | in the range
1 <1< k. By this definition Im(i) = Imr(1,7). Observe also that if j = Imy(m, )
then I[C; ;] = true. In addition, for any value m' in the range m < m' < ¢, if
Imr(m,i) >m/', then Imr(m,i) = lms(m', 7).

We prove by induction on m that I[V;,,] = I(vf;), where j = Imi(m,i). The
base case of m = i is trivial, since Imy(,4) =4, and V; ; = of ;.

Assuming the property holds for m + 1, we consider two possibilities. First, if
Imj(m,i) = m, we have I[C; ,,] = true, and hence the top-level ITE operation in
Vi,m (4) will select its first term argument vf ,, giving I[V; ] = I(vf,,). On the
other hand, if Im;(m,4) > m, we must have I[C; ;] = false, and hence the top-level
ITE operation in V; ,,, will select its second term argument V; p,q1, giving I[V; ] =
I[Vi,m+1], which by the inductive hypothesis equals I(vf;) for j = Imr(m + 1,i).
Since Imy(m,i) > m + 1, we must also have Imr(m,i) = Imr(m + 1,4), and hence
I[Vi,m] = I(vf;), where j = Imy(m, ).

Since U; is defined as V; 1, our induction argument proves that I[U;] = I(vf j) for
j = lm](l 7,) = l’m[(l) O

LEMMA 4.3. Any interpretation J of the symbols in G can be extended to an
interpretation J of the symbols in both G' and G such that for every subexpression
E of G, J|E] = J|E) = J[E)].

PROOF. We provide a somewhat more general construction of J than is required
for the proof of this lemma in anticipation of using this construction in the proof
of Lemma 4.6. Given J defined over domain D, we define J over a domain D such
that DD D.

We define J for the function and predicate symbols occurring in G based on
their definitions in J. For any function symbol f in G having ord(f) = k, and any
argument values z1, ...,z € D, we define J(f)(z1,...,zk) = J(f)(z1,...,2x). For
argument values z1, . . ., 2, € D such that for some i, z; € D, we let J(f)(z1,. .., zx)
be an arbitrary domain value. Similarly, for predicate symbol p, we define J(p) to
yield the same value as J(p) for arguments in D and to yield an arbitrary truth
value when at least one argument is not in D.

One can readily see that J[E] = J[E] for every subexpression E of G. This
takes care of the second equality in the statement of the lemma, and hence we can
concentrate on the relation between J[E] and J[E] for the remainder of the proof.

Recall that vfq,...,vf, are the domain variables introduced when generating
the nested ITFE terms Uy, ...U,. Our strategy is to define interpretations of these
variables such that each U; mimics the behavior of the original f-application term
Ti in G.

We consider two cases. For the case where Im ;(i) = i, we define J(vf;) = J[T3],

, the value of the ith f-application term in G under J. Otherwise, we let

(vf ) be an arbitrary domain value—we will show that its value does not affect
the valuation of any expression Ein G having a counterpart E in G.

We argue by induction on i that J[E®] = J[E] for any subexpression E of G.
For the case where of(E) < i, this hypothesis implies that J[E] = J[E]. The base
case of 4 = 0 is trivial, since E(O) is defined to be E.
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Suppose that for every j in the range 1 < j < 4 and every subexpression D
of G, we have J[D@W] = J[D], and consequently that J[D] = J[D] for the case
where o¢(D) < i. We must show that for every subexpression E of G, we have
JIE®] = J[E]. A

We first focus our attention on term 7; in G and its counterpart U; in G, show-
ing that J[U;] = J[T;]. The f-application terms for all j such that j < i have
0f(T;) = j < i, and hence we can assume that J[U;] = J[Tj] for these values of j.
Furthermore, any argument S;; to an f-application term for j <iand 1 <1<k
has 04(S;1) < j < i, and hence we can assume J[S;;] = J[S;,]-

We consider two cases: Imj(i) = i, and Im;(i) < i. In the former case, we
have by Lemma 4.2 that J[U;] = J(vf;). Our definition of J(uf;) gives J[U;] =

J( f) J[T;]. Otherwise, suppose that Im j(i) = j < i. Lemma 4.2 shows
that J[U;] = j(vfj). We can see that Im;(j) = j, and hence j(vfj) is defined
to be J[T;]. By the definition of Im we have j[S’] 1] = J[Sig] for 1 <1 < k.
By the induction hypothesis we have J1S;1] = J[Sju], since 0f(Sj1) < i, and
similarly that J[S;;] = J[Si;]. By transitivity we have J[S;;] = J[S;,] for all I
such that 1 < I < k, i.e., the arguments to f-application terms T and T; have
equal valuations under J. Function consistency requires that J[T;] = J[T}]. From
this we can conclude that J[U;] = J(vf i) = J[T;] = J[T;]. Combining these cases
gives J[U;] = J[Ti.

For any subexpression E its form E(® differs from E(¢~Y only in that all instances
of term T( Y have been replaced by U;. We have just argued that J[U;] = J[Ti],
and by the induction hypothesis we have that J [TZ-(z 1)] = J[T}], giving by tran-
sitivity that J[T; TV = Uy Proposition 4.1 implies that JED] = JIEGD],
and our induction hypothesis gives .J JIEG-D] = J[E]. By transitivity we have
JIEW] = J[E].

To complete the proof, we observe that our induction argument implies that for
any subexpression E of G, J[E(™)] = J[E], including for the case where m = o +(E),
giving J[E] = JIE™)] = J[E]. O

LEMMA 4.4. Any interpretation J of the symbols in G can be extended to an
interpretation J of the symbols in both G and G such that for every subexpression
E of G, JIE| = J[E] = J[E] .

PROOF. We define J to be identical to J for any symbol occurring in G. This
implies that J[E] = J[E] for every subexpression E of G. This takes care of the
second equality in the statement of the lemma, and hence we can concentrate on
the relation between J[E] and J[E] for the remainder of the proof.

For function symbol f, we define J(f)(z1,-..,zx) for domain elements x1, ...,z
as follows. Suppose there is some value j such that z; = J [Sj,l] for all [ such that
1 <1<k, and such that j = Im ;(j). Then we define J(f)(z1,...,zx) to be J(vf;).
If no such value of j exists, we let J(f)(z1,...,2x) be some arbitrary domain value.

We argue by induction on 4 that J[E] = J[E®] for any subexpression E of G.
For the case where of(E) < i, this hypothesis implies that J[E] = J[E]. The base
case of 4 = 0 is trivial, since E(O) is defined to be E.

Suppose that for every j in the range 1 < j < 4 and every subexpression D
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of G, we have J[D] = J[D®], and consequently that J[D] = J[D] for the case
where o¢(D) < i. We must show that for every subexpression E of G, we have
J[E] = J[ED).

We focus initially on term 7; in G and its counterpart U; in G’, showing that
JIT;] = J[U;]. Any f-application term T for j < ¢ has oy(T;) = j < i, and
hence we can assume that J[Tj] = J[T;]. Furthermore, any argument S;; to an
f-application term for j <4 and 1 < < k has 04(S;;) < j < i, and hence we can
assume that J[S;,;] = J[S;,]-

We consider two cases: Im;(i) = i, and Imj(i) < 4. In the former case,
we have by Lemma 4.2 that J[U;] = J(vf;). In addition, J(f) is defined such
that J[T;] = J(f)(J[Sia], .., J[Sik]) = J(F)(I[Sials-- -, J[Sik]) = J(of;), giving
J[T;] = J(vf;) = J[U;]. Otherwise, suppose that Im (i) = j < i. Lemma 4.2 shows
that J[U;] = J(vf;). We can see that Im;(j) = j, and hence J(f) is defined such
that J(f)(J[gj,l],...,J[S"k]) = J(vf;). For any [ such that 1 <1 < k, we also
have by the definition of Im that J[S;;] = J[Si,]. By the induction hypothesis we
have J[Sj,l] = J[Sj,l], since Of(Sj,l) < 1, and similarly that J[Si,l] = J[gi,l]. By
transitivity we have J[S;;] = J[S; ], i.e., the arguments to f-application terms T}
and T; have equal valuations under J. Functional consistency requires that J[T};] =
J[T;]. Putting this together gives J[T;] = J[T;] = J(f)(J[Sj1l,---,I[Sjk]) =
J(H)I1Sja),-- -, ISjk]) = J(vf 5) = JUi]-

For any subexpression E its form E(® differs from E(~1 only in that all instances
of term Ti(lfl) have been replaced by U;. We have just argued that J[T;] = J[U;],
and by the induction hypothesis we have that J[T;] = J [Tz.(’_l)], giving by tran-
sitivity that J[T\*""] = J[U;]. Proposition 4.1 implies that J[E(—D] = J[E®],
and our induction hypothesis gives J[E] = J[E®~V]. By transitivity we have
J[E] = J[ED).

To complete the proof, we observe that our induction argument implies that for
any subexpression E of G, J[E] = J[E™)], including for the case where m = o;(E),
giving J[E] = JIE(™)] = J[E]. O

An application of a predicate symbol having nonzero order can be removed by a
similar process, using newly generated propositional variables to encode the possible
values returned by the predicate applications. By an argument similar to that
made in Lemma 4.3, we can extend an interpretation to include interpretations
of the propositional variables such that the original and the transformed formulas
have identical valuations. Conversely, by an argument similar to that made in
Lemma 4.4, we can extend an interpretation to include an interpretation of the
original predicate symbol such that the original and the transformed formulas have
identical valuations.

Suppose formula F' contains applications of m different function and predicate
symbols of nonzero order. Starting with Fy = F, we can generate a sequence of
formulas Fy, Fy,...,F,. Each formula F; is generated from its predecessor F;_;
by letting G = F; and F;;; = G in our technique to eliminate all instances of the
i th function or predicate symbol. Let F* = F,,, denote the formula that will result
once we have eliminated all applications of function and predicate symbols having
nonzero order.
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THEOREM 4.5. For EUF formula F, the transformation process described above
yields a formula F™* such that F' is universally valid if and only if F* is universally
valid.

PrOOF.
If. Assume F™ is universally valid, and consider any interpretation I of the
symbols in F. We construct a sequence of interpretations I = Iy, I,. .., I,,, where

each interpretation I; is generated by extending its predecessor I;_; by letting
J=1I,_; and I; = J in Lemma 4.3 or a similar one for predicate applications. The
effect is to include in I; interpretations of the domain or propositional variables
introduced when eliminating the i th function or predicate symbol. We then define
interpretation I* to be identical to I, for every variable appearing in F*. By
induction, we have I*[F*] = I[F]. Since F* is universally valid, we have I[F] =
I*[F*] = true. Since this construction can be performed for any interpretation I,
F must also be universally valid.

Only if. Assume F' is universally valid. Starting with an interpretation I'* of
the domain and propositional variables of F*, we can define a sequence of inter-
pretations I* = I, I,,_1, .. ., Iy, using the construction in the proof of Lemma 4.4
(or a similar one for predicate applications) to generate an interpretation of each
function or predicate symbol in F. We then define interpretation I to be identical
to Iy for every function or predicate symbol appearing in F. By induction, we
have I[F] = I*[F*]. Since F is universally valid, we have I*[F*] = I[F] = true.
Since this construction can be performed for any interpretation I*, F* must also
be universally valid. [

4.3 Assigning Distinct Values to Variables Representing P-Function Applications

Suppose we are given a PEUF p-formula F. We can also consider this to be a for-
mula in EUF and hence apply the function and predicate application elimination
procedure just described to derive a formula F™* containing only domain and propo-
sitional variables. For each function symbol f in F', we will introduce a series of
domain variables vfq, ..., vf,. We will show that if f is a p-function symbol, then
our decision procedure can exploit maximal diversity by considering only interpre-
tations that assign distinct values to the vf, ..., vf,. More precisely, we need only
consider interpretations that are diverse for these variables when deciding the va-
lidity of F'. This property holds even if the variables vf, ..., vf, are not classified
as p-function symbols in F™.

For example, consider the formula created by eliminating function symbol g from
Fyz, shown in the middle of Figure 4. By using an interpretation I'* that assigns
distinct values 1, 2, and 3 to variables vg,, vg,, and vg; we generate distinct val-
ues for the terms Uy, Uz, and Us (2), except when there are matches between the
arguments z, y, and vg;. On the other hand, our encoding still considers the possi-
bility that the arguments to the different applications of g may match under some
interpretations, in which case the function results should match as well. Observe
that the equations x = vg; and y = vg; control ITEs in the transformed formula.
Nonetheless, we will show that we can prove universal validity by considering only
diverse interpretations of vg;.

To show this formally, consider the effect of replacing all instances of a function
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symbol f in a formula G by nested ITE terms, as described earlier, yielding a
formula G with new domain variables vf1,...,0f,. We first show that when we
generate these variables while eliminating p-function applications, we can assume
they have a diverse interpretation.

LEMMA 4.6. Let X be a subset of the symbols in G, and let G be the result of elim-
inating function symbol f from G by introducing new domain variables vf, ..., vf,,.
If f € X, then for any interpretation J that is diverse for G with respect to X, there
is an interpretation J that is diverse for G with respect to ¥ — {f}U{vf,...,vf,}
such that J[G] = J[G).

PROOF. Given interpretation J defined over domain D, we define interpretation
J over a domain D = DU {#1,...,2n}. Each z; is a unique value, i.e., z; # z; for
any i # j, and z; € D.

The proof of this lemma is based on a refinement of the proof of Lemma 4.3.
Whereas the construction in the earlier proof assigned arbitrary values to the new
domain variables in some cases, we select an assignment that is diverse in these
variables. As in the construction in the proof of Lemma 4.3, we define J for any
function or predicate symbol in G to be identical to that of J when the arguments
are all elements of D. When some argument is not in D, we let the function
(respectively, predicate) application yield an arbitrary domain (respectively, truth)
value.

For domain variable vf; introduced when generating term U;, we consider two
cases. For the case where Im ;(i) = i, we define J(vf;) = JT}], i.e., the value of
the i th f-application term in G under J. For the case where Im ;(i) < i, we define
J(vf;) = zi. We saw in the proof of Lemma 4.3 that we could assign arbitrary values
in this latter case and still have J [G] J[G]. In fact, for every subexpression E of
G, we have that its counterpart Ein G satisfies .J [E] J[E].

We must show that J is diverse for G with respect to £ — {f} U {vfy,...,vf,}.
We first observe that J is identical to J for all function application terms in G, and
hence J must be diverse with respect to ¥ for G. We also observe that J assigns
to each variable vf; either a unique value z; or the value yielded by f-application
term T in G under J.

Suppose there were distinct variables vf; and vf ; such that Juf ;] = J[of ;]- This
could occur only for the case that J(vf;) = J[Ti] = J[T}] = J(vf ). Since J is
diverse, we can have J[T;] = J[T}] only if Im j(@) = Im;(j). We cannot have both
Im j(i) = i and Imj(j) = j, and hence either vf; or vf; would have been assigned
unique value z; or z;, respectively. Thus, we can conclude that Jlvf;] # Jlof ;] for
distinct variables of ; and of ;.

In addition, we must show that interpretation J does not create any matches
between a new variable vf; and a function application term 7' in G that does not
have f as the topmost function symbol. Since J is diverse with respect to X for G
and f € ¥, any function application term 7' in G that does not have function symbol
f as its topmost symbol must have J[T] # J[T}] for all 1 < i < n. In addition, we
have J[T] # z; for all 1 < i < n. Hence, we must have J[T] # J(vf;). O

We must also show that the variables introduced when eliminating g-function
applications do not adversely affect the diversity of the other symbols.
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LEMMA 4.7. Let X be a subset of the symbols in G, and let G be the result of elim-
inating function symbol f from G by introducing new domain variables vf {, ..., vf .
If f € 3, then for any interpretation J that is diverse for G with respect to X, there
is an interpretation J that is diverse for G with respect to % such that J[G] = J[G].

PRrROOF. The proof of this lemma is based on a refinement of the proof of Lemma
4.3. Whereas the construction in the earlier proof assigned arbitrary values to
some of the new domain variables, we select an assignment such that we do not
inadvertently violate the diversity of the other function symbols.

We define J to be identical to J for any symbol occurring in G. For each domain
variable vf; introduced when generating term U;, we define J(vf;) = J[T;]. This
differs from the interpretation defined in the proof of Lemma 4.3 only in giving
fixed interpretations of domain variables that could otherwise be arbitrary, and
hence we have JIG’] = J[G]. In fact, for every subexpression E of G, we have that
its counterpart E in G satisfies J[E] = J[E].

We must show that J is diverse for G with respect to X. We first observe that
J is identical to J for all function application terms in G, and hence J must be
diverse for G with respect to . We also observe that J assigns to each variable uf;
the value of f-application term T;. For term T having the application of function
symbol g € ¥ as the topmost operation, we must have J[T] = J[T] # J[T}] = J[vf;]-
Hence, we are assured that the values assigned to the new variables under J do not
violate the diversity of the interpretations of the symbols in . O

Suppose we apply the transformation process of Theorem 4.5 to a p-formula F' to
generate a formula F*, and that in this process, we introduce a set of new domain
variables V' to replace the applications of the p-function symbols. Let ¥ (F) be
the union of the set of domain variables in %,(F) and V. That is, ¥3(F) consists
of those domain variables in the original formula F' that were p-function symbols
as well as the domain variables generated when replacing applications of p-function
symbols. Let ¥7(F) be the domain variables in F™* that are not in X7 (F). These
variables were either g-function symbols in F' or were generated when replacing
g-function applications.

We observe that we can generate all maximally diverse interpretations of F' by
considering only interpretations of the variables in F™* that assign distinct values
to the variables in X% (F):

THEOREM 4.8. PEUF p-formula F is universally valid if and only if its trans-
lation F* is true for every interpretation I* that is diverse over X (F).

PRrROOF.

Only if. By Theorem 4.5, the universal validity of F' implies that of F™*, and
hence it must be true for every interpretation.

If. The proof in the other direction follows by inducting on the number of function
and predicate symbols in F' having nonzero order. For the induction step we use
Lemma 4.6 when eliminating all applications of a p-function symbol, and Lemma
4.7 when eliminating all applications of a g-function symbol. When eliminating a
predicate symbol, we do not introduce any new domain variables. [
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Initial formula:
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Fig. 6. Ackermann’s method for replacing function applications in Feg.
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4.3.1 Discussion. Ackermann [1954] also describes a scheme for replacing func-
tion application terms by domain variables. His scheme simply replaces each in-
stance of a function application by a newly-generated domain variable and then
introduces constraints expressing functional consistency as antecedents to the mod-
ified formula. As an illustration, Figure 6 shows the result of applying his method
to formula Feg of (1). First, we replace the three applications of function symbol g
with new domain variables vg,, vg,, and vg;. To maintain functional consistency
we add constraints

(x=y = vg, =v9,) A (x=vg; = vg; =vg3) A (y=vg; = vg5 =193)

as an antecedent to the modified g-formula. The result is shown in the middle of
Figure 6, using Boolean connectives A, V, and — rather than =. In this diagram,
the three constraints listed above form the middle three arguments of the final
disjunction. A similar process is used to replace the applications of function symbol
h, adding a fourth constraint vg; =vg, Avgs =vgs = vh; =vhy. The result is shown
at the bottom of Figure 6.

There is no clear way to exploit the maximal diversity with this translated form.
For example, if we consider only diverse interpretations of variables vg;, vg,, and
vgs, we will fail to consider interpretations of the original g-formula for which z
equals y.

4.4 Using Fixed Interpretations of the Variables in X7 (F)

We can further simplify the task of determining universal validity by choosing par-
ticular domains of sufficient size and assigning fixed interpretations to the variables
in 37(F). The next result follows from Theorem 4.8.

COROLLARY 4.9. Let D, and D, be disjoint subsets of domain D such that
[Dp| > |Z5(F)| and |Dy| > [X;(F)|. Let o be any 1-1 mapping a:X5(F) — Dp.
PEUF p-formula F is universally valid if and only if its translation F* is true for
every interpretation I* such that I*(v,) = a(v,) for every variable v, € ¥3(F), and
I*(vy) € Dy for every variable v, € X3 (F).

ProOF. Consider any interpretation J* of the variables in ¥7(F) U X5 (F) that
is diverse over X5 (F). We show that we can construct an isomorphic interpretation
I'* that satisfies the restrictions of the corollary.

Let D, (respectively, D; ) be the range of J* considering only variables in ¥ (F)
(respectively, ¥7(F')). The function J*:X3(F) — D, must be a bijection and
hence have an inverse J*_I:D;, — X;(F). Furthermore, we must have |Dj| <
|X5(F)| < |Dyl. Let o, be the 1-1 mapping op: D), — D, defined for any z in D,
as 0,(2) = a(J*7(z)). Let 0, be an arbitrary 1-1 mapping 04:Dy — D,y. We now
define I* such that for any variable v in X7 (F') (respectively, 37 (F')) we have I*(v)
equal to o,(J*(v)) (respectively, o4(J*(v))). Finally, for any propositional variable
a, we let I*(a) equal J*(a).

For any EUF formula, isomorphic interpretations will always yield identical val-
uations, giving I*[F*] = J*[F*]. Hence the set of interpretations satisfying the
restrictions of the corollary form a sufficient set to prove the universal validity of
F*. O
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5. REDUCTIONS TO PROPOSITIONAL LOGIC

We present two different methods of translating a PEUF p-formula into a proposi-
tional formula that is tautological if and only if the original p-formula is universally
valid. Both use the function and predicate elimination method described in the
previous section so that the translation can be applied to a formula F™* containing
only domain and predicate variables. In addition, we assume that a subset of the
domain variables X7 (F) has been identified such that we need to encode only those
interpretations that are diverse over these variables.

5.1 Translation Based on Bit Vector Interpretations

A formula such as F™* containing only domain and propositional variables can read-
ily be translated into one in propositional logic, using the set of bit vectors of some
length k greater than or equal to log, m as the domain of interpretation for a for-
mula containing m domain variables [Velev and Bryant 1998]. Domain variables
are represented with vectors of propositional variables. In this formulation, we rep-
resent a domain variable as a vector of propositional variables, where truth value
false encodes bit value 0, and truth value true encodes bit value 1. In Velev and
Bryant [1998] we described an encoding scheme in which the ¢ th domain variable
is encoded as a bit vector of the form (0,...,0,a;k_1,...,a:0) where k = [log, i],
and each a;; is a propositional variable. This scheme can be viewed as encoding
interpretations of the domain variables over the integers where the i th domain vari-
able ranges over the set {0,...,7 — 1} [Pnueli et al. 1999]. That is, it may equal
any of its predecessors, or it may be distinct.

We then recursively translate F* using vectors of propositional formulas to rep-
resent terms. By this means we then reduce F* to a propositional formula that
is tautological if and only if F*, and consequently the original EUF formula F), is
universally valid.

We can exploit positive equality by using fixed bit vectors, rather than vectors
of propositional variables when encoding variables in ¥} (F'). Furthermore, we can
construct our bit encodings such that the vectors encoding variables in ¥ (F') never
match the bit patterns encoding variables in ¥5(F). As an illustration, consider
formula Feg given by (1) translated into formula Fy, as diagrammed at the bottom
of Figure 4. We need encode only those interpretations of variables z, y, vg;, vg,,
vg3, vh1, and vhy that are diverse with respect to the last five variables. Therefore,
we can assign three-bit encodings to the seven variables as follows:

z | (0,0,0)

) (0,0,&170)
G5 (051a0)
g2 (051a1)
g3 <170a0)
vhy | (1,0,1)
Uh2 <1,1,0)

where a, is a propositional variable. This encoding uses the same scheme as
Velev and Bryant [1998] for the variables in X7 (F) but uses fixed bit patterns for
the variables in ¥7(F). As a consequence, we require just a single propositional
variable to encode formula Fg,.
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As a further refinement, we could apply methods devised by Pnueli et al. [1999)
to reduce the size of the domains associated with each variable in ¥%(F'). This will
in turn allow us to reduce the number of propositional variables required to encode
each domain variable in X7 (F).

5.2 Translation Based on Pairwise Encodings of Term Equality

Goel et al. [1998] describe a method for generating a propositional formula from
an EUF formula, such that the propositional formula will be a tautology if and
only if the EUF formula is universally valid. They first use Ackermann’s method
to eliminate function applications of nonzero order [Ackermann 1954]. Then they
introduce a propositional variable e; ; for each pair of domain variables v; and
v; encoding the conditions under which the two variables have matching values.
Finally, they generate a propositional formula in terms of the e; ; variables.

We provide a modified formulation of their approach that exploits the properties
of p-formulas to encode only valuations under maximally diverse interpretations.
As a consequence, we require e; ; variables only to express equality among those
domain variables that represent g-term values in the original p-formula.

The propositional formula generated by either of these schemes does not enforce
constraints among the e; ; variables due to the transitivity of equality, i.e., con-
straints of the form e; ; A ejr = e;r. As a result, in attempting to prove the
formula is a tautology, false “counterexamples” may be generated. We return to
this issue later in this section

5.2.1 Construction of Propositional Formula. Starting with p-formula F, we
apply our method of eliminating function applications to give a formula F* con-
taining only domain and propositional variables. The domain variables in F* are
partitioned into sets X (F'), corresponding to p-function applications in F', and
¥5(F) corresponding to g-function applications in F. Let us identify the variables
in X3(F) as {vi,...,vn}, and the variables in ¥7(F) as {vNt1,...,onym}. We
need encode only those interpretations that are diverse in this latter set of variables.

For values of ¢ and j such that 1 < i < j < N, define propositional variables
e;,; encoding the equality relation between variables v; and v;. We require these
propositional variables only for indices less than or equal to N. Higher indices
correspond to variables in X3 (F), and we can assume for any such variable v; that
it will equal variable v; only when i = j.

For each term T in F*, and each v; with 1 <4¢ < N + M, we generate formulas
of the form enct;(T') for 1 <i < N 4+ M to encode the conditions under which the
control g-formulas in the ITFEs in term 7" will be set so that value of T becomes that
of domain variable v;. In addition, for each g-formula G we define a propositional
formula encf(G) giving the encoded form of G. These formulas are defined by
mutual recursion. The base cases are

encf(true) = true
encf (false) = false
encf(a) = a, a is a propositional variable

enct;(v;) = true
enct;(v;) = false, for i # j.
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For the logical connectives, we define encf in the obvious way:
encf(—G1) = —encf(G1)
encf (G1 A\ G2) encf (G1) A encf (G2)
encf(G1 V Ga) = encf(G1) V encf(G2)

For ITFE terms, we define enct as
enct;(ITE(G,T1,T>)) = encf(G) A enct;(Th) V —encf(G) A enct;(T>).
For equations, we define encf (71 =T3) to be
encf(Ty=Ts) = \/ enct;(Ty) A ef; j) A enctj(Ts) (6)
1<i,j<N

\Y% \/ enct;(T1) A enct;(T»)
N+1<i<N+M

where ef; ;1 is defined for 1 < 4,5 < N as

true ¢ =
€[i,5] = e <]
€ji 1> ].

Informally, (7) expresses the property that there are two ways for a pair of terms to
be equal in an interpretation. The first way is if the two terms evaluate to the same
variable, i.e., we have that both enct;(T}) and enct;(T>) hold for some variable
v;. For 1 < i < N, the left-hand part of (7) will hold, since ef;;; = true. For
N +1 < i < N, the right-hand part of (7) will hold. The second way is that two
terms will be equal under some interpretation when they evaluate to two different
variables v; and v; that have the same value. In this case we will have enct;(T1),
enct;(T»), and ef; ; hold, where 1 < 4,5 < N. Observe that (7) encodes only
interpretations that are diverse over {vyi1,...,Uun4ar}- It makes use of the fact
that when N 4+ 1 <4 < N 4+ M, variable v; will equal variable v; only if ¢ = j.

As an example, Figure 7 shows an encoding of formula F* given in Figure 4,
which was derived from the original formula F' shown in Figure 3. The variables
in EZ(F*) are ¢ and y. These are renamed as v; and ve, giving N = 2. The
variables in X5 (F™*) are vgy, vg,, vg3, vhi, and vhs. These are relabeled as v3
through vr, giving M = 5. Each formula in the figure is annotated by a (simplified)
propositional formula, while each term T is annotated by a list with entries of
the form i: enct;(T), for those entries such that enct;(T') # false. We use the
shorthand notation “T” for true and “F” for false. Our encoding introduces a
single propositional variable e; 2. It can be seen that our method encodes only the
interpretations for F* labeled as D1 and D2 in Table II. When e, » is false, we
encode interpretation D2, in which z # y and in which every function application
term yields a distinct value. When e; » is true, we encode interpretation D1, in
which z = y, and hence we have g(z) = g(y) and h(g(z), 9(9(=))) = h(g(y), 9(9(¥)))-

In general, the final result of the recursive translation will be a propositional for-
mula encf (F*). The variables in this formula consist of the propositional variables
that occur in F™* as well as a subset of the variables of the form e; ;. Nothing in
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Fig. 7. Encoding example formula in propositional logic. Each term T is represented as a list
giving the non-false values of enct;(T).

this formula enforces the transitivity of equality. We will discuss in the next section
how to impose transitivity constraints in a way that exploits the sparse structure
of the equations. Other than transitivity, we claim that the translation encf(F*)
captures validity of F™*, and consequently the original p-formula F. For an inter-
pretation J over a set of propositional variables, including variables of the form e; ;
for 1 <i < j < N, we say that J obeys transitivity when for all ¢, j, and k such
that 1 <4, j,k < N we have Jlep; ] A Jlegr] = Jlegi,rl-

To formalize the intuition behind the encoding, let I* be an interpretation of the
variables in the translated formula F*. For interpretation I*, define sel;« (T) to be
a function mapping each term T in F™ to the index of the unique domain variable
selected by the values of the ITE control g-formulas in 7. That is, selr(v;) =
i, while selr-(ITE(G,T1,T>)) is defined as sel;«(T1) when I*[G] = true and as
selrs (T») when I*[G] = false.

PROPOSITION 5.1. For all interpretations I'* of the variables in F™* and any term
T occurring in F*, if sel;+(T) =1, then I*[T] = I*(v;).

LEMMA 5.2. For any interpretation I* of the variables in F* that is diverse
for 33(F), there is an interpretation J of the variables in encf(F*) that obeys
transitivity and such that J[encf (F*)] = I*[F*].

Proor. For each propositional variable a occurring in F*, we define J(a) =
I*(a). For each pair of variables v; and v; such that 1 <4 < j < N, we define
J(ei,;) to be true iff I*(v;) = I*(v;). We can see that J must obey transitivity,
because it is defined in terms of a transitive relation in I*.

We prove the following hypothesis by induction on the expression depths:

(1) For every formula G in F*: Jlencf(G)] = I*[G].
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3.b 3.b.i 3.buii

Fig. 8. Case analysis for part 3(b) of proof of Lemma 5.3. Solid lines denote equalities, while
dashed lines denote inequalities.

(2) For every term T in F™* and all 4 such that 1 <7 < N+ M: J[enct;(T)] = true
iff selp«(T) = 1.

The base cases hold as follows:

(1) Formulas of the form true, false, and a have encf (G) = G and J[G] = I*[G].
(2) Term v; has J[enct;(v;)] = true iff j =i, and sel;-(v;) =i iff j =i.

Assuming the induction hypothesis holds for formulas G; and G2, one can readily
see that it will hold for formulas -Gy, G1 A G2, and G; V G4, by the definition of
encf

Assuming the induction hypothesis holds for formula G and for terms T} and T3,
consider term T of the form ITE(G,T;,T>). For the case where I*[G] = true, we
have I*[T] = I*[Ti], and sel;«(T) = selr-(T1). The induction hypotheses for T}
gives J[enct;(T1)] = true iff selr«(T1) = i. The induction hypothesis for G gives
Jlencf (G)] = I*[G] = true, and hence J[enct;(T)] = J[enct;(T1)]. From all this,
we can conclude that J[enct;(T)] = true iff selr-(T) = i. A similar argument holds
when I*[G] = false, but based on the induction hypothesis for T5.

Finally, assuming the induction hypothesis holds for terms 77 and T%», consider
the equation Ty =T». Suppose that selr-(T1) = ¢ and selp«(T2) = j. Our induction
hypothesis for T and T» give J[enct;(Th)] = J[enct;(T>)] = true. Suppose either
i> N or j > N. Then we will have I*(v;) = I*(v;) iff ¢ = j. In addition, the right-
hand part of (7) will hold under J iff i = j. Otherwise, suppose that 1 <4,7 < N.
We will have I*(v;) = I*(v;) iff Jlej; j)] = true. In addition, the left-hand part of
(7) will hold under J iff Jle}; ;] = true O

LEMMA 5.3. For every interpretation J of the variables in encf (F*) that obeys
transitivity, there is an interpretation I* of the variables in F™* such that I[F*] =

Jlencf (F*)].

PRrOOF. We define interpretation I* over the domain of integers {1,..., N+ M}.
For propositional variable a, we define I*(a) = J(a). For 1 < j < N we let I*(v;)
be the minimum value of 4 such that Jley; ;] = true. For N < j < N 4+ M we let
I*(vj) = j. Observe that this interpretation gives I*(v;) < j for all j < N, since
e(j,;] = true, and I*(v;) = j for j > N.

We claim that for ¢ < N, if I*(v;) = ¢, then we must have I*(v;) = ¢ as well. If
instead we had I*(v;) = k < i, then we must have Jle[; ;] = true. Combining this
with Jle; ;1] = true, the transitivity requirement would give Jley; ;] = true, but
this would imply that I*(v;) = k # 1.
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We prove the following hypothesis by induction on the expression depths:

(1) For every formula G in F*: I*[G] = J[encf (G)].
(2) For every term T in F* and all ¢ such that 1 < i < N 4+ M: sel;+(T) = i iff
Jlenct;(T)] = true.

The base cases hold as follows:

(1) Formulas of the form true, false, and a have G = encf (G) and I*[G] = J[G].
(2) Term v; has selr-(v;) =4 iff j =i and J[enct;(v;)] = true iff j =1.

Assuming the induction hypothesis holds for formula G and for terms T; and
T5, consider term T of the form ITE(G,Ty,Ts). For the case where J[encf(G)] =
true, we have J[enct;(T)] = J[enct;(T1)]. The induction hypothesis for T} gives
selp«(Th) = i iff Jlenct;(T1)] = true. The induction hypothesis for G gives
I*[G] = J[encf (G)] = true, giving I*[T] = I*[T}], as well as sel;«(T) = selr(T}).
Combining all this gives sely«(T') = i iff J[enct;(T)] = true. A similar argument
can be made when J[encf(G)] = false, but based on the induction hypothesis for
7.

Finally, assuming the induction hypothesis holds for terms 77 and 7%, consider
the equation Ty = T». Let ¢ = sel-(Th) and j = selr«(T2). In addition, let
k = I*(v;) and I = I*(vj). Our induction hypothesis gives J[enct;(T1)] = true,
and Jlenct;(T>)] = true. Proposition 5.1 gives I*[T1] = k and I*[T»] = l. By
our earlier argument, we must also have I*(v) = k and I*(v;) = [. We consider
different cases for the values of 4, j, k, and [.

(1) Suppose i > N. Then we must have k = I*(v;) = i. the equation T3 =T will
hold under I* iff I*(v;) =l = k, and this will hold iff j = | = k = 4. In addition,
the right-hand part of (7) will hold under J iff 1 = j.

(2) Suppose j > N. By an argument similar to the previous one, we will have
equation Ty =T5 holding under interpretation I* and (7) holding under interpreta-
tion J iff i = j.

(3) Suppose 1 < i,j < N. Since I*(v;) = k = I"*(vg) we must have Jlep ;)] =
true. Similarly, since I*(v;) =1 = I*(v;) we must have Jlef; ;] = true.

(a) Suppose k = [, and hence Ty = T5 holds under I*. Then we have Jley; ] =
Jlek,;] = true. Our transitivity requirement then gives Jlej; ;)] = true, and hence
the left-hand part of (7) will hold under J.

(b) Suppose k # I, and hence T} = T does not hold under I*. We must have
Jlepk,y] = false. This condition is illustrated in the left-hand diagram of Figure
8. In this figure we use solid lines to denote equalities and dashed lines to denote
inequalities. We argue that we must also have J[ej; ;] = false by the following case
analysis for e[, ;)

i. For Jley,;] = true, we get the case diagrammed in the middle of Figure 8 where
the diagonal line creates a triangle with just one dashed line (inequality). This
represents a violation of our transitivity requirement, since it indicates J [e[;w-]] =
Jlep,n] = true, but Jlep ;] = false.

ii. For Jlep ;] = false and Jley; ;7] = true, we have the case diagrammed on the
right side of Figure 8. Again we have a triangle with just one dashed line indicating
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a violation of our transitivity requirement, with Jlep ] = Jlep ;] = true, but
Jleqk,;)] = false.
With Jlej; ;1] = false, (7) will not hold under J.

From this case analysis we see that 77 =T> holds under I'* iff (7) holds under J. O

THEOREM 5.4. p-formula F is universally valid iff its translation encf(F*) is
true for all interpretations that obey transitivity.

ProoF. This theorem follows directly from Lemmas 5.2 and 5.3. [

We have thus reduced the task of proving that a PEUF p-formula is universally
valid to one of proving that a propositional formula is true under all interpreta-
tions that satisfy transitivity constraints. This result is similar to that of Goel et
al., except that they potentially require a propositional variable for every pair of
function application terms occurring in the original formula. In our case, we only
introduce these variables for a subset of the pairs of g-function applications. For
example, their method would require 8 variables to encode the transformed version
of formula Fe; shown in Figure 6, whereas we require only one using either of our
two encoding schemes.

To complete the implementation of a decision procedure for PEUF, we must
devise a procedure for the constrained Boolean satisfiability problem defined by Goel
et al., as follows. We are given a Boolean formula Fgy¢ over a set of propositional
variables. A subset of the variables is of the form e;;, where 1 <i < j < N. A
transitivity constraint is a formula of the form

€[i1,is] A €[ia,is] AR €lin_1,in] = Cli1,in]

where e}; ;) equals e; ; when ¢ < j and equals e;; when ¢ > j. The task is to find
a truth assignment that satisfies Fi4¢, as well as every transitivity constraint. For
PEUF p-formula F, if we can show that the g-formula —encf (F*) has no satisfying
assignment that also satisfies the transitivity constraints, then we have proved that
F' is universally valid.

Goel et al. have shown the constrained Boolean satisfiability problem is NP-hard,
even when Fgg; is represented as an BDD. We have also studied this problem in
the context of pipelined processor verification [Bryant and Velev 2000a; 2000b].
We have found that we can exploit the sparse structure of the e; ; variables both
when using BDDs to perform the verification and when using Boolean satisfiability
checkers. As a result, enforcing transitivity constraints has a relatively small im-
pact on the performance of the decision procedure. In fact, many processors can
be verified without considering transitivity constraints—the formula —encf (F™*) is
unsatisfiable even disregarding transitivity constraints [Velev and Bryant 1999b].

6. MODELING MICROPROCESSORS IN PEUF

Our interest is in verifying pipelined microprocessors, proving their equivalence to
an unpipelined instruction set architecture model. We use the approach pioneered
by Burch and Dill [1994] in which the abstraction function from pipeline state to
architectural state is computed by symbolically simulating a flushing of the pipeline
state and then projecting away the state of all but the architectural state elements,
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such as the register file, program counter, and data memory. Operationally, we con-
struct two sets of p-terms describing the final values of the state elements resulting
from two different symbolic simulation sequences—one from the pipeline model and
one from the instruction set model. The correctness condition is represented by a
p-formula expressing the equality of these two sets of p-terms.

Our approach starts with an RTL or gate-level model of the microprocessor and
performs a series of abstractions to create a model of the data path using terms that
satisfy the restrictions of PEUF. Examining the structure of a pipelined processor,
we find that the signals we wish to abstract as terms can be classified as follows:

Program Data. Values generated by the ALU and stored in registers and data
memory. These are also used as addresses for the data memory.

Register Identifiers. Used to index the register file
Instruction Addresses. Used to designate which instructions to fetch
Control values. Status flags, opcodes, and other signals modeled at the bit level.

By proper construction of the data path model, both program data and instruction
addresses can be represented as p-terms. Register identifiers, on the other hand,
must be modeled as g-terms, because their comparisons control the stall and bypass
logic. The remaining control logic is kept at the bit level.

In order to generate such a model, we must abstract the operation of some of the
processor units. For example, the data path ALU is abstracted as an uninterpreted
p-function, generating a data value given its data and control inputs. Formally,
this requires extending the syntax for function applications to allow both formula
and term inputs. We model the PC incrementer and the branch target logic as
uninterpreted functions generating instruction addresses. We model the branch
decision logic as an uninterpreted predicate indicating whether or not to take the
branch based on data and control inputs. This allows us to abstract away the data
equality test used by the branch-on-equal instruction.

To model the register file, we use the memory model described by Burch and
Dill [1994], creating a nested ITE structure to encode the effect of a read operation
based on the history of writes to the memory. That is, suppose at some point we
have performed k write operations with addresses given by terms Ay,..., A; and
data given by terms Dy, ..., Dg. Then the effect of a read with address term A is
a the term

ITE(A=Ay, Dy, ITE(A=Aj_1,Dy_1,--- ITE(A=A1, D1, f1(A)--)  (7)

where f; is an uninterpreted function expressing the initial memory state. Note that
the presence of these comparison and ITFE operations requires register identifiers to
be modeled with g-terms.

Since we view the instruction memory as being read-only, we can model the
instruction memory as a collection of uninterpreted functions and predicates—each
generating a different portion of the instruction field. Some of these will be p-
functions (for generating immediate data); some will be g-functions (for generating
register identifiers); and some will be predicates (for generating the different bits of
the opcode). In practice, the interpretation of different portions of an instruction
word depends on the instruction type, essentially forming a “tagged union” data
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type. Extracting and interpreting the different instruction fields during processor
verification is an interesting research problem, but it lies outside the scope of this
paper.

The data memory provides a greater modeling challenge. Since the memory
addresses are generated by the ALU, they are considered program data, which
we would like to model as p-terms. However, using a memory model similar to
that used for the register file requires comparisons between addresses and ITE
operations having the comparison results as control. Instead, we must create a
more abstract memory model that weakens the semantics of a true memory to
satisfy the restrictions of PEUF. Our abstraction models a memory as a generic
state machine, computing a new state for each write operation based on the input
data, address, and current state. Rather than (7), we would express the effect of
a read with address term A after k write operations as f,.(Sk,A), where f, is an
uninterpreted “memory read” function, and where Sy, is a term representing the
state of the memory after the k write operations. This term is defined recursively
as So = sg, where s¢ is a domain variable representing the initial state, and S; =
fu(Siz1, A, D;) for i > 1, where f, is an uninterpreted “memory update” function.
In essence, we view write operations as making arbitrary changes to the entire
memory state.

This model removes some of the correlations guaranteed by the read operations
of an actual memory. For example, although it will yield identical operations for
two successive read operations to the same address, it will indicate that possibly
different results could be returned if these two reads are separated by a write, even
to a different address. In addition, if we write data D to address A and then
immediately read from this address, our model will not indicate that the resulting
value must be D. Nonetheless, it can readily be seen that this abstraction is a
conservative approximation of an actual memory. As long as the pipelined processor
performs only the write operations indicated by the program, that it performs
writes in program order, and that the ordering of reads relative to writes matches
the program order, the two simulations will produce equal terms representing the
final memory states.

The remaining parts of the data path include comparators comparing for match-
ing register identifiers to determine bypass and stall conditions, and multiplexors,
modeled as ITFE operations selecting between alternate data and instruction ad-
dress sources. Since register identifiers are modeled as g-terms, these comparison
and control combinations obey the restrictions of PEUF. Finally, such operations as
instruction decoding and pipeline control are modeled at the bit level using Boolean
operations.

7. EXPERIMENTAL RESULTS

In Velev and Bryant [1998], we described the implementation of a symbolic simu-
lator for verifying pipelined systems using vectors of Boolean variables to encode
domain variables, effectively treating all terms as g-terms. This simulation is per-
formed directly on a modified gate-level representation of the processor. In this
modified version, we replace all state-holding elements (registers, memories, and
latches) with behavioral models we call Efficient Memory Models (EMMs). In ad-
dition all data-transformation elements (e.g., ALUs, shifters, PC incrementers) are
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replaced by read-only EMMs, which effectively implement the transformation of
function applications into nested ITE expressions described in Section 4.2. One
interesting feature of this implementation is that our decision procedure is exe-
cuted directly as part of the symbolic simulation. Whereas other implementations,
including Burch and Dill’s, first generate a formula and then decide its validity,
our implementation generates and manipulates bit-vector representations of terms
as the symbolic simulation proceeds. Modifying this program to exploit positive
equality simply involves having the EMMs generate expressions containing fixed bit
patterns rather than vectors of Boolean variables. All performance results presented
here were measured on a 125MHz Sun Microsystems SPARC-20.

We constructed several simple pipeline processor design based on the MIPS in-
struction set [Kane and Heinrich 1992]. We abstract register identifiers as g-terms,
and hence our verification covers all possible numbers of program registers including
the 32 of the MIPS instruction set. The simplest version of the pipeline implements
10 different Register-Register and Register-Immediate instructions. Our program
could verify this design in 48 seconds of CPU time and just TMB of memory using
vectors of Boolean variables to encode domain variables. Using fixed bit patterns
reduces the complexity of the verification to 6 seconds and 2MB.

We then added a memory stage to implement load and store instructions. An
interlock stalls the processor one cycle when a load instruction is followed by an
instruction requiring the loaded result. Treating all terms as g-terms and using
vectors of Boolean variables to encode domain variables, we could not verify even a
4-bit version of this data path (effectively reducing |D| to 16), despite running for
over 2000 seconds. The fact that both addresses and data for the memory come
from the register file induces a circular constraint on the ordering of BDD variables
encoding the terms. On the other hand, exploiting positive equality by using fixed
bit patterns for register values eliminates these variable-ordering concerns. As a
consequence, we could verify this design in just 12 CPU seconds using 1.8MB.

Finally, we verified a complete CPU, with a 5-stage pipeline implementing 10
ALU instructions, load and store, and MIPS instructions j (jump with target com-
puted from instruction word), jr (jump using register value as target), and beq
(branch on equal). This design is comparable to the DLX design [Hennessy and
Patterson 1996] verified by Burch and Dill [1994], although our version contains
more of the implementation details. We were unable to verify this processor using
the scheme of [Velev and Bryant 1998]. Having instruction addresses dependent
on instruction or data values leads to exponential BDD growth when modeling
the instruction memory. Modeling instruction addresses as p-terms, on the other
hand, makes this verification tractable. We can verify the full, 32-bit version of the
processor using 169 CPU seconds and 7.5MB.

More recently [Velev and Bryant 1999b], we have implemented a new decision
procedure using the pairwise encoding of term equality approach. Verifying a single-
issue RISC pipeline with this decision procedure requires only a fraction of a CPU
second. We have been able to verify a dual-issue pipeline with just 35 seconds of
CPU time. By contrast, Burch [1996] verified a somewhat simpler dual-issue pro-
cessor only after devising 3 different commutative diagrams, providing 28 manual
case splits, and using around 30 minutes of CPU time. Our results are far better
than any others achieved to date. In more recent work [Velev and Bryant 2000], we
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have been able to add additional features to our pipeline model, including excep-
tion handling, multicycle instructions, and branch prediction. By using appropriate
abstractions, most of this complexity comes can be expressed by p-function appli-
cations and by predicate applications. We have also been able to verify models of
VLIW processors [Velev 2000]. These models are far more beyond the capability of
any other automated tool for verifying pipelined microprocessors. Having a decision
procedure that exploits positive equality is critical to the success of this verifier.

8. CONCLUSIONS

Eliminating Boolean variables in the encoding of terms representing program data
and instruction addresses has given us a major breakthrough in our ability to verify
pipelined processors. Our BDD variables now encode only control conditions and
register identifiers. For classic RISC pipelines, the resulting state space is small
and regular enough to be handled readily with BDDs.

We believe that there are many optimizations that will yield further improve-
ments in the performance of Boolean methods for deciding formulas involving unin-
terpreted functions. We have found that relaxing functional consistency constraints
to allow independent functionality of different instructions, as was done in Damm
et al. [1998], can dramatically improve both memory and time performance. We
look forward to testing our scheme for generating a propositional formula using
Boolean variables to encode the relations between terms. Our method exploits
positive equality to greatly reduce the number of propositional variables in the
generated formula, as well as the number of functional consistency and transitivity
constraints. We are also considering the use of satisfiability checkers rather than
BDDs for performing our tautology checking

We consider pipelined processor verification to be a “grand challenge” problem
for formal verification. We have found that complexity grows rapidly as we move
to more complex pipelines, including ones with out-of-order execution and register
renaming. Further breakthroughs will be required before we can handle complete
models of state-of-the art processors.
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