IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL. XX, NO. Y, MONTH 1999 1

Exploiting symmetry when veritying transistor-level

circuits by symbolic trajectory evaluation
Manish Pandey, Randal E. Bryant

Abstract— We describe the use of symmetry for verification
of transistor-level circuits by Symbolic Trajectory Evalua-
tion (STE). We present a new formulation of STE which al-
lows a succint description of symmetry properties in circuits.
Symmetries in circuits are classified as structural symmetries,
arising from similarities in circuit structure, data symmetries,
arising from similarities in the handling of data values, and
mized structural-data symmetries. We use graph isomor-
phism testing and symbolic simulation to verify the symme-
tries in the original circuit. Using conservative approzimations,
we partition a circuit to expose the symmetries in its com-
ponents, and construct reduced system models which can
be verified efficiently. Introducing X-drivers into switch-level
circuits simplifies the task of creating conservative approxi-
mations of switch-level circuits. Our empirical results show
that exploiting symmetry with conservative approximations
can allow one to verify systems several orders of magnitude
larger than otherwise possible. We present results of veri-
fying Static Random Access Memory circuits with up to 1.5
Million transistors.

Keywords— Formal Verification, Symbolic Trajectory Eval-
uation, Transistor-Level, Switch-Level, Memory Arrays,
Symmetry.

I. INTRODUCTION

Many high performance hardware designs are custom de-
signed at the transistor-level to optimize their area and per-
formance. This makes it necessary to verify them directly
at the transistor-level. Verification at this level of abstrac-
tion allows one to handle many low-level circuit modeling
issues such as bidirectional pass transistors, transistor sizes,
node capacitances, and charge sharing. Common examples
of such custom-designed hardware units include memory
arrays which are found in instruction and data caches of
microprocessors, cache tags, and TLBs. Many of these
hardware units consist of components which have consid-
erable regularity in their structure, or in the way they han-
dle data. This paper focuses on formalizing this regularity
as symmetry and shows how symmetry can be used with
symbolic trajectory evaluation (STE) to efficiently verity
large designs.

Past efforts on verifying memory arrays using STE have
been quite successful. Results have been presented on the
verification of large systems containing over 105 transis-
tors, and over 10* memory bits [19], [6]. However, these
approaches do not scale up well for much larger systems.
As results in this paper show, switch-level analysis can be-
come a serious bottleneck in a STE verification flow that
does not utilize symmetry.

By exploiting symmetry with the use of STE, it is pos-

Manish Pandey is a research staff member in IBM Austin Research
Laboratory, IBM Austin, TX-78758. Randal E. Bryant is the Pres-
ident’s Professor of Computer Science in the School of Computer
Science at Carnegie Mellon University, Pittsburgh, PA-15213.

sible to verify systems that are orders of magnitude larger
than previously possible. We present empirical results for
the verification of static random access memory (SRAM)
circuits of varying sizes, including one with over 1.5 mil-
lion transistors. Furthermore, empirical results show that
our techniques scale up linearly or sub-linearly with SRAM
size, indicating that one could verify circuits much larger
than our benchmarks.

Our verification approach builds on three ideas: circuit
partitioning, structural analysis, and conservative model-
ing. Many systems, viewed as a whole, do not possess
symmetries that can easily be exploited, but they are made
up of smaller components which can. One can exploit the
symmetry in the components by partitioning the larger sys-
tem, verifying the smaller components, and composing the
verification results.

We describe two forms of symmetries. Structural sym-
metries arise from similarities in the structure of a system,
e.g., by replication of system components. Data symme-
tries arise from similarities in handling of data values in
the system. Previous work exploiting symmetry in formal
verification in [7], [12] has focussed only on aspects of struc-
tural symmetry. Work in in [16] handles structural and a
form of data symmetry. Aggarwal et. al describe a form of
data symmetry in [1]. Our work contributes a new formu-
lation of data symmetry, and the idea of mixed structural-
data symmetry. We have found these other forms of sym-
metry useful in verifying many common digital building
blocks. Consider for example an address decoder, which
when given an input address selects the output word having
this address. Changing the value of a single decoder input
results in a symmetric exchange in the values at the differ-
ent decoder outputs. Such instances of mixed symmetry
cannot be expressed by the other approaches. Structural
symmetries in a transistor-level circuit can be detected and
verified through a purely structural analysis of the system
by doing circuit graph isomorphism checks. Other forms of
symmetries can be verified through symbolic simulation.

Symmetry in a system imposes a partitioning of the sys-
tem state space, where permutations of the same state ap-
pear in the same partition class. Once symmetry has been
checked, one need verify the system for only one represen-
tative from each partition class. We exploit this property
by constructing a conservative model of the system which
provides full functionality only for the representative case.
This approximation results in large savings in the system
excitation function representation size.

In the remainder of this paper, Section II describes past
work on applications of symmetry to verification. Sec-
tion III presents our new formulation of STE, together

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL. XX, NO. Y, MONTH 1999 2

with the necessary mathematical background. This sec-
tion also describes how excitation functions are generated
from switch-level circuits. Section IV describes our notion
of symmetry as an excitation function preserving transfor-
mation. The next three sections describe how symmetry
with conservative approximations, and circuit partitioning
can be employed to efficiently verify circuits. The applica-
tion of these techniques to verify a SRAM circuit has been
shown in Section VIII. The SRAM verification results are
presented in Section IX.

II. PrREvVIOUS WORK

Petri nets have long been used to describe systems con-
sisting of communicating concurrent processes. Huber et
al. presented early work on exploiting symmetry in petri
nets [15]. In [20], Starke proposes an algorithm to com-
pute the generators of the symmetry group for petri nets.
Jensen [17] describes the application of symmetry to con-
struct condensed versions of state spaces of concurrent sys-
tems described by colored petri nets. The work shows that
for reachability properties, the unreduced state space satis-
fies a property, if and only if the condensed state space sat-
isfies the property. Typically the work in this area focusses
on reachability analysis, rather than more general tempo-
ral properties, and does not consider the added complexity
(and the concomitant payoff) of symbolic state space rep-
resentations.

Work on exploiting symmetry for automated formal veri-
fication techniques is quite recent. Emerson and Sistla [12],
[11] show how to exploit symmetry in model checking with
the CTL* temporal logic. In a system M consisting of
many isomorphic processes, the symmetry in the system is
captured in the group of permutations of process indices
defining graph automorphisms of M. Similarly, symmetry
in a specification formula f is captured by the group of per-
mutations of process indices that leave f invariant. Given
a permutation group G, which is contained in both groups,
one can construct a quotient structure M, such that for a
start state s, and the equivalent state 5in M, M, s |= f iff
M, 5 |= f holds. This is the correspondence theorem, which
is the central result of their work. This work, however, does
not address the complexities that arise from symbolic rep-
resentations of the state space. Furthermore, this work
considers only structural symmetries.

The work by Clarke et al. [7], [8] takes a slightly more
general approach than that by Emerson. It views sym-
metry as a transition relation preserving permutation, not
just permutation of indices of identical processes. Given
a symmetry group G acting on a Kripke structure M, one
can construct a reduced structure M. The correspondence
theorem in this work shows that if there is a CTL* formula
f, such that all the atomic propositions in f are invariant
under G, the f is true in M if and only if it is true in
Mg. This work discusses the construction of the reduced
transition relation which is represented symbolically.

There are a number of differences between our work and
that by Clarke et al., or Emerson et al. We represent the
system transition by means of an “excitation function”.

Naturally, when we consider symmetry in a system, we ex-
amine the symmetry in the excitation function. We model
the state of a circuit by associating two “atoms” with each
circuit node, a positive atom, and a negative atom (sec-
tion ITI-A). Having two atoms for each circuit node allows
us to model and exploit a richer set of symmetries in cir-
cuits. This contrasts with these other symmetry-based ver-
ification approaches which have only one “atom” (atomic
proposition) associated with each state holding element in
a circuit. Our formulation of symmetry allows us to de-
fine structural and data symmetries in a system. We verify
that these symmetry properties exist in the system, and
then we construct a reduced model from a conservative
approximation of the circuit. This avoids the need to con-
struct a model of the complete system and then reducing it
by forming a quotient structure. Such an approach allows
us to verify huge systems, including one with 262144 state
holding elements (or 22°2'%* states). Emerson or Clarke
view symmetry as a permutation on a state graph with
some desired properties, like preserving the transition rela-
tion, or a permutation of process indices which a transition
graph automorphism. This approach imposes a significant
limitation — capturing phenomena like the symmetrical be-
havior on the outputs of a decoder is extremely tedious, if
not impossible, with their process oriented point of view.
Also, in both the approaches outlined above, to be effec-
tively exploited, symmetry must be present in both the
state transition graph, and the temporal logic formula be-
ing verified — the atomic propositions should be invariant
under the action of the symmetry group.

In [16], Ip and Dill discuss the verification of large con-
current systems, where the symmetry in the system is iden-
tified by a special scalar-set datatype in the system descrip-
tion language. They view symmetry as an automorphism
on the state transition graph. They describe an on-the-fly
construction of the reduced state transition graph. They
show that safety and liveness properties which hold in the
reduced state graph also hold in the original system. Our
approach contrasts with this, in that we start with a tran-
sistor netlist without any special attributes or datatypes.
Of course, once we have this netlist, we manually iden-
tify symmetries in the design, and the parts that should
be reduced. After this identification, is done, the sym-
metry checks and the construction of the reduced model
are automated. By concentrating on a single instance of
the assertion to be verified, we use conservative approxi-
mations to aggressively reduce the state space and verify
safety properties. In the work by Ip and Dill, the quotient
state graph is an exact model that can be used for safety
and liveness properties with fairness constraints.

In comparing our work with these previous approaches,
one must also take into account the expressiveness of the
logic of STE described in this paper with other temporal
logic such as CTL. The STE next-time temporal operator
allows one to express properties over a finite time period,
which equals the maximum depth of the next-time opera-
tor. This precludes the specification of liveness properties
of systems, which can be specified in CTL. Of course, this

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL. XX, NO. Y, MONTH 1999 3

SET

Set of atoms = {a,a,b’, b’}

Fig. 1. Set of atoms for an inverter circuit.

expressiveness comes at a price in terms of the size of sys-
tems that can be verified.

Aggarwal, Kurshan and Sabnani have exploited sym-
metry for the verification of the alternating bit proto-
col, a standard benchmark for protocol verification tech-
niques [1]. Applying reduction techniques specific to this
problem, and some simplifying assumptions, they reduce
the large state space using machine homomorphisms. They
show that for verifying properties about the given state
machine, it suffices to verify the desired properties on the
reduced machine. This approach to a some degree approxi-
mates our notion of data symmetry by considering the data
symmetry between 0 and 1 in the transmitted messages.
However, the approach does not consider many important
issues like detecting, and verifying symmetry, and the au-
tomated construction of symmetry reduced state space.

I1I. BACKGROUND
A. Model structure and State Domain

Our view of circuits is quite abstract. We view circuits as
consisting of a set of nodes and an excitation function which
determines how the circuit nodes get updated at every time
step. This abstract viewpoint can capture behavior at var-
ious levels of abstraction ranging from detailed switch-level
models to register transfer level and high-level behavioral
models. This section describes the domain of values cir-
cuits operate over, and the structure of this domain. Sec-
tion III-B how the excitation functions are generated and
represented.

Intuitively, knowledge about about the state of a circuit
is built up of information atoms. The state of a circuit con-
sists of values at the circuit nodes. Thus, we need to define
atoms associated with every circuit node, as described be-
low.

Definition 1: Let N denote the set of nodes of a circuit.
For every node n of a circuit, we define two atoms, nt and
n~, indicating that node n has value 1 or 0 respectively.
Let A denote the set of all the atoms of a circuit.

Figure 1 shows the set of atoms for a two node circuit.
An atom for a node restricts the value of the node. A set of
atoms of a circuit restricts the values on the circuit nodes.
For example, the atom set {a®,b~} indicates a is 1, and
b is 0. This motivates the following definition of a circuit
state.

Definition 2: Given the set of all the atoms of a circuit,
A, we define a circuit state S to be any subset of A, and §
to be the set of all possible states, i.e., S = 24.

State set S, together with the subset ordering C forms

Fig. 2. Structure of State Lattice for Two Node Circuit

a complete lattice, where states are ordered according to
their “information content,” i.e., how much they restrict
the values of the circuit nodes. For example, the structure
of the state domain for the circuit in Figure 1 is illustrated
in Figure 2. In this diagram we indicate the set of atoms
in each state. As the shaded regions indicate, states can be
classified as being “partial”, “complete”, or “conflicting”.
In a partial state, some nodes have no corresponding atoms
while others have at most one. In a complete state, there
is exactly one atom for each node. In a conflicting state,
there is some node n for which both atoms n~ an nT are
present. Such a state is physically unrealizable—it requires
a signal to be both 0 and 1 simultaneously. Conflicting
states are added to the state domain only for mathematical
convenience. They extend the semilattice derived from a
ternary system model into a complete lattice. Our state
lattice has the empty set §§ as its least element and the set
of all atoms A as its greatest element. The set union and
intersection operations are the [ub and the ¢lb operations,
respectively, in the lattice.

Most traditional presentations of switch-level models de-
scribe circuit operation over the ternary domain 7. Each
circuit node takes on one of the three distinct values from
the set 7 = {0,1,X}, where the X value denotes an
unknown or an indeterminate value. Associated with 7T is
the partial order C, where Ya € 7. aCya, XC70 and
XLC71. The partial order C+ is consistent with the infor-
mation conveyed by the values in 7 since a 0 or a 1 conveys
more information than an X in a circuit.

The atom representation of the state domain is closely
related to the ternary domain. If a circuit state contains
nt, but not n~, then node n has a value of 1. Similarly, the
presence of n~, and the absence of nt implies that n has
a value of 0. If the circuit state contains neither nt, nor
n~, then n has a value of X. For example, in the circuit
of Figure 1, the set of atoms 0, {at}, {6=}, and {b~,a"},
represent the circuit states (a = X,b = X), (a=1,b = X),
(a=X,b=0), and, (a = 0,b = 0), respectively. A circuit
state such as {b*, b~} is a conflicting state. Such conflicting
states are mapped to a top element, T, which is added to
(T,C7) to extend it to a lattice [22].

The behavior of a circuit is defined by its excitation func-

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL. XX, NO. Y, MONTH 1999 4

(b o= p o= v g e

-

Fig. 3. Excitation function of inverter.

Vg

tion Y:8—8. This function serves a role similar to the
transition relation or next-state functions of temporal logic
model checkers. We require this function to be monotonic
over the information ordering, i.e., if two states are or-
dered s; C s9, then their excitations must also be ordered:
Y (s1) € Y(s2). Intuitively, we can view a state as defining
a set of constraints on the signal values. We require the ex-
citation function to remain consistent as more constraints
are applied. Since input nodes in a circuit are not con-
strained by the circuit itself, for any state s € §, Y (s) does
not contain any atoms corresponding to the input nodes.
Figure 3 shows the excitation function for the inverter of
Figure 1. Each oval in Figure 3 is a circuit state. An ar-
row from one circuit state to another indicates the least
constrained new state a circuit can be in after a transi-
tion from a previous state. A circuit model is defined by
its lattice-structured state-set, and a monotonic excitation
function over this state-set. Formally,

Definition 3: A circuit model M is a tuple M = (S,Y),

where Y : & — 8 is a monotonic excitation function.

The behavior of a circuit can be represented as an infi-
nite sequence of states. We define a circuit trajectory to be
any state sequence ¢ = o’c? ... such that Y (o) C o't!
for all ¢ > 0. That is, the state sequence obeys the con-
straints imposed by the circuit excitation function. Below,
the sequences oy, and o3, where (s)* indicates an infinite
repetition of state s, are both trajectories of the inverter of

Figure 1.

0 {a*} {a=,07} ({b%,a7})"
{a=} {a®, 07} {67} (0)

g1
(9]

As can be seen, these trajectories always obey the con-
straints imposed by the excitation function of Figure 3 —
any state that contains the atom at (a™, resp.) constrains
the succeeding state to contain the atom b~ (b*, resp.).

L(M) denotes the set of all trajectories of a circuit model
M. L(M, z) denotes the set of all trajectories o = ¢%?! ...
of M such that z C 09, i.e., all trajectories which start with
a state which is more constrained than z. The set L(M, ()
equals L(M).

We can extend the C ordering on elements of S, to se-
quences of elements of §. This extended ordering is de-
noted as C. If oy = o901 ..., and oy = 030l ..., then
o1 C oy iff foralli >0, 0t C .

B. Creation and Representation of Ezxcitation Functions

The switch-level model [3] abstracts digital metal-oxide
semiconductor (MOS) circuits as a network of nodes con-
nected together by bidirectional transistor “switches.” We
employ the technique of symbolic switch-level analysis to
generate excitation functions from transistor netlists [4],
[5]. This model expresses transistor conductances and node
capacitances by discrete strength and size values, and node
voltages by discrete states {0,1, X }. It can capture many
of the important low-level features in MOS circuits such as
ratioed, complementary, and precharged logic, and bidirec-
tional pass transistors. Since memory arrays are designed
at the transistor-level, switch-level models are particularly
appropriate for modeling this class of circuits.

B.1 The Switch-level model

In the switch-level model, a MOS transistor network con-
sists of a set of nodes connected together by transistor
switches. Nodes are of two types: wnput, and storage. An
input node provides strong signals from sources external to
the network, like power, ground and data inputs. Storage
nodes are internal to the circuit. They have states which
are determined by the operation of the network and can
retain these states in the absence of applied signals. Each
storage node is assigned a size in the set {0,...,k} to indi-
cate in a highly idealized way its capacitance relative to
other nodes with which it may share charge. The state of
a node is represented by one of three logic values: 0, which
indicates a low, 1 which indicates a high, and an X which
represents an unknown or uninitialized value. Input nodes
are assigned a size w. w is greater than the size of all the
nodes as well as the strengths of all the transistors in the
network.

A MOS transistor is a three terminal device with node
connections gate, source, and drain. This device acts like
a voltage controlled switch, depending on the value at its
gate. Normally, there is no distinction between source and
drain terminals — the transistor is a symmetric, bidirec-
tional device. We distinguish between three types of tran-
sistors: n-type, p-type, and n-type depletion. A transistor
acts as a switch between source and drain controlled by
the state of its gate node. This switch may be open or
closed, or it may have a conductance of unknown value.
These three conduction states, open, closed and unknown
are represented by the values 0, 1, and X respectively.
Each transistor has a strength in the set {k + 1,...,w — 1}.
The strength of a transistor indicates its conductance when
turned on relative to other transistors which may form part
of a ratioed path.

Figure 4 shows a switch level circuit, consisting of the
nodes a, b, ¢, k, s, t, p, Vdd, and GND, and the tran-
sistors T1, through T8. The node sizes and the transistor
strengths are indicated by the numbers in parenthesis. The
storage nodes in the circuit are s and t, which have sizes
of 1, and 2, respectively. All transistors have a size of 3,
except T6, which has a size of 4. The input nodes in the
circuit, a, b, ¢, k, Vdd, and GND have a size of 5. The

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL. XX, NO. Y, MONTH 1999 5

vdd (5)

GND (%)

Fig. 4. Example of a switch-level network.

states of input nodes Vdd, and GND are fixed at 1, and 0,
respectively.

Nodes in a switch-level network are connected together
by directed paths of conducting transistors. Each path orig-
inates at a source node, and terminates at a destination
node. The path has a strength, which roughly indicates the
approximate amount of charge that can be supplied along
the path from the source to the destination. In case of a
path from an input node to a storage node, the strength
of the path equals that of the weakest transistor in the
path. In case of a path connecting two storage nodes, the
strength of the path equals the size of the source node. The
state of a node depends on the states of the source nodes
of the strongest paths to this node.

C. The behavior of switch-level circuits

Most switch-level analysis and simulation tools partition
the transistor-level network into a set of communicating
components, termed channel connected subnetworks (CC-
SNs). Each CCSN consists of a set of storage nodes that
can share charge, together with the transistors that connect
them. Behavior within a CCSN can be difficult to analyze
because of the bidirectional nature of transistors, and the
multiple signal strengths. The interaction between the CC-
SNs is simpler. Each CCSN may be viewed as a finite state
machine, with inputs, internal state, and outputs. The in-
puts consist of the transistor gate nodes, and input nodes
connected to transistor source or drains. The storage nodes
hold the CCSN state, and a subset of the CCSN nodes con-
stitute the set of observable outputs of the CCSN. Given
its initial state, and the present inputs, this sequential ma-
chine computes a new state, and new outputs. The entire
transistor network is thus modeled as a system of commu-
nicating sequential machines. Figure 5 shows the circuit of
figure 4 partitioned into CCSNs CCSN1, and CCSN2.

The steady-state response function of a CCSN describes
its sequential behavior. This function specifies how the new
CCSN node states are computed, given the initial storage
node states, and the values at the inputs and the gates of
the CCSN, and given that the transistor states are fixed
long enough for the nodes to stabilize.

The ezcitation function of a CCSN gives the steady-state
response of the CCSN nodes, when the transistors are held
fixed in states determined by the initial storage node states
and the inputs. An important property of the excitation
function is its monotonicity over the {0, 1, X} values. This

o

3

j’_'a#ﬁ?#b ' t ﬂ)

-

: CCSN 2

CCSN 1

Fig. 5. Circuit partitioned into CCSNs CCSN1 and CCSN2.
r |z H =z.L
0 0 1
1 1 0
X 1 1
TABLE I

DUAL RAIL ENCODING OF .

property implies that if some inputs of this function were
set to X, and a given output were 0 or 1, then changing
the X inputs to 0 or 1 does not alter the output. This
property is particularly important for verification, in view
of the “information-content” ordering of the three values.
We use the unit-delay model to describe circuit delays.
In this approach, a change in the state of a transistor gate
is reflected as a change in the state of the transistor after
a delay of one time-step. This time-step is used as the
unit of time. In each CCSN, given the logic levels at the
inputs, and the storage nodes, a new logic level is computed
for each storage node according to the CCSN excitation
function. Then, after a delay of one time-step, the storage
nodes are assigned the new logic levels just computed.

D. Computing the steady-state response

The steady-state response of a switch-level network can
be obtained by a symbolic Boolean analysis of the net-
work [5], [4]. In this approach, the problem of determin-
ing the network response is cast in terms of determining
paths through the channel graph of a CCSN. The result
of the analysis is a number of Boolean expressions which
state how the ternary state of the CCSN is updated in each
time-step.

To express and compute ternary quantities in the switch-
level model in terms of Boolean operations, a “dual rail”
encoding is used. Each ternary quantity z, is represented
by a pair of Boolean values, .1, and x.H , as shown in Ta-
ble I. For each node n, we introduce two Boolean variables,
n.L, and n.H. The analysis problem can be specified as:
for each node n in the circuit, derive the Boolean formu-
las N.H, and N.L, which represent the encoded value of
the steady-state response at the node as a function of the
initial node states.

The goal of symbolic analysis of a network is to derive
Boolean expressions indicating the conditions under which
conducting paths are formed in the network. To express

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL. XX, NO. Y, MONTH 1999 6

GND

Fig. 6. Rooted paths in channel graph.

these concepts more precisely, we first define a channel
graph, which has a vertex for each circuit node, and an edge
for the channel of each transistor in a switch-level circuit.
The CCSN defined earlier in section III-C, is a connected
component in this graph. The analysis process examines
one CCSN at a time. The discussion ahead pertains to the
analysis of a single CCSN.

A rooted path in the channel graph is a directed path
between two nodes. A rooted path p originates at root(p),
and it terminates at dest(p). Paths have a length, equal
to the number of edges in it. A path can have a length
of 0. The strength of a path reflects its relative charge
transfer capacity. Figure 6 illustrates paths of different
types in the channel graph for the circuit of Figure 4. pl
is a path of zero length, with a strength of 5. p2 is a
path of strength 3 from the input node Vdd to the storage
node t. p3 is a path of strength 1 from s to t. Note that the
difference in strengths of p2, and p3 arises from the fact that
p2 conveys charge from an input node which can potentially
supply unlimited amount of charge, whereas node s can
only convey the stored charge it has through path p3.

A rooted path is termed a definite path, if none of the
transistors in the path are in the X state. The steady-
state response of a node depends only on the paths to the
node that are not blocked. Informally, a path is blocked if
some intermediate node in the path is the destination of a
stronger definite path. The charge from the stronger path
overrides the charge from the weaker path. For example, if
the transistor corresponding to path p4 in Figure 6 is on,
then, p2 and p3, the weaker paths to node t, do not affect
the steady-state response of t. If all the unblocked sources
of charge to a node drive it to 0 (or 1), then the steady-state
response equals 0 (or 1). Otherwise, if unblocked sources
drive a node to conflicting values, then the node’s response
equals X. Let {mj,msy,...,mg} be the the set of nodes
which are the origin of unblocked paths to node n. Let
mi.H, mi.L, ... my.H, and my.L be the pairs of Boolean
variables to encode the states of these nodes. If N is the
steady state response of node n then, given the dual rail
encoding, it may be encoded as

NH=m . HVmyHV... Vmy. H
N.L=mi.LVms.LV...Vmg.L

The analyzer works with signals of one strength level at
a time. It starts with the input signals, which are of the

cH tLkL cL kL cL tHcH

a.H bH kH cH

Fig. 7. Results of switch-level analysis.

highest strength and works downward, each time adding in
the effects of the paths at the next lower strength. For each
strength level w > s > 1, the analyzer sets up and solves
using Gaussian elimination three systems of Boolean equa-
tions which yield formulas N.H, N.L;, and clears(n) for
every storage node n. N.H; and N.L; express the steady
state response at the node, when all paths of strengths s
and higher have been accounted for. clears(n) expresses
the condition when node n is not the destination of a def-
inite path greater than or equal to s. It is used to set up
equations for the next lower strength level. Thus, in the
last iteration, expressions N.H; and N.L; are obtained,
and these equal the steady state response of n.

The Boolean expressions generated in the process of sym-
bolic analysis are represented by directed acyclic graphs
(DAGs), where leaves denote Boolean variables and con-
stants, and nodes denote Boolean operations. Each node
of the DAG represents a Boolean formula, and often there is
considerable amount of sharing in a DAG structure for the
steady-state expressions for the storage nodes of a CCSN.
Figure 7 shows the steady state expressions for nodes s,
and t in component CSSN1 of the circuit in Figure 4.

Section III-A describes the behavior of systems by an
excitation function Y: §—8 over sets of atom. The system
response obtained by the analysis above can be easily con-
verted to our “atomcentric” point of view by a simple trans-
formation. To ensure consistency between the two repre-
sentations, this transformation ensures that if the high-rail
n.H (low-rail n.L) value of a node is 1, then the corre-
sponding circuit state does not include n~ (nt). Since the
presence of n~ precludes the hi-rail from being 1, (dual true
for lo-rail, and nt), the transformation below converts the
dual-rail DAGs to an atomcentric DAG.

1. Transform every z.L to zt, and every z.H to z~.
2. Convert AND nodes to OR, and OR nodes to AND.

Figure 8 illustrates this transformation on Figure 7.

E. Trajectory Evaluation

In Symbolic Trajectory Evaluation (STE), the specifi-
cation language consists of a set of trajectory assertions.
The simplest form of trajectory assertion has the form
[A = (], where A, and C are trajectory formulas. A, the
antecedent of the trajectory assertion describes the stimu-
lus to the circuit over time, and C' describes the expected

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL. XX, NO. Y, MONTH 1999 7

Fig. 8. Atomcentric view of analysis results.

response.

Trajectory formulas (TFs) have the following recursive

definition:

1. Atoms: For any node n, atoms nt and n~ are TFs.

2. Conjunction: (Iy A Fy) is a TF if F} and F» are TFs.
3. Domain restriction: (£ — F)is a TF if F' is a TF
and F is a Boolean expression.

4. Next time: (NF')is a TF if F is a TF.

The Boolean expressions occurring in domain restriction
operators, having the form £ — F, give these formulas a
symbolic character. They can be thought of as “guards,”
i.e., I must hold for the cases where F evaluates to true.
For the theoretical development, however, it is convenient
to first consider the form where F is restricted to be either
0 (false) or 1 (true). A scalar trajectory formula obeys this
restriction throughout its recursive structure. The exten-
sion to the symbolic case then simply involves considering
the valuation of the expressions for each variable assign-
ment. [22] describes this in greater detail. N is the next
time temporal operator which causes advancement of time
by one unit.

The truth of a scalar trajectory formula F' is defined
relative to a model structure and a trajectory. Let s and s°3
both be members of L(M). slEam P, the truth of F relative
to model M, and a trajectory s is recursively defined as:
1. (a) s"sEmat iff at € s°.

(b) s%S=ma iff a= € s°.
2. sEm(F1L A Fy) iff sEm Iy and s Fa.
3. (a) sEm(l = F)iff sEmF

(b) sEEam (0 — F) holds for every s.
4. sP%SEMNF iff sEpMF.

A defining sequence of a trajectory formula F', denoted
by dp, is the weakest possible sequence of states “consis-
tent” the restrictions specified by F'. We clarify this below.
The recursive definition of this sequence is given as:

1. (a) 6f = {a™}000...
(b) d; = {a~}000 ...

2. 6F1/\F2 = lub((SF1 s 5F2)

3. (a) domp =000 ...
(b) d15p =dp

4. 6NF - ®6F

While dg is not necessarily a trajectory, it can be shown
that s F iff 6 C s. A defining trajectory is the weakest
sequence of states that can be constructed, given the con-

straints specified in a trajectory formula. For example, in
the definition above, the defining trajectory for a formula
consisting only of at, is a sequence, the first element of
which is the set {a%}, and the remaining elements are the
empty set ().

While d is not a trajectory, we may combine it with the
successor function Y, to get the defining trajectory, T, of
F. It can be shown that 7 is the unique weakest trajectory
satisfying F'. We outline the construction of 7p ahead.
Let 6p = 6%} Let 77 = 7p7f ... be the defining
trajectory. Then, the successive elements of 77 are given
by the following construction:

) ' ifi=0
TF= 5L, UY(ri!) otherwise

The truth of a trajectory assertion [A — (] is defined
with respect to a model M, and a set of trajectories L of
M. Expressed as, LEm[A = (], it is defined to hold
iff for all s € L, sEm A implies sEpmC. Often, L equals
L(M), the complete set of trajectories of model M. That
[A = (] is true for every trajectory in this set is denoted
as Em[A = C]. Intuitively, Eam[A = C] means that
if there is a sequence of states of M consistent with the
excitation function of the system, and A is true with re-
spect to this sequence; then C' is also true with respect to
this sequence. Alternately, this may be interpreted as A
defines a behavior (subset of trajectories) of the system,
and C' holds true for this behaviour of the system. The
existence of a defining trajectory for every trajectory for-
mula considerably simplifies the test for determining the
truth of an assertion. A defining trajectory 74 essentially
serves as a representative of the set of trajectories of the
system for which the trajectory formula A is true. Given
an assertion [A = C], we can verify that it holds for all
elements of L(M) by performing the test d¢ C 74. Below,
the key result of STE, states how the truth of an assertion
may be determined. This has been proved by Bryant and
Seger in [22].

Theorem 1: Epm[A = Ciff d¢ C 74.

Thus, to verify the truth of an assertion, all we need to
do is construct a defining sequence, and a defining trajec-
tory, and check that the former is weaker than the latter.
Furthermore, we need check only an initial prefix of the two
sequences, which is equals the “depth” of C'. The depth of
a formula F, denoted by d(F'), equals the maximum nesting
of the next time N operator. This is stated as corollary 1.

Corollary 1: §¢ € 74 iff &, C 7 for 0 < i < d(C).

IV. SYMMETRIES OF A CIRCUIT

We express both circuit operation and the specifications
in terms of sets of atoms. We can therefore express symme-
tries in a circuit and the corresponding transformations of
the specification in terms of bijective mappings over atoms,
named state transformations.

Definition 4: A state transformation, o, is a bijection
over the set of atoms: ¢ : 4 — A. We can extend o to
be a bijection over states by defining o(s) for state s as

UaES{U(a)}'

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL. XX, NO. Y, MONTH 1999 8

As the term suggests, a state transformation o takes a
system state s and alters it to a new state o(s). Since
o is bijective, o~! exists. Also, if o1, and o2 are state
transformations, then their composition o103 is also a state
transformation.

Two types of state transformations, which alter circuit
state in a “structured” manner are particularly interesting.
These are the structural, and data transformations. Below,
slai /b1, ..., an/by,] denotes the state obtained by simultane-
ously substituting atoms ag,...,a, for the atoms b1,... b,,
respectively, in state s.

Definition 5: A structural transformation is a state
transformation which swaps the atoms for two different
nodes. For nodes n; and ns, we write n; <> ny to denote
the transformation consisting of the swappings: n with
n2+ and n] with n;. Given ¢ = n; ¢ n3, and a circuit
state s, o(s) = s[nf/nd n7/ny,nd/nf n;/n7]

Definition 6: A data transformation involves swapping
the two atoms for a single node. For node n, we write n¥®
to denote the transformation consisting of the swapping of
nt with n=. Given ¢ = n*, and circuit state s, o(s) =
s[nt/n= n=/nt]

Intuitively, a structural transformation exchanges two
nodes of a circuit (by swapping their atoms), and a data
transformation complements the value at a circuit node by
altering a positive atom of a node to a negative atom, and
vice versa. Thus, these transformations provide us with
a convenient mechanism to express circuit structure and
circuit data handling related issues. Composing structural
and data transformations allows us to express a variety of
circuit transformations. To simplify notation, we will de-
note more complex transformations as a list of elementary
transformations.

Our unified view of state transformations and excita-
tions as functions mapping states into states allows us to
succinctly express symmetry in a circuit as an excitation
preserving transform. This closely parallels the definition
of symmetry in [7] as a transition relation preserving state
permutation.

Definition 7: A state transformation ¢ is a symmetry
property of a circuit with excitation function Y when
(Y (s)) = Y(o(s)) for every state s.

That is, the excitation of the circuit on the transformed
state o(s) matches the transformation of the excitation of
s.

Lemma 1: Symmetry transformations have the following
properties.

1. If o is a symmetry property, and Y is an excitation func-
tion then Y = oY ! =0~ Yo,

2. o is a symmetry property if and only if its inverse o~1
is a symmetry property.

3. If o7 and o5 are symmetry properties, then their com-
position o105 is also a symmetry property.

Proof: 1. Since o is a symmetry property, for every
state s, o(Y(s)) = Y(o(s)), i,e, Y = Yo. Therefore
c7loY =07'Yer,ie, Y =07 1Y0.

LATCHO
ino__| outL.0
outH.0
LATCH 1
in1_ | outL.1
outH.1
'
LATCH k-1
ink-1 | outL.k-1
outH.k-1

Fig. 9. Ilustration of the symmetries of a circuit

2. Since o is a symmetry property, oY = Yo. Therefore,
o7 l(oY)o™! = 071 (Yo)o™!, which reduces to Yo~ ! =
0~1Y. The other direction can be proved similarly.

3. o1 and oy are symmetry properties. Therefore, ¥ =
0'1_1Y0'1, and Y = 0'2_1Y0'2. Substituting 0'1_1Y0'1 for YV
in the second equation yields Y = o5 (07 Yo1)os, ie.,
Y = (0102)7 Y 0109, i.e., 0102 is a symmetry property. O

Depending on their constituent state transformations,
symmetry properties may be classified into one of the fol-
lowing three categories:

o Structural symmetry — consists entirely of structural
transformations.

o Data symmetry — consists entirely of data transforma-
tions.

o Mized symmetry — consists of both structural and data
transformations.

Consider, for example, the circuit shown in Figure 9.
This circuit consists of k identical latches. In each latch
outl is a complement of the input, and outH has the same
value as the input. Since the latches are identical, this cir-
cuit has a structural symmetry corresponding to the swap-
ping of any pair of latches ¢ and j, such that 0 <4,j5 < k:

[in.i > in.j,outl.i & outl.j,outH.i & outH.j]. (1)

Each individual latch also stores data values 0 and 1 in a
symmetric way, expressed for Latch 0 by the data symme-
try:

[in.Oi,outL.Oi,outH.Oi] . (2)

Finally, each latch can also be viewed as a one-bit
decoder—it sets one of its outputs high based on its input
data. Such behavior for Latch 0 is expressed by a mixed
symmetry:

[in.Oi,outL.O < outH.0] . (3)

V. VERIFICATION UNDER SYMMETRY

Verifying a circuit involves checking a family of assertions
against the circuit model. The presence of symmetry prop-
erties in the circuit often allows us to dramatically reduce
the number of assertions that need to be verified. This is
because if an assertion G holds, and o is a symmetry prop-
erty of the circuit, then the assertion o(G) also holds. This
is elaborated below.

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL. XX, NO. Y, MONTH 1999 9

We can extend o to be a bijection over state sequences by
applying o to each state in the sequence. We can also ex-
tend state transformation o to be a bijection over temporal
formulas. First we define the extension of o to Trajectory
formulas(TFs).

Definition 8: If ' is a TF, then o(F) is recursively de-
fined as

1. If F is the atom a, then o(F) is the transformed atom
o(a).

2. o(F1AFy) = (o(F1) Ao (Fa)), where Fy and I are TFs.
3. 0(E = F)=(F — o(F)), where Fisa TF and F is a
Boolean expression.

4. o(NF) = (No(F)) where I is a TF.

The effect of applying o to a TF F is to replace every
atom a in F' by o(a). This idea is carried further, where o
may be applied to an assertion. The result of applying o to
the assertion [A = (] is the assertion [o0(4) = ()],
which is also denoted by o([4A = C]).

Since a symmetry property is an excitation function pre-
serving transformation, it follows fairly intuitively that the
structure of the defining sequence and the defining trajec-
tory of a TF F should remain invariant with respect to o.
This is formalized below in lemma 2, and lemma 3.

Lemma 2: If temporal formula F' has defining sequence
dp, then its transformation o(F) will have defining se-
quence d,(py = o (dF).

Proof. This can be proved by induction over the struc-
ture of TFs. Details are shown in [18].

Lemma 3: If o is a symmetry property of a circuit model
M, then its defining trajectories for any temporal formula
F will obey the symmetry: 7,(py = o(7F).

Proof: We can prove this result by induction on the
sequence of elements in the defining trajectory 70 =
rorh . rhritl . Details are shown in [18].

This brings us to the central theorem of this paper, which
is stated below.

Theorem 2: For an assertion [A = (], and a symmetry
property ¢ of model M, = [A = C] if and only if
Ea [r(4) = o(C)].

Proof: The proof follows directly from the definition of
a symmetry property, lemma 2, and lemma 3.

Fum [A=C]
& 14 Céc (Theorem 1)
& o(ra) Co(dc) (Bijection o preserves subset relation)

& Toa) C o(d¢) (Lemma 3)
& To(a) C do(c) (Lemma 2)
SEmlo(A) = a(C)] (Theorem 1

O

Thus, proving that o is a symmetry property of a circuit
allows us to infer the validity of a transformed assertion
once we verify the original. For example, suppose we verify
that Latch 0 in Figure 9 operates correctly for input value
1, and also prove that the transformations defined by Equa-
tions 1 and 2 are indeed symmetry transformations. Then
we can infer from Equation 1 that for all j, Latch j oper-
ates correctly for input value 1, and from Equation 2 that
Latch 0 operates correctly for input value 0. Furthermore,

by composing these two transformations, we can infer that
for all j, Latch j will operate correctly for input value 0.

V1. VERIFICATION OF SYMMETRY PROPERTIES

To exploit symmetry, we verify an assertion [A —
C], and given a set of symmetry properties, S =
{o1,02,...,00}, we can conclude that [o1(A) = o1(C)],
[02(A) = o2(C)], ...[03(A) = o3(C)] all hold. How-
ever, before drawing this conclusion, one must verify that
every element of S is actually a symmetry property. The
typical set of symmetry properties we work with is a group.
Below, we give two basic definitions from group theory
which we use ahead.

Definition 9: Set S is a symmetry group for a model
structure M = (S,Y) iff every element of S is a symmetry
property of M, and the following properties hold:

1. The identity element o, is in S, where o.(a) = a.
2. Every element of ¢ € S has an inverse 0=! € S such
that oo~ ! = o710 = o,

Definition 10: A set (S) is termed a generator of a sym-
metry group S if repeated compositions of the elements in
(S) can generate every element of S.

The definitions above imply that rather than test every
element of a set S for the symmetry property, it suffices
to check only the generators of S. Thus, it is possible
to prove the correctness of an entire set of assertions by
simply verifying that each member of a set of generators
for a group of transformations is a symmetry property.

For example, (1) in section IV represents a total of
k(k—1)/2 symmetry transformations, corresponding to the
pairwise exchange of any two latches. In general, one could
argue that this circuit would remain invariant for any per-
mutation 7 of the latches. Consider the transformation o,
mapping the 6 atoms for each Latch ¢ (two each for nodes
in.7, outl.7 and outH.7) to their counterparts in Latch (7).
We could prove that each such transformation is a symme-
try property, but this would require k! tests. Instead, we
can exploit the fact that any permutation 7 can be gen-
erated by composing a series of just two different permu-
tation types. The “exchange” permutation swaps values 0
and 1, while the “rotate” permutation maps each value i to
t 4+ 1 mod k. Thus, proving that the state transformations
given by these two permutations are symmetry properties
allows us to infer that o, is a symmetry property for an
arbitrary permutation 7.

So, once the generators of a symmetry group are identi-
fied, the next step is to verify that they are indeed symme-
try properties. We verify structural symmetries of a circuit
by circuit graph isomorphism checks, and we verify data
and mixed symmetries using symbolic simulation based
techniques. We describe these techniques in sections VI-

A, and VI-B.

A. Structural symmetry property verification

We can verify structural symmetries in our circuit mod-
els by checking for isomorphisms in the circuit-graph net-
work. Since the circuit analysis tool we use (Anamos [5])
derives its representation of the excitation function from

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL. XX, NO. Y, MONTH 1999 10

the network, any isomorphisms in the network graph im-
ply structural symmetries in the excitation function. While
it is also possible to verify structural symmetries using
symbolic simulation, such an approach requires perform-
ing switch-level analysis on the circuit. This analysis can
be prohibitively expensive (Table II) for circuit components
such as array cores with their large CCSNs.

Consider the problem of determining if n; < ny is a sym-
metry property in Circuit 1 (Figure 10). If this symmetry
were to hold in the circuit, Circuit 2 which is obtained from
Circuit 1 by swapping the labels of nodes ny, and ny should
be isomorphic to Circuit 1. To perform this isomorphism
test we use a graph coloring based algorithm described in
[10], [9]. This algorithm, which is described below, converts
a circuit graph network into a pseudo-canonical form. This
allows a fast and efficient test for isomorphism between two
networks.

Given the circuit graph for a switch-level circuit, we first
construct a coloring graph which contains a transistor ver-
tex for each transistor in the circuit, and a node vertex for
each node and primary inputs in the circuit. The edges
of this graph connect transistor vertices and node vertices,
and they correspond to the node-transistor interconnec-
tions in the circuit. Since there are no edges which connect
only two node vertices, or two transistor vertices, the col-
oring graph is bipartite. Once the coloring graph is con-
structed, the vertices of the graph are “colored” with in-
tegers. Based on isomorphism invariant vertex properties
such as the number of edges incident on a vertex, all the
vertices in the graph are assigned an initial color. Vertices
are recolored repeatedly using a hashing function which
combines the colors of the neighboring vertices, until all the
vertices are colored uniquely. Then the nodes and transis-
tors of the circuit are sorted to yield what is termed as the
quasi-canonical form of the circuit network. This coloring
and sorting technique guarantees that two networks that
are not isomorphic will be colored differently. However,
in some remote cases, it is also possible that two isomor-
phic networks may not be colored uniquely within a given
fixed number of coloring iterations. However, we have not
encountered this problem in our experiments (Section IX).

The problem we need to solve is slightly different from
the one solved above. We need to swap two nodes in the
circuit, and test if the two circuits, before and after the
swap, are isomorphic. This does not work directly, as the
isomorphism checks work purely on the structure of the
network, and they ignore the node names. So the two cir-
cuits, before and after the node name swap will still reduce
to the same quasi-canonical form. We work around this by
using structural labels.

A structural label is a circuit graph (or an interconnec-
tion of nodes and transistors) which satisfies the following
two properties:
¢ The structural label is not isomorphic to any subgraph
of the original circuit.

o The label is not isomorphic to any other structural label.

These properties allow us to use these labels to physi-
cally tag circuit nodes. Structural labels serve to uniquely

Node exchange
CIRCUIT 1

g
P2

CIRCUIT 2

P2
P

Qua5| -Canonical
Reordermg

QuaS| -Canonical
Reorderlng

~— Test for equality —

Fig. 10. Verification of structural symmetry ny < ng

tag a node in the circuit being tested for symmetry proper-
ties. So, structural labels are attached not only to the set
of nodes being swapped, but also to some of the remain-
ing circuit nodes. While verifying symmetry properties by
graph isomorphism checks, it is necessary to attach struc-
tural labels to all the input and output nodes of a circuit.
However, it is not necessary to consider the state nodes
during our symmetry tests. If the circuit being verified sat-
isfies all the assertions, then it has the desired IO behavior,
and no further tests are necessary for the internal nodes.
Of course, if some assertion fails, then further checks are
necessary, and we may well discover a problem related to
the state nodes.

Thus, to solve the problem of determining whether n; ¢
ny holds in Circuit 1, we can attach structural labels ID1
and ID2 to nodes n; and ns in Circuit 1, and then flip these
labels in Circuit 2. We then can reduce the two circuits to
the quasi-canonical form, and compare them (Figure 10).

The worst case time complexity for the graph coloring
algorithm for a circuit with n transistors is O(n?log(n)).
However, in practice we have seen both the time and mem-
ory scale nearly linearly with n. (Table III).

B. Data and mized symmetry property verification

Data and mixed symmetries can be verified by symbolic
simulation. Data symmetries involve “switching polarities”
of values on a node. Mixed symmetries involve “switching
polarities” of the value on a node, and “exchanging” the
values of two different nodes. To verify these symmetries it
is necessary to check whether for every combination of cir-
cuit node values, the exchange and the polarity switching
of the input node values results in changes in the output
node values as specified by the symmetry property. Sym-
bolic simulation is the ideal tool for such checks involv-
ing all possible combination of Boolean values. One sym-
bolic Boolean variable is introduced for each circuit node.
The circuit is simulated with these Boolean variables, and
then with new Boolean values corresponding to the changes
specified by the symmetry property. The results of the two
simulations are compared to verify if the circuit obeys the
symmetry property.

Consider, for example, the symmetry of Latch 0 specified

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL. XX, NO. Y, MONTH 1999 11

in equation 2:
[in.Oi,outL.Oi,outH.Oi] .

We symbolically simulate the circuit with the symbolic
value a at the input in.0, and inspect the values at the
output nodes outL.0, and outH.0. If the above symmetry
holds for the latch, then complementing the value at node
in.0, should result in the values at circuit nodes outL.0, and
outH.0 being complemented.

Consider also the mixed symmetry of Latch 0, specified
in equation 2:

[in.Oi,outL “ outH.O] .

This symmetry can also be verified by symbolically sim-
ulating the circuit with a symbolic value a at the input
in.0, and observing the outputs, outlL.0, and outH.0. The
equation above specifies that complementing the value at
in.0 should result in the values at nodes outlL.0, and outH.0
being exchanged, which can be easily checked.

VII. CONSERVATIVE APPROXIMATIONS OF CIRCUITS

Intuitively, a conservative approximation of a circuit is
a “reduced” version of the circuit which, given any current
circuit state, imposes fewer constraints on the next state
the circuit can take. In terms of values, on circuit nodes,
the reduced circuit produces more Xs than the original
circuit, i.e., fewer atoms in the next state. We formalize
this concept below.

Definition 11: Let M’ and M be circuit models over the
same state set, having excitation functions Y’ and Y, re-
spectively. We say that M’ is a conservative approrimation
of M if for every state s, Y'(s) C Y (s). We denote this by
M <M.

We exploit conservative approximations to perform two
important tasks:

o Create reduced models which take less memory to repre-
sent.
o Partition circuits to expose symmetric regions of a de-
sign.

Proving an assertion for a reduced circuit model, allows
us to infer that the assertion holds for the original circuit.
Theorem 3 below justifies this. The advantage of this is re-
duced circuit models are often a fraction of the size of the
original circuit model, which results in smaller verification
memory requirements. Conservative approximations pro-
vide a systematic way to reason about partitioned circuits,
allowing us to verify the complete circuit by proving prop-
erties about each partition. This is particularly useful when
the partitioning can expose highly symmetric regions of the
circuit. In addition, if we can prove that a circuit has some
structural symmetry, then we can create a “weakened” ver-
sion of the circuit containing just enough circuitry to verify
the behavior for one representative of the symmetry group.

A. Verification of Reduced Models

Below, we show that for any trajectory assertion [A —

(], and models M, and M’ such that M’ < M, if the

assertion [A = C] holds for M/, then it should also hold
for M. We start with the proof of a simple result on the
trajectories of M’ and M.

Lemma 4: If F' is any trajectory formula, and models
M, and M’ are such that M’ < M, then the defining
trajectories for the two models, 7 and 7r, must be ordered
T C 7p.

Proof: Let 7p = 1772 ..., and T'p = T’%T’};T’}; -
Using induction we can show that for all i > 0, T}} C e
Details are in given in [18].

Therefore, as expected, “weakening” the model also
weakens the trajectories of the model, and this immedi-
ately leads to the theorem below.

Theorem 3: For any assertion [A = (], and M’ < M,
if I:M/ [A — C], then I:M [A — C]

Proof: Since =apmy [A = (], d¢ C 7'p (Theorem 1).
This result, when combined with 7'p C 7¢ (follows from
lemma 4 above), gives é¢ C 7p, i.e., Fm [A = C]. a

Thus, proving an assertion for a conservative approxima-
tion to a circuit model allows us to infer that the assertion
holds for the original circuit.

B. Partitioning circuits via conservative approrimations

We can view the partitioning of a circuit into different
components as a process of creating multiple conservative
approximations. For example, suppose we partition a cir-
cuit with nodes N into components having nodes N; and
Ny, respectively, as illustrated in Figure 11. The set of
nodes forming the interface between the components com-
prise the set Ny N Ny. In this example, we assume the com-
munication is purely unidirectional—N; generates signals
for Ns. Suppose we wish to prove a property described by
an assertion [A = C1], where the atoms of C are contained
only in Ny. We could then create conservative models M
and M using the subset construction given by Equation 4
below. Taken individually, each of the two models is too
weak to prove the assertion. Using the technique of wave-
form capture described ahead, we can record the output
values generated by model M; and use them in verifying
the assertion with model M,. We describe this technique
in greater detail below.

We start with the idea of creating conservative approxi-
mations by removing nodes of a circuit. Let N’ be a subset
of the set of circuit nodes N, and A’ be the corresponding
set of atoms. Then we can view the removal of those nodes
not in N’ as yielding a conservative approximation to the
circuit with an excitation function Y’ such that:

Y'(s) = Y(snA)nA. (4)

Intuitively, sN.A’ eliminates atoms of all nodes other than in
N’ i.e., sets all the excluded nodes to X. The intersection
of Y(sN.A") with A’ ensures that in the response, Y, atoms
of all nodes other than in N’ are eliminated.

Below, we first discuss the idea of waveform capture, and
show how to construct a trajectory formula corresponding
to the signal waveforms on a set of nodes.

Let N’ be a subset of nodes in a circuit M. Let

0

Ta = 747575 ... be the defining trajectory for the circuit

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL. XX, NO. Y, MONTH 1999 12

M for a trajectory formula A. The technique of waveform
capture records the occurrence of atoms on the nodes in
N’ as specified by the elements of the sequence 74, and it
creates a temporal formula W4 describing this occurrence
of atoms.

Let Apn+ be the set of atoms corresponding to the nodes
in N’. By eliminating all atoms from 74 that are not in
N', we construct a new sequence,

(7’2 ﬁ.AN/) (7';1‘ ﬂ.AN/) (Tj ﬂ.AN/) R
From this sequence, we construct a trajectory formula
Wa=W3A(NWL)A(N2WS). .. (5)

such that Wi = a3 Aas A ... A ag, where a; € (T, N Apn+).
The lemma below states the obvious consequence of such
a construction.

Lemma 5: Let A be a trajectory formula, and let N/ be
a subset of nodes of the circuit described by M. If Wy is
the trajectory formula constructed from 74, as described
above, then |=p [A = Wa].

Proof. Consider dw, = (53“(5‘1,”(5‘2/“ ..., the defining se-
quence of Wy4. From the construction above, and the def-
inition of defining trajectories, 6%4@ = 6W£’ ie., 5€VA =
(i, N An+). Obviously, (7, N An/) C 7i. Therefore,
dw, C Ta, which proves Ep [A = Wa). o.

Now we discuss the use of waveform capture to verify
a property [A = (] for a larger design by partitioning
it into smaller components and verifying these components
individually. Prior to the discussion however, we prove the-
orem 4, which justifies waveform capture and combination.
To simplify the proof of the theorem, we first show some
useful results in lemma 6, 7, and 8. Lemma 7 and 8 also
appear in a modified form in [14].

Lemma 6: If Epq [A = C], then Epmq [A=> ANC].

Proof: Since, =ap [A = O, therefore, = §¢ C 74, i.e.,
for i > 0, 65, C 7i. From definition of 74, for i = 0,

= (5%, and for ¢ > 0, T = lub(ég,}/(rzfl)), Le., for
i>0,d4 C 74. Therefore, for i > 0, (0%, Uds) C 74, ie,
daUdc C 7a. Therefore, Ep [A = AAC).

Lemma 7: If A and B are trajectory formulas, then g C
TA = TB E TA

Proof. This can be proved by induction on elements of
the sequences 74 = 747473 ... and 75 = TR TETE ... [18].

Lemma 8: If =p [A = B], and Eum [B = (], then
Fam [A=Cl

Proof: From Eum [B = (], and Em [A = C, we know
that g C 74, and §¢ C 7 are true. From dg C 74,
and lemma 7, we can conclude that 75 C 74. Therefore,
dc C 1B C Ty, e, I:M [A:>C] O

Theorem 4: If M¢ and Mp are conservative approxi-
mations of M, and Fm, [A = Fl,and Fam, [AAF = C],
then Em [A = ().

Proof: If Epme [A = FJ, then Epm [A = F] (from
Theorem 3), and thus Fum [A = A A F] (from Lemma 6).
Similarly, if Famp, [AAF = C], then Epm [AAF = (]
(Theorem 3). From this, using Lemma 8, we can conclude

that I:M [A = C]

Interface Nodes

Fig. 11. Illustration of Circuit Partitioning.

Let 75 be the defining trajectory generated by model
M for antecedent A. We construct a trajectory formula
Wa describing the occurrence of the atoms corresponding
to the nodes in N1 NNy as described above. One refinement
that should be performed is to record the values up to the
maximum depth of the next-time operators in C' (Corol-
lary 1). Our construction ensures that =, [A = Wa],
and therefore, =a1 [A = Wa]. Using model My, we then
verify the assertion [AAW4 = (7, and if it holds, we know
that Eam [AA W4 = C] also holds. Effectively, we “play
back” the waveforms on the interface nodes. Using theo-
rem 4, we show that for any model M and any temporal
formula F| if Fpm [A = F] and Fap [AA F = (], then
Em [A = (], and therefore this pair of verifications is
sufficient to prove the desired property. An extension of
this technique can handle partitioning with bidirectional
communication[18].

C. Verification of partitioned designs

Consider a circuit M. From M we create two conserva-
tive approximations M, and M, with the set of nodes Ny,
and N, respectively. We assume that M generates signals
for My. Given a trajectory formula A, we perform wave-
form capture over the nodes at the interface of My, and M
to construct a trajectory formula W4. From lemma 5 we
know that a4, [A = Wa] holds. If Eam, [AAW4 = (]
is true, then theorem 4 states that [A = (] holds for the
entire design M. From these properties of individual com-
ponents, and the symmetry in the components, we can infer
a family of properties for the entire design, as shown below.

Let o1 and o5 be symmetries of My and M respectively.
If Em, [A = Wa), and Fam, [AA W4 = (] are both
true, then the following hold (theorem 2):

Fam, [01(A) = 1(Wa)] (6)

=, [02(A) A 0o (Wa) = 02(C))] (7)

To compose the results of equations 6 and 7 by applying
theorem 4, the assertions and the symmetry transforma-
tions need to obey the following two constraints:

o Interface constraint: The signals at the interface of M
and My should match, i.e., o1 (Wa) = o2(Wa).

o Antecedent constraint: The trajectory formula A should
be invariant under the symmetry transformations o, and

03, l.e., 01(A4) = 02(A4).

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL. XX, NO. Y, MONTH 1999 13

Given these constraints, equations 6 and 7 may be writ-
ten as Fam, [01(4) = o01(Wa)] and Fu, [01(A) A
01(Wa) = 02(C)] respectively, which leads to the fol-
lowing;:

Fam [01(A) = o2(C)] (8)

Thus, given symmetry properties o1 and o2, and the two
constraints, we have established a new assertion. In this
manner, one can establish a family of properties for the en-
tire design by using symmetries on individual components.
It should be noted that in general for a trajectory formula
F, 01(F) = o2(F) does not imply o1 = o3.

The antecedent constraint, o1(A) = o2(A) requires that
o1 and o9 transform atoms in A identically. This require-
ment is easy to satisfy. For instance, let all the atoms in A
come from the nodes of M7 and not from M. Given this,
09, should also include those structural and data transfor-
mations in o; which transform atoms of A. If o5 does not
contain these transformations, then it can be trivially ex-
tended to o}, = [03,04,, ..., 0a,] by composing s with the
structural and data transformations oy, , ..., 04, in o1 which
act on A, but are not present in o5. Since these additional
transformations o4, , ..., 04, do not alter the state of Ma,
o4 is also a symmetry of Ms. Thus, from equations 6 and
7 we can establish that | [01(4) = o4(C)]. In gen-
eral, we have to handle the case where A includes atoms
of nodes from both M; and M. In such a case, both oy
and o, may be extended to ¢} and o, as described above
to ensure that of(A) = 05(A), while remaining symmetries
of M1 and M, respectively. This allows one to establish
Em [01(4A) = o4(C)] for the overall design. In some
cases, the antecedent constraint is not required. The sub-
section ahead describes this case.

C.1 A special case of verifying partitioned designs

Let My, and M be conservative approximations of M.
Let o1 and o9 be the symmetries of M; and M respec-
tively. When the assertions and the circuit have a specific
structure, one verify partitioned designs by imposing only
the interface constraint.

Consider the problem of verifying an assertion of the
form [A; A Ay A A" = C] for M. Let A; contain atoms
only from My, and A» contain atoms only from M. Fur-
thermore, let A’ contain only those atoms which are not
transformed by the symmetries under consideration for the
design. Common examples of such atoms are those corre-
sponding to clock inputs, control signals, scan signals etc.

As earlier, Given the trajectory formula A; A A’ we per-
form waveform capture for My over the nodes at the inter-
face of M5 to construct a trajectory formula W4. Using
this waveform, and the trajectory formulas A’, and A,
one can establish that [Wa A As A A’ = C] holds for M.
These assertions on M7, and M, allow one to prove that
[A1 A As A A" = (] holds for M. Below, theorem 5 states
this.

Theorem 5: Let Mj and Ma be conservative approx-
imations of M. If Eam, [A1 A A = Wy], and Ea,
[Al AWAANAy = C], then I:M [Al ANAs ANA = C]

Proof. From the definition of a trajectory, and theorem 1
it is easy to that if Fa, [A1 A A" = Wa] is true, then
Em, [AiANA = W4 AA'] s also true.

Also, Em [P = Q] implies =p [PAR = QA R] (result
from [14]). Applying this result to |, [A1 A A" = Wy A
A’] with trajectory formula Ay, we obtain |=aq, [41 A A A
As = Wa A Ay /\A"].

This result and |Ep, [A' AW4 A As = C, upon applica-
tion of theorem 3, and lemma 8 yield Eaq [A1 AAAA" =
. O

Since o1, and oy are symmetries of M7 and M, respec-
tively, given Fa, [A1 A A = Wa], and Fa, [A'AWa A
Az = (], the following holds:

Ea, [01(A1) Ao (A)) = 01 (Wa)] (9)

s, [02(A)) A 02 (Wa) A o3(As) = 02(C)] (10)

If A’ is not transformed by o3 and o3, and the signals
at the interface of M; and My match, ie., o1(Wa) =
02(Wa), then applying theorem 5 to equations 9, and 10
yields the following:

':M [Ul(Al)/\Uz(Az)/\A/iUQ(C)] (11)

Thus, from the individual component symmetries, we
have established a new property of the system.

D. Creation of conservative approrimations

Creation of a conservative approximation of a circuit in-
tuitively means creating a reduced version of the circuit
which produces more Xs than does the original circuit.
The limiting case of the conservative approximation of a
circuit is one whose every node produces only an X for
every input sequence. Such a “strict” approximation is of
little use, however. We would like to create conservative
approximations in a more controlled manner, so that we
can selectively disable desired portions of the circuit. The
following two techniques are our means of doing so:

o Attach “X-drivers” to internal circuit nodes.
o Strengthen transistors which are adjacent to X-drivers.

An X-driver is a strong source of Xs. Attaching an X-
driver to a node is equivalent to converting the node to an
input node set to the constant value X. The X-driver is
analogous to the Vdd and ground nodes, which are strong
sources of 1 and 0, respectively. An accompanying tech-
nique we employ to create a conservative approximation is
strengthening transistors adjacent to X-drivers. Intuitively,
this strengthening aids the propagation of Xs through the
circuit. As will be shown later, both these techniques
monotonically move all the circuit nodes towards X.

As an example, suppose we wish to create a reduced
model for the circuit in Figure 5 by eliminating nodes a,
b, and s. Then we could describe the remaining portions
of CCSN1 by the excitation expressions shown in Figure
12. One can see that these expressions were obtained from
those of Figure 5 by simplifying the result of setting the

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL. XX, NO. Y, MONTH 1999 14

JLQJ

C
T4)‘F b 1 .
IEI
anver i Fk
%

Fig. 12. Conservative approximation of CCSN1.

dest

Fig. 13. Paths in a switch-level circuit conservative approximation

leaves for all eliminated atoms to false. This conserva-
tive approximation could be used to verify circuit operation
for the cases where node c is set to 0. We have modified
Anamos to generate these simplified expressions directly,
avoiding the need to ever generate a complete model. In
particular, we would replace node s in the example circuit
by a X-driver.

One final task which remains is to show that the two
circuit transformation techniques discussed above actually
create a conservative approximation. As mentioned in sec-
tion III-D, the steady state response of a node in a switch-
level network depends on all the unblocked paths to that
node. In figure 13, consider the path p from src to dest.
If the path were unblocked before the X-driver is attached
to node n, then, two possibilities arise after the X-driver
is introduced. The first is that the path still remains un-
blocked, and the node response stays the same. The second
is that a stronger path ¢ from n blocks p, i.e., |q| > [p'],
where p’ is a prefix of p originating at the root. In this
case, the stronger path ¢ will dominate the response at
dest, i.e., dest will monotonically move towards X. The
effect of strengthening transistors adjacent to a X-driver is
similar — stronger paths from the X-driver may dominate
existing paths, sending their destination towards X. Note
that the argument above also accounts for the case when n
is on p. In such a case, the length of path ¢ is 0.

VIII. PUTTING IT TOGETHER: VERIFYING A SRAM
CIRCUIT

Consider the 16-bit (1 bit/word) SRAM circuit shown in
Figure 14. This circuit consists of the the following major
components — row decoder, column address latches, col-
umn multiplexer (Mux) and the memory cell array core. To
simplify the discussion here, many essential SRAM compo-
nents like precharge column, write-drivers etc. have not
been shown in the figure. This is a standard organization

Memory Cell Array

Row Address Mcccce,
2s] Row I I I I
a2 Decodel

Mcccm
MceII Mcell Mcell MceII
Column Address bl. X .1b1.2 [bib..
(T T r
ao \ N\, 2 N /'
a0 aH.0 4 A
aL.1l % 4
al
aH.1

Column Address Latches H" Column Multiplexer

Fig. 14. SRAM circuit

followed in many larger industrial SRAM arrays [13].

To verify this circuit we must show that the read and
write operations work correctly. To verify the write opera-
tion, one must show that if we write data to a memory loca-
tion, then the correct memory location gets updated. Let
din be the input node, m[0], ..., m[15] be the memory storage
nodes, and read and write be the control signals. For sim-
plicity, we ignore all clocks and we assume that from setting
data, address and control signals to memory location up-
date takes only two time steps. Let (din = d) be the short-
hand for the trajectory formula (d — din™)A(—=d — din™),
where d is a symbolic Boolean variable. The assertion be-
low states that if we write data d at address 0 (all address
lines are held low), it ends up at m[0], the node for memory
location 0 two time steps later.

[(din=d)Aa3" Aa.2” Aa.l” Aa.0” Awritet Aread™
—

N(m[0] = d)]

Details on introducing symbolic Boolean variables for ad-
dresses to write compact assertions may be found in [19],
[18]. Other properties of interest, such as if a memory lo-
cation is addressed and read from, then the correct value
must appear at the output, and that non-addressed mem-
ory locations do not change can be expressed with STE
assertions. [19], [18] describe these in more detail.

The machinery we have built in the previous sections
allows us to verify the read or write operation for only
one location and, from the symmetry in the SRAM circuit,
conclude that the operation works for every location. We
expand on this below, starting with a discussion of SRAM
symmetries.

A. Symmetries of a SRAM

Consider the decoder in Figure 15. For any memory
operation, the value of the row address assigned to nodes
a.2 and a.3, causes one of the word lines wl.0, wl.1, wl.2 and
wl.3 to be active. The figure shows that wl.0 is active for
row address 00. The same waveform occurs on the active
word line regardless of the address. This mixed symmetry

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL. XX, NO. Y, MONTH 1999 15

Row Decoder

wio (active)
wl.1
a.3—
a.2 wl.2
wl.3
.
Time
Fig. 15. Row decoder and signal waveforms on word lines for row
address 00.
i Row Symmetry
Row swap
Column-Mux COl. swap Col. swap
Symmetr | | | L
YMMEY oo coin coiz doia
il il il il
Address 8 T 3 T
line pair: a:;-‘; N : /// N : //,/
swap ik 2,
aH.1 \W/

Fig. 16. Structural symmetries of the SRAM core.

of the decoder is expressed by the group of transformations
generated by transformations oy and o;:

oo = [a.2%, wl.0 & w1, wl.2 & wl3]
o1 =[a.3%, wl0 & w2, wll & wl3]

Transformation o; indicates that complementing bit i of
the row address causes an exchange of signal waveforms for
each pair of word lines j and k such that the binary repre-
sentations of j and k differ at bit position i. The column
address latches obey the “decoder” symmetry expressed by
Equation 3.

The mixed symmetries of the decoder and the column ad-
dress latches can be verified by symbolic simulation, where
a single run of the simulator with n symbolic Boolean val-
ues at the circuit inputs is equivalent to 2" runs of a con-
ventional simulator with 0-1 values. For example, to verify
that og is a symmetry of the decoder, we symbolically sim-
ulate the decoder with symbolic values sy and s; at the
decoder inputs a.2, and a.3 in Figure 15. As the simula-
tion proceeds, we check that a substitution of 5¢ for sg in
the symbolic waveform for wl.0 (resp., wl.2) matches the
symbolic waveform on wl.1 (resp., wl.3).

Figure 16 illustrates the two structural symmetries of
the SRAM core and column Mux combination. The row
symmetry arises from the invariance of the core-mux cir-
cuit structure under permutations of the rows of the core.
The column-muzr symmetry arises from the invariance of
the circuit structure under a swap of column address latch
output pairs accompanied by a corresponding exchange of
columns. For example, in Figure 16, a swap of aH.0 and

Row Address

Column Address

Location 0 Disabled memory cells

I H/H*
Bl
redueed T

Row Decoder MEM

Reduced Circui

X X e X X

|
2

a0

al >
l

Column Address Latches

Conservative approximation 1 Conservative approximation 2

Fig. 17. Conservative approximations of the SRAM.

al.0 accompanied by a swap of column 0 with 1, and a
swap of column 2 with 3 is a symmetry of the circuit.

We verify the core-Mux symmetries in two parts. First
we verify that arbitrary row and column permutations are
symmetries of the core. Verification that the exchange and
rotate permutation generators for rows and columns are
symmetries suffices for this. This gives a total of 4 sym-
metry checks for the core. Next we verify the column-mux
symmetry for the Mux. In the figure, the generators of the
four different column address line pair permutations are
the two permutations associated with each column address
latch output pair. Therefore, two symmetry checks verify
the column-mux symmetry. In general n symmetry checks
must be done for the Mux in a SRAM with n column ad-
dress line pairs.

B. Verification steps

In order to verify the SRAM circuit we go through the
following sequence of steps.
1. Circuit partitioning — We partition the SRAM cir-
cuit into two parts. The first part consists of the decoder
with the column address latches. The second part consists
of the memory core and the column Mux.
2. Symmetry verification — Using symbolic simula-
tion we verify the symmetries of the decoder and column
latches. Using circuit graph isomorphism checks we verify
the symmetries of the core and the column Mux.
3. Conservative approximations — We create two con-
servative approximations of the SRAM (Figure 17). In the
first model, the memory core and the column Mux are
“disabled”. In the second model, the decoder, the col-
umn address latches are disabled, and all the memory cells
except that for location 0 are disabled. Figure 18 shows
how we conservatively disable a SRAM cell by attaching
X-drivers, and strengthening transistors adjacent to the X-
drivers. The figure also shows the optimization that chains
of N or P transistors from Vdd or ground to an X-driver
may be eliminated from the circuit — their presence does
not alter circuit behavior.
4. Waveform capture — Given the assertion [A = (]
specifying an operation for memory location 0, we use the
antecedent A to symbolically simulate conservative approx-
imation 1. During the process of symbolic simulation we
record the signal waveforms on the outputs of the decoder

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL. XX, NO. Y, MONTH 1999 16

Transistor
Strengthened

bl ‘ blbar

bl blbar conservative | wordline

| wordline |

Approximation
Transformations

REDUCED SRAM CELL

SRAM CELL

Fig. 18. Creation of a conservative approximation of a SRAM Cell

and the column address latches. We construct a trajectory
formula W, which captures the signal values on the out-
puts recorded above. As discussed earlier, it can be shown
that [A = W] is true.

5. Verification of SRAM core — Finally, with conser-
vative approximation 2, we show that given the waveform
W, and the antecedent A, the consequent C' is true, i.e.,
[A AW = C]. From the earlier discussion in section VII,
if [A = W] and [AAW = C] are both true, then we
can conclude that [A = C] is true, i.e., the memory op-
eration is verified for location 0. Given the symmetries of
the circuit we can then conclude that the operation works
correctly for every memory location.

IX. EXPERIMENTS AND RESULTS

All the time and memory figures in this section have
been measured on a Sun SparcStation-20. We used the
Anamos switch-level analyzer to generate switch-level mod-
els [5]. We modified Anamos to make it possible to at-
tach X-drivers to circuit nodes to generate reduced models
(conservative approximations) of switch-level circuits. Ta-
ble II shows the results of model generation for SRAM cir-
cuits of varying sizes for the full and reduced circuit mod-
els. The full circuit model contains about 73 operations
for each memory bit. However, for circuits larger than
16K, it was not possible to generate the full circuit model
within reasonable time or memory bounds (empty table en-
tries). Conservative approximations of SRAM circuits, on
the other hand, can be generated for much larger circuits
for a miniscule fraction of the cost of the full model. The
reduced model size grows proportional to the square root
of the SRAM size, and its generation time and memory is
proportional to the SRAM size.

To verify a structural symmetries, we do graph isomor-
phism checks as outlined in section VI. We have modified
the isomorphism checking code [2] from Anamos for our
purpose. Table III reports the running time and memory
taken for converting one instance of the memory core or
column mux permutation into a canonical circuit, and the
total time to do all the isomorphism checks. The total time
and memory requirements scale linearly with the SRAM
size. Table III reports the resources required to check the
structural symmetries. The memory core has four symme-
try generators. We verify that each of these is a symmetry
(columns 2,3,4). Column 4 indicates the number of sym-
metry checks that are required. The column multiplexer

SRAM Size Time Memory
(bits) (CPU Secs.) | (MB)

1K 1.7 0.69

4K 2.1 0.74

16K 2.5 0.88

64K 3.2 1.10

256K 4.2 1.52

TABLE IV

DECODER AND COL. LATCH SYMMETRY CHECKS.

has a number of symmetry generators equal to the num-
ber of column address lines. We also verify each of these
generators (columns 5,6,7). The total time is reported in
column 8. Table IV shows the time and memory required
to check the decoder and column address latch symmetries
by symbolic simulation.

We used the Voss verification system [21] to verify the
reduced SRAM circuit. Table V shows the running time
and the memory required for verifying the write operation
for location 0. In addition, we verify two other properties
— that the read operation reads the value stored at location
0 (Table VI), and that operations at other addresses do
not change the data in location 0 (Table VII). The time
and memory required to verify these other operations is
similar to that of the write. Much of the verification time
and memory is taken to read in the reduced circuit model
and representing it. So, it is not surprising that the time
and memory requirements grow roughly proportional to the
square root of the memory size.

The total verification time for a SRAM circuit is the sum
of the times in tables II, III, IV and V. For example, to
verify a 64K SRAM, 170.7 secs. are required to generate the
reduced circuit model, a total of 952.4 4+ 3.2 secs. are re-
quired to verify the circuit symmetries, and an additional
6.0 + 6.6 + 6.1 secs. are required to verify the reduced
model for all the operations. This gives a total verification
time of 1145.0 secs. It is interesting to note that symme-
try checks dominate much of this time. In the verification
process, the only time we ever work with the complete cir-
cuit is the symmetry check phase. This partially explains
the reason for the relatively large time and memory require-
ments of this phase. However, the circuit isomorphism code
we have used is a simple modification of that in Anamos.
There is considerable scope for reducing time and mem-
ory by developing a specialized circuit isomorphism checker
without the baggage from Anamos. Circuit netlist compar-
ison programs such as schematic-layout checkers routinely
use these isomorphism algorithms to handle graphs with
tens of millions of nodes and edges.

X. CONCLUSION

We show that exploiting symmetry allows one to ver-
ify systems several orders of magnitude larger than other-
wise possible. We have verified memory arrays with multi-
million transistors. The techniques we have developed also

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL. XX, NO. Y, MONTH 1999

17

SRAM size No. of Model Size Anamos Time Anamos Memory
(bits) Transistors (Bool. ops) (CPU Secs.) (MB)
Full | Reduced || Full | Reduced || Full | Reduced
1K 6690 79951 2781 120 4.1 9.6 0.9
4K 25676 307555 5462 863 14.1 36.8 2.1
16K 100566 || 1205239 10895 7066 43.2 144.2 6.0
64K 397642 — 21960 — 170.7 — 22.0
256K 1581494 — 44545 — 732.7 — 80.0
TABLE II
GENERATION OF SRAM MODEL: FULL vS. REDUCED MODEL.
SRAM Size Memory Core Column Multiplexer Total Isomorph.
(bits) CPU Time | Memory | No. of || CPU Time | Memory | No. of || Check Time
(Secs.) (MB) checks (Secs.) (MB) checks (Secs.)
1K 2.6 1.6 4 0.3 0.19 5 11.9
4K 11.1 6.5 4 0.5 0.38 6 47.4
16K 51.2 26.0 4 1.3 0.74 7 214.1
64K 232.1 104.0 4 3.0 1.44 8 952.4
256K 1135.6 416.0 4 6.6 3.50 9 4601.8
TABLE IIT
SYMMETRY CHECKS FOR MEMORY CORE AND COLUMN MULTIPLEXER.
SRAM Size | Verif. Time | Verif. Memory SRAM Size | Verif. Time | Verif. Memory
(bits) (CPU Secs.) (MB) (bits) (CPU Secs.) (MB)
1K 1.5 0.79 1K 1.8 0.87
4K 2.0 1.05 4K 2.2 1.12
16K 3.0 1.80 16K 3.1 1.82
64K 6.0 2.84 64K 6.6 2.90
256K 18.5 4.26 256K 19.6 4.35
TABLE V TABLE VII

VERIFICATION OF REDUCED SRAM WRITES.

SRAM Size | Verif. Time | Verif. Memory
(bits) (CPU Secs.) (MB)

1K 1.7 0.79

4K 2.2 1.05

16K 3.0 1.80

64K 6.2 2.84

256K 18.7 4.26

TABLE VI

VERIFICATION OF REDUCED SRAM READS.

successfully overcome the switch-level analysis bottleneck
for such circuits. We believe that with our work the prob-
lem of SRAM verification is solved. With more compu-
tational resources, and some fine-tuning of our programs,
the results of our experiments indicate that we can ver-
ify multi-megabit SRAM circuits. The techniques we have

VERIFICATION THAT UNADDRESSED LOCATION UNCHANGED.

presented can be used in a rather straightforward manner
to exploit symmetries in other hardware units like set asso-
ciative cache tags, where every set is identical in structure.
One direction for future work in the short run would be to
extend these ideas to verify content addressable memories.
In the longer run, it would be interesting to apply these
ideas to verify hardware units other than memory arrays.
Candidates for such an application include a processor dat-
apath, where one can find the presence of structural sym-
metries because of bit-slice repetition, and data symmetries
arising from the datapath operations.

REFERENCES

[1] S. Aggarwal, R. P. Kurshan, and K. Sabnani. A calculus for
protocol specification and validation. In H. Rudin and C. H.
West, editors, Protocol Specification, Testing and Verification,
volume 3, pages 91-34. IFIP, Elsevier Science Publishers B.V.
(North Holland), 1983.

[2] Derek L. Beatty and Randal E. Bryant. Fast incremental circuit
analysis using extracted hierarchy. In 25th ACM/IEEE Design

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL. XX, NO. Y, MONTH 1999

10]

(11]

(12]

(13]

(14]

(15]

(16]
(17]

18]

(19]

(20]

(21]

(22]

Automation Conference, pages 495-500, June 1988.

Randal E. Bryant. A switch-level model and simulator for MOS
digital systems. IEEE Transactions on Computers, C-33(2):160—
177, Feb. 1984.

Randal E. Bryant. Algorithmic aspects of symbolic switch net-
work analysis. IEEE Transactions on Computer-Aided Design,
CAD-6(4):618-633, July 1987.

Randal E. Bryant. Boolean analysis of MOS circuits. IEEE
Transactions on Computer-Aided Design, CAD-6(4):634-649,
July 1987.

Randal E. Bryant. Formal verification of memory circuits by
switch-level simulation. IEEE Transactions on Computer-Aided
Design, CAD-10(1):94-102, January 1991.

Edmund M. Clarke, Robert Enders, Thomas Filkorn, and
Somesh Jha. Exploiting symmetry in temporal logic model
checking. Formal Methods in System Design, 9:77-104, 1996.
Edmund M. Clarke, Thomas Filkorn, and Somesh Jha. Exploit-
ing symmetry in temporal logic model checking. In Proceedings
of 5th International Conference on Computer Aided Verifica-
tion, pages 450-462, 1993.

C. Ebeling. Geminill: A second generation layout validation pro-
gram. In Proceedings of the International Conference on Com-
puter Aided Design, 1992.

C. Ebeling and O. Zazicek. Validating VLSI circuit layout by
wirelist comparison. In Proceedings of the International Confer-
ence on Computer Aided Design, pages 172—-173, 1982.

E. Allen Emerson and A. Prasad Sistla. Symmetry and model
checking. In Proceedings of 5th International Conference on
Computer Aided Verification, pages 463—-478, 1993.

E. Allen Emerson and A. Prasad Sistla. Symmetry and model
checking. Formal Methods in System Design, 9:105-131, 1996.
Stephen T. Flannagan, Perry H. Pelley, Norman Herr, Bruce E.
Engles, Taisheng Feng, Scott G. Nogle, John W. Eagan,
Robert J. Dunnigan, Lawrence J. Day, and Robert I. Kung. 8-
ns CMOS 64k x 4 and 256k x 1 SRAMs. IEEE Journal of
Solid-State Circuits, pages 1049-1054, October 1990.

Scott Hazelhurst and Carl-Johan H. Seger. A simple theorem
prover based on symbolic trajectory evaluation and OBDDs.
Technical Report 93-41, Department of Computer Science, Uni-
versity of British Columbia, 1993.

P. Huber, A. M. Jensen, L. O. Jepsen, and K. Jensen. Reachabil-
ity trees for high-level Petri nets. Theoretical Computer Science
(Netherlands), 45(3):94-102, 1986.

C. Norris Ip and David L. Dill. Better verification through sym-
metry. Formal Methods in System Design, 9:41-75, 1996.

Kurt Jensen. Condensed state spaces for symmetrical colored
petri nets. Formal Methods in System Design, 9:7-40, 1996.
Manish Pandey. Formal verification of memory arrays. Techni-
cal Report CMU-CS-97-162, Department of Computer Science,
Carnegie Mellon University, August 1997. PhD Thesis.

Manish Pandey, Richard Raimi, Derek L. Beatty, and Randal E.
Bryant. Formal verification of PowerPC(TM) arrays using sym-
bolic trajectory evaluation. In 33rd ACM/IEEE Design Au-
tomation Conference, pages 649-654, June 1996.

P.H.Starke. Reachability analysis of Petri nets using Symme-
tries. Systems Analysis - Modeling - Simulation (Germany),
8(4—5):29373037 1991.

Carl-Johan H. Seger. Voss—a formal hardware verification sys-
tem: User’s guide. Technical Report 93-45, Department of Com-
puter Science, University of British Columbia, 1993.
Carl-Johan H. Seger and Randal E. Bryant. Formal verification
by symbolic evaluation of partially-ordered trajectories. Formal
Methods in System Design, 6:147-189, 1995.

