
Formal Verification of Memory Circuits
by Switch-Level Simulation

�

Randal E. Bryant
Carnegie Mellon University

July 1, 1999

Abstract

A logic simulator can prove the correctness of a digital circuit if it can be shown that
only circuits implementing the system specification will produce a particular response to a
sequence of simulation commands. Three-valued modeling, where the third state � indicates
a signal with unknown digital value, can greatly reduce the number of patterns that need to
be simulated for complete verification. As an extreme case, an � -bit random-access memory
(RAM) can be verified by simulating just ����� log ��� patterns. This approach to verification
is fast, requires minimal attention on the part of the user to the circuit details, and can utilize
more sophisticated circuit models than other approaches to formal verification. The technique
has been applied to a CMOS static RAM design using the COSMOS switch-level simulator.
By simulating many patterns in parallel, a massively-parallel computer can verify a 4K RAM
in under 6 minutes.

1. Introduction

In this paper we present a new approach to verifying digital MOS systems by switch-level simu-
lation. The concepts are developed using the verification of a random access memory (RAM) as
an illustrative example. We also discuss how the fundamental concepts apply to other classes of
circuits.

1.1. Limitations of Conventional Simulation

Simulators provide a valuable tool for testing the correctness of digital circuits. Typically, however,
only a limited set of test cases is simulated, and the circuit is presumed correct if the simulator yields
the expected results for all cases. Unfortunately, this form of simulation provides no guarantee

	
This research was supported by the Defense Advanced Research Projects Agency, ARPA Order Number 4976,

and by the Semiconductor Research Corporation under Contract 88-DC-068. Connection Machine time was provided
by the Northeast Parallel Architectures Center at Syracuse University.

1

for ��� 0 to ��� 1:
Write 1 at location �

for ��� 0 to ��� 1:
Read at location � and test that output equals 1;
Write 0 at location �

for ��� ��� 1 down to 0:
Read at location � and test that output equals 0;
Write 1 at location �

Figure 1: Marching Test. Tests such as this are commonly used to test for flaws in a RAM.

that all design errors have been eliminated. A successful simulation run can indicate either that the
circuit design is correct, or that an insufficient set of test cases was tried. Designers often attempt
to compensate by simulating very large numbers of test cases, consuming perhaps 1 or more weeks
of CPU time on a mainframe computer. Such a brute force approach can only slightly increase the
confidence in a circuit design.

Let us illustrate the limitations of brute force simulation in terms of an � -bit random access
memory (RAM) circuit. Such a circuit has � binary state variables, and ��� 2 inputs, where
�
	 log2 � . If we attempted to simulate memory operation for all possible combinations of input
and initial state, we would need to simulate 2 ����
�� 2 different cases. For even modest values of � ,
this is an unimaginably large number. For example, when ��	 256, we would need to simulate
around 1080 cases. To put this number on a cosmic scale, imagine if all the matter in our galaxy
(around 1017 kilograms [20]) were used to build computers. Suppose furthermore that each of these
computers were the size of a single electron (10 � 30 kg) and could simulate 1012 cases per second.
If these computers had started simulating shortly after the universe was formed (about 1010 years
ago [20]), then by now they would have simulated only around 0.05% of the total number of cases!
Thus, whether we simulate a circuit for 1 second or for 1 year, we can only evaluate a miniscule
fraction of the number of possible input and initial state combinations.

Conventional simulation techniques are surprisingly weak at uncovering design errors. Stories
abound of systems containing fundamental design flaws that remain undetected despite extensive
simulation. As an example, suppose we test a RAM design by simulating a standard memory test,
such as a marching test [22]. This test proceeds as illustrated in Figure 1, marching up and down
the addresses, reading the memory contents and writing the opposite digital value. Although such
a test would detect many potential errors in a memory design, it does not guarantee correctness.
In fact, if we examine the expected output sequence during a marching test, we see that it consists
simply of � 1’s, followed by � 0’s. Consider the circuit illustrated in Figure 2, having the same
external connections as a RAM, but consisting internally of an � -bit shift register in which shifting
is enabled by a write operation. The address inputs have no effect on the circuit operation. This
circuit cannot be used as a RAM, yet it would produce the desired response to the marching test!
Clearly, it is dangerous to rely on a testing methodology that cannot even distinguish between a
correct circuit and an obvious impostor.

2

�Dout

�Din

�write

�A0

�

�

�

�A
 � 1

� -bit Shift Register�

�

�
enable

Figure 2: Impostor RAM Circuit. This circuit would pass a marching test, even though it does
not remotely resemble a RAM.

Conventional wisdom holds that verifying a circuit by simulation is at best impractical and at worst
impossible. As we have seen, the large number of possible input and initial state combinations
would seem to require an overwhelming amount of simulation to test exhaustively. Furthermore, as
Moore has shown [18], a sequential system cannot be fully characterized by observing its response
to a sequence of stimuli. That is, for a given input sequence, we can always construct an impostor
circuit that simply mimics the expected response of the system to this sequence, much as we did
for the marching test.

1.2. Other Approaches to Formal Verification

Most researchers have turned to automated theorem provers [1, 12, 14, 16, 21] to demonstrate that a
circuit meets the specification of its desired behavior. With the current state of the art, this process
is only partially automated. The user must provide complete specifications of every component of
the circuit and guide the program on proof strategies. Furthermore, these programs cannot operate
with the detailed, transistor-level models required to verify complex MOS circuits. As an exception
to this generalization, Weise [23] has developed a verifier that utilizes a very detailed electrical
model. When composing circuits hierarchically, however, his program will at times resort to an
exhaustive case analysis. This yields unsatisfactory performance for certain classes of circuits.

Other researchers have applied model checking programs [5] to construct a data structure repre-
senting the finite state behavior of the circuit, allowing the user to then prove assertions about the
circuit behavior. This approach works well for small, controller circuits but is impractical for cir-
cuits, such as memories, having large numbers of possible states. More recently, these researchers
have developed methods of representing state graphs symbolically [10]. By this means they can
verify properties of state machines that are far too large (up to 1020 states) to represent explicitly.

3

Nonetheless, the memory circuits we verify are beyond the current capacity of even these newer
methods.

1.3. Verification by Simulation

The conventional wisdom about logic simulation overlooks the capabilities provided by three-
valued logic modeling, in which the state set

�
0 � 1 � is augmented by a third value � indicating an

unknown digital value. Most modern logic simulators provide this form of modeling, if for nothing
more than to provide an initial value for the state variables at the start of simulation. Assuming
the simulator obeys a relatively mild monotonicity property, a three-valued simulator can verify
the circuit behavior for many possible input and initial state combinations simultaneously. That is,
if the simulation of a pattern containing � ’s yields 0 or 1 on some node, the same result would
occur if these � ’s were replaced by any combination of 0’s and 1’s. This technique is effective for
cases where the behavior of the circuit for some operation is not supposed to depend on the values
of some of the inputs or state variables. Three-valued modeling can also overcome the machine
identification problem of Moore, assuming the user can command the simulator to set all state
variables to � [6].

1.4. Limitations of Formal Verification

Formal verification involves proving that, under some abstract model of operation, the system
will behave as specified for all possible input sequences. It does not guarantee, however, that the
actual circuit will operate properly. The assumptions made in the abstract model may not hold
in the physical implementation. For example, most methods of verifying digital systems assume
that the circuit adheres to a logic abstraction whereby all signals can be represented by discrete
values. Without such an abstraction, verification would be tedious, if not impossible. Design errors
that cause marginal, nondigital circuit behavior may not be detected by verification against such a
model.

For the case of verification by simulation, we must assume that the abstract model provided by the
simulator faithfully captures the behavior of the actual circuit. When a circuit has been “verified”
by a simulator, it simply means that any further simulation would not uncover any errors. We have
obtained all of the useful information about the circuit that this particular simulator can provide.
For example, once a RAM has passed our verification, we are assured that it contains no design
errors that can be detected by switch-level modeling. Computer time that might have been spent
simulating more test cases at the switch level should instead be used to analyze the circuit at more
detailed modeling levels. It is important to maintain a perspective on just what formal verification
provides. It reflects a limitation intrinsic to any approach to CAD modeling, and not to our method
alone.

2. Overview of Paper

This paper develops the concept of verification by simulation in more detail, using as a case study
the verification of a family of CMOS static RAM circuits by the switch-level simulator COSMOS

4

[7]. The circuit design was constructed solely as a benchmark for verification. However, it contains
the same circuit structures found in actual CMOS static RAM’s [13].

Random access memories are particularly amenable to verification by logic simulation. Although
an � -bit memory has 2 � possible states, an operation on one memory location should not affect
or be affected by the value at any other memory location. Thus many aspects of circuit operation
can be verified by simulating the circuit with all, or all but one, bits set to � , covering a large
number of circuit conditions with a single simulation operation. The resulting verification requires
simulating only ��� � log ��� patterns. Even a minimal test of a memory design, such as a marching
test, requires simulating Ω � ��� patterns to make sure that each location can be written and read
properly. The added log � factor seems a modest price to pay for a rigorous verification.

This case study provides a convincing demonstration of the advantages of verification by simulation.
No other automatic verifiers are currently capable of verifying this design for nontrivial memory
sizes. Most verifiers based on theorem provers do not provide a sufficiently detailed model of
transistor operation to capture the behavior of the circuit. Weise’s verifier would attempt an
exhaustive case analysis of the circuitry forming the entire memory array due to the connections
formed by the pass transistors in the column selector. Verifiers based on model checking would
attempt to construct a finite automaton containing all 2� possible memory states.

The patterns that must be simulated for the formal verification consist of many single cycle tests,
each of which can be simulated independently. Thus the verifier can exploit data parallelism [9],
in which the circuit is simulated for many patterns simultaneously. For example, running on a
32-bit machine, COSMOS is able to simulate up to 32 patterns simultaneously, speeding up the
simulation by a factor of 10–30. In contrast, conventional simulation patterns, such as those in a
marching test, must be simulated in sequence. Consequently, even on a conventional machine, we
can formally verify a RAM faster than we can simulate a simple marching test. Running on a 32K
processor Connection Machine reduces the verification time to a few minutes.

3. Verification Methodology

3.1. Simulation Model

For the purpose of verification, we view the circuit as a finite state machine, as illustrated in Figure
3. The circuit is modeled as an automaton, where each transition corresponds to the operation
of the circuit for a single clock cycle. The automaton has � primary inputs and � state variables.
Included in these state variables are the primary outputs as well as the internal state variables.
We do not distinguish between these two classes of signals, since either can be observed during
simulation. Furthermore, unlike in actual circuits, we assume that the values of the state variables
can be altered by the user. In fact, our simulator treats every electrical node in the circuit as a
state variable. With this abstract model, the process of simulating a circuit can be viewed as one
of operating the automaton. Each cycle of simulation involves setting some of the inputs or state
variables, operating the clocks, and computing new values for the state variables. We can then test
for specified values on some of the state variables.

Since the simulator is assumed to faithfully model the actual circuit behavior, we make no attempt
to distinguish between the circuit and its simulation model. Thus, we need not be concerned

5

����� �
�

�

�∆

��

��

� �
�

� � �� � �

�����
Controllable and Observable State

Figure 3: Abstract Circuit Model Provided by Simulator. The circuit is viewed as a finite state
machine. The state, which can be both controlled and observed, consists of both the internal state
variables and the primary outputs.

with many details of the actual circuit, such as the detailed transistor structure or the timing.
Representing the circuit as a finite automaton corresponds to the view typically seen by the user
of a logic simulator. The simulation program handles the details abstracted away by our model. It
creates data structures representing the logic network and, via its simulation algorithm, implements
the logic model. The clocking methodology is declared at the outset. From this point on, the user
views the simulation task as one of validating a finite automaton. Hence, this circuit model is
appropriate for the discussion here, since our goal in verification is simply to ensure that the user
uncovers any design errors that can be detected by the simulator.

3.2. Three-Valued Modeling

Our simulation model extends the conventional state set for a digital system
�
0 � 1 � with a third

value � indicating an unknown or indeterminate value. In making this extension, the simulation
model must obey certain mathematical properties to capture our intended interpretation of the value

� .

Define the “information ordering” over the set 	 	 �
0 � 1 � � � as the partial ordering where ��
 0,

and �
 1. That is, � indicates an absence of information, while 0 and 1 represent specific,
fully-defined values. When speaking of domains ordered by information content, we say that
values � and
 are “consistent” if either ����
 or
���� , and “inconsistent” otherwise. Value � is
“weaker” than
 if ��
�
 , i.e., ����
 and ���	�
 .
The information ordering is extended to vectors pointwise. That is, two vectors

�� �
�
���	�� , are

ordered
���� �
 when �����
!� for all 1 � �"� # . In other words, one vector value is less than or

6

�

�
1

0

0 1 �
0 1 �
1 1 1

� 1 �

�

�
1

0

0 1 �
0 1 �
1 1 1

� � �

�

�
1

0

0 1 �
0 1 �
1 1 �

� 1 �

�

�
1

0

0 1 �
0 1 �
1 1 �

� � �

Table 1: All Monotonic Extensions of the OR Function.

equal to another if each element of the first is less than or equal to the corresponding element of
the second.

For partially ordered sets � 1, � 2 a monotonic function � : � 1 � � 2 satisfies

����
 	���� � � � ��� �
 �
for all � �
���� 1. Similarly, a monotonic function over multiple arguments satisfies this property
for each argument.

For any program, such as a logic simulator, that processes data ordered by information content,
monotonicity expresses an important property. Suppose the program is given a stimulus containing
incomplete information, e.g., having some inputs equal to � . If the program obeys monotonicity, it
will produce a response consistent with, but potentially weaker than, the response it would produce
given a stronger stimulus.

For logic simulation, the three-valued behavior of a circuit is generally computed by monotonically
extending functions defined over Boolean values to ones defined over ternary values. As an
example, the two-input OR function can be extended monotonically from the Boolean to the ternary
domain in the four different ways shown in Table 1. These extensions are listed from left to right
in order of “pessimism”, i.e., by the number different input combinations that are defined to yield
� . A pessimistic extension is valid, but it will tend to produce � ’s on state variables even when
there is no ambiguity in the actual circuit.

Our verification methodology holds for any simulator that obeys monotonicity. That is, the next
state function ��� � � : 		��
�	
 � 	�� must be monotonic. The algorithms used by our switch-level
simulator COSMOS guarantee this property [8]. Furthermore, any of a number of simulators could
be used for formal verification. Most contemporary logic simulators provide a value � to avoid
the need to find an initial Boolean state of the circuit that does not cause oscillations [17]. The
monotonicity requirement simply expresses the desirable property that in the presence of � values,
the simulator should not set an output or state variable to 0 or 1, when this would not have occurred
had some of the � ’s been 0 or 1 instead. Any reasonable implementation satisfies this.

3.3. Interpretation of Results

Any approach to circuit verification can err in two different ways—it can accept an incorrect circuit
or it can reject a correct one. We term the first form of error a false positive response, and the second

7

�
�
� �

����

��� �

� 1 � 0

�
	 �

�� �
�

� � ���

Figure 4: False Sneak Path Example. When
�

is � , the simulator views the two pass transistors
as potentially forming a sneak path (shown as a dotted line) between data inputs � 1 and � 0.

a false negative response. As shall be shown, our verification methodology can never give a false
positive response. If a circuit produces the expected results from the simulation patterns derived
from the circuit specification, we are guaranteed that no simulation sequence would uncover any
errors in the circuit.

On the other hand, our methodology can produce false negative responses. These responses are
caused by pessimism in the simulation algorithm when modeling the effect of � values. An
example of such pessimism is shown in Figure 4, illustrating part of a pass transistor multiplexor.
Two trees of such multiplexors form the column decoder of our RAM circuit [13]. When the
control signal

�
has value � , the simulator computes the inverter as having output � , and hence

the two pass transistors form a potential sneak path (shown as a dotted line) between the data
inputs � 0 and � 1. Unless � 0 and � 1 happen to be in the same state, the simulator will set both
of them to � . In the actual circuit, the complementary signals on the pass transistor gates prevent
both transistors from conducting simultaneously, and hence this sneak path never forms. Similar
sources of pessimism occur in gate-level simulators, as well [4].

When the simulator produces an � when a 0 or 1 was expected, it could indicate a circuit design
error, or it could simply be a false negative response. The more pessimistic the simulation algorithm,
the greater is the likelihood of producing false negative responses. Unfortunately, computing the
circuit state according to the least pessimistic monotonic function requires solving an NP-hard
problem. Hence, most simulators err on the side of pessimism in the interest of efficiency, with a
resultant tendency toward false negative responses. For example, logic gate simulators typically
simulate each gate according to its least pessimistic monotonic extension [17].

3.4. Assertion Testing

We view the task of verifying a circuit as one of proving assertions about the next state behavior of
the finite state machine illustrated in Figure 3. These assertions are expressed in a notation similar

8

to Floyd-Hoare assertions [11, 15]. Each assertion is an equation of the form

���������	��

���������	��������������
 �
where Initial specifies a precondition on the initial circuit state, Action specifies a condition on the
circuit inputs, and Result specifies a postcondition on the resulting circuit state. All conditions are
expressed as propositional formulas of the form ! 1 " ! 2 " � � � " !$# , where each ! � is a literal of
the form % �'& 	 1 or % �'& 	 0, and % �'& is some circuit input �)(or state variable � (. Furthermore,
no variable may occur in a formula more than once.

An assertion states that for any initial circuit state satisfying Initial, and any circuit operation
satisfying Action, the resulting circuit state should satisfy Result. More formally, a circuit satisfies
the assertion * � � � � �'+ � �-, � ��. � �0/ � � �)+ � if for any initial state

�� �21 � satisfying Initial and any
input

�� �31
 satisfying Action, the state 4 ��56� � �� � �� � satisfies Result.

Once a set of assertions has been devised, a simulator can verify that a particular circuit satisfies
them. The restricted form of the assertion formulas guarantees that, if a vector

���� 	 � satisfies a
formula, then any vector

��87 � 	 � such that
���� ��97 must also satisfy the formula.

For a formula Initial, define the vector
��;: ��	��

< ��6:>= � 	
?@A @B 1 � if the term � � 	 1 occurs in Initial

0 � if the term � � 	 0 occurs in Initial
� � otherwise C

In a similar fashion, define the vector
��ED���	
 according to the terms in Action. Observe that

��F: is
the minimum vector satisfying Initial, and that

��GD is the minimum vector satisfying Action. These
two vectors are equivalent to “cube” representations of the two formulas [19].

Theorem 1 For an assertion * � � � � �'+ � ��, � ��. � �H/ � � �)+ � define corresponding vectors
�� : , �� D

according to the formulas Initial and Action. If the vector Next � �� : � �� D � satisfies Result, then the
circuit satisfies the assertion.

Proof: Let
�� � 	 � be any state satisfying Initial, and

����I1
 be any input satisfying Action.
Clearly,

��J: � �� , and
��9D�� �� . By the monotonicity of Next

4 �K5L� � ��6: � ���D � �M4 ��56� � �� � �� � �

and therefore 4 �K56� � �� � �� � must satisfy Result.

This theorem indicates a straightforward procedure to test that a circuit satisfies an assertion. First,
reset all input and state variables to � . Then set each state variable occurring in the formula Initial
to its specified value. Similarly, set each input variable occurring in the formula Action to its
specified value. Next, simulate one cycle of system operation. Finally, check that the value of each
state variable occurring in Result is as specified. Examples of circuit assertions and the resulting
simulation patterns will be given in the next section.

9

�Dout

�Din

�write

�A0

�

�

�

�A
 � 1

Cell
�

� � �
� � � �

� � � �
� �

� � � � � � � � � � � � �

Expanded View of Cell �

Word �

� �
� �
�

� � � �

� � �
�

� � �
B � B �

Figure 5: Static RAM Circuit

4. RAM Specification

The circuit to be verified is an �
 1 bit static RAM. Memories with larger word sizes can be
verified similarly, by verifying each bit of each word individually while setting all other bits to � .
Figure 5 illustrates the general plan of the circuit. Assuming � 	 2
 , the circuit has address inputs�

 � 1 ��C C C � � 0, a data input � � � , and a control input � & � � � that is set to 1 for a write and to 0 for

a read operation. The circuit has a single output ��. � � . Each memory cell � contains a feedback
path with a pair of inverters connecting nodes 1 � and 1 � , along with a pair of access transistors
[13]. As a shorthand, the formula

� ����� �	� � � � % � expresses the fact that value %�� �
0 � 1 � is stored in

memory cell � : � ����� �	� � � � % �
 1 � 	 % " 1 � 	�� %)C
The desired behavior of a memory circuit can be specified quite easily. Each assertion describes
the effect of a single memory operation. In the following presentation, we ignore the details of the
circuit interface, such as how the clocks are operated, as well as the signalling conventions for the
inputs and outputs. Our verification is valid as long as the interface timing is simulated in the same
manner as the circuit is operated.

First, a read operation should cause the contents of the addressed memory cell to appear on Dout
without altering the cell. For all % � �

0 � 1 � and all 0 � �
 � :

� � �����	� � � � % � � �
	 � " � & � � � 	 0

�
� . � � 	 % " � � �����	� � � � % � � (1)

where the notation
�
	 � is a shorthand indicating that for 0 ��
�
 � , each input line

� # equals
� # , the corresponding bit in the binary representation of � . These assertions can be verified by
simulating a total of 2 � patterns, two for each memory location. Each test involves initializing
one memory cell to a value, all other cells to � , and then reading from the cell’s address. The test
passes if the stored bit appears on Dout, and the cell contents remain unchanged. These simulation
patterns are called the “read” tests.

10

�

�

�

�

� .6&�� 0

� .6&�� 1

� .6&�� 2

� .6&�� 3

��� �

��� �

��� �

��� �

0000001000010011

0100011001010111

1000101010011011

1100111011011111

�

�

� � � � � �

� �
� �

� �

�
2

�
3

� � �
� � �

���
���

�
�
�

���� � � � �
�

� �

�

1 10 0

1 0

�
1

�
0

�

�

�

Din

write
Dout�

0

1

0

0

1

� � � � � � � �
��� � ��� � ��� � ��� � ��� � ��� � ��� � ��� �

� � � � � � � �
��� � ��� � ��� � ��� � ��� � ��� � ��� � ��� �

� � � � � � � �
��� � ��� � 1 � 1 0 � 0 ��� � ��� � ��� � ��� �

� � � � � � � �
��� � ��� � ��� � ��� � ��� � ��� � ��� � ��� �

��� 1

Figure 6: Read Test Example. This test proves the correctness of a read operation for address 9
(shaded) and value 1 from a 16-bit RAM. Labels of the form ���
 indicate the initial and desired
response values of a state variable, where – indicates “don’t care”.

11

As an example of a read test, consider the case of reading the value % 	 1 from location � 	 9
(10012) in a 16-bit RAM. The assertion for this case is given by

� ����� �	� � 9 � 1 � � � 	 9 " � & � � � 	 0
� ��. � � 	 1 " � ����� �	� � 9 � 1 � C

The corresponding test is illustrated in Figure 6. In this figure, each memory cell is labeled by its
address, each primary input is labeled by the value assigned during the test, and each state variable
is labeled by a pair of states written in the form � �
 , where � is the initial value and
 is the expected
resulting value. When
 is –, the response value does not matter. The Initial formula

� ����� �	� � 9 � 1 �
specifies an assignment 1 9 	 1 and 1 9 	 0. All other state variables are initialized to � . The
Action formula

�
	 9 " � & � � � 	 0 specifies an assignment to the primary inputs of

�
3 	 1,�

2 	 0,
�

1 	 0,
�

0 	 1, and � & � � � 	 0. Note that � � � is set to � , since it does not appear in
Action. The Result formula ��. � � 	 1 " � � �����	� � 9 � 1 � specifies an expected response of � . � � 	 1,1 9 	 1, and 1 9 	 0. Note that only these 3 values need to be checked following the simulation.
State variables that do not appear in / � � �)+ � need not be checked.

This example illustrates how three-valued simulation can cover a large number of combinations of
input and initial state with a single simulation operation. By setting all memory cells except for
cell 9 to � , the test proves that value 1 will be read from location 9 regardless of the state of the
rest of the memory. Furthermore, by setting � � � to � , the test also proves that this read operation
does not depend on the input data.

The second part of the specification states that a write operation should cause the addressed memory
cell to be updated. For all %�� �

0 � 1 � and all 0 � �
 � :

	 & � � � � � � 	 % " � 	 � " � & � � � 	 1
� � ����� �	� � � � % � � (2)

These assertions can be verified by simulating 2 � patterns, two for each memory location. Starting
with all state variables set to � , each test writes a value to a location, and then checks that the
value has been stored correctly. These patterns are called the “write” tests.

The final part of the specification states that any memory operation on one cell should not affect
the value stored in any other memory cell. For all %�� �

0 � 1 � , and all 0 � � � �
 � , such that � �	 �
:

� � �����	� � � � % � � �
	 � � � � �����	� � � � % � C (3)

This set of assertions represents 2 � 2 combinations of address and data values.

To gain more efficiency, we can obtain the same effect with just 2 � log � combinations. For an
address � with bit representation � �
 � 1 � C C C � � 0 � , all addresses

�
such that

� �	 � are covered by the
� patterns of the form � � � C C C � � � � � # � � � C C�C � � � for 0 �

 � . For example, the following 4
patterns cover all addresses

� �	 9 (10012) for �
	 4:

�
3
�

2
�

1
�

0

� 1 0 0 1

 	 3 0 � � �

 	 2 � 1 � �

 	 1 � � 1 �

 	 0 � � � 0

12

Word2� � 1

� �
� �
�

� � � �

� � �
�

� � �
B9

1 � �
B9

0 � �

Figure 7: False Negative Response Example. The initial value � on the word line causes the
memory cell to be corrupted.

Thus, the assertions can be replaced by the following assertions for %�� �
0 � 1 � , 0 � �
 � , and

0 �

 � : � ����� �	� � � � % � � � # 	 � ��# � � ����� �	� � � � % � C (4)

These assertions can be verified by patterns in which a memory cell is initialized to some value,
one of the address inputs is set to the complement of the corresponding bit in the cell’s address,
and all other input and state variables are set to � . Following the simulation of one cycle, the cell
value is compared to its original value. These simulation patterns are termed the “address” tests.

5. Circuit Dependent Refinements

Equations 1, 2, and 4 translate directly into a total of 4 � � 2 � log � simulation patterns. However,
on our example circuit, the simulator gives false negative responses for all of the read and address
tests. For example, the read test illustrated in Figure 6 would fail. The cause of this is illustrated in
Figure 7. At the start of simulation, all internal state variables, including the control line � ��� �

2,
are set to � . During the simulation, this line will be set to 1. Before this occurs, however, the
simulator models the effect on memory cell 9 of having its access transistors set to � . That is, it
sets the internal nodes of the cell to � .

These problems with false negative responses can be overcome by adding one new assertion and
by refining the existing ones. The resulting simulation patterns provide an equally rigorous test
that the circuit passes. Refining the specification into a set of simulation patterns requires a more
detailed consideration of the control sequencing and of the row and column addressing structure.
Even with these details, we can ignore many aspects of the design, letting the simulator capture
their behavior by its simulation model.

Assume that the circuit is organized as a
�
�

�
� array of memory cells, where address bits� &6. � 	 �
 � 1 ��C C C � �
�� 2 select the row, and address bits
��, .6+ 	 �
�� 2 � 1 � C C C � � 0 select the column.

As an example, Figure 6 shows the addressing structure for a 16-bit RAM. Address inputs
�

3 and�
2 are decoded to generate the signals on the 4 word lines. Address inputs

�
1 and

�
0 control a

13

tree of bidirectional multiplexors to create a path between the selected column and the data input
or output.

5.1. Control Line Initialization

Correct operation of this circuit relies on the fact that when the circuit is quiescent, the access
transistors to all memory cells are shut off. That is, at the beginning of every memory cycle,� .6&�� � 	 0 for 0 � &�
 �

� . Without this property, two cells in a single column could interact
in undesirable ways, as occurred in the case illustrated in Figure 7. This fact is formulated as a
system invariant � ���
 � � 0 � &
 �

� � [Word � 	 0] C
The invariance of this condition is expressed by a single assertion:

� ����� � 	 & � � � � ���
(5)

That is, following any memory operation, the word lines will return to a quiescent condition.
Testing this invariant involves simply simulating a single cycle of memory operation with all state
and input variables initialized to � and then checking that all word lines are set to 0 at the end.

Once the assertion has been established, the invariant Inv can be assumed as a precondition in all
other assertions, giving a revised assertion for the read tests for all %�� �

0 � 1 � , and all 0 � �
 � :

* � % " � ����� �	� � � � % � � � 	 � " � & � � � 	 0
� � . � � 	 % " � ����� �	� � � � % � C (6)

That is, we can begin all simulation read cycles with the word lines initialized to 0. In Figure 6, the
labels for the word lines would then be 0 � � . With this refinement, the circuit passes the read tests.

Most circuits require some form of system invariant expressing conditions about the control logic
that can be assumed true at the beginning of every clock cycle. Devising the invariant requires
a combination of analysis and experimentation. An insufficient system invariant will become
immediately apparent during subsequent simulations, because output or state variables that should
have Boolean values will equal � .

5.2. Row and Column Decoding

Even with the invariant our circuit still passes only half of the the address tests, namely those
corresponding to the following equations for %�� �

0 � 1 � , 0 � �
 � , and � � 2 �

 � :

* � % " � ����� �	� � � � % � � � # 	 � ��# � � � �����	� � � � % � C (7)

For these tests, some bit
 of the row address is set to � �E# , a controlling value for the NOR gate of
word line decoder for memory cell � . The word line stays at 0 and the bit stored in cell � remains
unchanged. These tests are called the “row address” tests. They prove that no memory cell is
affected by an operation on a cell in a different row.

As an example, Figure 8 illustrates the addressing patterns for the row address tests for memory
location 9 (1001 binary) in the 16-bit RAM of Figure 6. The two address settings: 0 � � � and

14

X

X

0

0

*

A).
�
	 0 � � �

X

X

0

0 *

B).
�
	 � 1 � �

* Cell under
test

Address checked
by test

Key:

Figure 8: Row Address Tests for Memory Location 9. Signals on the left indicate the values on
the word lines. The word line controlling cell 9 remains at 0.

X

X

X

X

*

A).
�
	 � � 1 �

0

0

1

0

*

B).
�
	 101 �

* Cell under
test

Connected to
test cell

Address checked
by test

Key:

Figure 9: Example of First (A) and Second (B) Type of Column Address Test for Memory
Location 9. The tree on the bottom indicates the connections formed by the column multiplexors,
with dotted lines representing pass transistors with gate value � . In A), the word line value of �
causes cell 9 to be corrupted. This is avoided in B).

15

0

0

1

0

*

A).
�
	 10 � 0

0

0

1

0

*

B).
�
	 1000

* Cell under
test

Connected to
test cell

Address checked
by test

Key:

Figure 10: Example of Second (A) and Third (B) Type of Column Address Test for Memory
Location 9. In A), a sneak path forms through the column multiplexor between cell 9 and an
adjacent cell. This is avoided in B).

� 1 � � cause the word lines to have the values shown on the left. In both cases, cell 9 remains
isolated from all others. The dark shaded areas indicate the cell addresses covered by these two
tests. The union of these areas includes all addresses in other rows of the memory.

For the cases that fail, the NOR gates of the word line decoders have all � ’s on their inputs, causing
sneak paths to form between the cell under test and other cells in the column. Figure 9A shows
an example of such a pattern for memory location 9 in the 16-bit RAM of Figure 6. Although no
connection is formed between this cell and the data input or output, (indicated by the tree structure
at the bottom), the stored bit is corrupted by the other cells in the column (indicated by the lightly
shaded area.)

Fortunately, we can overcome this problem by removing some of the redundancy from the tests.
Once a circuit passes the row address tests, we need only show that no memory cell is affected
by an operation on a cell in a different column of the same row. This can be expressed by the
following equations for %�� �

0 � 1 � , 0 � � � �
 �
� , and 0 �
�
 � � 2:

* � % " � ����� �	� � �
� �

�
� � % � � � &6. � 	 � " � # 	 � � # � � ����� �	� � �

� �
�
� � % � C

These assertions define a series of tests in which the memory cell at row � , column
�

is initialized
to a value % , the row address is set to � , and some bit of the column address is set to the complement
of the corresponding bit in

�
. Figure 9B shows an example of such a pattern for memory location

9. The word lines are set so that only cells in a single row are accessed. Furthermore, the column
addresses are set so that the column containing cell 9 remains isolated. This test covers the two
cell addresses indicated by the darkly shaded area.

Even with this refinement, our circuit encounters a new problem due to the tree structure of the
column selector. Under normal operation of the circuit, all cells in the selected row are read, and
the pass transistors of the column multiplexors form a path between the selected column and the
data input and output. When some of the column address lines equal � , however, the simulator
finds false sneak paths throughout the column multiplexor, causing a connection between the cell
under test and one in another column. An example of this problem is shown in Figure 10A. Even
though only a single row of cells is accessed, a sneak path forms between the column containing
cell 9 and an adjacent column (indicated by the lightly shaded area).

16

Again, this problem can be overcome by removing some of the redundancy from the tests. For a
column address

�
having bit representation � �

�� 2 � 1 � C�C C � �
0 � , all column addresses not equal to

�
are

covered by patterns of the form � � �

�� 2 � 1 � � � C C C � � � , � �

�� 2 � 1 � � �

�� 2 � 2 � � � C C�C � � � , and so on up

to � �

�� 2 � 1 ��C C C � �

1 � � �
0 � . Each of these patterns has the property that the simulator will never find

a path of potentially conducting transistors (i.e., with gate value 1 or �) between the bit lines of
column

�
, and those of any other column. These tests can be expressed by a revised set of equations

for % � �
0 � 1 � , 0 � � � �
 �

� , and 0 �
�
 � � 2:

* � % " � � �����	� � �
� �

�
� � % � (8)� � &6. � 	 � " � # 	 � � # " � �

 �
 � � 2 � [��� 	 � �

]
�

� � �����	� � �
� �

�
� � % � C

These tests are called the “column address” tests.

The pattern of Figure 9B shows one of the column address tests for location 9 in the 16-bit RAM
of Figure 6. The other is shown in Figure 10B. Observe that in both cases, the column containing
cell 9 remains isolated, avoiding any corruption of the value stored there. The darkly shaded areas
indicate the cell addresses tested by these patterns. The union of these areas includes all other cells
in the row containing cell 9. These, combined with the two row address tests of Figure 8 cover all
possible addresses other than location 9. That is, our final selection of address values is:

�
3
�

2
�

1
�

0

� 1 0 0 1

 	 3 0 � � �

 	 2 � 1 � �

 	 1 1 0 1 �

 	 0 1 0 0 0

Equations 2, 5, 6, 7, and 8 together define a total of 1 � 4 � � 2 � log � simulation patterns that
our circuit passes and that prove its correctness.

6. Simulator Performance

The simulation operations called for by our memory verification tests differ markedly from those
used in more traditional simulation methodologies. Each involves resetting the simulator to a
condition where all input and state variables equal � , setting a small number of inputs and state
variables to Boolean values, and then simulating a single cycle. In contrast, most simulators are
designed to simulate long sequences of Boolean patterns. The differences between these two
styles of simulator usage place differing demands on simulator functionality and performance. In
developing the switch-level simulator COSMOS, we attempted to satisfy the needs of both forms
of simulation.

Most simulators employ very pessimistic or inefficient algorithms for computing the behavior of a
circuit in the presence of � ’s. With conventional usage, there is no need to do better, because most
� ’s are eliminated at the start of simulation and never arise again. For our verification patterns,
however, � ’s are the rule rather than the exception, and hence the algorithms must be as accurate

17

� Verification Transistors Marching Serial Bit-Parallel CM Parallel
Patterns Test Verification Verification Verification

4 33 113 1.0 s. 2.0 s. 0.6 s.
16 193 235 8.4 s. 22.6 s. 2.0 s.
64 1,025 611 117 s. 385 s. 19.3 s.

256 5,121 1,931 30.8 m. 122 m. 4.4 m. 11 s.
1024 24,577 6,875 7.2 h. 31.9 h. 1.1 h. 46 s.
4096 114,689 25,995 137 h. 23 h. 5.6 m.

Table 2: COSMOS CPU Times on MicroVax-II and on CM-2

and efficient as possible. The algorithms used by COSMOS satisfy these goals reasonably well,
although, as the static RAM example shows, developing a set of verification patterns requires some
understanding of both the circuit design and the simulation algorithm.

In the design of the switch-level simulator COSMOS, we were also able to optimize the efficiency
when simulating many short sequences. Most of these optimizations involved simply tuning the
performance of code that is normally considered non-critical, such as the code to reset all state
variables of a circuit to � .

More significantly, however, we can take advantage of the fact that each of the test sequences can be
evaluated independently. By exploiting data parallelism [9] the simulator can evaluate many test
sequences simultaneously. Running on a conventional 32-bit machine, our program can simulate
up to 32 patterns in parallel. This mode exploits the bit-level parallelism available in computer logic
operations. The COSMOS preprocessor transforms a transistor network into a set of evaluation
procedures that utilize only memory references and logical operations. Hence, bit-level parallelism
adds little extra cost. Experiments indicate that it increases simulation performance by a factor of
10–30. Running on a 32K processor Connection Machine, our program can simulate up to 32K
patterns in parallel. In this mode, each processor maintains the state of the circuit for a single test
case. The controller commands the processors to perform logic operations on their copies of the
circuit state.

Although this would appear to be an obvious way to improve performance, most simulators make
no use of data parallelism. Many simulation algorithms cannot exploit it. Furthermore, with
conventional simulator usage, the simulation patterns are not formulated as a set of independent
tests that can be run in parallel. Other work on parallel simulation attempts to exploit circuit
parallelism, in which many circuit elements are evaluated simultaneously while simulating a single
input sequence. Circuit parallel simulation has the advantage that it can be used in the same manner
as conventional simulation. To date, however, no one has demonstrated a significant performance
advantage over serial simulation.

7. Experimental Results

The verification methodology has been applied to memory sizes ranging from 4 to 4096 bits. The
performance of the program is shown in Table 2. Columns 4–6 of this table show simulation
CPU times, measured on a Digital Equipment Corporation MicroVax-II. Column 4 shows the

18

time to simulate a marching test, giving a minimal test that all locations can be written and read,
but not proving the circuit’s correctness. Column 5 shows the time to simulate the verification
patterns without using bit-level parallelism. Column 6 shows the time to simulate the verification
patterns using 32 way bit-level parallelism. Column 7 shows the time on a 32K processor Thinking
Machines CM-2 with a VAX 8800 as host.

As can be seen, the bit-level parallel verification is faster than a simple marching test! Although
a marching test requires simulating only ��� � � cycles, the extra log � factor of the verification
patterns is more than compensated for by the speed-up provided by bit-level parallelism. Observe,
however, that the overall simulation time in all 3 cases grows roughly quadratically with the memory
size. As the memory size grows, both the number of patterns and the time to simulate a single
pattern grow at least linearly. This complexity becomes noticeable for larger memory sizes. As
can be seen from the table, we are approaching the limit of practicality for conventional machines.

Mapping the simulation onto the CM-2 decreases the time to verify a circuit dramatically. Even
our largest circuit requires less than 6 minutes to verify. At present, mapping still larger memory
circuits onto the machine is difficult due to the memory limitations of the CM-2 processors. Our
mapping requires 4 bits per node plus temporary storage for Boolean evaluation on each processor.
The 4K RAM circuit has 8839 nodes and requires nearly 18,000 bits of additional temporary
storage. This consumes nearly the entire memory capacity (64K bits/processor) of the current
machine. This size limitation will improve as machines with larger memory capacity become
available.

8. Observations and Future Directions

This paper has shown that a typical CMOS static RAM design can be formally verified easily and
efficiently by three-valued, switch-level logic simulation. Although these patterns were developed
specifically for this design, similar techniques can develop patterns for almost all RAM designs.
We have extended the methodology to verify a dual-ported RAM from an actual chip design by
simulating ��� � log2 � � patterns [2]. Other classes of memory designs can also be verified by
simulating a linear, or nearly-linear number of patterns. Included among these are shift registers,
FIFO’s, and stacks. On the other hand, content-addressable memories do not seem to fit into this
class, since it is not as easy to identify where a particular datum will be stored.

Other classes of circuits cannot be verified by simulating a polynomial number of patterns. Many
functions computed by logic circuits, such as addition and parity, depend on a large number of
input or state variables. For these circuits, we propose symbolic simulation [3] as a feasible and
straightforward approach to design verification. A symbolic simulator resembles a conventional
logic simulator, except that the user may introduce symbolic Boolean variables to represent input
and initial state values. The simulator computes the behavior of the circuit as a function of these
Boolean variables. Symbolic simulation can utilize a methodology similar to that shown in this
paper, by allowing the formulas in an assertion to be predicates containing universally-quantified
Boolean variables. For example, we could view Equations 1, 2, and 3 as each representing a single
assertion, and verify the RAM by simulating just three symbolic patterns.

Symbolic simulation has advantages over conventional simulation in both efficiency and ease of
use. Our initial experiments indicate that a symbolic simulator using good symbolic Boolean

19

manipulation algorithms can achieve acceptable performance in many cases where conventional
simulation would be impractical. Furthermore, there is less need to optimize simulation efficiency
via such circuit-dependent refinements as were used in the RAM verification. Symbolic simulation
can more accurately distinguish false from actual sneak paths. For example, suppose input

�
in

Figure 4 were set to Boolean value � . Then the simulator would recognize that no sneak path is
formed, since � � � 	 0.

Although we have set a new standard for the size and class of circuit that can be verified formally, it
is clear that some other technique is required to verify very large memories. Ideally, a verifier should
be able to prove the correctness of an entire family of circuits given a parameterized description of
the family [12]. Families of RAM circuits have very concise descriptions and hence seem ideal for
this style of verification. However, developing such a verifier that can handle a sufficiently detailed
MOS circuit model is no easy task.

References

[1] H. G. Barrow, VERIFY: a program for proving correctness of digital hardware designs.
Artificial Intelligence 24 (1984), 437–491.

[2] D. Beatty, Personal communication, 1988.

[3] D. L. Beatty, R. E. Bryant, and C.-J. H. Seger, “Synchronous circuit verification by symbolic
simulation: An illustration,” 6th MIT Conference on Advanced Research in VLSI, April, 1990.

[4] M. E. Breuer, “A note on three-valued logic simulation,” IEEE Transactions on Computers
C-21, 4 (April 1972), 399–402.

[5] M. C. Browne, E. M. Clarke, D. L. Dill, and B. Mishra, “Automatic verification of sequential
circuits using temporal logic,” IEEE Transactions on Computers C-35, 12 (Dec. 1986), 1035–
1044.

[6] R. E. Bryant, A methodology for hardware verification based on logic simulation, Technical
Report CMU-CS-87-128, Carnegie Mellon University, June, 1987.

[7] R. E. Bryant, D. Beatty, K. Brace, K. Cho, and T. Sheffler, “COSMOS: a compiled simulator
for MOS circuits,” 24th Design Automation Conference, 1987, 9–16.

[8] R. E. Bryant, “Boolean analysis of MOS circuits,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems CAD-6, 4 (1987), 634–649.

[9] R. E. Bryant, “Data parallel switch-level simulation,” Int. Conf. on Computer-Aided Design,
IEEE, 1988, 354–357.

[10] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill, “Sequential circuit verification
using symbolic model checking,” 27th Design Automation Conference, 1990.

[11] R. W. Floyd, “Assigning meanings to programs,” Proc. Symp. in Applied Mathematics, 19—
Mathematical Aspects of Computer Science, Schwartz, J. T., Ed. AMS, 1967, 19–32.

20

[12] S. M. German, and Y. Wang, “Formal verification of parameterized hardware designs,” Int.
Conf. on Computer Design, IEEE, 1985, 549–552.

[13] L. A. Glasser, and D. W. Dobberpuhl, The Design and Analysis of VLSI Circuits, Addison-
Wesley, Reading, MA, 1985.

[14] M. Gordon, “Why higher-order logic is a good formalism for specifying and verifying hard-
ware,” Formal Aspects of VLSI Design, G. Milne and P. A. Subrahmanyam, eds., North-
Holland, 1986, 153–177.

[15] C. A. R. Hoare, “An axiomatic basis for computer programming,” Comm. ACM 12 (1969),
576–580.

[16] W. A. Hunt, “The mechanical verification of a microprocessor design,” From HDL Descrip-
tions to Guaranteed Correct Designs, D. Borrione, ed., North-Holland, 1987, 89–129.

[17] J. S. Jephson, R. P. McQuarrie, and R. E. Vogelsberg, “A three-level design verification
system,” IBM Systems Journal 8, 3 (1969), 178–188.

[18] E. F. Moore, “Gedanken-experiments on sequential machines,” Automata Studies, Shannon
C. E., and McCarthy, J., Eds. Princeton University Press, Princeton, NJ, 1956, 129–153.

[19] J. P. Roth, Computer Logic, Testing, and Verification, Computer Science Press, Rockville,
MD, 1980.

[20] M. Rowan-Robinson, Cosmology, 2nd edition, Clarendon Press, Oxford, 1981.

[21] R. E. Shostak, “Verification of VLSI designs,” Proceedings of the Third Caltech Conference
on VLSI, Bryant, R., Ed. Computer Science Press, Rockville, MD, 1983, 185–206.

[22] S. Weingarden, and D. Pannell, “Paragons for memory test,” International Test Conference,
IEEE, 1981, 44–48.

[23] D. Weise, “Functional verification of MOS circuits,” 24th Design Automation Conference,
ACM and IEEE, 1987, 265–270.

21

