CMOS Circuit Verification with Symbolic
Switch-Level Timing Simulation

Clayton B. McDonald (clayton@ece.cmu.edu)
Randal E. Bryant (randy.bryant@cs.cmu.edu)
Electrical and Computer Engineering Department
Carnegie Mellon University
5000 Forbes Ave, Pittsburgh, PA 15213

Abstract

Symbolic switch-level simulation has been extensively applied to the functional verification of CMOS circuitry. We have extended this
technique to account for real-valued, data-dependent delay values, and have developed a novel mechanism for symbolically computing data-
dependent Elmore delays. We present our symbolic simulation and delay calculation algorithms, and discuss their application to the timing
and functional verification of full-custom transistor-level CMOS circuitry.

I. INTRODUCTION

Symbolic simulation is a form of data-parallel simulation in which Boolean functions are used to encode a set of input
data patterns. In conventional simulation the user applies a pattern of constant 0’s and 1’s to each of the circuit inputs,
steps the simulator, and verifies that the outputs and state elements have settled to the desired values. With a symbolic
simulator, the user may substitute Boolean variables for any of the input values to signify that the input may be either
a 0 or a 1. If the user applies n Boolean variables, the symbolic simulator will perform the equivalent of 2" conventional
simulations. The outputs and state elements of the circuit will evaluate to Boolean functions of the input variables,
which can be verified against the desired behavior.

Previous work on symbolic simulation has largely focused on unit-delay models, in which all node transitions require a
uniform amount of time. This is sufficient for the majority of functional verification problems, but is clearly inadequate
for verifying circuit timing. In some cases, as we show in Section ITI-A, more sophisticated timing models are often
required simply to model functionality.

Event-driven symbolic simulation has previously been extended to handle some degree of timing information. Devadas
et.al. [6] constructed a gate-level symbolic simulator that utilized pre-assigned gate delays in order to study the transition
delay of combinational circuits. However their gate-delay model is unable to simulate separate rising and falling delays, a
crucial capability for extension to the transistor level. The skewed inverter in Figure 1(a) is one example which exhibits
this behavior. Since the pulldown nFET is stronger than the pullup pFET, the output will fall more quickly than it will
rise.

Seger and Bryant [16] proposed another extension to event-driven symbolic simulation to model rising vs. falling
delays on specific nodes by inserting explicit delay elements and additional logic gates. One drawback of their model
is its assumption of quantized delays. Furthermore, it is limited to the assignment of a single rising and falling delay
value for any given node, which fails to capture several other data-dependent delay cases. Consider the data-dependent
loading on the inverter output in Figure 1(b). Here, the output capacitance (and thus the inverter’s delay) is dependent
on the state of signal b. Another case is the asymetric NOR-gate in Figure 1(c), where the falling delay is dependent on
which input fired.

This research was supported by the SRC (contract DC-068), Intel Corporation, and Motorola.

c
b
SMALL e
in out inﬁ d ﬂ
LARGE $ $ d—[LARGE c—{[smALL
(b)

@) (©

Fig. 1. Data-dependent Delay Examples

<0

Fig. 2. IRSIM Circuit Model

To capture the full generality of the data-dependent delay model, we have developed a new methodology called symbolic
timing simulation (STS). This methodology has been implemented in the simulator SirSim, a symbolic extension of
the well-known transistor-level timing simulator IRSIM[15]. SirSim is event-driven and utilizes several novel event-
management techniques which allow for arbitrary real-valued delays. To capture the effects demonstrated in Figure 1,
we have also developed a procedure for computing data-dependent delays in transistor networks at run-time. The details
of these algorithms are presented in Section II.

STS has applications in both functional and timing verification of VLSI circuits. We discuss these applications and
the advantages of STS in Section III, and present experimental results from applying SirSim to a number of substantial
test-cases in Section IV. Section V gives our conclusions and suggests future work.

II. IMPLEMENTATION

As a testbed for symbolic timing simulation, we have implemented a symbolic version of the timing simulator IR-
SIM[15]. IRSIM is itself derived from two earlier simulators, RSIM and nRSIM. RSIM[18] introduced the concept of
event-driven switch-level timing simulation based on Elmore delays[7], [14], which are delay estimates computed as RC
products. It models transistors as switched linear resistors and all capacitors are connected to ground. Figure 2 shows
a simple circuit and its representation under the RSIM model.

RSIM contained a simple and somewhat pessimistic model of nodes with unknown (X) values. nRSIM[5] improved
on this model of X values and introduced several other enhancements, such as an improved model of charge-sharing
effects and the simulation of transient voltage spikes. Lastly, IRSIM implemented an incremental simulation model,
where circuit updates could be analyzed with only partial re-simulation. SirSim (Symbolic IRSIM) implements the full
nRSIM model with the exception of voltage spikes, but does not include incremental simulation. Thus it is primarily
indebted to nRSIM, despite being based on the the IRSIM source code.

A. FEvent Handling

IRSIM is an event-driven timing simulator, and utilizes relatively standard event-management techniques with several
interesting enhancements. All circuit nodes are capable of maintaining their voltage state, which can be either 0,1 or
X. “Events” are defined as changes in the state of a circuit node at a particular time. Thus an event has the following
form:

Event = (Node,Time,Value)
Node : Circuit node to be updated
Time : Absolute time of event

Value : New node value € {0,1,X}

© 00O Ut ix Wi

CleanEvents(node n, real time)
Ve € EventQueue such that (e.Node = n) A (e.Time > time)
Delete e from EventQueue

Simulate()
while((node,value, time) + GetNext())
curtime < time
node.value < value
N « AffectedNodes(node)
Vn € N
newvalue < ComputeDC(n)
if(newvalue # n.value)
Taetay + ComputeDelay(n)
EnqueueEvent((n,newvalue, curtime + Tgeiqy))
CleanFEvents(n, curtime + Tyeiay)
else
CleanEvents(n, curtime)

Fig. 3. Conventional Scheduling Algorithm
t=0ns
in x>< y
t=1.1ns t=2.3ns
ot x Xxyly

Fig. 4. Skewed Inverter Timing Diagram

Although events are handled as if instantaneous, IRSIM associates a transition time with each event that is used in
the computation of resultant transition delays. While we will not discuss how this information was incorporated into
SirSim, it is straightforward to do so using the techniques presented in this paper.

Pending events are stored in the event queue, where they are sorted by increasing time. The main simulation loop
repeatedly selects the earliest event in the event queue and updates the node state. It then identifies affected downstream
nodes, recomputes their steady-state node values, determines the delays to each node, and schedules the appropriate
events.

IRSIM extends this procedure with an inertial delay model, which filters out input glitches having durations less than
the stage delay. This is accomplished by removing all pending events on a stage output when it is determined that the
current state matches the steady-state value.

IRSIM’s event-handling procedure is shown in Figure 3. This algorithm has been re-organized slightly to facilitate
comparison with the symbolic version, and several important features have been dropped. In particular, we will only
discuss binary simulation here, while the generalization to ternary simulation (node values € {0,1, X'}) will be covered
in Section II-G. In addition, we do not show the handling of charge-sharing effects and several efficiency enhancements.

Simulate contains the main simulation loop. It calls GetNext to obtain the earliest pending event, and updates
curtime and the node state. It then calls AffectedNodes to determine which downstream nodes need to be visited. For
each downstream node, it determines the new steady-state value using ComputeDC, and checks if the node value has
changed. If it has changed, it computes the logic stage delay with ComputeDelay and schedules a new event on the
node.

CleanFvents scans through the event queue, deleting all events on the specified node that are scheduled to occur after
a certain time. The first use of CleanFvents, immediately after the new event is enqueued, overrides previously computed
node values that would take effect after the newly-inserted event. This is necessary because the newly-inserted event
represents the latest information about the node’s steady-state value and shouldn’t be overwritten by long-delay events
generated previously using old information. The second call to CleanFEvents, performed when no change is detected on
the node, is used to implement the inertial delay model.

B. Symbolic Event Handling

Utilization of IRSIM’s event-handling methodology in the symbolic domain requires some additional enhancements.
First of all, each circuit-node’s state is no longer a simple scalar value in {0,1}!, but a Boolean function of the variables
applied to the circuit inputs. We have chosen to represent node state with Reduced Ordered Binary Decision Diagrams
(ROBDDs, or simply BDDs)[3].

The primary difficulty is the proper scheduling of data-dependent delays. Consider again the skewed inverter example
from Figure 1. If the input switches from symbolic variable z to symbolic variable y, either or both of which could
represent 0 or 1, it is not obvious when the resultant event should be scheduled on the output. However, for any given
input pattern, the output will transition at some well-defined point in time. Thus, the value of that node at any time
can be represented by a Boolean function of the input variables, and the full symbolic transition is actually a progression
through a series of node functions.

Using this idea, we will construct a valid sequence of functions for the output node of the skewed inverter. If we
determine that a falling transition on the output occurs after 1.1ns and a rising transition occurs after 2.3ns, we obtain
the series of 3 node functions shown in Figure 4. Initially, the output function is Z, and eventually it settles to 7. Since
a falling transition will occur at the first timepoint and a rising transition will not occur until the second timepoint, the
only way that out will be high in between is if both z and y were 0 and the output actually remained high continuously.
This behavior is captured in the function ZA7. In general, the output node function will progress from being dependent
only on the old input variables to being dependent on the new, and in between it will be dependent on a mix of the two.

B.1 Event Masks

The key to handling data-dependent delays is to view symbolic simulation as simultaneously simulating all possible
input patterns. Under different input patterns, a particular transition might occur at different points in time, or perhaps
not occur at all. For the inverter example above, the falling transition always occurs at the same time, but only when
the old value z is 0 and the new value y is 1. The rising transition only occurs when z is 1 and y is 0, and no transition
occurs if z = y.

In the conventional event-handling algorithm described above, node state was updated by assigning an event’s value
to the node. For the symbolic case, we wish to update the node state selectively, so that it is not disturbed for input
patterns under which no event should occur at that time. This is accomplished using event masks, which are Boolean
functions that encode the conditions under which a transition occurs. The mask is added to each event record, such
that an event is now defined as :

Event = {(Node, Time, Value, Mask)

Note that we have used boldface for the Value and Mask fields to highlight the fact that they are Boolean functions
rather than scalar values. This convention will be used for the remainder of this paper.

Rather than simply copying the event’s Value field into the output node’s state, we select the event value only for
those cases where the event mask is true:

Node.Value + (Event.Mask A Event.Value) V (Event.Mask A Node.Value)

Since our implementation utilizes BDDs, the above computation can be more efficiently computed using the equivalent
ITE (if-then-else) operation, which forms the core of most BDD packages :

Node.Value < ITE(Event.Mask, Event.Value, Node.Value)

For the skewed inverter example, we would schedule events at both 1.1ns and 2.3ns having masks (Z Ay) and (z A7)
respectively, both with the steady-state value y :

@t =1.1ns out.Value =((ZAy)ATG)V((ZAyY)AT)
—PAT

@t =2.3ns out.Value = ((zAG) AV (xATY)A(TAT))
=y

1X values will be incorporated in Section II-G

Fig. 5. Example MTBDD

B.2 Delay MTBDDs

Before we can describe our implementation of event masks in SirSim’s event-handling algorithm, we must describe
the data structure used to encode data-dependent delay values. Since the potential delays associated with a transition
are defined for mutually disjoint sets of input assignments, they can be represented as mappings from Boolean values
to real numbers:

F:B"—R

One method of representing such mapping functions is known as a Multi-Terminal Binary Decision Diagram (MTBDD)[1].
MTBDDs are generalizations of BDDs that allow an arbitrary number of real-valued terminals. For example, the
MTBDD in Figure 5 represents the function F' having two inputs a and b. To determine the return value for any given
input assignment, we work downwards from the root, following the solid arc from nodes assigned 1 and the dashed arcs
from nodes assigned 0. We can see that F' < 2.5 when either a or b is 1, and F' ¢ 1.2 otherwise.

To describe the MTBDD operators needed by our algorithm, we introduce the following notation. Let us define
A = {ag,a1,...,a2n_1} as the set of 2" possible assignments to the n variables in the support of MTBDD M, and
define M,, as the terminal value returned by M under the assignment a;. We will consider BDDs to be a special case
of MTBDDs where M,; is limited to the set {0,1}.

The operator MtbddITE (I, T, E) is similar to the BDD ITE operator, selecting T for assignments which satisfy I and
selecting E otherwise. Note that I must be a BDD, while T and E are MTBDDs. MtbddITE returns an MTBDD RITE,
such that for all i:

[((Ta; = 1) > (REF® = To))) A (T = 0) — (RET® = Ey,)]

The functions MtbddEqual(M,v) and MtbddThreshold(M,v) are used to map from MTBDDs to BDDs. MtbddEqual
replaces all terminals in MTBDD M that are equal to v with 1, and replaces all others with 0. MtbddThreshold replaces
terminals in M that are greater than v with 1, and the remainder with 0. They return the BDDs RFaual apnd RThreshold
respectively, such that for all 4:

[Rfiq“al =1 <= My = v)]

[R':‘ihreshold =1 = (Mg, > v)]

The last operator needed for this algorithm is MtbddMinValue(M), which returns the smallest terminal value d in
MTBDD M:
d= MZTLZ(Mal)

At times, we will also need to convert scalar constants into trivial MTBDDs containing only a single terminal node.
For an arbitrary scalar «, the trivial MTBDD will be denoted [a].

To illustrate the use of MTBDDs for representing data-dependent delays, Figure 6(a) shows the MTBDD that might
result from a static 2-input NOR gate formed from equally sized transistors. Note that the pulldown delay is smaller in
the case where both a and b are true than in the case where only one is true. Also note that the pullup delay (a and b
false) is significantly larger than the pulldown delay.

In the worst case, the delay MTBDD Tgelay can become exponentially large relative to the number of inputs to the
circuit. However, our delay calculations are performed on single stages of logic, and the subcircuits in consideration
are typically quite small. Furthermore, larger logic stages tend to be highly regular, allowing for significant sharing in
the MTBDD delay representation. For example, consider the 4-input dynamic NOR gate in Figure 6(b), and its delay
MTBDD. One terminal is required for each number of pulldown FETs that can be on at the same time, resulting in
a Tgelay With 17 total nodes. An arbitrary width NOR gate constructed in this manner will produce a Tgelay that is
quadratic in the circuit size, rather than exponential.

© 00O Ut W

0.8ng|0.4ns | 0.2ns 1ns |nf_

.2ns

(a) 2-input Static NOR (b) 4-input Dynamic NOR

Fig. 6. Example Delay MTBDDs

SymbolicCleanEvents(node n, real time, BDD mask)
Ve € EventQueue such that (e.Node = node) A (e.Time > time)
e.Mask < e.Mask A mask
if(e.Mask = FALSE)
Delete e from EventQueue

SymbolicSchedule(node n, BDD value, MTBDD Tgelay)
while(Tdelay # [OO])

dmin < MtbddMinValue(Tgelay)
mask + MtbddEqual (T gelay, dmin)
time < curtime + dmin
SymbolicCleanEvents(n,time, mask)
EngueueFEvent((node, time, value, mask))
Tdelay < MtbddITE (mask, [00], Tdelay)

SymbolicSimulate()
while((Node, Time, Value, Mask) < GetNext())
curtime < Time
Node.value < ITE(Mask, Value, Node.value)
N « SymbolicAffectedNodes (N ode)
VneN
newvalue + SymbolicComputeDC (n)
change < newvalue @ n.value
if(change # FALSE)
Telay < SymbolicComputeDelay (n)
Tdelay ¢ MtbddITE (change, Tgelay, [0])
SymbolicSchedule(n, newvalue, T gelay)
SymbolicCleanFEvents(n, curtime, change)

Fig. 7. Symbolic Scheduling Algorithm

B.3 Symbolic Event-Handling Procedure

We now have the basic machinery needed to implement the symbolic event handling procedure for SirSim (Figure 7),
based on the conventional IRSIM algorithm presented above. Throughout this discussion, we will continue to denote
symbolic values (BDDs and MTBDDs) with boldface (F), while scalar values will appear in normal type. In SirSim,
all BDD and MTBDD primitive operations are performed using the University of Colorado Decision Diagram Package
(CUDD) version 2.2.0[1], [17].

SymbolicSimulate forms the main body of the simulator, and it differs from Simulate in several places. First of all,
scalar node values have been replaced with symbolic node values, represented as BDDs, and masks have been added to
each event record. Also, all calls to subroutines have been replaced by symbolic versions.

As discussed in Section IT-B.1, the node state update is performed selectively using the ITE operator and the event
mask. Once the node state has been updated, SymbolicSimulate identifies those nodes requiring recomputation, and
iterates on them as in the conventional algorithm. SymbolicComputeDC returns a BDD representing the symbolic
steady-state value for the node. In the symbolic case, the same node may change state under one input assignment but
remain stable under another. Therefore, we must compute the function change as the XOR of the old and new state,
and then use this function to selectively perform both new event scheduling and event-cancellation.

New event scheduling begins by computing an MTBDD representing the data-dependent logic-stage delay. Using
MtbddITE, Tgelay is then modified by setting it to oo for all input assignments where no state change occurs.

SymbolicSchedule is new, and is responsible for creating new events for each of the possible delay-cases represented
in the delay MTBDD. Its main loop repeatedly selects the smallest remaining terminal value, dmin, in Tgelay- It then
selects the subset of events which will occur at time curtime + dmin using MtbddEqual. This result becomes the mask
for the new event, which is assembled and inserted into the event queue. The last line of the SymbolicSchedule loop
modifies Tgelay so that dmin will get the next smallest terminal on the subsequent iteration.

Event cancellation to implement the inertial delay model is performed by the call to SymbolicCleanFEvents inside
SymbolicSimulate. Like CleanFEvents, its purpose is to remove any events on the specified node that occur after a certain
time. However, event removal is now qualified by a masking function, such that only those events that occur under
certain input assignments will be removed. This translates directly into reducing the event mask by ANDing it with
the inverse of the passed-in masking function. If the event mask becomes FALSE (0 under all input assignments), the
event is deleted from the queue.

C. Determining the Affected Nodes

The first thing that occurs after updating a node’s value is to compute the set of downstream nodes that will need
to be recomputed. While this is perhaps the least complicated portion of the IRSIM algorithm, it required some of the
most subtle modifications to enable symbolic operation.

Under a switch-level model with grounded capacitors, a node’s state can only be affected by other nodes that are
reachable through transistor channels, and by the gate-nodes of those transistors. Groups of nodes connected by source-
drain (channel) connections are called channel-connected regions(CCRs). To enumerate the nodes affected by a node
transition, it would be sufficient to simply list all nodes of all CCRs connected to the switching node. However, this
overlooks the fact that some nodes in each CCR may only be reachable through currently turned-off transistors. For small
CCRs such as static logic gates, simple enumeration only results in a small number of unnecessary node re-evaluations.
However for very large CCRs such as barrel-shifters or SRAMs, the number of unnecessary re-evaluations could become
prohibitive. Since these large CCRs typically have mutually-exclusive control lines that effectively partition the CCR
into smaller regions, we might greatly reduce the number of nodes to be processed by identifying them at runtime. This
is the approach taken by both TRSIM and SirSim.

IRSIM’s affected-node computation is complicated by an additional responsibility. Since the Elmore delay (discussed
below) is defined only for tree structures, we must heuristically break any loops formed by conducting transistors. This
loop breaking is accomplished by setting a broken flag on transistors which close conducting loops.

In TRSIM, affected-node identification and loop-breaking are done using a breadth first search, but a depth-first
version converts more easily to the symbolic case. Thus, Figure 8 presents a depth-first version of IRSIM’s affected-node
procedure. The search is started at the sources and drains of all transistors whose gates are connected to the switching
node. AffectedRecur performs a recursive depth-first search through source/drain connections. All nodes discovered are
added to the list of affected nodes, and transistors are marked as broken if they lead to a previously reached node. This
algorithm dynamically identifies the nodes that make up the channel-connected regions affected by the transitioning
node.

In SirSim, the algorithm is conceptually similar though it is complicated by the fact that transistor-gates can have
symbolic state values. Thus, each transistor may be “transparent” only under certain input assignments. Furthermore,
we can actually reach a node several times under mutually disjoint sets of input assignments without being forced to
break loops. In fact, the transistor broken flag itself must also be symbolic, since there will be input assignments for
which the transistor closes a loop, and others for which it does not.

© 00O Ut ix Wi

AffectedNodes(node n)
A0
Vt such that t.gate =n
A + AU AffectedRecur(t.source, NULL)
A« AU AffectedRecur(t.drain, NULL)
return A

AffectedRecur(node n, transistor via)
if(n.reached)
via.broken «— TRUE
return ()
n.reached < TRUE
A+ {n}
Vt # via such that t.source = n or t.drain =n
if(n = t.source)
other < t.drain
else
other « t.source
if(transparent(t))
A« AU AffectedRecur(other,t)
return A

transparent(transistor t)
if(t.type = NFET)
return (t.gate.value = 1 A t.broken = 0)
if(t.type = PFET)
return (t.gate.value = 0 A t.broken = 0)

Fig. 8. Computing Affected Nodes in IRSIM

a
1 broken=a”b”"c
=

[
T T
b c

Fig. 9. Data-Dependent Transistor Loop

For example, the simple circuit in Figure 9 contains a data-dependent loop. Since the gates of all three transistors
have symbolic values, they will only form a closed loop when a,b, and ¢ are all 1. This means we must set the broken
flag for at least one of these transistors to the function (a AbAc). It doesn’t matter which transistor we set the flag for,
and the choice will be determined by the order in which the transistors happen to be identified. With the broken flag
set as shown, the transistor controlled by node a will be considered non-conducting under all input assignments that
satisfy the function (a AbA ¢).

Figure 10 shows SirSim’s algorithm for identifying affected nodes. At each node, we maintain a BDD, Node.reached,
to keep track of input assignments under which the node has already been reached. Also, at each level of recursion,
we keep track of the input assignments for which the search is still active. We return when this active BDD becomes
FALSE or no unexplored transistors remain. When the active function intersects the Node.reached function, the result
(loop) gives the input assignments under which this node was reached multiple times. The value of loop is used to
compute a new broken flag, and then to deactivate further search under those input conditions. If the active function
becomes FALSE, then the recursion terminates. The remainder translates directly from the conventional AffectedNodes.

© 00O Ut ix Wi

SymbolicAffectedNodes(node n)

A«

Vt such that t.gate =n

A « AU SymbolicAffectedRecur(t.source,), TRUE)
A « AU SymbolicAffectedRecur(t.drain,d, T RUE)

return A

SymbolicAffectedRecur(node n, transistor via, BDD active)
loop < active A n.reached

if(loop # FALSE)

via.broken < via.broken V loop
reached reached A loop
if(active = FALSE) return 0

n.reached < n.reached V active

A+n

Vt # via such that t.source =n or t.drain =n

if(n = t.source)
other « t.drain

else

other « t.source
nextactive < active A Symbolic Transparent (t)
if(nextactive # FALSE)
A + AU SymbolicAffectedRecur(other,t, nextactive)

return A

Symbolic Transparent(transistor t)

if(t.type = NFET)

return t.gate.value A t.broken

if(t.type = PFET)

return t.gate.value A t.broken

D. DC Value Computation

Fig. 10. Computing Affected Nodes in SirSim

After we have identified which nodes are potentially affected by a transition, we need to compute a new steady-state
value for each. In IRSIM this computation is performed by ComputeDC, shown in Figure 11.

Since all loops have been removed by AffectedNodes, the CCR forms a tree. For each node that must be recomputed,
we explore outward along the tree in a depth-first manner until we reach Vdd, GND, or a non-conducting transistor.
We then work backwards, performing series and parallel combinations of branches.

Each branch of the tree is represented by the tuple (Ry, Ry, Cp, Cy, D):

Ry, Equivalent resistance to Vdd through the branch
R, Equivalent resistance to GND through the branch
Ch Total capacitance charged high in the branch
C Total discharged capacitance in the branch
D Driven flag: true if there is conducting path to Vdd or GND

For a full discussion of this tuple representation, and the correctness of the computations in functions series and parallel,
we refer the reader to Chu’s thesis[5].

When the recursive tree exploration terminates, it returns a tuple representing the parallel composition of all branches
leading from the starting node. Using this tuple, ComputeDC computes a normalized steady-state node voltage and then
determines whether it represents a logical 0 or 1. If the node is driven (connected to Vdd or GND through conducting
transistors), then its DC voltage is given by a voltage-divider equation. If it is floating, then its voltage is given by a
charge-sharing equation. If this voltage is greater than Vdd/2, it is considered a 1, otherwise a 0.

© 00 ~JO Ui W+~

ComputeDC(node n)
<Rh, Ry, Ch, (Y, D) — GetDC(n, @)
if(D = true)
V « Ri/(Ry + R)
else
V « Cp/(Ch+ C)
if(vV >05)
return 1
else
return 0

GetDC(node n, transistor via)

if(n= VDD)
return (0, 0o, 0,0, TRUE)
if(tn= GND)

return (00,0, 0,0, TRUE)
(Rn, Ry, Ch, C1, D) 4 (00, 00,0,0,FALSE)

Vt # via such that ((¢t.source = n) V (t.drain = n))
if(n = t.source)
other « t.drain
else
other <« t.source
if(transparent(t))
(ru,r1,cn,c1,d) < series(t, GetDC (other,t))
(Rh, R1, Ch, Ci, D) + parallel({Rp, Ry, Ch, C1, D), {(rp, 71, chyc1,d))
return (Ry, Ry, Cp, Cy, D)

series(transistor ¢, (R, Ry, Ch, Cy, D))
Ty < t.res
TR — Ry + 1 % (1 + Rh/Rl)
i« Ry +rx(1+ R/Rp)
Cp Ch
[Cl
d« D
return (rp, 71, Ch, ¢, d)

parallel((rp1, 711, Ch1, €11, d1), (The, T2, Ch2, Ci2, d2))
Th < Tha || Th2
r || e
Ch < Ch1 + Ch2
< cntop
d < dy Vdo
return (ry, 7, Ch, C1, d)

Fig. 11. DC-Value Computation in IRSIM

10

11

04 || 10 N

16 29 35

Fig. 12. Example MTBDD Operation

3.2K
a ﬁ i5/l - % - .
aw
inf 3.2

Fig. 13. nFET Resistance MTBDD

R

D.1 Symbolic Algebra

To discuss the symbolic version of the DC-value algorithm, we need to first introduce the concept of symbolic algebra.
In SirSim, symbolic algebra is implemented with MTBDDs, again using the CUDD decision diagram package.

The key to performing symbolic algebra is the function MtbddApply(op, M,N). MtbddApply applies an arbitrary
algebraic operator (e.g. +, %, /,||) to the argument MTBDDs M and N. As before, we define A = {ag,a1,...,a2n_1}
as the set of assignments to the n variables in the support of M and N, and define M,, as the terminal value reached
by M under the assignment a;. MtbddApply(op,M,N) will return MTBDD the R, such that :

V; (Rai =M, op Nai)

For example, Figure 12 shows the result of using MtbddApply to compute H «+ F + G. For (a = 0,b = 0), Hy =
Fo + Go = 1.2+ 0.4 = 1.6, and similarly for the other input assignments.

In the discussion that follows, it will be convenient to use infix notation rather than explicit calls to MtbddApply.
Thus, any algebraic expression involving bold-face operands should be interpreted as a call to MtbddApply with the
appropriate operands:

F + G = MtbddApply(+,F, G)

MtbddApply is virtually identical to the well-known Apply operator for ROBDDs[3], and its worst-case complexity is
O(IM| x |N|), where |M| represents the number of nodes in MTBDD M.

D.2 Representing Circuit Elements

In symbolic simulation, parameters such as transistor-conductance, which depend on the state of the circuit, require
a symbolic representation.

In the IRSIM circuit model, transistors are represented as switched linear resistors, having a finite linear resistance
when conducting and an infinite resistance otherwise. We can represent the symbolic resistance as an MTBDD hav-
ing two terminals, the on-resistance and oo. Figure 13 shows the symbolic resistance for an nFET ¢, computed as
Ri < MtbddITE (t.gate.value, [t.res],[00]). Furthermore, since we can perform arbitrary algebraic manipulations on
MTBDDs, we can also compute series and parallel combinations of transistors, as shown in Figure 14.

Fig. 14. Symbolic Parallel Resistances

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

12

SymbolicComputeDC (node n)
(Rn, Ry, Ch, C1, D) « SymbolicGetDC (n, 0, [1])
V. R]/(Rh =+ R])
Ve Ch/(Ch =+ C])
V « MtbddITE(D, V., V.)
n.value < MtbddThreshold(V,o.5)

SymbolicGetDC(node n, transistor via, BDD active)

if(n = VDD)
return ([0], [o0], [0], [0] , [1])
if(n =GND)

return ([oo] , [0], [0], [0], [1])
<Rha Ry, Ch, Gy, D) A <[Oo] s [OO] s [0]) [0]) [OD

Vt # via such that ((¢t.source = n) V (t.drain = n))
if(n = t.source)
other « t.drain
else
other « t.source
nextactive < active A transparent(t)
if(nextactive # false)
(rn, 1, Cn, c1,d) < SymbolicSeries (t, SymbolicGetDC (other, t, nextactive))
(Rn, Ry, Ch, Cy1, D) < SymbolicParallel((Rn, Ry, Ch, C1, D), (rn, 11, Ch, c1,d))
return (Rp, Ry, Ch, C1, D)

SymbolicSeries(transistor ¢, (Rp, Ry, Cp, C1, D))
ry + MtbddITE (transparent(t), [t.res] ,[o0])
rn, ¢+ Rp + 1 * ([1] + Rh/Rl)
r1 < Ry +r¢ x ([1] + Ri/Rn)

Ch < MtbddITE (transparent(t), Cn,[0])
) « MtbddITE (transparent(t), Cy,[0])
d « transparent(t) A D

return (rp,ry,Ch,c1,d)

SymbolicParallel ((rn1,T11,Ch1, €11, d1), (Th2, T12, Ch2, €12, d2))
Th < Th1 || Th2
r ¢y || ri2
Ch ¢ Ch1 + Ch2
c] ¢ ¢ + Ci2
d « d1 Vv d2
return (rp, r1, Ch,c1,d)

Fig. 15. DC-Value Computation in SirSim

D.3 Symbolic DC-Value Computation

Using symbolic algebra with MTBDDs, it is not difficult to construct a symbolic version of IRSIM’s DC-value proce-
dure. In SirSim, this operation is performed by SymbolicComputeDC, shown in Figure 15.
The tuple representation for each branch is unchanged except that each real-valued member is now an MTBDD, and
the “driven” flag D is now a BDD: (Rp, Ry, Cn, C1, D).
As before, SymbolicComputeDC calls SymbolicGetDC to compute the tuple for the node of interest. However in the
symbolic case, a node may be driven under one input assignment but floating under another, resulting in a non-constant
D BDD. Therefore we must compute the DC voltage under both assumptions (Vy, V) and select the proper value for
each input assignment using the MtbddITE operator. This voltage MTBDD is then converted into a logical BDD by
MtbddThreshold.
The depth-first search is performed in SymbolicGetDC, utilizing the BDD active in the same manner as in SymbolicAffectedNodes.

© 00O Ut ix Wi

13

ComputeDelay(node n, BDD DCVal)
(R, C) + GetTau(n,DCVal, ()
delay < R+ C
return delay

GetTau(node n, BOOL DCVal, transistor via)
if(n € {Vdd,Gnd})
C+0
if(n.value = DCV AL)
R+ 0
else
R+ o0
return (R, C)

R+ >

if(n.value = DCV AL)
C+0

else
C + n.cap

Vt # wvia such that t.source = n or t.drain =n
if(t.source =n)
other « t.drain
else
other « t.source
if(transparent(t))
(ro,co) + GetTau(o,DCVal,t)
r¢ < t.res

Ty < To + Tt
Ch 4 Co * (T /Th)

R+ R || Tp
C+CHce
return (R, C)

Fig. 16. Delay Computation in IRSIM

SymbolicSeries is only slightly modified from the conventional version. It first computes a symbolic resistance value for
the series transistor and then uses symbolic algebra to compute the same resistance values as before. In the conventional
algorithm, series was only called for conducting transistors, so the capacitance values could simply be copied into the
output tuple. Now however, the transistor may be conducting only for a subset of the input assignments, so we must
use MtbddITE to remove capacitance values for assignments under which the transistor is not conducting. The only
change to SymbolicParallel is the use of symbolic rather than conventional algebraic operations.

E. Delay Computation

To compute the delays associated with node value transitions, IRSIM uses the ComputeDelay algorithm shown in
Figure 16.

To compute the Elmore delay, we require the resistance of the driving path(s), and the amount of capacitance to be
charged or discharged. Like GetDC, GetTau performs a depth-first search through conducting transistors until it reaches
Vdd or GND. However, since it has already computed the DC value for the transition, it need only collect resistance
values for the driving paths and capacitances that require charging or discharging.

Besides this simplification, the other primary difference between GetDC and GetTau is the computation of branch
capacitances. For Elmore delay calculation, the effective capacitance is obtained by scaling it by the factor r,/ry when
translating it across a transistor. Again, the reader is referred to [5] for a complete discussion of this computation.

The symbolic version, shown in Figure 17 is derived quite naturally. The (R,C) tuple elements are replaced with

© 00O Ui Wi

14

ComputeDelay(node n, BDD DCVal)
(R, C) + GetTau(n,DCVal,,[1])
Tdelay +~R=xC
return Tqelay

GetTau(node n, BDD DCVal, transistor via, BDD reached)
if(n € {Vdd,Gnd})
C « 0]
R < MtbddITE (n.value @ DCVal, [o0], [0])
return (R, C)

R + [o0]
C < MtbddITE (n.value ® DCVal, [n.cap], [0])

Vt # via such that t.source = n or t.drain =n

if(t.source =mn)
other « t.drain

else
other + t.source

reachother « reached A transparent(t)

if(reachother # false)
(ro,co) + GetTau(o, DCVal,t,reachother)
ry MtbddITE (transparent(t), [t.res] , [00])

Tp ¢ I'p + It
Ch — Co * (To/Tb)

R+ R || b
C+C+cp
return (R, C)

Fig. 17. Delay Computation in SirSim

MTBDDs, and all real-valued computations are performed with symbolic algebra. We again require the active flag to
control the recursion depth.

A number of enhancements to this algorithm are implemented in IRSIM and duplicated symbolically in SirSim. Both
implement a separate delay calculation algorithm for charge-sharing transitions, and compute an additional delay term
to account for the rise/fall time of the triggering transition.

F. An Example

In order to illustrate the different steps of the algorithm, we will work through an example evaluation of the domino

AND gate shown in Figure 18. Assume that the first event in the event queue is (Node = A, Time = 100, Value = a, Mask = a),

and node A’s current value is 0. Further assume that the precharge proceeded as normal, that node B has already tran-
sitioned to value b, and the CCR has settled to a steady-state such that the internal node values are as shown.

After updating the state of node A, we first call SymbolicAffectedNodes to identify the nodes that may need to be
re-evaluated. The search will begin at nodes z1 and P, and will return the set (1, P,z2). Note that no loops are
detected in this simple example, so the Broken flag is set to false for all transistors.

We next compute the new DC value for all nodes identified in the previous step. For the sake of brevity, the resultant
tuple is only shown for the CCR output node P. Ry, representing the pullup resistance is identically oo, while the
pulldown resistance R; has value 15KOhms for a A b, and is infinite otherwise. The capacitance MTBDDs Cy, and C;
record the amount of capacitance connected to P that are charged high and low respectively. The driven function D
shows that P is resistively driven only for a A b.

Given this tuple, we compute the DC voltage of P using resistance and capacitance information separately, and then
combine them using D. A voltage divider equation shows that V. is identically 0, since Ry, = oo and Vz,z/(c0+z) = 0.
Applying the charge-sharing equation gives V. as shown. We then use MtbddITE to separate the two cases, and then
threshold the result to obtain the DC logic function a A b.

15

Capacitance Values

P = 15fF
x1 = 5fF
x2 = 5fF

Transistor On-Resistances = 5KOhms

Affected Nodes= (x1, p, x2)
DC Vauetuplefor node P: < Rh, RI, Ch, CI, D>
Rh

Inf

Conversion from tuple to DC Vaue Function:
Vr Vc

0.0 1.0 0.6 1.0

Delay tuple for node P : <R,C>

Inf 15K

Fig. 18. Domino AND-Gate Example

Now we can compute the delay for the new transition. Note that we have depicted this operation as a product of
a lumped R with a lumped C to avoid explicitly stepping through the recursion. In our implementation (and in the
algorithms presented earlier), we compute a true Elmore delay, and would obtain the result (5K * (5fF) + 5K * (5fF +
5fF)+ 5K = (5fF +5fF + 15fF)) = 200ps.

Lastly, we schedule a resultant event for node P :

(Node = P,Time = 325, Value = a A b,Mask = a A b)
G. Ternary Simulation

The preceding discussion has assumed binary (0,1) simulation, when in fact both IRSIM and SirSim utilize ternary
(0,1,X) node values. SirSim uses a dual-rail encoding like that used in Cosmos[4] and MOSSYM|2]. Two BDDs, value.h
and value.l, are used to encode the symbolic ternary node value as follows:

value.h = 1,valuel =0 : HIGH
value.h = o,valuel =1 : LOW

16

value.h = 1,valuel =1 : UNKNOWN (X)
value.h = o,valuel =0 : not defined

All nodes are initialized to X values at the start of simulation.

G.1 Ternary DC Value Computation

When the node connected to a transistor’s gate has an unknown(X) value, its equivalent resistance can vary from the
finite conducting value to oo. This implies a min/max resistance, which can be computed for an nFET as :

Rumin MtbddITE (t.gate.value.h, [r] ,[o0])
Rmax ¢ MitbddITE((t.gate.value.l, [00], [re])

Similarly, since a node in the X state contributes an unknown amount of charge, min/max capacitances must also be
computed:

Ch_max MtbddITE (node.value.h, [node.cap] , [0])

+ (

Chmin ¢ MtbddITE (node.value.l,[0], Ch_max)
+ (

(

Cl_max MtbddITE (node.value.l, [node.cap] , [0])
Cilmin MtbddITE (node.value.h,[0], Ci_max)

Now each term in the tuple representation is actually a pair of min/max MTBDDs. When performing series and
parallel combinations of these tuples with ranges, an approximate solution is computed. The details of this approximation
comprise a large part of Chu’s thesis [5], and are beyond the scope of this article. However, the operations required
involve straightforward algebraic manipulation and can be duplicated exactly in symbolic form without substantial
difficulty.

To obtain the DC voltage from the tuple with ranges, the voltage divider and charge-sharing computations are slightly
modified:

Vi min + Rimin/(Ri_min + Rh_max)
Vimax ¢ Ri_max/(Ri_max + Rh_min)
Vemin ¢ Ch_min/(Ch_min + Ci_max)
Vemax < Ch_max/(Ch_max + Ci_min)
Vmin & MtbddITE(D, Vy_min; Ve_min)

Vmax < MtbddITE(D, Vi_max, Ve max)

Lastly, we must convert the voltage range into a dual-railed logical DC value. The normalized high and low voltage
thresholds are user-specified, and must satisfy 0 < Vjoyy < Vhign < 1.0. Voltages between V;gp and Vi, are considered
X’s. This conversion is implemented by the following operations:

DCValh <« MtbddT hreshold(Vmax; Viow)
DCVall <+ MtbddT hreshold(Vmin, Vhigh)

G.2 Delay Computation with Uncertainty

For delay computation in the presence of unknown node states, resistance ranges are again computed and dealt with
in the same manner as above. However, capacitance requires a different treatment.

We maintain two MTBDDs, one for capacitance potentially charged high and the other for potentially discharged
capacitors. This is similar to the method described for the binary version of GetDC, except that capacitance in the X
state is added to both Cpx and Cix.

Chx ¢ MitbddITE (node.value.h,[node.cap] , [0])
Cix ¢ MitbddITE (node.value.l, [node.cap], [0])

IRSIM accounts for node capacitance in the transitions {0 — 1,1 — {X,0},X — {X,1,0}}, so we can now compute
the switching capacitance as :

17

CLK
select

—d
mismatch0 _| i e mismach7_| i —

CLK

CLK 4

Fig. 19. Wordline Driver Example

Cswitch < MtbddITE(DCVal.l, Cpy, Cix)

Since SirSim does not currently allow event times to be time-ranges, we must select either the maximum or minimum
delay possible for each input assignment. Following TRSIM’s heuristic, we assume that the maximum delay is the
conservative choice when switching to a well-defined value, while the minimum delay is selected when transitioning to
an X. Note that the data-dependent delay variations are still accounted for, and this approximation only affects delays
for input assignments where one or more node values are X’s.

Tmin <~ Rmin * Cswitch
Tmax — Rmax * Cswitch
Taelay <« MtbddITE(DCVal.h A DCVall, Tmin, Tmax)

III. APPLICATION

Symbolic Timing Simulation has applications to both functional and timing verification of transistor-level circuits.
While it is substantially more compute intensive than static analysis techniques, it is applicable to a much broader
family of circuits.

To verify a block containing arbitrary circuit structures, we simply perform a symbolic timing simulation while
monitoring the Boolean functions on the output and state nodes. A specification of the correct output function must be
supplied by the user or extracted from the RTL description of the block. If the initial values of particular latch nodes
are required to express the expected output function, then the user must initialize them to symbolic values as well. If
the output nodes settle to the proper functions while being simulated under a realistic delay model, then the timing
and functional correctness of the circuit under all input patterns is implied. If an error is detected, a counterexample is
generated and the simulation can be run again with non-symbolic inputs to aid in debugging.

We should note that our verification is limited at present to a model having specific delay values for each input pattern,
rather than delay ranges that result from process variation and other sources of uncertainty. This is a direct result of our
modelling of node transition events as instantaneous. Static techniques, on the other hand, are well suited to analysis
based on time ranges, and thus can be more provably conservative. We are looking into extending STS by incorporating
delay ranges in the form of min/max delay values. This can be accomplished either by explicitly modelling events as
time ranges, or by scheduling additional transitions to an X value at the minimum delay point. The latter approach is
substantially easier to implement, but is slightly more pessimistic.

A. Functional Verification

Timing and functionality cannot be easily separated for many circuits, causing problems for methodologies which
perform these analyses independently. In some cases, timing information is required simply to model circuit functionality
properly.

Consider the example shown in Figure 19 which was used as part of a row-decoder and RAM wordline driver. It is
composed of a dynamic NOR stage followed by a static NAND gate. The NAND gate is intended to keep the wordline
de-asserted during precharge of the NOR stage. If any of the mismatch lines are high when CLK rises, then select
should fall quickly enough to keep nWL from going low. The safety of this circuit is ensured by the relative loading of
nWL and select. Since the WordLine driver is very large, n WL is heavily loaded and will not switch nearly as quickly
as select.

Existing static functional verification methodologies such as equivalence-checking use either zero-delay or unit-delay
models of timing behavior. Zero-delay analysis will fail to model the storage of charge (and thus state) on the precharge

18

node. However, unit-delay analysis assumes that all transitions require the same amount of time, resulting in a unit-
glitch on WordLine. Capturing the intended behavior of this circuit requires proper modelling of the relative stage
delays. Since SirSim implements an Elmore delay model and uses inertial delays, it computes the correct sequence of
events for this circuit.

B. Timing Verification

Timing constraints on circuits exist to ensure that signal transitions occur in the order required for proper operation.
Some constraints are imposed by the circuit’s environment, and some are due to internal structures, such as latches,
dynamic gates, and self-timed loops.

Static timing analysis relies on pattern matching routines to identify these structures from the circuit netlist and apply
timing constraints based on a set of precompiled rules. In a full-custom design environment, designers often creatively
hand-optimize circuitry to take advantage of local don’t-care cases or fix critical timing paths. These hand-optimized
circuits rarely match the patterns built into the static timing analyzer, causing it to apply incorrect constraints. To
perform a timing analysis in this situation, designers are left with two equally unattractive options: develop a substantial
simulation suite or train the analyzer to “understand” the circuit. Both options are labor intensive, and the simulation
option may simply be infeasible if the circuit is large enough. The result in either case is a time-consuming and
error-prone analysis.

However, a symbolic timing simulator need only simulate the circuit and check for correct functionality. Since it
avoids having to explicitly determine timing constraints based on circuit topology, it is much more robust with respect
to variations from standard design styles.

A further advantage of STS is that its output arrival times will be more accurate than those computed by a timing
analyzer, given the same delay computation model. One reason for this is that the simulator is not susceptible to false
paths, because their effects will be eliminated by a dynamic sensitization criterion. McGeer demonstrates that the
dynamic criterion cannot underestimate the true circuit delay, while the static criterion can [10]. While the dynamic
criterion does not satisfy the monotone speedup property, we argue that it matches reality much more closely and will
give a higher quality estimate of the true delay. Furthermore, McGeer shows in [11] that the dynamic criterion does
satisfy the monotone speedup property for dynamic(precharge unate) circuits, an application for which this methodology
is particularly well-suited.

In addition, a symbolic timing simulator need not make worst-case assumptions about the state of the surround-
ing circuitry when computing delays. A static analyzer must assume worst-case loading, simultaneous-switching, and
capacitive-coupling during delay calculation to ensure a conservative analysis. Because a symbolic simulator stores the
current state of every node in the circuit, it can avoid this pessimism if its delay model correctly accounts for these
effects.

C. Complexity

Since we are performing a complete analysis over all possible input combinations without any loss of information, the
worst-case complexity of symbolic timing simulation is necessarily exponential in the number of inputs to the circuit.
However, the actual complexity is highly dependent on the efficiency with which the circuit’s node functions can be
represented. Implementations of symbolic simulators using BDDs to compute and represent node functions have been
shown to be very efficient for a wide range of interesting circuits due to significant amounts of BDD subgraph sharing.

As in any simulation-based approach, runtime complexity can be difficult to evaluate because it is affected by a number
of factors. However, it is a natural metric and is of paramount importance to potential users. In general, we have found
runtime rather than memory usage to be the limiter for symbolic timing simulation.

STS runtime is affected primarily by the number of events generated and the efficiency of the symbolic encoding. The
number of events is in turn dependent on the circuit topology, depth of the logic cones, latching strategies, and circuit
size. Of course, if the circuit is astable (3 inverter loops), the simulation may never even terminate. In general, given
the same number of transistors, deeper logic cones will generate more events because of the larger number of potential
delay paths. Edge-triggered flip-flops help control the event count by resynchronizing multiple events that arrive at its
inputs.

Probably the most important factor affecting runtime is the efficiency of the symbolic encoding, which is strongly
dependent on the variable order selected for the BDDs and MTBDDs. For some circuits, no sub-exponential variable
order exists.

In practice, we have seen runtimes on the order of several minutes for most circuits up to ~ 10000 transistors. With
further algorithmic improvements and tuning, this might be pushed as high as 50-100 K transistors, which is sufficient
to handle sub-blocks typically assigned to single designers. Above this size, the key to utilizing STS may be extensions
capable of generating abstractions of the timing interfaces suitable for use by a static timing analyzer at a higher level
of the hierarchy.

19

le+40 T

SIRSIM —+—
Exhaustive IRSIM

1le+35

1e+30

le+25

1le+20

le+15

Runtime (seconds)

1le+10

1le+05

1e-05 L L L L L
0 10 20 30 40 50 60 70

Adder Width

Fig. 20. Runtime vs. Adder Width

IV. EXPERIMENTAL RESULTS
A. Adders

For our first substantial test cases, we ran SirSim on Manchester carry-chain adders|8] of varying widths. We expected
these circuits to exhibit worst-case behavior for our scheduling algorithm in two ways. First, event timings are highly
dependent on the choice of input values, resulting in smaller sets of events that can be scheduled together as symbolic
transitions. Second, the depth of the carry-chain logic is proportional to the width of the adder, which we expected to
generate an exponential number of events relative to the circuit size. In most other cases, one would expect the depth
of the logic cone to be O(log n), creating a polynomial number of events.

However, the runtimes were excellent, and in fact only grew as the cube of the adder width. They are plotted in Figure
20, along with the time required to perform the equivalent 22" conventional IRSIM runs, for adders of widthn = 1...64.
For the 32-bit adder, SirSim performed a complete analysis in less than 2.5 minutes on a 300MHz UltraSparc system,
representing a speedup over exhaustive conventional simulation of 10'7. For the 64-bit adder, SirSim required less than
20 minutes, and achieved a speedup of 1033. While the absolute speedup values are so large as to be almost meaningless
and can be made arbitrarily large by increasing the size of the circuit, it is worth noting that a previously infeasible
analysis on realistically sized adders is now possible.

The following analysis justifies this cubic behavior. The runtime will be composed primarily of two factors, the number
of events processed E and the average cost of processing one event C. Since most of the processing cost is MTBDD
traversal, C' will be proportional to their average size. For an adder, we know that the output BDDs are linear in the
width of the adder, so we can expect this to be true of the computational MTBDDs as well, and thus of C. To estimate
E, we look at the i-th adder bit-slice. Each slice will locally generate a constant number of events [on the carry output
carry;. In the Manchester carry chain design, there is only one delay path possible from carry; to carry;+i. Thus if
we assume that k; events were scheduled on carry; , then there should be k; + [events on carry;;1. Since carryg is a
constant and has no events, carry; will have only the locally generated ! events, and carry, will have nl events. Thus
the total event count E =13 ,i-n = 0O(n?) ,and the total runtime T = EC = O(n?).

In order to evaluate SirSim on a more realistic adder implementation, we also simulated varying widths of a carry
bypass design. The runtimes (shown in Table I) were slightly worse than those for the ripple carry design, due to the
additional circuitry. This test case is particularly interesting because carry bypass adders are notoriously difficult for
static timing analysis due to the huge number of false paths.

B. Combinational Circuits

To determine how SirSim performs on combinational networks, we ran several of the ISCAS89 benchmarks. To obtain
transistor-level networks, we replaced each gate with an equivalent nominally-sized static CMOS subcircuit. We also
removed the DFFs and turned their inputs into primary outputs, and the outputs into primary inputs. Note that SirSim
can simulate sequential circuits but our goal was to determine performance on a sample of combinational circuits.
For these experiments, we used a simple depth-first-search ordering heuristic for the BDD and MTBDD variables.
As can be seen from Table I, the runtimes varied substantially and were not highly correlated with the size of the
circuit. The efficiency of this technique is heavily dependent on the BDD/MTBDD variable order selected, and on the

20

TABLE I
SIRSIM RUNTIMES

Name FETs | Inputs MB sec.
adder4 164 10 0.6 0.5
adder8 328 18 4.1 3.2
adder16 656 34| 223 | 195
adder32 1312 66 | 102.4 | 107.1
adder64 2624 130 | 280.5 | 783.9
byp_adder8 388 18 4.0 3.2
byp_adder16 776 34| 325 | 255
byp_adder32 | 1590 66 | 249.5 | 213.3
$298 582 17 0.6 0.9
$349 654 24 0.8 1.0
$382 682 24 2.9 2.7
s444 758 24 4.6 6.2
s820 1786 23 4.3 3.9
$1196 2456 32 1.1 5.6
s1238 2574 32 1.6 6.5
$1423 2996 91 0.7 1.3
51494 3902 14 0.8 14
s5378 8902 214 3.6 | 12.65
sr_incr64 4218 129 | 39.8 | 40.5

1e+06

T T
real events ——
symbolic events —x—

1e+05
le+04
1e+03

100

1

.
10 10.2 10.4 10.6 108 11 11.2
Time (ns)

Fig. 21. Symbolic and Real Events

compactness of the BDDs for the circuit’s node functions. However, this data suggests that symbolic timing simulation
is computationally feasible on reasonably large circuits.

C. Self-Resetting Incrementer

We also implemented a self-resetting 64-bit incrementer designed at IBM [9]. This circuit makes use of self-timed
locally-generated reset signals to accept a pulsed input, compute the incremented value, signal a pulsed output, and
reset itself to prepare for the next input. It uses no global clocks, and all operations are triggered by the pulsing of the
input data lines.

We used SirSim throughout the implementation of the incrementer to verify both functionality and timing, and found
it to be a very natural way to identify errors. By simulating a pulsed symbolic input vector and placing checks on the
output lines, we located and debugged problems in connectivity, drive strengths, reset delays, etc.

In contrast, the original designers made use of a rather complicated, special-purpose timing verification methodology,
which they outlined in [12]. Their methodology involved adding pulse-propagation and overlapping pulse-width checks to
an in-house static timing analyzer. Since SirSim uses an inertial delay model, its verification power is virtually identical
to these checks. This example clearly demonstrates the power of SirSim to handle even highly customized circuit design
styles. Furthermore, SirSim’s runtime for this 4200-transistor design was around 40 seconds (sr_incr64 in Table I).

21

1e+05

T n
compression

le+04 k!

Ratio

1e+03 k!

100

.
10 10.2 10.4 10.6 10.8 11 11.2
Time (ns)

Fig. 22. Symbolic Compression vs. Time

D. Symbolic Event Compression

Of perhaps greater theoretical interest are the traces shown in Figures 21-22. In order to gain some intuition into the
speedup attained by symbolic timing simulation, we compared the total number of symbolic events per timestep with
the total number of real events. We define the real event count as the sum of all events that would occur in a given
timestep in an exhaustive conventional simulation suite. This was computed by examining the don’t-care sets of the
symbolic event trace.

For circuits such as adders, which have highly data-dependent delays, we did not know if each symbolic event would
be able to capture a significant number of real events. However, as Figure 22 shows, it was quite successful, resulting
in an average symbolic compression (ratio of real events to symbolic events) of over 9600 for the 8-bit adder. This
compression increases exponentially with the adder width.

V. CONCLUSIONS AND FUTURE WORK

We have presented an extension to symbolic simulation that properly accounts for general data-dependent logic delays.
We have also shown a symbolic procedure for computing data-dependent delays based on the conventional transistor-
level timing simulator IRSIM. Our experimental results indicate that symbolic timing simulation can be used to verify
timing and functionality for circuits of reasonable size.

Ongoing research is investigating more efficient event-management algorithms and higher-accuracy delay-calculation
methodologies. We are also looking into ways of extracting timing models using symbolic timing simulation, which could
be used to integrate this new approach into existing static analysis design-flows.

REFERENCES

[1] R.I. Bahar, E. A. Frohm, C. M. Gaona, G.D. Hachtel, E. Macii, A. Pardo, and F. Somenzi. Algebraic Decision Diagrams and Their

Applications. ACM/IEEE International Conference on Computer Aided Design, pages 188-191, November 1993.

[2] R.E. Bryant. Symbolic Verification of MOS Circuits. 1985 Chapel Hill Conference on VLSI, pages 418-438, 1985.

[3] R.E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE Transactions on Computers, C-35(8):79-85, August
1986.

[4] R. E. Bryant. Boolean Analysis of MOS Circuits. IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems,

CAD-6(4):634-639, July 1987.

[5] C.Y.Chu. Improved Models for Switch-Level Simulation. PhD thesis, Stanford University, October 1988.

[6] S. Devadas, K. Keutzer, S. Malik, and A. Wang. Certified Timing Verification and the Transition Delay of a Logic Circuit. Proceedings
of the Design Automation Conference, 1992.

[7] W. Elmore. The Transient Response of Damped Linear Networks with Particular Regard to Wideband Amplifiers. Journal of Applied
Physics, January 1948.

[8] L. A. Glasser and D.W. Dobberpuhl. The Design and Analysis of VLSI Circuits. Addison-Wesley, 1985.

[9] R. A. Haring, M. S. Milshtein, T. I. Chappell, S. H. Dhong, and B. A. Chappell. Self Resetting Logic Register and Incrementer.

Symposium on VLSI Circuits, pages 18-19, 1996.

[10] P. C. McGeer and R. K. Brayton. Efficient Algorithms for Computing the Longest Viable Path in a Combinational Network. Proceedings
of the Design Automation Conference, 1989.

[11] P. C. McGeer and R. K. Brayton. Timing Analysis in Precharge/Unate Networks. Proceedings of the Design Automation Conference,
1990.

[12] V. Narayanan, B. A. Chappell, and B. M. Fleischer. Static Timing Analysis for Self Resetting Circuits. ACM/IEEE International
Conference on Computer Aided Design, pages 119-126, 1996.

[13] I. M. Obfuscated. Symbolic Functional and Timing Verification of Transistor Level Circuits. ACM/IEEE International Conference on
Computer Aided Design, 1999.

[14] J. Rubinstein, P. Penfield, and M. A. Horowitz. Signal Delay in RC Tree Networks. IEEE Transactions on Computer Aided Design of
Integrated Circuits and Systems, 2(3):202-211, July 1983.

[15] A. Salz and M. A. Horowitz. IRSIM: An Incremental MOS Switch-level Simulator. Proceedings of the Design Automation Conference,
pages 173-178, June 1989.

[16] C. J. Seger and R. E. Bryant. Modeling of Circuit Delays in Symbolic Simulation, volume 2 of Formal VLSI Correctness Verification.
Elsevier Science Publishers, 1990.

22

[17] F. Somenzi. CUDD: CU Decision Diagram Package - Release 2.2.0, Online User Manual, May 1998.
[18] C. J. Terman. RSIM - A Logic-Level Timing Simulator. International Conference on Computer Design, pages 437-440, October 1983.

