An Efficient Graph Representation for Arithmetic

Circuit Verification
Yirng-An Chen, Randal E. Bryant, Fellow, IKEF

Abstract— In this paper, we propose a new data struc-
ture, called Multiplicative Power Hybrid Decision Diagrams
(*PHDDs), to provide a compact representation for func-
tions that map Boolean vectors into integer or floating-point
values. The size of the graph to represent the IEEE floating-
point encoding is linear with the word size. The complexity
of floating-point multiplication grows linearly with the word
size. The complexity of floating-point addition grows expo-
nentially with the size of the exponent part, but linearly
with the size of the mantissa part. We applied *PHDDs to
verify integer multipliers and floating-point multipliers be-
fore the rounding stage, based on a hierarchical verification
approach. For integer multipliers, our results are at least
6 times faster than *BMDs. Previous attempts at verify-
ing floating-point multipliers required manual intervention,
but we verified floating-point multipliers before the round-
ing stage automatically.

Keywords— BDD, Binary Moment Diagram, BMD, Hy-
brid Decision Diagram, HDD, Multiplicative Power Hybrid
Decision Diagram, *PHDD, Formal Verification

I. INTRODUCTION

The floating-point (FP) division bug [14] in Intel’s Pen-
tium processor and the overflow flag erratum of the FIST
instruction (FP to integer conversion) [17] in Intel’s Pen-
tium Pro and Pentium IT processors have demonstrated the
importance and the difficulty of verifying FP arithmetic
circuits and the high cost of an arithmetic bug. Formal
verification or exhaustive simulation can be used to ensure
the correctness of arithmetic circuits. However, it is im-
possible to perform exhaustive simulations for arithmetic
circuits with large word size.

Formal verification techniques such as theorem proving
and word-level decision diagrams have been used to ver-
ify arithmetic circuits. Most of the IEEE FP standard has
been formalized by Carreno and Miner [5] for the HOL and
PVS theorem provers. In [21], Moore, et al. applied a me-
chanical theorem prover, ACL2 [19], to verify the division
microcode program used on the AMDS g 86 microprocessor.
Similar work has been done by Clarke, et al. [11] to verify
the SRT division algorithm used in many modern micro-
processors. To verify arithmetic circuits, theorem provers
require users to guide the proof which is structured as se-
ries of lemmas describing the effect of circuit modules and
their interactions [2]. Thus, the verification process is not
only very tedious but also implementation-dependent.

Word-level decision diagram is another approach to
verify arithmetic circuits. Binary Moment Diagrams

This research was sponsored by the Defense Advanced Research
Projects Agency (DARPA) under contract number DABT63-96-C-
0071.

Y .-A. is with Novas Software Inc., San Jose, CA 95110, USA.

R. E. Bryant is with Department of Computer Science, Carnegie
Mellon University, Pittsburgh, PA 15213, USA.

(BMDs) [4] have proved successful for representing and
manipulating functions mapping Boolean vectors to inte-
ger values symbolically. They have been used in the ver-
ification of arithmetic circuits [7]. Clarke, et al. [10] ex-
tended BMDs to a form they call Hybrid Decision Dia-
grams (HDDs), where a function may be decomposed with
respect to each variable in one of six ways, but without
edge weights. Drechsler, et al. [15] extended Multiplicative
BMDs (*BMDs) to a form called K¥BMDs, where a func-
tion may be decomposed with respect to each variable in
one of three ways, and with both additive and multiplica-
tive edge weights. None of these diagrams can represent
functions which map Boolean vectors to floating-point val-
ues, unless rational numbers are introduced into the repre-
sentation [3]. But using rational numbers in the represen-
tation requires more memory space to store the numerator
and denominator separately, and more computation to ex-
tract the rational numbers.

After the famous Pentium division bug [14], Intel re-
searchers applied word-level SMV [12] with Hybrid Deci-
sion Diagrams (HDDs) [10] to verify the functionality of
the FP unit in one of Intel’s processors [9]. Verification of
floating-point arithmetic circuits using any of these three
diagrams requires the circuits to be divided into several
sub-circuits for which specifications can be expressed in
terms of integer functions and their operations [7], [9], [12].
The correctness of the overall circuit must be proved by
users from the specifications of the verified sub-circuits.
For instance, the floating-point multiplier was divided into
the circuits for the mantissa multiplication, the exponent
addition, and the rounding in [9]. The verification of these
three sub-circuits was performed automatically by word-
level SMV [12], but the correctness of the entire multiplier
must be proved by users from the verified specifications
of these three sub-circuits. To avoid partitioning floating-
point arithmetic circuits for verification, it is necessary
to have decision diagrams that represent and manipulate
floating-point functions efficiently.

In this paper, we propose a new representation,
called Multiplicative Power Hybrid Decision Diagrams
(*PHDDs), which improves on previous diagrams in rep-
resenting floating-point functions. *PHDDs can repre-
sent functions having Boolean variables as arguments and
floating-point values as results. This structure is similar to
that of HDDs [10], except that they are based on powers-
of-2 edge weights and complement edges for negation. We
show that the size of floating-point multiplication grows
linearly with the word size. For floating-point addition, we
show that the complexity grows linearly with the mantissa
size, but exponentially with the exponent size. It is still

practical for formats up to IEEE double precision.

Based on a hierarchical verification methodology [4], [7],
we have applied *PHDDs to verify different sizes and types
of integer multipliers. Compared with *BMDs, *PHDDs
are consistently six times faster and use less memory.
We have also applied *PHDDs to verify different sizes
and types of floating-point multipliers before the rounding
stage, which have never before been verified symbolically
and automatically. Our results show that the verification
of floating-point multipliers requires minimal effort beyond
integer multipliers. Our next step is to look into the round-
ing stage and entire floating-point adders. Earlier results
using HDDs [9] show that the rounding stage itself can be
handled.

The remainder of the paper is organized as follows. Sec-
tion 2 briefly discusses previous work on word-level deci-
sion diagrams: *BMDs, HDDs and K¥BMDs. The *PHDD
data structure is presented in section 3. Section 4 shows
*PHDDs for several numeric functions including integers
and floating-point numbers. Section 5 analyzes the *PHDD
complexities of floating-point multiplication and floating-
point addition. Section 6 compares the differences among
*PHDD, *BMD, HDD and K*BMD. The performance re-
sults are shown in Section 7. Finally, Section 8 contains
our conclusions and possible future work.

IT. PrEVious WoRrRK: BMDs, *BMDs, HDDs AND
K*BMDs

For expressing functions Boolean variables into integer
values, BMDs[4] use the moment decomposition of a func-
tion:

(l-2)-fs+afo

= f&r+ - for (1)

|
s

where -,4+ and — denote multiplication, addition and sub-
traction, respectively. Term f, (fz) denotes the positive
(negative) cofactor of f with respect to variable z, i.e., the
function resulting when constant 1 (0) is substituted for
z. By rearranging the terms, we obtained the third line
of Equation 1. Here, f5; = fr — f7 is called the linear
moment of f with respect to z. This terminology arises
by viewing f as being a linear function with respect to its
variables, and thus fs; is the partial derivative of f with
respect to z. The negative cofactor fz will be termed the
constant moment, i.e., it denotes the portion of function f
that remains constant with respect to . This decompo-
sition is also called positive Davio in K¥BMDs [15]. Each
vertex of a BMD describes a function in terms of its mo-
ment decomposition with respect to the variable labeling
the vertex. The two outgoing arcs denote the constant and
linear moments of the function with respect to the variable.

An extension of BMDs is to incorporate ” weight values”
on the edges, yielding a representation called Multiplica-
tive BMDs (*BMDs) [4]. The edge function f.(m, f) is
obtained from the function f of the node through multi-
plication of integer value m (i.e., fe(m, f) = w x f). The

edge weights are extracted by the greatest common divisor
(GCD) of edge weights. With *BMDs, word-level functions
such as X +Y, X =Y, X xY and 2% all have linear-sized
representations.

Clarke, et al. [10] extended BMDs to a form they call Hy-
brid Decision Diagrams (HDDs), where a function may be
decomposed with respect to each variable in one of six de-
composition types. In our experience with HDDs, we found
that three of their six decomposition types are useful in
the verification of arithmetic circuits. These three decom-
position types are Shannon, Positive Davio, and Negative
Davio. Therefore, Equation 1 is generalized to the follow-
ing three equations according the variable’s decomposition

type:

ff‘i‘r'féx
f:v'i'(l_x)'féf

(Shannon)
(Positive Davio) (2)
(Negative Davio)

Here, fsz = f& — f: is the partial derivative of f with re-
spect to . The BMD representation is a subset of HDDs.
In other words, the HDD graph is the same as the BMD
graph, if all of the variables use positive Davio decomposi-
tion.

Adding both additive and multiplicative weights into
HDDs yields another representation called Kronecker
*BMDs (K*BMDs) [15]. In this representation, the edge
function f.(a,m, f)is obtained obtained from the function
f of the node through multiplication and addition of in-
teger values m and a (i.e., fo(a,m,f) = a4+ w x f). In
this representation, variables can only use one of Shannon,
positive Davio and negative Davio decompositions. Both
HDDs and K*BMDs are the superset of BMDs and *BMDs,
respectively.

x y | f
0 0]1
0 112
1 014
1 118

(a)
Figure. 1. An integer function with Boolean variables, f =
14+ y+ 3z +3zy, is represented by (a) Truth table, (b) BMDs,
(c) *BMDs, (d) HDDs with Shannon decompositions. The
dashed-edges are 0-branches and the solid-edges are the 1-branches.
The variables with Shannon and positive Davio decomposition types
are drawn in vertices with thin and thick lines, respectively.

As an example, Figure 1 shows an integer function f
with Boolean variables x and y represented by a truth
table, BMDs, *BMDs, and HDDs with Shannon decom-
positions (also called MTBDD [13]). In our drawing, the
variables with Shannon and positive Davio decomposition
types are drawn in vertices with thin and thick lines, re-
spectively. The dashed (solid) line from a vertex with vari-
able z points to the vertex represented function fz, fz, and

fo (fz, fsz and fsz) for Shannon, positive Davio and nega-
tive Davio decompositions, respectively. Figure 1.b shows
the BMD representation. To construct this graph, we apply
Equation 1 to function f recursively. First, with respect
to variable z, we can get fz = 1 + y, represented as the
graph of the dashed-edge of vertex z, and fs5, = 3 + 3y,
represented by the solid branch of vertex . Observe that
fsx can be expressed by 3 x fz. By extracting the factor 3
from fs;, the graph became Figure 1.c. This graph is called
a Multiplicative BMD (*BMD) which extracts the great-
est common divisor (GCD) from both branches. The edge
weights combine multiplicatively. The HDD with Shannon
decompositions can be constructed from the truth table.
The dashed branch of vertex z is constructed from the first
two entries of the table, and the solid branch of vertex x is
constructed from the last two entries of the table.

Observe that if variables z and y are viewed as bits
forming 2-bit binary number, X=y+2z, then the function
f can be rewritten as f = 2Wt2®) = 2% Observe that
HDDs with Shannon decompositions and BMDs grow ex-
ponentially for this type of functions. *BMDs can repre-
sent them efficiently, due to the edge weights. However,
*BMDs, HDDs and K¥BMDs cannot represent the func-
tions as f = 2X~ B where B is a constant, because they
can only represent integer functions.

III. TuE *PHDD DATA STRUCTURE

In this section, we introduce a new data structure, Mul-
tiplicative Power Hybrid Decision Diagrams (*PHDDs) [8],
to represent functions that map Boolean vectors to integer
or floating-point values. This structure is similar to that of
HDDs, except that they use power-of-2 edge weights and
negation edges. The power-of-2 edge weights allow us to
represent and manipulate functions mapping Boolean vec-
tors to floating-point values. Negation edges can further
reduce graph size by as much as a factor of 2. We assume
that there is a total ordering of the variables such that the
variables are tested according to this ordering along any
path from the root to a leaf. Each variable is associated
with 1ts own decomposition type and all nodes of that vari-
able use the corresponding decomposition.

A. Edge Weights

*PHDDs use three of HDD’s six decompositions as ex-
pressed in Equation 2. Similar to *BMDs, we adapt the
concept of edge weights to *PHDDs. Unlike ¥*BMD edge
weights, we restrict our edge weights to be powers of a con-
stant ¢. Thus, Equation 2 is rewritten as:

wn = |

where (w, f) denotes ¢ x f. In general, the constant ¢ can
be any positive integer. Since the base value of the expo-
nent part of the IEEE floating-point format is 2, we will
consider only ¢ = 2 for the remainder of the paper. Ob-
serve that w can be negative, i.e., we can represent rational

(A=) frt - fa)
Yozt fin)
< (fe+(1—2) fs53)

(Shannon)
(Positive Davio) (3
(Negative Davio)

~—

numbers. The power edge weights enable us to represent
functions mapping Boolean variables to floating-point val-
ues without using rational numbers in our representation.

wo=wl

wil<w0
Or / O
fy

Af Af U A

Normalizing the edge weights.

Figure. 2.

In addition to the HDD reduction rules [10], we apply
several edge weight manipulating rules to maintain the
canonical form of the resulting graph. Let w0 and w1 de-
note the weights at branch 0 and 1 respectively, and fy
and f; denotes the functions represented by branch 0 and
1. To normalize the edge weights, we chose to extract the
minimum of the edge weight w0 and w1. This is a much
simpler computation than the GCD of integer *BMDs or
the reciprocal of rational *BMDs [3]. Figure 2 illustrates
the manipulation of edge weights to maintain a canonical
form. The first step is to extract the minimum of w0 and
wl. Then, the new edge weights are adjusted by subtract-
ing the minimum from w0 and wl respectively. A node
is created with the index of the variable, the new edge
weights, and pointers to fy and f;. Based on the relation
of w0 and w1, the resulting graph is one of three graphs in
Figure 2. Note that at least one branch has zero weight.
In addition, the manipulation rule of the edge weight is
the same for all of the three decomposition types. In other
words, the representation is normalized if and only if the
following holds:

o The leaf nodes can only have odd integers or 0.

o At most one branch has non-zero weight.

o The edge weights are greater than or equal to 0, except

the top one.

B. Negation Edge

Negation edges are commonly used in BDDs [1] and
KFDDs [16], but not in *BMDs, HDDs and K*BMDs.
Since our edge weights extract powers-of-2 which are always
positive, negation edges are added to *PHDDs to increase
sharing among the diagrams. In *PHDDs, the negation
edge of function f represents the negation of f. Note that
—f is different from f for Boolean functions.

- R -~ -
AN TRV O SV T SN .

Figure. 3. Rules for negation edges

Negation edges allow greater sharing and make negation
a constant computation. In *PHDD data structure, we use
the low order bit of the pointers to denote negation, as

is done with the complement edge of BDDs. To maintain
a canonical form, we must constrain the use of negation
edges. Unlike KFDDs [16], where Shannon decompositions
use a different method from positive and negative Davio
decompositions, *PHDDs use the same method for manip-
ulating the negation edge for all three decomposition types.
*PHDDs must follow these rules: the zero edge of every
node must be a regular edge, the negation of leaf 0 is still
leaf 0, and leafs must be nonnegative. Figure 3 illustrates
the rules for negation edges. These four pairs of functions
are functionally equivalent. In our implementation, we al-
ways create nodes for the left side of the pair. In other
words, the 0-branch is always positive. These guarantee
the canonical form for *PHDDs.

IV. REPRESENTATION OF NUMERIC FUNCTIONS

*PHDDs can effectively represent numeric functions that
map Boolean vectors into integer or floating-point values.
We first show that *PHDDs can represent integer func-
tions with comparable sizes to *BMDs. Then, we show the
*PHDD representation for floating-point numbers.

A. Representation of Integers

Unsigned

Sign-Magnitude

Figure. 4. *PHDD Representations of Integers and Integer
operations. Fach variable uses positive Davio decomposition. The
graphs grow linearly with word size.

*PHDDs, similar to *BMDs, can provide a concise repre-
sentation of functions which map Boolean vectors to integer
values. Let ¥ represent a vector of Boolean variables: z,_1,
..., 1, xg. These variables can be considered to represent
an integer X according to some encoding, e.g., unsigned bi-
nary or two’s complement. Figure 4 illustrates the *PHDD
representations of several common encodings for integers.
In our drawing of *PHDDs, we indicate the edge weight
and leaf node in square boxes with thick and thin lines, re-
spectively. Edge weight i represents 2¢ and unlabeled edges
have weight 0 (2°). An unsigned number is encoded as a
sum of weighted bits. The *PHDD representation has a
simple linear structure where the leaf values are formed by
the corresponding edge weight and leaf 1 or 0. For rep-
resenting signed numbers, we assume z,_; is the sign bit.
The two’s complement encoding has a *PHDD representa-
tion similar to that of unsigned integers, but with bit z,,_
having weight —2"~! represented by the edge weight n — 1

and the negation edge. Sign-magnitude integers also have
*PHDD representations of linear complexity, but with the
constant moment with respect to z,_1 scaling the remain-
ing unsigned number by 1, and the linear moment scaling
the number by —2 represented by edge weight 1 and the
negation edge. In evaluating the function for z,_; = 1,
we would add these two moments, effectively scaling the
number by —1. Note that it is more logical to use Shannon
decomposition for the sign bit.

Figure 4 also illustrates the *PHDD representations of
several common arithmetic operations on integer data. Ob-
serve that the sizes of the graphs grow only linearly with
the word size n. Integer addition can be viewed as sum-
ming a set of weighted bits, where bits z; and y; both have
weight 27 represented by edge weight i. Integer multipli-
cation can be viewed as summing a set of partial products
of the form »2'X. In summary, while representing the
integer functions, *PHDDs with positive Davio decompo-
sitions usually will get the most compact representation
among these three decompositions.

B. Representation of Floating Point Numbers

Let us consider the representation of floating-point num-
bers by TEEE standard 754. For example, the double-
precision numbers are stored in 64 bits: 1 bit for the sign
(Sz), 11 bits for the exponent (EX), and 52 bits for the
mantissa (X). The exponent is a signed number repre-
sented with a bias (B) 1023. The mantissa represents a
number less than 1. Based on the value of the exponent,
the TEEE floating-point format can be divided into four

cases:
(=1)%s x 1.X x 2BEX-B
(-1)% x 0.X x 21—B

IfO0< EX < All1 (normal)
If EX =0 (denormal)

NaN IfEX=Al1& X #0
(=1)% x o0 IfFEX=Al1& X =0
Currently, *PHDDs cannot handle infinity and NaN (not

a number) cases in the floating-point representation. In-

stead, assume they are normal numbers.

o

2]

Fx =

(&)

B

with Shannon

(b) 2% with Shannon () 2°°

(a) 25* with Davio Positive

Figure. 5. *PHDD Representations of 27X and 27X—5, The
graph grows linearly in the word size with Shannon, but grows expo-
nentially with positive Davio.

Figure 5 shows *PHDD representations for 2FX and
2EX=B ysing different decompositions. To represent func-
tion ¢®X (in this case ¢ = 2), *PHDDs express the function

as a product of factors of the form ¢2'*% = (¢2')*%i. In

the graph with Shannon decompositions, a vertex labeled
by variable ex; has outgoing edges with weights 0 and ¢’
both leading to a common vertex denoting the product of
the remaining factors. But in the graph with positive Davio
decompositions, there is no sharing except for the vertices
on the layer just above the leaf nodes. Observe that the
size of *PHDDs with positive Davio decomposition grows
exponentially in the word size while the size of *PHDDs
with Shannon grows linearly. Interestingly, *BMDs have
a linear growth for this type of function, while *PHDDs
with positive Davio decompositions grow exponentially. To
represent floating-point functions symbolically, it is neces-
sary to represent 28X~ F efficiently, where B is a constant.
*PHDD can represent this type of functions, but *BMDs,
HDDs and K*BMDs cannot represent them without us-
ing rational numbers. HDDs cannot represent either 2FX
or 28X =B efficiently, since they do not have edge weights.
*BMDs can represent 2”X efficiently [4], but not 2FX—5B
which can be interpreted as 28X divided by 2%. K*BMDs
have the same problem as *BMDs to represent 2FX-B.
However, the edge weights in *PHDDs can represent func-
tion 2FX B efficiently by simply adding a edge weight —B
on top of the *PHDDs of 2FX as shown in Figure 5.c.

denormal

o

(c) Mantissa: 0.X

(d) Mantissa: 1.X (e) Floating Point Encoding

Figure. 6. Representations of floating-point encodings.

Figure 6 shows the *PHDD representations for the
floating-point encoding, where EX has 3 bits, X has 4
bits and the bias B is 3. The sign S; and €% variables
use Shannon decomposition, while variables Z use positive
Davio. Figure 6.a shows the *PHDD representation for the

sign bit (—1)%<. When S; is 0, the value is 1; otherwise, the
value 1s —1 represented by the negation edge and leaf node
1. Figure 6.b shows the *PHDD representation for the ex-
ponent part 28X =3 The graph is more complicated than
Figure 5.c, because, in the floating-point encoding, when
EX = 0, the value of the exponent is 1 — B, instead of
—B. Observe that each exponent variable, except the top
variable exs, has two nodes: one to represent the denor-
mal number case and another to represent normal number
case. Figure 6.c shows the representation for the mantissa
part 0.X obtained by dividing X by 273. Again, the divi-
sion by powers of 2 is just adding the edge weight on top
of the original graph. Figure 6.d shows the representation
for the mantissa part 1.X which is the sum of 0.X and 1.
The weight (273) of the least significant bit is extracted to
the top and the leading bit 1 is represented by the path
with all variables set to 0. Finally, Figure 6.e shows the
*PHDD representation for the complete floating-point en-
coding. Observe that negation edges reduce the graph size
by half. The outlined region in the figure denotes the rep-
resentation for denormal numbers. The rest of the graph
represents normal numbers. Assume the exponent is n bits
and the mantissa is m bits. Note that the edge weights
are encoded into the node structure in our implementa-
tion, but the top edge weight requires an extra node. It
can be shown that the total number of *PHDD nodes for
the floating point encoding is 2(n + m) + 3. Therefore, the
size of the graph grows linearly with word size. In our ex-
perience, 1t 1s best to use Shannon decompositions for the
sign and exponent bits, and positive Davio decompositions
for the mantissa bits.

V. COMPLEXITY OF FLOATING POINT MULTIPLICATION
AND ADDITION

In this section, we first present the complexity of floating-
point multiplication based on *PHDDs. Here, we show the
representations of the operation result before rounding. In
other words, the resulting *PHDDs represent the precise
results of floating-point multiplication. The size of the re-
sulting graph grows linearly with the word size. Then, we
discuss the complexity of floating-point addition based on
*PHDDs. Again, we show the representation of the opera-
tion result before rounding. The size of the resulting graph
grows exponentially with the size of the exponent part and
grows linearly with the the size of the mantissa part.

A. Floating Point Multiplication

Let Fx = (—1)% x v,.X x 2EX=B and Fy = (—1)% x
vy.Y x 2BY =B ‘where v, (vy) is 0if EX (EY) = 0, other-
wise, vy (vy) is 1. EX and EY are n bits, and X and YV
are m bits. Let the variable ordering be the sign variables,
followed by the exponent variables and then the mantissa

variables. Based on the values of FX and EY, Fx x Fy
can be written as:

Fx x Fy = (=1)%%5% x (v, X x 2BX=By » (v,.¥ x 28V —F)
_ (_1)Sm@sy % 2=2B y 21 x (0.X X vy.Y) x 2BY Case 0
- 2BX % (1.X x (vy.Y) x 2BY Case 1

Figure. 7. Representation of floating-point multiplication.

, where Case 0 represents FX=0, and Case 1 represents
EX #0.

Figure 7 illustrates the *PHDD representation for
floating-point multiplication. Observe that two negation
edges reduce the graph size to one half of the original
size. When FX = 0, the subgraph represents the function
0.X xvy,.Y x 2FY When EX +# 0, the subgraph represents
the function 1.X X v,.Y X 2FY The size of exponent nodes
grows linearly with the word size of the exponent part. The
lower part of the resulting graph shows four mantissa prod-
ucts(from left to right): X xV, X x (224Y), (2°4+X)xY,
(224 X) x (22 4+Y). The first and third mantissa products
share the common sub-function Y shown by the solid rect-
angles in Figure 7. The second and fourth products share
the common sub-function 22+Y shown by the dashed rect-
angles in Figure 7.

What is the complexity of floating-point multiplication
for *PHDDs? In the following theorem, we show that the
size of the resulting graph of floating-point multiplication
is 6(n+m)+3 with the variable ordering given in Figure 7,
where n and m are the number of bits in the exponent and
mantissa parts. Thus, the size of the resulting graph grows
linearly with the word size for floating-point multiplication.

Theorem 1: Given the ordering S, Sy, ezg, eyo, ...,

€ETn—1, €Yn—1, Tm—1, -, L0, Ym—1, ---, Yo, as shown in Fig-
ure 7, the size of the resulting graph of floating-point mul-
tiplication is 6(n 4+ m) + 3, where n and m are the number
of bits in the exponent and mantissa parts.
Proof: From Equation 4 and Figure 7, we know that there
is no sharing in the sub-graphs for EX = 0 and EX # 0.
For EX = 0, the size of the sub-graph except leaf nodes
is the sum of the nodes for the exponent of Fy (2n — 1
nodes), the nodes for the mantissa of Fx (2m nodes), and
the nodes for the mantissa of Fy (m nodes). Similarly,
for EX # 0, the size of the sub-graph except leaf nodes is
also 2n + 3m — 1. The size for the exponent part of Fx
is 2n — 1. The number of nodes for the sign bits and top
level edge weight is 3, and the number of leaf nodes is 2.
Therefore, the size of the resulting graph for floating-point
multiplication is 6(n +m) + 3.]

B. Floating Point Addition

According to the sign bits of two operands, floating-point
addition, F'x + Fy, can be divided into two cases. When
Sy @ Sy is equal to 0, the floating-point addition must be

performed as “true addition”, shown as Equation 4.

Fx +Fy = (=1)% x 2BX78 5 0, X 40,V x 2BV ~F) (1)

When S; & Sy is equal to 1(i.e., they have different sign),

ﬂoating—Point addition must be performed as “true sub-
traction”, shown as the following equation.

Fx +Fy = (=1)% x 2BX=B x v, X — v,V x 2BV =B (5)
There are distinct mantissa sums among true addition
and true subtraction, because one performs addition and
another performs subtraction. In the following theorem, we
show that the number of distinct mantissa sums is 27+3 —
10, where n is the number of bits in the exponent part.
Theorem 2: For floating-point addition Fx + Fy, the
number of distinct mantissa sums is 2713 — 10, where n
is the number of bits in the exponent part.
Proof: Since there is no sharing of distinct mantissa sums
among true addition and true subtraction, the number of
distinct mantissa sums is the total of the number of distinct

mantissa sums of true addition and true subtraction.

Let us consider the true addition operation first. Based
on the relation of EX and EY, Equation 4 can be rewritten
as the following:

Fx + Fy = (—I)SQ:X

21-B x {0.X +0.Y} Case 0
21=F % {0.X +1.Y x 2PY -1} Case 1
21=F x {2FX-1 x1.X +0.Y} Case 2
2BX=B x (1.X +1.Y} Case 3 6)
2BX=B x (1.X +1.Y x 2BY=FX} (Case 4
2BY =B x {[9BX-EY y 1 X +1.Y} Caseb

True Subtraction

,, g &

PN P
| &) @% &)

B ' ' .
0X 0X- 21X 0X 0X- 0X- 21X 1X- 1X 1X- 41X 2*1X0X 1X- 41X 0X
-0y 2*1Y-0Y -0Y 1Y 4*1Y -1Y 2*1Y -0Y 2*1Y -0Y -1Y -0Y 4*1LY-1Y -0Y

;
;
12
/

2

True Addition

' '
1X+ 41X 2*1X 1X
+0.Y 2*1LY +0Y +LY LY 4*1Y +1Y 2*LY +0Y 2*1Y +0.Y +1Y +LY 4*LY +1Y +1Y

Figure. 8.
combinations of mantissa sums.

For Case 0, FX=0 and EFY =0, the number of distinct
mantissa sums is only 1. For Case 1, EX=0 and FY > 0,
the number of distinct mantissa sums is the same as the
number of possible values of EY except 0, which is 2™ — 1.
Similarly, for Case 2, EX > 0 and FY =0, the number of
distinct mantissa sums is also 2" — 2, but 0.X+1.Y has
the same representation as 1.X+40.Y in case 1. For Case
3, FEX > 0 and EX=FY, the number of distinct mantissa
sums is only 1. For Case 4, FX > 0 and FX < EY,
the number of distinct mantissa sums is the same as the
number of possible values of EY — EX. Since both FX
and FY can not be 0, the number of possible values of
EY — EX 1s 2" — 2. Therefore, the number of distinct
mantissa sums is 2" — 2. Similarly, for Case 5, FY > 0 and
EY < EX, the number of distinct mantissa sums is also
2% — 2. Therefore the total number of distinct mantissa

sums for the true addition is 2712 — 5.
Similarly, Equation 5 can be rewritten as the following
equation:

Fx + Fy = (—I)SIX

21-B x {0.X - 0.Y} Case 0
21=8B x {0.X —1.Y x 2BY-1} Case 1
218 x {2BX-1 x1.X —0.Y} Case 2 .
2BX=B y (1.X —1.Y} Case 3 (7)
2BX=B » {1.X —1.Y x 2BY=BX} Case4
2BY =B x (9EX—BEY « 1.X —1.Y} Case5

For Case 5 (EFY > 0and FY < EX) and Case 4 (EX >0
and EX < EY') the numbers of distinct mantissa sums are
the same as those in the corresponding cases of true addi-
tion. For Case 3 (FX > 0and FX=FY), the mantissasum
1.X—=1.Y is the same as 0.X —0.Y in Case 0 (EX=EY =0).
For both Case 1 (EX=0and FY > 0) and Case 2 (FX >0
and FY =0), the number of distinct mantissa sum is 2" —1.
Therefore, the number of of distinct mantissa sums for the
true subtraction is also 27%2? — 5. Thus, the total number
of distinct mantissa sums is 273 — 107

Figure 8 illustrates the *PHDD representation of
floating-point addition with two exponent bits for each
floating-point operand. Observe that the negation edge
reduces the graph size by half. There i1s no sharing among
the sub-graphs for true addition and true subtraction. In
true subtraction, 1.X — 1.Y has the same representation as

Representation of floating-point addition. For simplicity, the graph only shows sign bits, exponent bits and the possible

0.X — 0.Y. Therefore, all 1.X — 1.Y entries are replaced
by 0.X —0.Y. Since the number of distinct mantissa sums
grows exponentially with the number of exponent bits, it
can be shown that the total number of nodes grows expo-
nentially with the size of exponent bits and grows linearly
with the size of the mantissa part. Floating point sub-
traction can be performed by the negation and addition
operations. Therefore, it has the same complexity as addi-
tion.

Now, we prove that the exact graph size of floating-point
addition under a fixed variable ordering grows exponen-
tially with the size of the exponent and linearly with the
size of the mantissa. Assume that the sizes of the expo-
nent and the mantissa are n and m bits, respectively. We
assume that the variable ordering is S;, Sy, exo, eyo, ...,
€EXn—-1y €Yn—-1y Tm—-1y -+ L0y Ym—-1, --+y Yo.

Lemma 1: The size of the mantissa part of the result-
ing graph is 2"+1(7m — 1) — 20m — 4, where n and m are
the numbers of bits of the exponent and mantissa parts
respectively.

Proof: Theorem 2 showed that the number of distinct man-
tissa sums is 273 — 10. Except the leaf nodes, each man-
tissa sum can be represented by 2m nodes, but there 1is
some sharing among the mantissa graphs. First, let us look
at the sharing among the mantissa sums of true addition.
For case 4 in Equation 6, the graphs to represent function
0.X 4+ 28Y=1 % 1.Y share the same subgraph 1.Y, which is
also in the graph representing function 1.X + 0.Y. Thus,
there are 27 — 1 distinct mantissa sums to share the same
graph(1.Y). Again, the graphs to represent 1.X + 1.Y in
case 2 and 2 x 1.X + 0.Y in case 3, share the sub-graph
240.Y,since 1. X4+1.Y=0.X4(240.Y) and 2x 1.X +0.Y
=2x0.X +(2+40.Y) . Therefore, we have to subtract
(2" — 1)m nodes from the total nodes.

Then, let us look at the true subtraction. First, the
graph to represent 0.X — 0.Y shares the sub-graph 0.Y
with 0.X + 0.Y in true addition, because of the negation
edge. For Case 4 in Equation 7, the graphs to represent
function 0.X — 2FY~1 x 1.Y share the same subgraph 1.Y
in true addition. The graphs to represent 1.X — 0.Y in
case 3 and 2 x 1.X — 1.Y in case 0, share the sub-graph

AEALAL ALY o

Case0 Casel Case 2 Case3

@

2Kia %IL
OOXILY) 00X 1Y) (Ki-1 1X0LY) (0AX+1LY)
(d). Case 2

Figure. 9. Distinct sub-graphs after variable ey _;.

(0,0.X,0,0.Y) (OOXA -1,1Y) (4k1,14X,O,O.Y) (0,1.X,0,1.Y)

(.,1.><,o,1.v) (0.1.%:2Ki 1v) (|+Lk,1.x,o,1.w (|,1.><,0,1.Y)

(e). Case 3

< 5N S
. [ﬂ .

(i,l.XT0,0.Y) (0.LXXKi-1,1Y) (i+K,1X00.Y) (i+1L1X0.LY)

(b). Case0

\

(c). Case 1

)

(01><|1Y) ©1x:Ki.1y) @Ki1x0LY) (01><|1y)

(f). Case 4

(a) Distinct sub-graphs after variable ey;_; are divided into 5 types shown in

graphs (b) to (f) which serve as template with a parameter i. (b) Case 0 only has one distinct graph. (c) 0 < i = EX;, — 1 < 2F — 2. (d)
0<i=FEY;, —-1<2k- 2. (e)1<i=FEX;; —EY; <28 -2. ()1 <i=FEY;, - EX; <2F-2.

1—-0.Y,since 1.X4+1Y=0X+(1-0Y)and 2x 1.X —
1.Y=2x 0.X 4+ (1 = 0.Y)). Therefore, we have to subtract
(2" 4+ 1)m nodes from the total nodes. Thus, the number
of non-leaf nodes to represent these distinct mantissa sums
s (7Tx 2" —10) x (2m).

The leaf nodes 1 and 0 are referenced by these non-leaf
nodes. For true addition, the number of leaf nodes, except
leaf node 1, is 2" — 2, since the leaf nodes of the mantissa
sum for X < EY can be shared with the mantissa sum for
EX > EY. To be specific, the leaf nodes are generated by
the sum of the leading 1s in the form of 14 1 x 2FY—FX o
1 x 2BX=EY 1 1 and there are only 2" —2 sums. Similarly,
for true subtraction, there are 2" —4 leaf nodes, but the leaf
nodes 3 (22—1) and 0 (2°—1) already exist. Thus, the total
number of leaf nodes is 2+ (27 — 2) + (2" —4) = 2"+ — 4,
Therefore, the size of the mantissa part of resulting graph
is (7x 2" —10) x (2m) 42"+t —4 = 2"+ (Tm—1) —20m—4.
L]

Lemma 2: For all n > 2, the number of *PHDD nodes
of the exponent part of the resulting graph is 5 x 27+2? —
16 x n — 18.

Proof: As mentioned before, the resulting graph can be
divided into two parts: true addition and true subtraction.
First, we prove that the number of nodes of the exponent
part for true addition is 5 x 2"+t —8 x n—9. We prove this
claim by the induction on the number of exponent bits n.

Base Case: If n = 2, the number of exponent nodes for
true addition is 5 x 22*! — 8 x 2 — 9 = 15 as shown in
Figure 8.

Induction Step: Assume the claim holds for n = k. To

prove that the claim holds for n = k + 1, let EX; and
EY}; represent the low k bits of X and EFY. Thus, FX is

represented as 2 x ez +F X, . Equation 4 can be rewritten
as the following;:

Fx 4+ Fy = (—I)SI x 2= B x

21 x {2(xezi) G 4 20ixewn) x H} Case 0
21 x {2(EXp—1tixexr) x 1. X 4 H x 2(0xevk)} Case 1
21 % {G x 2(xezk) 4 1y x 2(EYie—1+ixeyi)} Case 2 (8)
2Bk x {(2P+2 Xek) x 1.X +1.Y x 22" Xews)} Case 3
2BXx 5 (22" xemk) x 1.X +1.Y x 2(P+2"Xevn)) Case 4

where [is 2% —1, pis |EX; — EYy|,and G (H)is 0.X (0.Y)
if exy (eyg) is 0; otherwise, G (H) is 1.X (1.Y'). Figure 9.a
illustrates the distinct sub-graphs after expanding variable
eyg—1. These sub-graphs are divided into five types, ac-
cording to the cases in Equation 8. For Case 0 (FXj =
EY,=0), there is only one distinct sub-graph. For Case
1 (EXg > 0 and EY;=0), there are 2% — 1 distinct sub-
graphs, since the number of possible value of EX}, is 2% —1
and each value of EFXj will generate a unique function.
Similarly, there are 2% — 1, 28 — 2 and 2% — 1 distinct sub-
graphs for Case 2 (FX,=0 and EY} > 0), Case 3 (FY;, > 0
and EYy < EXy), and Case 4 (EXy > 0 and FXy < EYy),
respectively. Thus, the total number of distinct sub-graphs
is 2F+2 — 4,

Figures 9.b shows the sub-graph for Case 0. In the
graphs, each tuple (i, P, j, Q) represents 2¢ x P+27 x Q). For
example, tuple (0,0.X,0,0.Y) represents 2° x 0.X + 2° x
0.Y. Figures 9.c to 9.f show the graphs with a parameter ¢
for Cases 1, 2, 3 and 4, which serve as the template of the
graphs in the cases. For instance, the graph in Case 1 with
1 = 1 represents the function (BXk—1+(2F—1)xeas) o | X 4
H x 20 =1)xeun) with E X, = 11in Case 2 of Equation 8.

Since each sub-graph is distinct, the nodes with variable
exy are unique (i.e. no sharing). Observing from these five
types of sub-graphs, the possible sharing among the nodes
with variable ey is these cases: the ey; nodes in case 2
share with that in cases 3 and 4, and the nodes in case 3
share with that in case 4. For the first case, the possible
sharing is the right eyx nodes in Figure 9.e and Figure 9.g.
Observe that these two eyr node will be that same in the
graph with ¢ = j in case 2 and the graph with ¢ = j + 1

in case 4. Since the possible values of ¢ are ranged from
0 to 2% — 3, there are 2 — 2 ey, nodes shared. When
i = 2% — 2, the right ey, node in the graph of case 2 will
be shared with the left eyr node in the graph with i=1 in
Figure 9.e. Therefore, all of the right eyy nodes in Case
2 are shared nodes and are 2 — 1 nodes. For the second
case, the possible sharing is the left ey, node in Figure 9.e
and the right eyx node in Figure 9.f. Observe that when
i1 + is = 2%, the left ey, node in the graph with ¢ = ¢; in
case 3 is the same as the right ey, node in the graph with
i =g in case 4. Since 2 < iy < 28 —2and 0 < iy < 2% -2,
there are 2¥ — 3 nodes shared. Therefore, the total number
of exponent nodes are 5 x 28+ — 8 x k — 9+ 3 x (2k+2 —
4)— (28— 1) = (2F =3) =5 x 2+ g (k4 1) -9 =
Hx 2t —8xn—0.

Similarly, the number of nodes of the exponent part for
true subtraction is 5 x 2"t — 8 x n — 9. Therefore, the size
of the exponent part of the resulting graph is 5 x 2712 —
16 x n —18.]

Theorem 3: For floating-point addition, the size of the
resulting graph is 2"t x (Tm + 9) — 20m — 16n — 19.

Proof: The size of the resulting graph is the sum of the
nodes for the sign, exponent and mantissa parts. The nodes
for the sign part are 3 as shown in Figure 8. Lemma 1 and
2 have shown the sizes of the mantissa and exponent parts
respectively. Therefore, their sum is 27+ x (Tm + 9) —
20m — 16n —19.]

In our experience, the sizes of the resulting graphs for
multiplication and addition are hardly sensitive to the vari-
ables ordering of the exponent variables. They exhibit a
linear growth for multiplication and exponential growth
for addition for almost all possible ordering of the expo-
nent variables. It is more logical to put the variables with
Shannon decompositions on the top of the variables with
the other decompositions.

VI. ComPARISONS WITH *BMD, HDD anp K*BMD

The major difference between *PHDD and the other
three diagrams is in their ability to represent functions that
map Boolean variables into floating-point values and their
use of negation edges. Table I summarizes the differences
between them.

Features *PHDD *BMD | HDD | K*BMD
Additive weight No No No Yes
Multiplicative weight | Powers of 2 GCD No GCD
of decomp. 3 1 6 3
Negation edge Yes No No No

Table I. Differences among four different diagrams.

Compared to *BMDs [4], *PHDDs have three different
decomposition types and a different method to represent
and extract edge weights. These features enable *PHDDs
to represent floating-point functions effectively. *BMD’s
edge weights are extracted as the greatest common divisor
(GCD) of two children. In order to verify the multiplier
with a size larger than 32 bits, *BMDs have to use multiple
precision representation for integers to avoid the machine’s

32-bit limit. This multiple precision representation and
the GCD computation are expensive for *BMDs in terms
of CPU time. Our powers of 2 method not only allows us
to represent the floating-point functions but also improves
the performance compared with *BMD’s GCD method.
Compared with HDDs having six decompositions [10],
*PHDDs have only three of them. In our experience, these
three decompositions are sufficient to represent floating-
point functions and verify floating-point arithmetic cir-
cuits. The other three decomposition types in HDDs may
be useful for other application domains. Another difference
is that *PHDDs have negation edges and edge weights, but
HDDs do not. These features not only allow us to represent
floating-point functions but also reduce the graph size.
*PHDDs have only multiplicative edge weights, but
K*BMDs [15] allow additive and multiplicative weights at
the same time. The method of extracting the multiplica-
tive weights is also different in these two representations.
*PHDDs extract the powers-of-2 and choose the minimum
of two children, but K¥BMDs extract the greatest common
divisor of two children like *BMDs. The additive weight
in K¥BMDs can be distributed down to the leaf nodes in
*PHDD by recursively distributing to one or two branches
depending on the decomposition type of the node. In our
experience, additive weights do not significantly improve
the sharing in the circuits we verified. The sharing of the
additive weight may occur in other application domains.

VII. EXPERIMENTAL RESULTS

We have implemented *PHDD with basic BDD functions
and applied it to verify arithmetic circuits. Integer mul-
tiplier circuits and *BMD package can be obtained from
Yirng-An Chen’s WWW page!. The circuit structure for
four different types of multipliers are manually encoded in
a C program which calls the BDD and *BMD operations.
We also integrated our *PHDD package with the C pro-
gram. Our measurements are obtained on Sun Sparc 10
with 256 MB memory. The memory measurements are the
memory used by *BMD or *PHDD packages (i.e., the peak
memory usage).

A. Integer Multipliers

To verify integer multipliers, we first use the hierarchical
verification approach described in [4]. In this approach,
the multiplier is partitioned into several sub-circuits and
each sub-circuits is verified independently against its spec-
ification. Then, these sub-specifications are composed to
check against the overall specification.

Based on this approach, Table IT shows the performance
comparison between *BMD and *PHDD for different in-
teger multipliers with different word sizes. Based on these
experiments, the complexity of *PHDDs for the multipliers
for the CPU time still grows quadratically with the word
size. Compared with *BMDs, *PHDDs are at least 5 times
faster, since the edge weight manipulation of *PHDDs only
requires integer addition and subtraction, but *BMDs re-

Thttp://www.cs.cmu.edu/~yachen/home.html.

Circuits CPU Time (Sec.) Memory(MB)
16 64 256 16 64 256
Add-Step *BMD 1.4 154 3544 | 0.7 0.8 1.1
*PHDD 0.2 2.2 40.0 | 0.1 0.2 0.6
Ratio 7.0 7.0 89 | 7.0 4.0 1.8
CSA *BMD 1.6 269 591.7 | 0.7 0.8 2.1
*PHDD 0.3 3.5 50.7 | 0.1 0.3 0.9
Ratio 5.3 7.7 11.7 | 7.0 2.7 2.3
Booth *BMD 2.1 34.1 782.2 | 0.7 0.9 1.8
*PHDD 0.2 3.0 62.6 | 0.1 0.3 1.3
Ratio 10.5 11.4 125 | 7.0 3.0 1.4
Bit-Pair *BMD 1.2 174 3786 | 0.7 0.9 2.3
*PHDD 0.2 2.2 36.1 | 0.2 0.3 1.3
Ratio 6.0 7.9 10.5 | 3.5 3.0 1.8
Table II. Performance comparison between *BMD and

*PHDD for different integer multipliers. Results are shown
for three different words. The ratio is obtained by dividing the result
of *BMD by that of *PHDD.

quire a multiple precision representation for integers and
perform costly multiple precision multiplication, division,
and GCD operations. While increasing the word size, the
*PHDD’s speedup is increasing, because ¥*BMDs requires
more time to perform multiple precision multiplication and
division operations. Interestingly, *PHDDs also use less
memory than ¥*BMDs, since the edge weights in *BMDs
are explicitly represented by extra nodes, while *PHDDs

embed edge weights into the node structure. The node
sizes for both packages are 20 bytes.
Mult A Mult B Mult C
Bits |'cpu [MEM | cPU [MEM | cPU | MEM
4 0.1 6.2 0.1 6.1 0.1 7.6
8 0.2 6.9 0.3 6.9 0.3 7.8
16 1.2 8.1 1.2 8.3 1.1 8.2
32 6.4 8.7 10.6 9.2 5.9 9.1
64 37.8 10.7 | 133.9 13.4 47.8 13.0
order TL2'5 TLl'l n 5 nl. ?’L2'8 ’I'L1'2

Table ITI. Results of three different types of multipliers. Mult
A is based on bit-pair and array multiplier. Mult B is based on Bit-
Pair and Wallace-tree multiplier. Mult C is based on Booth-Radix4
and Wallace-tree Multiplier.

The drawback of the hierarchical verification approach
is that the circuits must be partitioned into hierarchical
forms. To overcome this constraint, Hamaguchi et al [18]
proposed a backward substitution method to compute the
output *BMDs of integer multipliers without any circuit
knowledge. Keim et al [20] have shown that this approach
with *BMDs is bounded by O(n?), in worse case. In [6],
Chen et al have shown that the backward substitution
method using *PHDDs is also bounded by O(n*), in worse
case. Table III shows their performance measurements
for different integer multipliers with different word sizes.
These experiment results were performed on Sun Ultra-
Sparc 60 (450MHz). Mult A is based on bit-pair and array
multiplier. Mult B is based on Bit-Pair and Wallace-tree
multiplier. Mult C is based on Booth-Radix4 and Wallace-
tree Multiplier. Since different types of multipliers affect
the behavior of computed cache table during backward sub-
stitution, the computation complexity of the actual mea-

surements varies from O(n%?) to O(n3®). Based on their
experiments, for buggy multipliers, *PHDDs will blow up
exponentially during the backward substitution.

B. Floating Point Multipliers

Circuits CPU Time (Sec.) Memory(MB)
16 64 256 16 64 256
Add-Step | 0.24 2.29 39.77 | 0.13 0.18 0.65
CSA 0.29 3.08 53.98 | 0.14 0.30 0.88
Booth 0.25 3.85 67.38 | 0.16 0.30 1.26
Bit-Pair 0.21 2.10 38.54 | 0.15 0.33 1.33

Table IV. Performance for different floating-point multipli-
ers. Results are shown for three different mantissa word size with
fixed exponent size 11.

To perform floating-point multiplication operations be-
fore the rounding stage, we introduced an adder to perform
the exponent addition and logic to perform the sign oper-
ation in the C program. Based on the hierarchical verifi-
cation approach, Table TV shows CPU times and memory
requirements for verifying floating-point multipliers with
fixed exponent size 11. Based on these experimental re-
sults, the complexity of verifying floating-point multiplier
before rounding still grows quadratically. In addition, the
computation time is very close to the time of verifying inte-
ger multipliers, since the verification time of an 11-bit adder
and the composition and verification times of a floating-
point multiplier from integer mantissa multiplier and ex-
ponent adder are negligible. The memory requirement is
also similar to that of the integer multiplier.

C. Floating Point Addition

Exp. No. of Nodes CPU (Sec.) Mem.(MB)

Bits 23 52 23 52 23 52
4 4961 10877 0.2 0.7 0.4 0.7
5 10449 22861 0.7 1.3 0.7 1.1
6 21441 46845 1.1 3.5 1.1 2.0
7 43441 94829 2.7 6.9 1.9 3.8
8 87457 190813 7.2 16.8 3.6 7.5
9 175505 382797 15.0 41.3 7.2 14.8
10 351617 766781 33.4 103.2 14.3 29.5
11 703857 1534765 72.8 262.4 26.5 54.9
12 1408353 3070749 | 163.2 573.7 54.1 110.9
13 2817361 6142733 | 398.3 1303.8 112.5 226.0

Table V. Performance for floating-point additions. Results are
shown for 10 different exponent word size with fixed mantissa size 23
and 52 bits.

Table V shows the performance measurements of precise
floating-point addition operations with different exponent
bits and fixed mantissa sizes of 23 and 52 bits, respectively.
Both the number of nodes and the required memory dou-
ble, while increasing one extra exponent bit. For the same
number of exponent bits, the measurements for the 52-bit
mantissa are approximately twice the corresponding mea-
surements for the 23-bit mantissa. In other words, the
complexity grows linearly with the mantissa’s word size.
Due to the cache behavior, the CPU time is not doubling

(sometimes, around triple), while increasing one extra ex-
ponent bit. For the double precision of IEEE standard 754
(the numbers of exponent and mantissa bits are 11 and 52
respectively), it only requires 54.9MB and 262.4 seconds.
These values indicate the possibility of the verification of
an entire floating-point adder for IEEE double precision.
For TEEE extended precision, floating-point addition will
require at least 226.4 x 8 = 1811.2MB memory. In order
to verify IEEE extended precision addition, it is necessary
to avoid the exponential growth of floating-point addition.

VIII. CoNcLUsIONS AND FUTURE WORK

We have described a new representation, *PHDD, to rep-
resent functions that map Boolean variables into integer or
floating-point values. We also applied *PHDDs to verify
integer and floating-point multipliers. For integer multi-
pliers, the CPU time of *PHDDs grows quadratically and
is at least 6 times faster than *BMDs. For floating-point
multipliers, the verification time is close to the verifica-
tion time of integer multiplier. In addition, we showed
that the *PHDD representation for floating-point multipli-
cation grows linearly with the word size. For floating-point
addition, we showed the graph size of the result grows ex-
ponentially with the word size of the exponent, but linearly
with the size of the mantissa.

To verify circuit designs automatically, we would like to
integrate the *PHDD package into word-level SMV [12]
and extend word-level SMV, if needed, to handle floating-
point arithmetic circuits. Then, we will look into the
rounding stage and entire floating-point adders. Earlier
results [9] show that the rounding stage itself can be han-
dled with HDDs and therefore with *PHDDs. To verify
entire floating-point adders, we need to develop some tech-
niques to avoid the exponential growth. Our representation
for floating-point addition represents the precise values of
all possible combinations, but in the actual circuit design,
there are only about 200 interesting mantissa sums. Based
on this knowledge, we will develop a technique to avoid
the exponential growth of floating-point addition. As men-
tioned in previous sections, we will further pursue handling
infinite and NaN cases. We need to develop some tech-
niques or introduce special symbols to handle these cases.

ACKNOWLEDGEMENT

We thank Xudong Zhao for valuable discussions on
HDDs and verification of arithmetic circuits.

REFERENCES

[1] K. Brace, R. Rudell, and R. E. Bryant. Efficient implementa-
tion of a BDD package. In Proceedings of the 27th ACM/IEEE
Design Automation Conference, pages 40-45, June 1990.

[2] B.Brock, M. Kaufmann, and J. S. Moore. ACL2 theorems about
commercial microprocessors. In Proceedings of the Formal Meth-
ods on Computer-Aided Design, pages 275-293, November 1996.

[3] R. E. Bryant and Y.-A. Chen. Verification of arithmetic func-
tions with binary moment diagrams. Technical Report CMU-CS-
94-160, School of Computer Science, Carnegie Mellon University,
1994.

[4] R. E. Bryant and Y.-A. Chen. Verification of arithmetic cir-
cuits with binary moment diagrams. In Proceedings of the

(5]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

18]

(16]

(17]

(18]

(19]

(20]

(21]

32nd ACM/IEEE Design Automation Conference, pages 535—
541, June 1995.

V. A. Carreno and P. S. Miner. Specification of the IEEE-854
floating-point standard in HOL and PVS. In High Order Logic
Theorem Proving and Its Applications, September 1995.

J.-C. Chen and Y.-A. Chen. Equivalence checking of integer
multipliers. In Proceedings of ASP-DAC 2001, pages 169-174,
Yokohoma,Japan, Feb. 2001.

Y.-A. Chen and R. E. Bryant. ACV: An arithmetic circuit
verifier. In Proceedings of the International Conference on
Computer-Aided Design, pages 361-365, November 1996.

Y.-A. Chen and R. E. Bryant. *PHDD: An efficient graph repre-
sentation for floating point circuit verification. In Proceedings of
the International Conference on Computer-Aided Design, pages
2-7, November 1997.

Y.-A. Chen, E. M. Clarke, P.-H. Ho, Y. Hoskote, T. Kam,
M. Khaira, J. O’Leary, and X. Zhao. Verification of all cir-
cuits in a floating-point unit using word-level model checking.
In Proceedings of the Formal Methods on Computer-Aided De-
sign, pages 19-33, November 1996.

E. M. Clarke, M. Fujita, and X. Zhao. Hybrid decision dia-
grams - overcoming the limitations of MTBDDs and BMDs. In
Proceedings of the International Conference on Computer-Aided
Design, pages 159-163, November 1995.

E. M. Clarke, S. M. German, and X. Zhao. Verifying the
SRT division using theorem proving techniques. In R. Alur
and T. A. Henzinger, editors, Computer-Aided Verification,
CAV ’96, number 1102 in Lecture Notes in Computer Sci-
ence, pages 111-122, New Brunswick, NJ, July/August 1996.
Springer-Verlag.

E. M. Clarke, M. Khaira, and X. Zhao. Word level model check-
ing — Avoiding the Pentium FDIV error. In Proceedings of the
38rd ACM/IEEE Design Automation Conference, pages 645—
648, June 1996.

E. M. Clarke, K. McMillan, X. Zhao, M. Fujita, and J. Yang.
Spectral transforms for large Boolean functions with applications
to technology mapping. In Proceedings of the 30th ACM/IEEE
Design Automation Conference, pages 54—60, June 1993.

T. Coe. Inside the Pentium Fdiv bug. Dr. Dobbs Journal, pages
pp- 129-135, April 1996.

R. Drechsler, B. Becker, and S. Ruppertz. K*BMDs: a new data
structure for verification. In Proceedings of Furopean Design and
Test Conference, pages 2—8, March 1996.

R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and M. A.
Perkowski. Efficient representation and manipulation of switch-
ing functions based on ordered Kronecker functional decision
diagrams. In Proceedings of the 81st ACM/IEEE Design Au-
tomation Conference, pages 415-419, June 1994.

L. M. Fisher. Flaw reported in new intel chip. New York Times,
pages D, 4:3, May 6 1997.

K. Hamaguchi, A. Morita, and S. Yajima. Efficient construction
of binary moment diagrams for verifying arithmetic circuits. In
Proceedings of the International Conference on Computer-Aided
Design, pages 7882, November 1995.

M. Kaufmann and J. S. Moore. ACL2: An industrial strength
version of Nqthm. In Proceedings of the 11th Annual Conference
on Computer Assurance (COMPASS-96), pages 23-34, June
1996.

M. Keim, M. Martin, R. Drechsler, and P. Molitor. Polynomial
formal verification of multipliers. In Proceedings of 15th IEEE
VLSI Test Symposium, pages 150-155, 1997.

J. S. Moore, T. W. Lynch, and M. Kaufmann. A mechanically
checked proof of the amd5 ;867 floating-point division pro-
gram. In IEEE Transactions on Computers, pages 9:913-926,
September 1998.

ence of National C
professor from 199

Yirng-An Chen received the B.S. and M.S.
degrees in computer science from TungHai Uni-
versity, Taiwan, in 1987 and from National Ts-
ing Hua University, Taiwan, in 1989, respec-
tively, and the Ph.D. degree in computer sci-
ence from Carnegie Mellon University, PA, in
1998.

He was with the Department of Computer and Information Sci-

hiao Tung University, where he was an assistant
to 2001. Since then, he is a principal engineer

at Novas Software Inc., San Jose, CA. His Research interests include

formal verification,

symbolic simulation and debugging.

Dr. Chen received Best Paper Award at 32nd Design Automation

Conference in 1995

