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Efficient Modeling of Memory Arrays in Symbolic
Ternary Simulation1

Abstract. This paper enables symbolic ternary simulation of systems with large
embedded memories. Each memory array is replaced with a behavioral model, where
the number of symbolic variables used to characterize the initial state of the memory
is proportional to the number of distinct symbolic memory locations accessed. The
behavioral model provides a conservative approximation of the replaced memory
array, while allowing the address and control inputs of the memory to accept sym-
bolic ternary values. Memory state is represented by a list of entries encoding the
sequence of updates of symbolic addresses with symbolic data. The list interacts with
the rest of the circuit by means of a software interface developed as part of the sym-
bolic simulation engine. This memory model was incorporated into our verification
tool based on Symbolic Trajectory Evaluation. Experimental results show that the
new model significantly outperforms the transistor level memory model when verify-
ing a simple pipelined data path.

1 Intr oduction

Ternary simulation, where the “unknown” value X is used to indicate that a signal can
be either 0 or 1, has proven to be very powerful for both validation and formal verifica-
tion of digital circuits [10]. Given that the simulation algorithm satisfies a monotonic-
ity property to be described later, any binary values resulting from simulating patterns
with X’s would also result when the X’s are replaced by any combination of 0’s and
1’s. Hence, employing X’s reduces the number of simulation patterns, often dramati-
cally. However, ternary simulators will sometimes produce a value X, when an exhaus-
tive analysis would determine the value to be binary (i.e., 0 or 1). This has been
resolved by combining ternary modeling with symbolic simulation [1], such that the
signals can accept symbolic ternary values, instead of the scalar values 0, 1, and X.
Each symbolic ternary value is represented by a pair of symbolic Boolean expressions,
defined over a set of symbolic Boolean variables, that encode the cases when the signal
would evaluate to 0, 1, or X. The advantage of symbolic ternary simulation is that it
efficiently covers a wide range of circuit operating conditions with a single symbolic
simulation pattern that involves far fewer variables than would be required for a com-
plete binary symbolic simulation.

One of the hurdles in simulation has been the representation of memory arrays.
These have been traditionally modeled by explicitly representing every memory bit.
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While this is not a problem for conventional simulation, symbolic simulation would
require a symbolic variable to denote the initial state of every memory bit. Further-
more, bit-level symbolic model checking [4][5] would need two symbolic variables
per memory bit, in order to build the transition relation. Therefore, in both methods the
number of variables is proportional to the size of the memory, and is prohibitive for
large memory arrays.

This limitation is overcome in our previous work [11] by replacing each memory
array with an Efficient Memory Model (EMM). The EMM is a behavioral model,
which allows the number of symbolic variables used to be proportional to the number
of distinct symbolic memory locations accessed rather than to the size of the memory.
It is based on the observation that a typical verification execution sequence usually
accesses only a limited number of distinct symbolic locations. However, it was
assumed that the memory address and control inputs can accept only symbolic binary
values.

To our knowledge, there has not been previous research on how to define a behav-
ioral memory model for the cases when any of its address or control inputs has the
value X in symbolic ternary simulation. Our experiments with Version 2.5 of the
Cadence Design Systems VERILOG-XL indicated that a Read operation performed
with an address containing X’s returned the contents of the memory location deter-
mined when the X’s are replaced by 1’s. Also, a Write operation performed with an
address containing X’s did not alter the contents of any memory location. Such behav-
ior might be sufficient in conventional informal logic simulation, where performance is
of greater concern than functionality when simulating X values. However, it is not ade-
quate for ternary simulation combined with formal verification, where such behavior
might result in false positive verification results. The goal of this work is to enable the
EMM to accept symbolic ternary values at its address and control inputs, while provid-
ing a conservative approximation of the replaced memory array. Conservative approxi-
mation means that false positive verification results are guaranteed not to occur,
although false negative verification results are possible.

This paper builds on [11] with the following contributions: 1) an extended EMM
which can have symbolic ternary values at its control and address inputs, and 2) an
EMM-circuit interface which guarantees that the EMM would behave as a conserva-
tive approximation of the replaced memory array. Since symbolic ternary values are a
superset of symbolic binary values, the extended EMM defined in this paper is a super-
set of the one from [11].

Experimental results for the EMM were obtained using the Symbolic Trajectory
Evaluation (STE) [10] technique for formal verification. STE is an extension of sym-
bolic simulation that has been used to formally verify circuits, including a simple pipe-
lined data path [3]. Incorporation of the EMM in STE enabled the verification of the
pipelined data path with a significantly larger register file than previously possible.

A symbolic representation of memory arrays has been used by Burch and Dill [6].
They apply uninterpreted functions with equality, which abstract away the details of
the data path and allow them to introduce only a single symbolic variable to denote the
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initial state of the entire memory. EachWrite or Read operation results in building a
formula over the current memory state, so that the latest memory state is a formula
reflecting the sequence of memory writes. In our method, the memory state is repre-
sented with a list of entries encoding the sequence of updates of symbolic addresses
with symbolic data. OurWrite operation modifies this list. However, we perform the
verification at the circuit level of the implementation and need bit-level data for sym-
bolic word-level memory locations in order to verify the data path. This requires the
user to introduce symbolic variables proportional to both the number of distinct sym-
bolic memory locations accessed and the number of data bits per location.

This paper advocates a two step approach for the verification of circuits with large
embedded memories. The first step is to use STE to verify the transistor level memory
arrays independently from the rest of the circuit. Pandey and Bryant have combined
symmetry reductions and STE to enable the verification of very large memory arrays at
the transistor level [9][8]. The second step is to use STE to verify the circuit after the
memory arrays are replaced by EMMs and is the focus of this work.

In the remainder of the paper, Sect. 2 describes the symbolic domain used in our
algorithms. Sect. 3 gives a brief overview of STE. Sect. 4 presents the EMM and Sect.
5 introduces its underlying algorithms. Sect. 6 explains the way to incorporate the
EMM into STE. Experimental results and conclusions are presented in Sect. 7.

2 Symbolic Domain

We will consider three different domains - control, address, and data - corresponding
to the three different types of information that can be applied at the inputs of a memory
array. A control expressionc will represent the value of a node in ternary symbolic
simulation and will have a high encodingc.h and a low encodingc.l, each of which is a
Boolean expression. The ternary values that can be represented by a control expression
c are shown in Table 1. We would write [c.h, c.l] to denotec. It will be assumed that
c.h and c.l cannot be simultaneouslyfalse. The typesBExpr, CExpr will denote
respectively Boolean and control expressions in the algorithms to be presented.

The memory address and data inputs, since connected with circuit nodes, will
receive ternary values represented as control expressions. Hence, addresses and data
will be represented by vectors of control expressions having width n andw, respec-
tively, for a memory withN = 2n locations, each holding a word consisting ofw bits.
Observe that an X at a given bit position represents the “unknown” value, i.e., the bit

Ternary value c.h c.l

0 false true

1 true false

X true true

Table 1. 2-bit encoding of ternary logic
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can be either 0 or 1, so that many distinct addresses or data will be represented. To cap-
ture this property of ternary simulation, we introduce the typeASExpr (address set
expression) to denote a set of addresses. Similarly, the typeDSExpr (data set expres-
sion) will denote a set of data. Note that in both cases, a set will be represented by a
single vector of ternary values. We will use the notation〈a1, ... ,an〉 to explicitly repre-
sent the address set expressiona, whereai is the control expression for the correspond-
ing bit position ofa. Data set expressions will have a similar explicit representation,
but with w bits. Symbolic variables will be introduced in each of the domains and will
be used in expression generation.

The symbolsUA andUD will designate the universal address and data sets, respec-
tively. They will represent the most general information about a set of addresses or
data. Similarly, the symbols ∅A and∅D will denote the empty address and data sets,
respectively. In ternary logic,UA and UD can be represented by vectors of control
expressions consisting entirely of Xs.

We will use the termcontext to refer to an assignment of values to the symbolic
variables. A Boolean expression can be viewed as defining a set of contexts, namely
those for which the expression evaluates totrue.

A symbolic predicate is a function which takes symbolic arguments and returns a
symbolic Boolean expression. The following symbolic predicates will be used in our
algorithms, wherec is of typeCExpr, anda is of typeASExpr:

Zero(c)  =̇ ¬c.h∧ c.l , (1)

Hard(c)  =̇ c.h∧ ¬c.l , (2)

Soft(c)  =̇ c.h∧ c.l , (3)

Unique(a) =̇ ¬ Soft(ai) . (4)

The predicatesZero, Hard, andSoft define the conditions for their arguments to be the
ternary 0, 1, and X, respectively. The predicateUnique defines the condition for the
address set expressiona to represent aunique or single address.

The selection operatorITE (for “If-Then-Else”), when applied on three Boolean
expressions, is defined as:

ITE(b,  t,  e)  =̇ (b ∧ t) ∨ (¬b ∧ e) . (5)

Address set comparison with another address set is implemented as:

a1 = a2  =̇ ¬  [(a1.hi ⊕ a2.hi) ∨  (a1.li ⊕ a2.li)] , (6)

wherea1.hi anda1.li represent the high and low encodings of the control expression for
bit i of address set expressiona1. Address set comparison with the universal address
set is implemented as:

a = UA =̇ Soft(ai) . (7)

Address set selectiona1 ← ITE(b,  a2,  a3)  is implemented by selecting the corre-
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sponding bits:

a1.hi ← ITE(b,  a2.hi,  a3.hi),    a1.li ← ITE(b,  a2.li,  a3.li),    i = 1, ... , n . (8)

Checking whether address set a1 is a subset of address set a2 is done by:

a1 ⊆ a2 =̇ ¬  (a1.hi ∧ ¬a2.hi ∨ a1.li ∧ ¬a2.li) , (9)

and checking address sets a1 and a2 for overlap is implemented by:

Overlap(a1, a2) =̇ (a1.li ∧ a2.li ∨ a1.hi ∧ a2.hi  ) . (10)

Computing l ∈ a, where a is an address set expression and l is a vector of Boolean
expressions, is implemented by:

l ∈ a =̇ ITE(li, a.hi, a.li) . (11)

The definition of symbolic predicates over data set expressions is similar, but over vec-
tors of width w.

Note that all of the above predicates are symbolic, i.e., they return a symbolic
Boolean expression and will be true in some contexts and false in others. Therefore, a
symbolic predicate cannot be used as a control decision in algorithms. The function
Valid(), when applied to a symbolic Boolean expression, will return true if the expres-
sion is valid or equal to true (i.e., true for all contexts), and will return false otherwise.
We can make control decisions based on whether or not an expression is valid.

We will also need to form a data set expression that is the union of two data set
expressions, d1 and d2. If these differ in exactly one bit position, i.e., one of them has a
0 and the other a 1, then the ternary result will have an X in that bit position and will be
an exact computation. However, if d1 and d2 differ in many bit positions, these will be
represented as Xs in the ternary result and that will not always yield an exact computa-
tion. For example, if d1 = 〈0, 1〉 and d2 = 〈1, 0〉, the result will be 〈X, X〉 and will not be
exact, as it will also contain the data set expressions 〈0, 0〉 and 〈1, 1〉, which are not
subsets of d1 or d2. We define the operation approximate union d1 ∪∼ d2  of two data set
expressions as:

[d1 ∪∼ d2 ]i =̇ [d1.hi ∨ d2.hi,  d1.li ∨ d2.li],     i = 1, ... , w . (12)

Finally, we will define the operation data merge, d, where l is a vector of sym-
bolic variables, a is an address set expression, and d is a data set expression, as:

[ d]i =̇ [ ∃
l

(l ∈ a) ∧ d.hi, ∃
l

(l ∈ a) ∧ d.li],     i = 1, ... , w . (13)

We have used Ordered Binary Decision Diagrams (OBDDs) [2] to represent the
Boolean expressions in our implementation. However, any representation of Boolean
expressions can be substituted, as long as function Valid() can be defined for it.

3  STE Background

STE is a formal verification technique based on symbolic simulation. For the purpose
of this paper, it would suffice to say that STE is capable of verifying circuit properties,
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described as assertions, of the form A C. The antecedent A specifies con-
straints on the inputs and the internal state of the circuit, and the consequent C speci-
fies the set of expected outputs and state transitions. Both A and C are formulas that
can be defined recursively as:

1) a simple predicate: (noden = b), or (node_vector N = a), or (node_vector N =
d), where b, a, and d are of types BExpr, ASExpr, and DSExpr, respectively,
and in the last two cases each node of the node vector N gets associated with its
corresponding bit-level control expression of the given address-set or data-set
expression;

2) a conjunction of two formulas: F1 ∧ F2 is a formula if F1 and F2 are formulas;

3) a domain restriction: (b → F), where b is of type BExpr, is a formula if F is a
formula, meaning that F should hold for the contexts in which b is true;

4) a next time operator: NF is a formula if F is a formula, meaning that F should
hold in the next time period;

5) a memory array indexing predicate: (mem[a] = d), where mem is a memory
name, a is of type ASExpr, and d is of type DSExpr.

A shorthand notation for k nested next time operators is Nk. A formula is said to
be instantaneous if it does not contain any next time operators. Any formula F can be
rewritten into the form F0 ∧ NF1 ∧ N2F2 ∧ . . . ∧ NkFk, where each formula Fi is
instantaneous. For simplicity in the current presentation, we will assume that the ante-
cedent is free of self inconsistencies, i.e., it cannot have a node asserted to two comple-
mentary logic values simultaneously.

STE maintains two global Boolean expressions OKA and OKC, which are initial-
ized to be true. The STE algorithm updates the circuit node values and the global
Boolean expressions at every simulation time step. The antecedent defines the stimuli
and the consequent defines the set of acceptable responses for the circuit. The expres-
sion OKA maintains the condition under which the circuit node values are compatible
with the values specified by the antecedent. The expression OKC maintains the condi-
tion under which the circuit node values belong to the set of acceptable values speci-
fied by the consequent. The Boolean expression ¬OKA ∨ OKC defines the condition
under which the assertion holds for the circuit.

4 Efficient Modeling of Memory Arrays
The main assumption of our approach is that every memory array can be represented,
possibly after the introduction of some extra logic, as a memory with only write and
read ports, all of which have the same numbers of address and data bits, as shown in
Fig. 1.

The interaction of the memory array with the rest of the circuit is assumed to take
place when a port Enable signal is not 0. In case of multiple port Enables not being
0 simultaneously, the resulting accesses to the memory array will be ordered according
to the priority of the ports.

⇒LEADSTO
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Fig. 1.  View of a memory array, according to our model

During symbolic simulation, the memory state is represented by a list containing
entries of the form 〈h, s, a, d〉, where h and s are Boolean expressions denoting the set
of contexts for which the entry is defined, a is an address expression denoting a mem-
ory location, and d is a data expression representing the contents of this location. The
context information is included for modeling memory systems where the Write opera-
tion may be performed conditionally on the value of a control signal c. The Boolean
expression h represents the contexts Hard(c) ∧ Unique(a),  when the control signal
was 1 and the address a was unique. Under contexts h the location a is definitely over-
written with data d. The Boolean expression s represents the contexts Soft(c) ∨
Hard(c) ∧ ¬Unique(a),  when the control signal was an X, or it was a 1 and the address
was not unique. Under contexts s the location a is uncertainly overwritten with data d.
Initially the list is empty. The type List will be used to denote such memory lists.

The list interacts with the rest of the circuit by means of a software interface
developed as part of the symbolic simulation engine. The interface monitors the mem-
ory input lines. Should a memory input value change, given that its corresponding port
Enable value c is not 0, a Write or a Read operation will result, as determined by the
type of the port. The Address and Data lines of the port will be scanned in order to
form the address set expression a and the data set expression d, respectively. A Write
operation takes as arguments both a and d, while a Read operation takes only a. Both
of these operations will be presented in the next section.

After completing a Write operation, the software interface checks every read port
of the same memory for a possible on-going read (as determined by the port Enable
value being different from 0) from an address that overlaps the one of the recent write.
For any such port, a Read operation is invoked immediately. This guarantees that the
EMM will behave as a conservative approximation of the replaced memory array.

A Read operation retrieves from the list a data set expression rd that represents
the data contents of address a. The software interface completes the read by scheduling
the Data lines of the port to be updated with the data set expression ITE(Hard(c), rd,
ITE(Soft(c), (rd ∪∼ d), d)). The data set expression d is the one that the Data lines will
otherwise have.

     .  .  ..  .  .
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5 Implementation of Memory Operations

5.1 Support Operations

The list entries are kept in order from head (low priority) to tail (high priority). The
initial state of every memory location is assumed to contain arbitrary data and is repre-
sented with the universal data set UD. Entries in the list from low to high priority
model the sequence of memory writes with the tail entry being the result of the latest
memory update. Entries may be inserted at the tail end only, using procedure
InsertTail(), and may be deleted using procedure Delete().

5.2 Implementation of Memory Read and Write Operations

The Write operation, shown as a procedure in Fig. 2, takes as arguments a memory list,
a control expression denoting the contexts for which the write should be performed,
and address set and data set expressions denoting the memory location and its desired
contents, respectively. As the code shows, the write is implemented by simply insert-
ing an element into the tail (high priority) end of the list, indicating that this entry
should overwrite any other entries for this address. An optimized implementation of
the Write operation will be presented after introducing the Read operation.

procedure Write(List mem, CExpr c, ASExpr a, DSExpr d)

/*  Write data d to location a under control c  */

h ← Hard(c) ∧ Unique(a)

s ← Soft(c) ∨   Hard(c) ∧ ¬Unique(a)

InsertTail(mem, 〈h, s, a, d〉)

Fig. 2.  Implementation of the Write operation

Two implementations of the Read operation are shown in Figures 3 and 4 as func-
tions which, given a memory list and an address set expression, return a data set
expression indicating the contents of this location. The purpose of both implementa-
tions is to construct a data set expression giving the contents of the memory location
denoted by its argument address set expression. They do this by scanning through the
list from lowest to highest priority. For each list entry, a Boolean expression
hard_match is built that indicates the contexts for which the entry is hard (definite) and
its (unique) address equals the read address a. Under these contexts, that element’s
data ed is selected. Else, under the contexts expressed by the Boolean expression
soft_match, the approximate union of the element’s data and the  previously formed
data is selected. Finally, under the contexts when both hard_match and soft_match are
false, the previously formed data is kept.

Both implementations of the Read operation use UD as the default data set
expression. The contexts for which Read does not find a matching address in the list
are those for which the addressed memory location has never been accessed by a write.
The data set expression UD is then returned to indicate that the location may contain
arbitrary data.
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function Read(List mem, ASExpr a) : DSExpr
/*  Attempt to read from location a  */

l ← GenVectorBoolVars()

address_containment ← l ∈ a

rd ← UD
for each 〈eh, es, ea, ed〉 in mem from head to tail do

match ← l ∈ ea ∧ address_containment

hard_match ← match ∧ eh

soft_match ← match ∧ es

rd ← ITE(hard_match, ed, ITE(soft_match, (ed ∪∼ rd), rd))

rd ←
l∈a
∪∼ rd

return rd

Fig. 3. First implementation of the Read operation

The difference between the two implementations is in the precision of the data
retrieved from non-unique addresses. While the second implementation will return UD
for the contexts when the read address a is non-unique, the first implementation will
try to extract finer data for the contents of the locations contained in a. It does so by
building a table of data set expressions at each unique address which is a subset of the
read address a. This is done by introducing a vector of new Boolean variables l, which
are used for indexing all the unique addresses that are contained in the read address set
expression a. After scanning the list, these index address variables are existentially
quantified from the bit-level low and high encodings of the retrieved data set expres-
sion rd. This merges the data set expressions corresponding to the contents of every
unique address within a.

A useful optimization of the indexing is to introduce as many new variables in l as
there are non-unique bits (i.e., whose low and high encodings are not complements) in
the read address set expression a. Then, in forming the Boolean expression match, the
unique bits of a will be required to be equal to the corresponding bits of ea. Finally, the
existential quantification in  is done only over the index variables used.

The second implementation of Read is designed to be precise only in the contexts
when the argument address is unique, and to return UD otherwise. However, because
of its fewer calculations, it requires less memory and CPU time. The expression
soft_match is defined so that for any list entry, whose address overlaps the read address
a, the approximate union of the entry’s data set expression and the previously formed
data set expression is selected. Note that in the contexts when the currently examined
list element is hard, as determined by eh, we require that the element’s address does
not equal the read address (so that it is a proper subset of it). This ensures that the
Boolean expressions for hard_match and soft_match will not be true simultaneously.

l∈a
∪∼ rd
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function Read(List mem, ASExpr a) : DSExpr
/*  Attempt to read from location a  */

rd ← UD
if ¬Valid(¬Unique(a)) then

for each 〈eh, es, ea, ed〉 in mem from head to tail do
hard_match ← eh ∧ (ea = a)

soft_match ← (es ∨  eh ∧ ¬(ea = a)) ∧ Overlap(ea, a)

rd ← ITE(hard_match, ed, ITE(soft_match, (ed ∪∼ rd), rd))

return rd

Fig. 4. Second implementation of the Read operation

The difference between the two implementations of Read() can be illustrated with
the following example. Suppose that the list for memory mem was initially empty and
then updated with Write(mem, 1, 〈0, 0〉, 〈1, 1〉) and Write(mem, 1, 〈0, 1〉, 〈1, 0〉). Then
Read(mem, 〈0, X〉), will return 〈1, X〉 when using the first implementation of the func-
tion, but 〈X, X〉 when using the second one. The work of the first implementation can
be viewed as building a table that maps unique addresses contained in the read address
to data set expressions, and then finally merging these data set expressions. In the
example, the table will associate address 〈0, 0〉 with data 〈1, 1〉, and the address 〈0, 1〉
with data 〈1, 0〉, so that merging the data will give 〈1, X〉 as the final result.

procedure Write(List mem, CExpr c, ASExpr a, DSExpr d)

/*  Write data d to location a under control c  */

h ← Hard(c) ∧ Unique(a)

s ← Soft(c) ∨   Hard(c) ∧ ¬Unique(a)

/*  Optional optimization  */

overlap ← false
for each 〈eh, es, ea, ed〉 in mem do

if Valid((eh ∨ es) ⇒
(ea ⊆ a) ∧ [h ∨ s ∧ eh ∧ (d = UD) ∨ s ∧ es ∧ (ed ⊆ d)]) then

Delete(mem, 〈eh, es, ea, ed〉)
else

if ¬Valid(¬(d = UD)) then
overlap ← overlap ∨ (eh ∨ es) ∧ Overlap(ea, a)

if ¬Valid((h ∨ s) ⇒   ¬overlap ∧ (d = UD)) then
/*  Perform Write  */

InsertTail(mem, 〈h, s, a, d〉)

Fig. 5. Optimized implementation of the Write operation

Based on the definition of the Read operation, an optimized version of the Write
operation can be constructed as shown in Fig. 5. It removes any list elements that for
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all contexts are either not selected, as determined by both eh and es being false simul-
taneously, or are overwritten by the new entry.  The latter category can be subdivided
into several classes:

1) Entries with a unique address, that are overwritten by a hard write (i.e., h  is
true, which implies that a is unique, so that (ea ⊆ a) will evaluate to true only for the
contexts when ea is unique).

2) Entries with a unique address, as determined by eh being true, which are over-
written by a soft write (s is true) with data equal to UD. In this case, reading from the
current element’s address ea will select the element’s data ed, but will later also form
the approximate union of the previously formed data with the new element’s data UD.
Hence, UD will be returned, so that the current element’s data will not affect the result.

3) Entries created by a soft write (es is true), whose address and data set expres-
sions are subsets of those of the new entry, which is also the result of a soft write (s is
true). Then, reading from an address, which is a subset of the current element’s address
ea, will select the approximate union of the previously formed data with the current
element’s data ed. However, since (ea ⊆ a) and s is true, when later scanning the new
list element, the approximate union of its data d with the previosly formed data will
obscure the effect of ed.

Another optimization is to form the Boolean expression overlap that will express
the condition for the new element’s address a overlapping any other element’s address.
In the case of no overlap, there is no point in inserting the new element when its data is
UD, as that will be identical with the initial state of location a. Finally, when both h and
s are false simultaneously, there is no point in inserting the new entry, as it will never
be selected.

Note that these optimizations need not be performed, as they are based on the way
that the Read operation works. We could safely leave any overwritten element in the
list and always insert the new one.

6 Incorporation into STE

Efficient modeling of memory arrays in STE requires that formulas of the form
(b → (mem[a] = d)), where b is a Boolean expression, a is an address set expression, d
is a data set expression, and mem is a memory array, be incorporated into the STE
algorithm. When such formulas occur in the antecedent, they should result in treating d
as the data of memory location a, given contexts b, and are processed by procedure
AssertMem(), presented in Fig. 6. OKA, the Boolean expression indicating the absence
of an antecedent failure, is updated with the condition that either b is false, or else the
asserted data d is neither more general, nor incompatible with the data currently at a.

Similarly, when such formulas occur in the consequent, they should result in
checking that the data at location a is neither more general, nor incompatible with the
given data d under contexts b. These formulas are processed by procedure
CheckMem() - see Fig. 7.
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procedure AssertMem(List mem, BExpr b, ASExpr a, DSExpr d)

/* Determine conditions under which locationa was asserted to datad given

contexts b, and reflect them onOKA, the Boolean expression indicating

the absence of an antecedent failure  */

rd ← Read(mem, a)

OKA ← OKA ∧ (b ⇒ (d ⊆ rd))

if ¬Valid(b ⇒  (d = rd)) then
c.h ← b

c.l ← ¬b

Write(mem, c, a, d)

Fig. 6. Implementation of the STE procedureAssertMem

procedure CheckMem(List mem, BExpr b, ASExpr a, DSExpr d)

/* Determine conditions under which locationa was checked to have datad

given contexts b, and reflect them onOKC, the Boolean expression

indicating the absence of a consequent failure  */

rd ← Read(mem, a)

OKC ← OKC ∧ (b ⇒ (rd ⊆ d))

Fig. 7. Implementation of the STE procedureCheckMem

7 Experimental Results

Experiments were performed on the pipelined addressable accumulator shown in Fig.
8. The pipeline registerHold separates the execution and the write back stages of the
pipeline. The control logic stores the previous address and compares it with the present
one at theAddr input. In case of equality, the control signal of the multiplexor is set so
as to select the output of theHold register. Hence, data forwarding takes effect. For a
more detailed description of the circuit and its specifications, the reader is referred to
[7][11].

For the experiments with the EMM, the dual-ported register file is removed from
the circuit. The software interface ensures that aRead operation takes place relative to
phi1 and aWrite operation takes place relative tophi2, according to the register file
connections shown in Fig. 8.(b).

The specifications necessary for verifying the pipelined addressable accumulator,
are presented in (14), (15), and (16). Note thatReg[i] andReg[j] in (15) and (16),
respectively, are instances ofsymbolic indexing [1]. We construct the antecedents by
first defining the operation of the two phase clocks. Shorthand notation for the possible
value combinations of the clocks is presented next:

Clk01 =̇  (phi1 = 0)∧ (phi2 = 1),
Clk00 =̇  (phi1 = 0)∧ (phi2 = 0),
Clk10 =̇  (phi1 = 1)∧ (phi2 = 0).



13

Fig. 8. (a) The pipelined addressable accumulator;  (b) the connections of its register
file when replaced by an EMM. The thick lines indicate buses, while the thin ones are
of a single bit

The clocking behavior of the entire circuit over 4, 8, and 12 time periods, respec-
tively, is described by:

Clocks_4 =̇ Clk01 ∧ N(Clk00) ∧ N2(Clk10) ∧ N3(Clk00),

Clocks_8 =̇ Clocks_4 ∧ N4(Clocks_4),

Clocks_12 =̇ Clocks_4 ∧ N4(Clocks_4) ∧ N8(Clocks_4).

The first assertion (14) verifies that the Hold register can be initialized with data
from the input In of the pipelined addressable accumulator. The next time operator N
positions the constraints on the circuit and the desired responses that should follow rel-
ative to the phase clocks, given the timing details of the implementation.

Clocks_8 ∧ N2((Clear = 1) ∧  (Addr = i) ∧  (In = a))

N4(Out  = a) ∧ N5(Hold  = a) (14)

The second assertion (15) verifies the adder in the pipelined addressable accumu-
lator. The Hold register and location i of the register file are initialized in such a way,
that if the circuit is correct, the second input to the adder will have the symbolic data
set expression b, while its external input has data set expression a. The expected
response is that the output Out of the adder will get the data set expression a + b, and
so will the Hold register.

Clocks_12 ∧ N2(Addr = k) ∧ N5(i = =k → Hold = b) ∧

N6((Clear = 0) ∧  (Addr = i) ∧  (In = a) ∧ (i != k → Reg[i] = b))

  N8(Out  = a  + b) ∧ N9(Hold  = a  + b) (15)

The last assertion (16) verifies that the register file can maintain its state in the

(a)

MEMORY

ARRAY

READ
PORT

WRITE
PORT

Address

Data

Enable

Address

Data

Enable

(b)

phi2phi1

(to MUX) (from Hold)

Addr previous Addr
(from Control)

Reg

Hold

Control

File

MUX

Addr

Clear

In
Out

⇒LEADSTO

⇒LEADSTO
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pipelined addressable accumulator.

Clocks_12 ∧ N2(i != j → Addr= k) ∧ N5((i != j ∧ j == k) → Hold = b) ∧

N6((i != j → Addr = i) ∧ ((i != j ∧ j != k) → Reg[j]= b))

  N10(i != j → Reg[j]= b) (16)

The experiments were performed on an IBM RS/6000 43P-140 with a 233MHz
PowerPC 604e microprocessor, having 512 MB of physical memory, and running AIX
4.1.5. Table 2 shows our experimental results for the pipelined data path when verified
with two memory models: the transistor-level model (TLM) and the EMM. The latter
uses the first (EMM1) or the second (EMM2) implementation of the Read operation,
presented in Section 5. The last three columns of each category contain the ratios of
the corresponding quantities.

As can be seen, both the EMM1 and the EMM2 outperform the TLM. In the case
of EMM2, a 8-29× speedup and a 3-37× reduction in memory were obtained, with the
EMM2 advantage increasing with both dimensions of the memory array. EMM1 has a
comparable performance in terms of CPU time, but requires up to 8× more memory.
The advantage of EMM2 over EMM1 increases with both dimensions of the memory

N w

CPU Time  (s) Memory  (MB)

TLM EMM 1 EMM 2

TLM
———
EMM 1

TLM
———
EMM 2

EMM 1
———
EMM 2

TLM EMM 1 EMM 2

TLM
———
EMM 1

TLM
———
EMM 2

EMM 1
———
EMM 2

16 16 337 45 44 7.5 7.7 1.0 4.2 2.3 1.7 1.8 2.5 1.4

32 676 88 86 7.7 7.9 1.0 7.3 3.3 2.1 2.2 3.5 1.6

64 1353 173 169 7.8 8.0 1.0 13.6 5.4 2.9 2.5 4.7 1.9

128 2716 343 337 7.9 8.1 1.0 26.3 9.5 4.7 2.8 5.6 2.0

32 16 635 51 49 12.5 13.0 1.0 8.2 3.1 1.9 2.6 4.3 1.6

32 1265 98 93 12.9 13.6 1.1 15.3 4.9 2.5 3.1 6.1 2.0

64 2538 196 184 12.9 13.8 1.1 29.5 8.6 3.7 3.4 8.0 2.3

128 5077 392 374 13.0 13.6 1.0 57.7 15.8 6.2 3.7 9.3 2.5

64 16 1227 65 59 18.8 20.8 1.1 16.0 4.7 1.9 3.4 8.4 2.5

32 2460 126 114 19.5 21.6 1.1 30.7 8.1 2.6 3.8 11.8 3.1

64 4905 253 224 19.4 21.9 1.1 59.8 14.9 3.8 4.0 15.7 3.9

128 9853 509 455 19.4 21.7 1.1 118.0 28.6 6.4 4.1 18.4 4.5

128 16 2423 101 87 24.0 27.9 1.2 31.6 7.9 2.3 4.0 13.7 3.4

32 4867 203 170 24.0 28.6 1.2 61.6 14.5 2.6 4.2 23.7 5.6

64 9659 405 337 23.8 28.7 1.2 121.1 27.7 4.0 4.4 30.3 6.9

128 18990 830 691 22.9 27.5 1.2 241.7 54.0 6.6 4.5 36.6 8.2

Table 2. Experimental results for memories with N addresses of w bits each

⇒LEADSTO
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array - the more precise calculations of EMM1 come at a premium. The asymptotic
growth of time and memory is summarized in Table 3.

Hence, the new method for efficient modeling of memory arrays has proven to be
extremely promising. It will enable the symbolic ternary simulation of memory arrays
far larger than previously possible.
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Criterion TLM EMM1 EMM2

Time(N) linear sublinear sublinear

Time(w) linear linear linear

Memory(N) linear sublinear sublinear

Memory(w) linear linear sublinear

Table 3. Asymptotic growth comparison of the CPU time and memory as a function
of the number of addressesN and data bitsw for the three memory models


