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Abstract. This paper enables symbolic ternary simulation of systems wigle lar
embedded memories. Each memory array is replaced with aidmethanodel, where

the number of symbolicariables used to characterize the initial state of the memory
is proportional to the number of distinct symbolic memory locations accessed. The
behaioral model proides a consertive approximation of the replaced memory
array while alloving the address and control inputs of the memory to accept sym-
bolic ternary alues. Memory state is represented by a list of entries encoding the
sequence of updates of symbolic addresses with symbolic data. The list interacts with
the rest of the circuit by means of a safterinterbce deeloped as part of the sym-
bolic simulation engine. This memory modehsvincorporated into ourevification

tool based on Symbolicrajectory Ewaluation. Experimental results stdhat the

new model significantly outperforms the transistaelememory model whenevify-

ing a simple pipelined data path.

1 Intr oduction

Ternary simulation, where the “unknn” value X is used to indicate that a signal can
be either 0 or 1, has pren to be ery paverful for both alidation and formal erifica-

tion of digital circuits [10]. Gien that the simulation algorithm satisfies a monotonic-
ity property to be described laterry binary \alues resulting from simulating patterns
with X’s would also result when the Xare replaced by grcombination of G and

1's. Hence, emplang X's reduces the number of simulation patterns, often dramati-
cally. However, ternary simulators will sometimes produceafue X, when anxdhaus-

tive analysis wuld determine thealue to be binary (i.e., 0 or 1). This has been
resohed by combining ternary modeling with symbolic simulation [1], such that the
signals can accept symbolic ternaglues, instead of the scalaalwes 0, 1, and X.
Each symbolic ternaryalue is represented by a pair of symbolic Booleaqmessions,
defined @er a set of symbolic Booleamanables, that encode the cases when the signal
would evaluate to 0, 1, or X. The adntage of symbolic ternary simulation is that it
efficiently covers a wide range of circuit operating conditions with a single symbolic
simulation pattern that wolves fr faver variables than wuld be required for a com-
plete binary symbolic simulation.

One of the hurdles in simulation has been the representation of memory arrays.
These hee been traditionally modeled bymicitly representing very memory bit.

1. This research as supported in part by the SRC under contract 97-DC-068.



While this is not a problem for conventional simulation, symbolic simulation would
require a symbolic variable to denote the initial state of every memory bit. Further-
more, bit-level symbolic model checking [4][5] would need two symbolic variables
per memory bit, in order to build the transition relation. Therefore, in both methods the
number of variables is proportiona to the size of the memory, and is prohibitive for
large memory arrays.

This limitation is overcome in our previous work [11] by replacing each memory
array with an Efficient Memory Model (EMM). The EMM is a behavioral model,
which allows the number of symbolic variables used to be proportional to the number
of distinct symbolic memory locations accessed rather than to the size of the memory.
It is based on the observation that a typical verification execution sequence usually
accesses only a limited number of distinct symbolic locations. However, it was
assumed that the memory address and control inputs can accept only symbolic binary
values.

To our knowledge, there has not been previous research on how to define a behav-
ioral memory model for the cases when any of its address or control inputs has the
value X in symbolic ternary simulation. Our experiments with Version 2.5 of the
Cadence Design Systems VERILOG-XL indicated that a Read operation performed
with an address containing X's returned the contents of the memory location deter-
mined when the X's are replaced by 1's. Also, a Write operation performed with an
address containing X's did not alter the contents of any memory location. Such behav-
ior might be sufficient in conventional informal logic simulation, where performanceis
of greater concern than functionality when simulating X values. However, it is not ade-
guate for ternary simulation combined with formal verification, where such behavior
might result in false positive verification results. The goal of thiswork isto enable the
EMM to accept symbolic ternary values at its address and control inputs, while provid-
ing a conservative approximation of the replaced memory array. Conservative approxi-
mation means that false positive verification results are guaranteed not to occur,
although false negative verification results are possible.

This paper builds on [11] with the following contributions: 1) an extended EMM
which can have symbolic ternary values at its control and address inputs, and 2) an
EMM-circuit interface which guarantees that the EMM would behave as a conserva-
tive approximation of the replaced memory array. Since symbolic ternary values are a
superset of symbolic binary values, the extended EMM defined in this paper is a super-
set of the one from [11].

Experimental results for the EMM were obtained using the Symbolic Trajectory
Evaluation (STE) [10] technique for formal verification. STE is an extension of sym-
bolic simulation that has been used to formally verify circuits, including a simple pipe-
lined data path [3]. Incorporation of the EMM in STE enabled the verification of the
pipelined data path with a significantly larger register file than previously possible.

A symbolic representation of memory arrays has been used by Burch and Dill [6].
They apply uninterpreted functions with equality, which abstract away the details of
the data path and allow them to introduce only a single symbolic variable to denote the



initial state of the entire memoriachWrite or Read operation results indilding a
formula over the current memory state, so that the latest memory state is a formula
reflecting the sequence of memory writes. In our method, the memory state is repre-
sented with a list of entries encoding the sequence of updates of symbolic addresses
with symbolic data. Ouv\rite operation modifies this list. Mever, we perform the
verification at the circuit kel of the implementation and need bitdédata for sym-

bolic word-level memory locations in order teenify the data path. This requires the

user to introduce symbolicaviables proportional to both the humber of distinct sym-
bolic memory locations accessed and the number of data bits per location.

This paper adycates a tw step approach for therfication of circuits with lage
embedded memories. The first step is to use STErtfy the transistor kel memory
arrays independently from the rest of the circuénd®y and Bryant hae combined
symmetry reductions and STE to enable thgfication of \ery lage memory arrays at
the transistor kel [9][8]. The second step is to use STE ¢wify the circuit after the
memory arrays are replaced by EMMs and is the focus of titls. w

In the remainder of the pap&ect. 2 describes the symbolic domain used in our
algorithms. Sect. 3 gés a brief verview of STE. Sect. 4 presents the EMM and Sect.
5 introduces its underlying algorithms. Sect.¥plains the vay to incorporate the
EMM into STE. Experimental results and conclusions are presented in Sect. 7.

2 Symbolic Domain

We will consider three dérent domains - control, address, and data - corresponding
to the three dférent types of information that can be applied at the inputs of a memory
array A control epressionc will represent the alue of a node in ternary symbolic
simulation and will hee a high encodingh and a lav encodingc.l, each of which is a
Boolean &pression. The ternanalues that can be represented by a contmession

c are shavn in Table 1. V¢ would write [c.h, c.I] to denotec. It will be assumed that

c.h andcl cannot be simultaneousfalse. The typesBExpr, CExpr will denote
respectiely Boolean and controkpressions in the algorithms to be presented.

Ternary alue c.h cl
0 false true
1 true false
X true true

Table 1. 2-bit encoding of ternary logic

The memory address and data inputs, since connected with circuit nodes, will
receve ternary alues represented as contrepeessions. Hence, addresses and data
will be represented byeetors of control xpressions hang width n andw, respec-
tively, for a memory wittN = 2" locations, each holding aond consisting ofv bits.
Obsene that an X at a gén bit position represents the “unknd’ value, i.e., the bit



can be either 0 or 1, so that matistinct addresses or data will be representedap-

ture this property of ternary simulation, we introduce the #BExpr (address set
expression) to denote a set of addresses. SimiléwdytypeDSExpr (data setxgres-

sion) will denote a set of data. Note that in both cases, a set will be represented by a
single \ector of ternary &lues. V& will use the notatiofdy, ... ,a,to eplicitly repre-

sent the address sefpeessiors, whereg; is the control gpression for the correspond-

ing bit position ofa. Data set xpressions will hee a similar gplicit representation,

but with w bits. Symbolic ariables will be introduced in each of the domains and will

be used inxgression generation.

The symbolsi,; andu,, will designate the umersal address and data sets, respec-
tively. They will represent the most general information about a set of addresses or
data. Similarly the symbold1 ; andO ,, will denote the empty address and data sets,
respectiely. In ternary logic,7,; and U, can be represented bgators of control
expressions consisting entirely of Xs.

We will use the terntontet to refer to an assignment adlues to the symbolic
variables. A Booleanx@ression can be vieed as defining a set of cortg, namely
those for which thexgression ealuates tdrue.

A symbolic predicate is a function which &sksymbolic ajuments and returns a
symbolic Booleangression. The folling symbolic predicates will be used in our
algorithms, where is of typeCExpr, anda is of typeASExpr:

Zero(c) = -~c.hOcll, Q)
Hard(c) = c.hO-cll, (2)
Sof(c) = c.hOcl.l, 3)
Uniqudga) = An - Sof(y) . (4)

i=1
The predicategem, Hard, andSoftdefine the conditions for theirqarments to be the
ternary 0, 1, and X, respedatly. The predicatéJnique defines the condition for the
address setxpressiora to represent aniqueor single address.

The selection operatd¢TE (for “If-Then-Else”), when applied on three Boolean
expressions, is defined as:

ITE(D, t, 9 = (bOYO(=-bOe). (5)
Address set comparison with another address set is implemented as:
y=a = V [(a.hy O ag.hy) O (ag.li O &)l (6)

whereay.hy anday represent the high anddeencodings of the controkpression for
bit i of address setxpressiona;. Address set comparison with the wersal address
setis implemented as:

a=1, = A Sof(a) - (7)
Address set selectloah ~ ITE(b, &, &) is implemented by selecting the corre-



sponding bits:

aphy <« ITE(b, as.h;, aghy), al; « ITE(D, ayl;, azl), i=1,..,n. (8)
Checking whether addr%set a, isasubset of address set a, is done by:

ala = = \/ (a.h O=axh, O aply0-al), 9)
and checking address séts al and a, for overlap isimplemented by:

Overlap(ay, &) = 'Al (a) Dapl; O ag.hy Oayhy. (10)

| =
Computing | O a, where a is an address set expression and | is a vector of Boolean
expressions, is impI emented by:

l0a = A ITE(l;, ah;, al). (11)

The definition of symbol ic predicates over data set expressionsis similar, but over vec-
tors of width w.

Note that al of the above predicates are symboalic, i.e., they return a symbolic
Boolean expression and will be true in some contexts and false in others. Therefore, a
symbolic predicate cannot be used as a control decision in algorithms. The function
Valid(), when applied to a symbolic Boolean expression, will return true if the expres-
sionisvalid or equal to true (i.e., true for al contexts), and will return fal se otherwise.
We can make control decisions based on whether or not an expression is valid.

We will also need to form a data set expression that is the union of two data set
expressions, d; and d,. If these differ in exactly one bit position, i.e., one of them has a
0 and the other a 1, then the ternary result will have an X in that bit position and will be
an exact computation. However, if d; and d, differ in many bit positions, these will be
represented as Xsin the ternary result and that will not always yield an exact computa-
tion. For example, if d; = [0, 108nd d, = [1, O the result will be X, XTand will not be
exact, as it will also contain the data set expressions [0, O0and [1, 1C] which are not
subsets of d; or d,. We define the operation approximate union d; 5 d, of two data set
expressions as:

[dy Gy = [dph Odphy, dpli Odpl],  i= 1., w. 12)

Finally, we will define the operation data merge, IE“ d, where| isavector of sym-
bolic variables, ais an address set expression, and d is a data set expression, as.

[Gdi = [p0a0dh, POOaOdl],  i=1..,w. (13)

We have used Ordered Binary Decision Diagrams (OBDDs) [2] to represent the
Boolean expressions in our implementation. However, any representation of Boolean
expressions can be substituted, as long as function Valid() can be defined for it.

3 STE Background

STE isaformal verification technique based on symbolic ssimulation. For the purpose
of this paper, it would suffice to say that STE is capable of verifying circuit properties,



described as assertions, of the form A "TI°° C. The antecedent A specifies con-
straints on the inputs and the internal state of the circuit, and the consequent C speci-
fies the set of expected outputs and state transitions. Both A and C are formulas that
can be defined recursively as:

1) asimple predicate: (noden = b), or (node_\ector N = a), or (node_\ector N =
d), where b, a, and d are of types BExpr, ASExpr, and DSEXxpr, respectively,
and in the last two cases each node of the node vector N gets associated with its
corresponding bit-level control expression of the given address-set or data-set
expression;

2) a conjunction of two formulas: F, OF,isaformulaif F; and F, areformulas;

3) adomain restriction: (b — F), where b is of type BExpr, isaformulaif Fisa
formula, meaning that F should hold for the contextsin which b istrue;

4) a next time operator: NF isaformulaif F isaformula, meaning that F should
hold in the next time period;

5) a memory array indexing predicate: (mem[a] = d), where mem is a memory
name, a is of type ASExpr, and d is of type DSEXpr.

A shorthand notation for k nested next time operatorsis NK. A formulais said to
be instantaneous if it does not contain any next time operators. Any formula F can be
rewritten into the form Fo O NF; O N?F, 0. . . O NXFy, where each formula F; is
instantaneous. For simplicity in the current presentation, we will assume that the ante-
cedent is free of self inconsistencies, i.e., it cannot have anode asserted to two comple-
mentary logic values simultaneously.

STE maintains two global Boolean expressions OK, and OK, which are initial-
ized to be true. The STE agorithm updates the circuit node values and the global
Boolean expressions at every simulation time step. The antecedent defines the stimuli
and the consequent defines the set of acceptable responses for the circuit. The expres-
sion OK, maintains the condition under which the circuit node values are compatible
with the values specified by the antecedent. The expression OK maintains the condi-
tion under which the circuit node values belong to the set of acceptable values speci-
fied by the conseguent. The Boolean expression ~OK, [ OK defines the condition
under which the assertion holds for the circuit.

4 Efficient Modeling of Memory Arrays

The main assumption of our approach is that every memory array can be represented,
possibly after the introduction of some extra logic, as a memory with only write and
read ports, al of which have the same numbers of address and data bits, as shown in
Fig. 1.

Theinteraction of the memory array with the rest of the circuit is assumed to take
place when aport Enabl e signal isnot 0. In case of multiple port Enabl esnot being
0 simultaneously, the resulting accesses to the memory array will be ordered according
to the priority of the ports.
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Fig. 1. View of amemory array, according to our model

During symbolic simulation, the memory state is represented by alist containing
entries of the form [, s, a, dCJwhere h and s are Boolean expressions denoting the set
of contexts for which the entry is defined, a is an address expression denoting a mem-
ory location, and d is a data expression representing the contents of this location. The
context information is included for modeling memory systems where the Write opera-
tion may be performed conditionally on the value of a control signal c. The Boolean
expression h represents the contexts Hard(c) O Unique(a), when the control signal
was 1 and the address a was unique. Under contexts h the location a is definitely over-
written with data d. The Boolean expression s represents the contexts Soft(c) O
Hard(c) 0 - Unique(a), when the control signal wasan X, or it wasa 1 and the address
was not unique. Under contexts s the location a is uncertainly overwritten with data d.
Initially the list is empty. The type List will be used to denote such memory lists.

The list interacts with the rest of the circuit by means of a software interface
developed as part of the symbolic simulation engine. The interface monitors the mem-
ory input lines. Should a memory input value change, given that its corresponding port
Enabl e value cisnot 0, aWrite or a Read operation will result, as determined by the
type of the port. The Addr ess and Dat a lines of the port will be scanned in order to
form the address set expression a and the data set expression d, respectively. A Write
operation takes as arguments both a and d, while a Read operation takes only a. Both
of these operations will be presented in the next section.

After completing a Write operation, the software interface checks every read port
of the same memory for a possible on-going read (as determined by the port Enabl e
value being different from 0) from an address that overlaps the one of the recent write.
For any such port, a Read operation is invoked immediately. This guarantees that the
EMM will behave as a conservative approximation of the replaced memory array.

A Read operation retrieves from the list a data set expression rd that represents
the data contents of address a. The software interface compl etes the read by scheduling
the Dat a lines of the port to be updated with the data set expression I TE(Hard(c), rd,
ITE(SOoft(c), (rd 3 d), d)). The data set expression d is the one that the Dat a lines will
otherwise have.



5 Implementation of Memory Operations
5.1 Support Operations

The list entries are kept in order from head (low priority) to tail (high priority). The
initial state of every memory location is assumed to contain arbitrary data and is repre-
sented with the universal data set U, Entries in the list from low to high priority
model the sequence of memory writes with the tail entry being the result of the latest
memory update. Entries may be inserted at the taill end only, using procedure
InsertTail(), and may be deleted using procedure Delete().

5.2 Implementation of Memory Read and Write Operations

The Write operation, shown as a procedurein Fig. 2, takes as arguments amemory list,
a control expression denoting the contexts for which the write should be performed,
and address set and data set expressions denoting the memory location and its desired
contents, respectively. As the code shows, the write is implemented by simply insert-
ing an element into the tail (high priority) end of the list, indicating that this entry
should overwrite any other entries for this address. An optimized implementation of
the Write operation will be presented after introducing the Read operation.

procedure Write(List mem, CExpr ¢, ASExpr a, DSExpr d)
/* Write datad to location a under control ¢ */

h — Hard(c) OUnique(a)

s « Soft(c) 0 Hard(c) O-Unique(a)

InsertTail(mem, O, s, a, d)

Fig. 2. Implementation of the Write operation

Two implementations of the Read operation are shown in Figures 3 and 4 as func-
tions which, given a memory list and an address set expression, return a data set
expression indicating the contents of this location. The purpose of both implementa-
tions is to construct a data set expression giving the contents of the memory location
denoted by its argument address set expression. They do this by scanning through the
list from lowest to highest priority. For each list entry, a Boolean expression
hard_match is built that indicates the contexts for which the entry is hard (definite) and
its (unique) address equals the read address a. Under these contexts, that element’s
data ed is selected. Else, under the contexts expressed by the Boolean expression
soft_match, the approximate union of the element’s data and the previously formed
datais selected. Finally, under the contexts when both hard_match and soft_match are
false, the previously formed datais kept.

Both implementations of the Read operation use U, as the default data set
expression. The contexts for which Read does not find a matching address in the list
are those for which the addressed memory location has never been accessed by awrite.
The data set expression U, is then returned to indicate that the location may contain
arbitrary data.



function Read(List mem, ASExpr a) : DSExpr
[* Attempt to read from location a */
| — Gen\ectorBoolVars()
address_containment — | O a
rd « Uy,
for each [&h, es, ea, eddJin mem from head to tail do
match — | 0 ea Oaddress _containment
hard_match — match Oeh
soft_match — match Oes
rd « ITE(hard_match, ed, ITE(soft_match, (ed H rd), rd))
rd — Iﬁa rd
returnrd

Fig. 3. First implementation of the Read operation

The difference between the two implementations is in the precision of the data
retrieved from non-unique addresses. While the second implementation will return 2,
for the contexts when the read address a is non-unique, the first implementation will
try to extract finer data for the contents of the locations contained in a. It does so by
building atable of data set expressions at each unique address which is a subset of the
read address a. Thisis done by introducing a vector of new Boolean variables |, which
are used for indexing all the unique addresses that are contained in the read address set
expression a. After scanning the list, these index address variables are existentially
quantified from the bit-level low and high encodings of the retrieved data set expres-
sion rd. This merges the data set expressions corresponding to the contents of every
unique address within a.

A useful optimization of the indexing is to introduce as many new variablesin| as
there are non-unique bits (i.e., whose low and high encodings are not complements) in
the read address set expression a. Then, in forming the Boolean expression match, the
unique bits of a will be required to be equal to the corresponding bits of ea. Finally, the
existential quantificationin IE“ard isdone only over the index variables used.

The second implementation of Read is designed to be precise only in the contexts
when the argument address is unique, and to return i,, otherwise. However, because
of its fewer calculations, it requires less memory and CPU time. The expression
soft_match is defined so that for any list entry, whose address overlaps the read address
a, the approximate union of the entry’s data set expression and the previously formed
data set expression is selected. Note that in the contexts when the currently examined
list element is hard, as determined by eh, we require that the element’s address does
not equal the read address (so that it is a proper subset of it). This ensures that the
Boolean expressions for hard_match and soft_match will not be true simultaneously.



function Read(List mem, ASExpr a) : DSExpr
[* Attempt to read from location a */
rd « Uy,
if =Valid(=Unique(a)) then
for each [éh, es, ea, ed]in mem from head to tail do
hard match — ehO(ea= a)
soft_match — (es O eh - (ea=a)) OOverlap(ea, a)
rd — ITE(hard_match, ed, ITE(soft_match, (ed T rd), rd))
returnrd

Fig. 4. Second implementation of the Read operation

The difference between the two implementations of Read() can be illustrated with
the following example. Suppose that the list for memory memwas initially empty and
then updated with Write(mem, 1, [0, OCJ [, 10) and Write(mem, 1, [0, 1)1, O0. Then
Read(mem, [0, X0, will return (1, XOwhen using the first implementation of the func-
tion, but X, X Owhen using the second one. The work of the first implementation can
be viewed as building a table that maps unique addresses contained in the read address
to data set expressions, and then finally merging these data set expressions. In the
example, the table will associate address [0, OCwith data [1, 1[] and the address [0, 10
with data [1, OC] so that merging the data will give [1, X Cas the final result.

procedure Write(List mem, CExpr ¢, ASExpr a, DSExpr d)
[* Write datad to location a under control ¢ */
h « Hard(c) dUnique(a)
s « Soft(c) O Hard(c) O-Unique(a)
/* Optional optimization */
overlap — false
for each [&h, es, ea, eddJin memdo
if Valid((eh Des) O
(eala) O[h O sOehO(d=uU;) O sOesO(edOd)]) then
Delete(mem, [éh, es, ea, edl)
else
if =Valid(-(d = u,)) then
overlap — overlap 0O (eh Oes) O Overlap(ea, a)
if =Valid(hOs) O -overlapO(d= u,))then
[* Perform Write */
InsertTail(mem, M, s, a, d0)

Fig. 5. Optimized implementation of the Write operation

Based on the definition of the Read operation, an optimized version of the Write
operation can be constructed as shown in Fig. 5. It removes any list elements that for
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all contexts are either not selected, as determined by both eh and es being false simul-
taneously, or are overwritten by the new entry. The latter category can be subdivided
into several classes:

1) Entries with a unique address, that are overwritten by a hard write (i.e., h is
true, which impliesthat ais unique, so that (ea O a) will evaluate to true only for the
contexts when ea is unique).

2) Entries with a unique address, as determined by eh being true, which are over-
written by a soft write (s is true) with data equal to u,, In this case, reading from the
current element’s address ea will select the element’s data ed, but will later also form
the approximate union of the previously formed data with the new element’s data 7.,
Hence, U, will bereturned, so that the current element’s datawill not affect the result.

3) Entries created by a soft write (es is true), whose address and data set expres-
sions are subsets of those of the new entry, which is also the result of a soft write (sis
true). Then, reading from an address, which is a subset of the current element’s address
ea, will select the approximate union of the previously formed data with the current
element’s data ed. However, since (ea [ a) and s is true, when later scanning the new
list element, the approximate union of its data d with the previosly formed data will
obscure the effect of ed.

Another optimization is to form the Boolean expression overlap that will express
the condition for the new element’s address a overlapping any other element’s address.
In the case of no overlap, thereis no point in inserting the new element when its dataiis
Uy, asthat will beidentical with theinitial state of location a. Finally, when both h and
s are false simultaneously, there is no point in inserting the new entry, as it will never
be selected.

Note that these optimizations need not be performed, asthey are based on the way
that the Read operation works. We could safely leave any overwritten element in the
list and alwaysinsert the new one.

6 Incorporationinto STE

Efficient modeling of memory arrays in STE requires that formulas of the form
(b - (mem[a] =d)), where b isaBoolean expression, a is an address set expression, d
is a data set expression, and mem is a memory array, be incorporated into the STE
algorithm. When such formulas occur in the antecedent, they should result in treating d
as the data of memory location a, given contexts b, and are processed by procedure
AssertMem(), presented in Fig. 6. OK 4, the Boolean expression indicating the absence
of an antecedent failure, is updated with the condition that either b isfalse, or else the
asserted data d is neither more general, nor incompatible with the data currently at a.

Similarly, when such formulas occur in the consequent, they should result in
checking that the data at location a is neither more general, nor incompatible with the
given data d under contexts b. These formulas are processed by procedure
CheckMem() - see Fig. 7.
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procedure AssertMem(List mem, BExpr b, ASExpr a, DSExpr d)

/* Determine conditions under which locatiamvas asserted to dadagiven
contets b, and reflect them o@K,, the Booleangression indicating
the absence of an antecedexiluie */

rd — Read(mem, a)
OKp « OKpy O (b O (dOrd))
if =Valid(b 0 (d=rd)) then
cheb
cl « =b
Wkite(mem, ¢, a, d)

Fig. 6. Implementation of the STE procedukssertMem

procedure CheckMem(L ist mem, BExpr b, ASExpr a, DSExpr d)

[* Determine conditions under which locatiamvas checkd to hae datad
given contgts b, and reflect them 0@K, the Booleangression
indicating the absence of a consequailtife */

rd — Read(mem, a)
OKg « OKc O(b O (rd O d))

Fig. 7. Implementation of the STE procedutheckMem

7 Experimental Results

Experiments were performed on the pipelined addressable accumulatorisheig.
8. The pipeline mgisterHol d separates thexecution and the write back stages of the
pipeline. The control logic stores the yimus address and compares it with the present
one at theAddr input. In case of equalitthe control signal of the multipler is set so
as to select the output of thiel d register Hence, data forarding tales efect. For a
more detailed description of the circuit and its specifications, the reader is referred to
[71[11].

For the eperiments with the EMM, the dual-portedjigter file is remeed from
the circuit. The softare interbce ensures thatRead operation taks place relate to
phi 1 and aWrite operation taks place relate tophi 2, according to the gister file
connections shan in Fig. 8.(b).

The specifications necessary ferifying the pipelined addressable accumulator
are presented in (14), (15), and (16). Note Regg[ i] andReg[j] in (15) and (16),
respectiely, are instances afymbolic indexing [1]. We construct the antecedents by
first defining the operation of thedvwphase clocks. Shorthand notation for the possible
value combinations of the clocks is presented:ne

CIkoL = (phi 1 =0)0(phi 2 = 1),
CIk00 = (phi 1 = 0)0 (phi 2 = 0),
CIk10 = (phi 1 = 1)0(phi 2 = 0).
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Addr previous Addr
(from Control)

READ WRITE
PORT | MEMORY| PORT

—— | Addr eSS ARRAY | Address | eqmmm—

Dat a Dat a [
—®| Enabl e Enabl e |#———
phi 1 phi 2
J (to MUX) (from Hol d)

@ (b)

Fig. 8. (a) The pipeined addressable accumulator; (b) the connections of its register
file when replaced by an EMM. The thick lines indicate buses, while the thin ones are
of asingle hit

The clocking behavior of the entire circuit over 4, 8, and 12 time periods, respec-
tively, is described by:

Clocks 4 = CIk01 O N(CIk00) O N2(CIk10) 0 N3(CIk00),

Clocks 8 = Clocks_4 ON*(Clocks_4),

Clocks 12 = Clocks 4 [IN*(Clocks 4) CIN8(Clocks _4).

The first assertion (14) verifies that the Hol d register can be initialized with data
from the input | n of the pipelined addressable accumulator. The next time operator N
positions the constraints on the circuit and the desired responses that should follow rel-
ative to the phase clocks, given the timing details of the implementation.

Clocks 8 O N%(Cl ear =1) O (Addr =i) O (I n=a))

U7 N%out = @) 0 NS(Hol d = a) (14)

The second assertion (15) verifies the adder in the pipelined addressable accumu-
lator. The Hol d register and location i of the register file are initialized in such away,
that if the circuit is correct, the second input to the adder will have the symbolic data
set expression b, while its externa input has data set expression a. The expected
response is that the output Qut of the adder will get the data set expression a + b, and
so will the Hol d register.

Clocks 12 ON%(Addr =K) O N%i==k - Hold=b) O

NS((Cl ear =0) O (Addr =i) O (In=a) O(i!=k - Reg[i] =b))

i N8ut = a+ b) ON%Hold = a + b) (15)

The last assertion (16) verifies that the register file can maintain its state in the
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pipelined addressable accumulator.

Clocks 12 O N%(i!=j — Addr=k) ON®(i!=j0j==k) - Hol d=b) O
Né((i'=j - Addr =i) O(i'=j0j!=k) - Reg[j] =h))

O™ N9 1=) - Reg[j] = b) (16)

The experiments were performed on an IBM RS/6000 43P-140 with a 233MHz
PowerPC 604e microprocessor, having 512 MB of physical memory, and running AlX
4.1.5. Table 2 shows our experimental results for the pipelined data path when verified
with two memory models: the transistor-level model (TLM) and the EMM. The latter
uses the first (EMM,) or the second (EMM,) implementation of the Read operation,
presented in Section 5. The last three columns of each category contain the ratios of
the corresponding quantities.

CPU Time (s) Memory (MB)
N| w TLM | TLM |EMM ¢ TLM | TLM |EMM 4
TLM |EMM 4|EMM , TLM |EMM 1| EMM ,|
EMM 3| EMM 5|EMM , EMM 1| EMM ,|EMM ,

16| 16|| 337 45 44 75 7.7 10| 4.2 2.3 17 18 25 14
32|| 676 88 86 7.7 7.9 10| 7.3 33 21 2.2 35 1.6
64|| 1353| 173| 169 7.8 8.0 10|l 13.6 54 29 25 4.7 1.9
128|| 2716] 343| 337 7.9 8.1 1.0]] 26.3 9.5 4.7 2.8 5.6 2.0
32| 16|| 635 51 49| 125| 130 10|| 82 31 19 2.6 4.3 16
32(| 1265 98 93| 129| 136 11| 153 4.9 25 31 6.1 2.0
64|| 2538| 196| 184| 129| 138 11| 295 8.6 3.7 34 8.0 2.3
128[| 5077 392| 374| 13.0| 136 1.0|| 57.7] 158 6.2 3.7 9.3 25
64| 16|| 1227 65 59| 18.8| 20.8 11| 16.0 4.7 1.9 34 84 25
32|| 2460| 126| 114| 195| 216 1.1} 30.7 8.1 2.6 38| 118 31
64|| 4905| 253| 224| 194| 219 1.1|| 59.8| 14.9 3.8 40| 157 3.9
128|| 9853| 509| 455| 194| 217 1.1|118.0|{ 28.6 6.4 41| 184 4.5
128| 16|| 2423| 101 87| 240| 279 12|| 316 7.9 23 40| 137 34
32|| 4867| 203| 170| 24.0| 28.6 12| 61.6| 145 2.6 42| 237 5.6
64|| 9659| 405| 337| 238| 287 121211 27.7 4.0 44| 303 6.9
128(|18990| 830| 691| 229| 275 12|[241.7| 540 6.6 45| 36.6 8.2

Table 2. Experimental results for memories with N addresses of w bits each

As can be seen, both the EMM; and the EMM,, outperform the TLM. In the case
of EMM,, a 8-29x speedup and a 3-37% reduction in memory were obtained, with the
EMM),, advantage increasing with both dimensions of the memory array. EMM 4 has a
comparable performance in terms of CPU time, but requires up to 8x more memory.
The advantage of EMM, over EMM increases with both dimensions of the memory
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array - the more precise calculations of EMbbme at a premium. The asymptotic
growth of time and memory is summarized in Table 3.

Criterion TLM EMM EMM,

Time(N) linear sublinear sublinear

Time(w) linear linear linear
Memory(N) linear sublinear sublinear
Memory(w) linear linear sublinear

Table 3. Asymptotic grevth comparison of the CPU time and memory as a function
of the number of addressisand data bitsv for the three memory models

Hence, the ng method for dicient modeling of memory arrays has yea to be
extremely promising. It will enable the symbolic ternary simulation of memory arrays
far lager than preiously possible.
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