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Abstract. Augmenting problem variables in a quantified Boolean formula with
definition variables enables a compact representation in clausal form. Generally
these definition variables are placed in the innermost quantifier level. To re-
store some structural information, we introduce a preprocessing technique that
moves definition variables to the quantifier level closest to the variables that de-
fine them. We express the movement in the QRAT proof system to allow verifica-
tion by independent proof checkers. We evaluated definition variable movement
on the QBFEVAL’20 competition benchmarks. Movement significantly improved
performance for the competition’s top solvers. Combining variable movement
with the preprocessor BLOQQER improves solver performance compared to us-
ing BLOQQER alone.

1 Introduction

Boolean formulas and circuits can be translated into conjunctive normal form (CNF) by
introducing definition variables to augment the existing problem variables. Definition
variables are introduced through a set of defining clauses, given by the Tseitin [19] or
Plaisted-Greenbaum [16] transformation. Problem variables occurring in the defining
clauses constitute the defining variables; they effectively determine the values of the
definition variables. In CNF, definitions are not an explicit part of the problem repre-
sentation, preventing solvers from using this structural information. Quantified Boolean
formulas (QBF) extend CNF into prenex conjunctive normal form (PCNF) with the ad-
dition of quantifier levels. In practice, definition variables are usually placed in the
innermost quantifier level. However, as we will show, placing a definition variable in
the quantifier level immediately following its defining variables can improve solver per-
formance.

We describe a preprocessing technique for moving definition variables to the quanti-
fier level of their innermost defining variables. As a starting point, existing tools KISSAT
and CNFTOOLS can detect definitions in a CNF formula. We process and order the can-
didate definitions, moving definition variables sequentially. For each instance of move-
ment we generate a proof in the QRAT proof system that, through a series of clause
additions and deletions, effectively replaces the old definition variable with a new vari-
able at the desired quantification level.
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Most Boolean satisfiability (SAT) solvers generate proofs of unsatisfiability for in-
dependent checking [7,9,20]. This has proved valuable for verifying solutions inde-
pendent of the (potentially buggy) solvers. Proof generation is difficult for QBF and
relatively uncommon in solvers. The QBF preprocessor BLOQQER [2] generates QRAT
proofs [8] for all of the transformations it performs. Our QRAT proofs for variable
movement also allow verification with the independent proof checker QRAT-TRIM,
ensuring that the movement preserves equivalence with the original formula.

Clausal-based QBF solvers rely on preprocessing to improve performance. Almost
every top-tier solver in the QBFEVAL’20 competition1 used some combination of BLO-
QQER, HQSPRE [21], or QBFRELAY [15]. Some solvers incorporate preprocessing
techniques into the solving phase, e.g., DEPQBF’s [14] use of dynamic quantified
blocked clause elimination. Unlike other preprocessing techniques, variable movement
does not add or remove clauses or literals. However, it can prompt the removal of literals
through universal reduction and may guide solver decisions in a beneficial way.

The contributions of this paper include: (1) adapting the SAT solver KISSAT and
CNF preprocessor CNFTOOLS to detect definitions in a QBF, (2) giving an algorithm
for moving variables that maximizes variable movement, (3) formulating steps for gen-
erating a QRAT proof of variable movement, and (4) evaluting the impact of these trans-
formations. Variable movement significantly improves the performance of top solvers
from the QBFEVAL’20 competition. Combining variable movement with BLOQQER
further improves solver performance.

2 Preliminaries

2.1 Quantified Boolean Formulas

Quantified Boolean formulas (QBF) can be represented in prenex conjunctive normal
form (PCNF) as Π.ψ, where Π is a prefix of the form Q1X1Q2X2 · · ·QnXn for
Qi ∈ {∀, ∃} and the matrix ψ is a CNF formula. The formula ψ is a conjunction of
clauses, where each clause is a disjunction of literals. A literal l is either a variable
l = x or negated variable l = x, and Var(l) = x. The formula ψ(l) is the clauses
{C | C ∈ ψ, l ∈ C}. The set of all variables occurring in a formula is given by
Var(ψ). Substituting a variable y for x in ψ, denoted as ψ[y/x], will replace every in-
stance of x with y and x with y in the formula. The sets of variables Xi are disjoint,
and we assume every variable occurring in ψ is in some Xi. A variable x is fresh if it
does not occur in Π.ψ. The quantifier for literal l with Var(l) ∈ Xi is Q(Π, l) = Qi,
and l is said to be in quantifier level λ(l) = i. If Q(Π, l) = Qi and Q(Π, k) = Qj ,
then l ≤Π k if i ≤ j. Q1X1 is referred to as the outermost quantifier level and QnXn

is the innermost quantifier level.

2.2 Inference Techniques in QBF

Given a clause C, if a literal l ∈ C is universally quantified, and all existentially quan-
tified literals k ∈ C satisfy k <Π l, then l can be removed from C. This process is

1 available at http://www.qbflib.org/qbfeval20.php
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called universal reduction (UR). Given two clauses C and D with x ∈ C and x ∈ D,
the Q-resolvent over pivot variable x is UR(C) ∪ UR(D) \ {x, x} [12]. The operation
is undefined if the result is tautological. This extends resolution for propositional logic
by applying UR to the clauses before combining them, while disallowing tautologies.
Adding or removing non-tautological Q-resolvents preserves logical equivalence.

Given a prefix Π and clauses C and D with l ∈ C and l ∈ D, the outer resolvent
over existentially quantified pivot literal l is C ∪ {k | k ∈ D, k 6= l, k ≤Π l}. Given
a QBF Π.ψ, a clause C is Q-blocked on some existentially quantified literal l ∈ C if
for all D ∈ ψ(l) the outer resolvent of C with D on l is a tautology. This extends the
blocked property for CNF with the restriction on the conflicting literal’s quantifier level.

A clause C subsumes D if C ⊆ D. The property Q-blocked-subsumed generalizes
Q-blocked by requiring the outer resolvents be tautologies or subsumed by some clause
in the formula.

Given a QBF Ψ = Π.ψ, if a clause C is Q-blocked-subsumed then C is QRAT
w.r.t. Ψ . In this case, C can be added to ψ or if C ∈ ψ deleted from ψ while preserving
equivalence. A series of clause additions and deletions resulting in the empty formula
is a satisfaction proof for a QBF if all clause deletions are QRAT. A series of clause
additions and deletions deriving the empty clause is a refutation proof for a QBF if all
clause additions are QRAT. If both clause additions and deletions are QRAT, each step
preserves equivalence regardless of the truth value of the QBF. We call this a dual proof.
The QBF Ψ ′ that results from applying the dual proof steps to Ψ is equivalent to Ψ .

2.3 Definitions

A variable x is a definition variable in Ψ = Π.ψ with defining clauses δ(x) containing
x, δ(x̄) containing x, and defining variables Zx = Var [δ(x) ∪ δ(x)] \ {x} when two
properties hold: (1) the definition is left-total, meaning that for every assignment of Zx
there exists a value of x that satisfies δ(x)∪ δ(x̄), and (2) the definition is right-unique,
meaning that for every assignment of Zx there exists exactly one value of x that satisfies
δ(x) ∪ δ(x̄). The clauses δ(x) ∪ δ(x̄) are left-total iff they are Q-blocked on variable
x. This implies that the definition variable comes after the defining variables w.r.t. Π .
The definition is right-unique if the SAT problem {C \ {x, x} | C ∈ δ(x) ∪ δ(x̄)} is
unsatisfiable. We can assume that any right-unique variable is existentially quantified,
otherwise the formula would be trivially false.

The remaining clauses of x are ρ(x) = ψ(x) \ δ(x) and ρ(x) = ψ(x) \ δ(x̄). If x
occurs as a single polarity in the remaining clauses, it can be encoded as a one-sided
definition: if ρ(x) is empty only δ(x) are needed to determine if x is assigned to true
and therefore unable to satisfy the clauses in ρ(x). This is a stronger condition than
monotonicity used for the general Plaisted-Greenbaum transformation [16].

Example 1. x ↔ a ∧ b is written in CNF as (x ∨ a ∨ b) ∧ (x ∨ a) ∧ (x ∨ b). Given
ρ(x) = {(x ∨ c), (x ∨ d ∨ e)} and ρ(x) = {}, x = a ∧ b can be written as a one-sided
definition with clauses (x ∨ a) ∧ (x ∨ b).

In some definitions including exclusive-or (XOR denoted by ⊕), multiple variables
are left-total and right-unique. Determining the definition variable requires information
about how definition variables are nested within the formula.
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Q-resolution can be generalized to sets of clauses C and D, denoted C ⊗x D, by
generating the non-tautological resolvents from clauses in C(x) and D(x) on pivot
variable x pairwise. Given a definition variable x and defining variables {z1, . . . , zn},
let x′ be a fresh variable with θx = δ(x) and θx′ = δ(x)[x′/x]. The procedure
defining variable elimination applies set-based Q-resolution in the following way: set
θ1 = θx(z1) ⊗z1 θx′(z1) ∧ θx(z1) ⊗z1 θx′(z1) and compute θ2 = θ1(z2) ⊗z2 θ1(z2);
continue the process until θn = θn−1(zn) ⊗zn θn−1(zn). UR is not applied because x
is in the innermost quantifier level with respect to its defining variables. The first step
ensures all clauses in θ1 will contain both x and x′. θn will either be {(x ∨ x′)} or
empty. If θn = {(x ∨ x′)}, linearizing the sets of resolvents θi forms a Q-resolution
derivation of (x ∨ x′). This is similar to Davis Putnam variable elimination [4].

3 Definition Detection

Given a QBF with no additional information, we first detect definitions to determine
which variables can be moved. All definitions are detected before variable movement
begins. Variable movement depends on the defining clauses, the definition variables, and
the nesting of definition variables. At a minimum, definition detection must produce the
defining clauses, and the rest can be inferred during movement.

Since the seminal work by Eén and Biere [5], bounded variable elimination (BVE)
has been an essential preprocessing technique in SAT solving. The technique relies on
definitions, so most SAT solvers incorporate some form of definition detection. The
conflict-driven clause learning SAT solver KISSAT [1] extends the commonly used syn-
tactic pattern matching with semantic definition detection. The detection is applied to
variables independently. Alternatively, the preprocessor CNFTOOLS [10] performs hier-
archical definition detection, capturing additional information about definition variable
nesting and monotonic definitions.

These tools run on CNF formulas. A QBF can be transformed into a CNF by remov-
ing the prefix, but not all definitions in the CNF are valid w.r.t. the prefix. For example,
some definitions will not be left-total because of the quantifier level restrictions in the
Q-blocked property. Such definitions can be easily filtered out before variable move-
ment, so there is no need to add these quantifier-based checks into the tools.

3.1 Hierarchical Definition Detection in CNFTOOLS

The hierarchical definition detection in CNFTOOLS employs a breadth first search (BFS)
to recurse through nested definitions in a formula. Root clauses are selected heuris-
tically, then BFS begins on the variables occurring in those clauses. All unit clauses
are selected as root clauses. The max-var heuristic selects root variables based on their
numbering. This exploits the practice of numbering definition variables after problem
variables. The more involved min-unblocked heuristic finds a minimally unblocked lit-
eral. This is more expensive to compute but does not rely on variable numbering.

When a variable is encountered in the BFS, CNFTOOLS checks if the defining
clauses are blocked. If so, the following detection methods are applied: pattern match-
ing for BiEQ, AND, OR, and full patterns, monotonic checking, and semantic checking.
BiEQ refers to an equivalence between two variables.
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A definition is a full pattern if ∀C ∈ δ(x) ∪ δ(x), |C| = n + 1 where n is the
number of defining variables and there are 2n defining clauses. The full pattern includes
some common encodings for XOR, XNOR, NOT, and Majority3, but is often avoided.
Since the detection follows the hierarchical nesting of definitions, there is no ambiguity
between the defining variables and definition variables in XOR definitions.

The advantage of hierarchical detection is the ability to detect monotonic defini-
tions. For variable movement we consider only monotonic definitions that are either
fully-defined or one-sided. If a monotonic definition is not fully-defined but the defini-
tion variable occurs positively and negatively in the defining clauses of other definitions,
the additional clauses can prevent variable movement w.r.t. the QRAT proof system.

Semantic checking involves solving the SAT problem for right uniquness described
in the preliminaries. As definitions are detected the defining clauses are removed from
the formula for the following iterations. This can produce problematic one-sided defini-
tions. For example, a variable may occur both positively and negatively in the defining
clauses of other definitions, and removing those clauses makes the variable one-sided.
Similar to the monotonic case, the additional defining clauses can prevent movement
w.r.t. the QRAT proof system, so these types of definitions must be filtered out.

3.2 Independent Definition Detection in KISSAT

KISSAT uses definition detection to find candidates for BVE. Starting with the 2021
SAT Competition, KISSAT added semantic definition detection [6] to complement the
existing syntactic pattern matching for BiEQ, AND, OR, ITE, and XOR definitions. In
semantic detection an internal SAT solver KITTEN with low overhead and limited capa-
bilities performs a right-uniqueness check on the formula ψ(x) ∪ ψ(x) after removing
all occurrences of x and x. This formula includes ρ(x) and ρ(x̄) as the set of defining
clauses are not known in advance. If the formula is unsatisfiable, an unsatisfiable core
is extracted (potentially after reduction) and returned as the set of defining clauses.

Core extraction does not guarantee the defining clauses are blocked. Internally
KISSAT generates resolvents over the defining clauses for BVE. We modify KISSAT to
only detect semantic definition where zero resolvents are generated, ensuring the defin-
ing clauses are blocked. We ignore built-in heuristics for selecting candidate variables
and instead iterate over all variables.

No nesting information is gathered during definition detection in KISSAT. If a vari-
able is a part of an XOR definition, KISSAT cannot determine if the variable is a defining
variable or the definition variable. The defining variables for an XOR may themselves
be defined by another definition in the formula. To check for this, if a variable was
detected as part of an XOR or semantic definition, the definition clauses were set to
inactive and the detection procedure was rerun for that variable.

4 Moving Variables

After all definitions are detected, we move definition variables as close to their defining
variables as possible to maximize universal reduction. To do this, we introduce empty
existential quantifier levels, denoted Ti, following each QiXi in the prefix yielding
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Q1X1∃T1Q2X2∃T2 · · ·Qn−1Xn−1∃Tn−1QnXn. There is no Tn because variables are
not moved inwards. For each definition variable x that can be moved, a fresh variable
x′ is placed in the quantifier level Tm for m = max{λ(z) | z ∈ Zx}. That is, x′ will be
placed in the existential block that immediately follows the innermost defining variable.
Finally, x will be removed from the prefix, and the new formula will be ψ[x′/x].

Example 2. In the formula ∃x3∀x1∃x4∀x2∃x5.(x5∨x4∨x3)∧(x5∨x3) ∧(x5∨x4)∧
(x5∨x1)∧(x2∨x5), the variable x5 is defined as x5 ↔ x3∧x4, with defining variables
{x3, x4}. A fresh variable x′5 is introduced to replace x5. x′5 is placed in an existential
quantifier level following the innermost defining variable x4. Then, x′5 is substituted for
x5 in the formula giving ∃x3∀x1∃x4∃x′5∀x2.(x′5 ∨ x4 ∨ x3)∧ (x′5 ∨ x3) ∧ (x′5 ∨ x4)∧
(x′5∨x1)∧(x2∨x′5). Finally, x2 can be removed from (x2∨x′5) by universal reduction.

Movement requires new variables because QRAT steps either add or delete clauses
and cannot affect the quantifier placement of existing variables. When definitions are
added in the checker QRAT-TRIM the new definition variables are placed in a quantifier
level based on their defining variables. For a definition variable x, if the innermost
defining variable z ∈ Xi is existentially quantified (Qi = ∃) the definition variable is
placed inXi, and if z is universally quantified (Qi = ∀) the definition variable is placed
in the existential level Xi+1, So, new definition variables are placed in the desired
quantifier level. Because contiguous levels with the same quantifier can be combined,
the introduction of T levels does not change the semantics.

4.1 Moving in Order

The tools for definition detection run on CNF instances, so, some definitions may not
be left-total when considering the prefix. This can occur if the definition variable is in
a level outer to one of its defining variables. Also, some monotonic definitions may not
satisfy the one-sided property. These problems are checked during proof generation. If
they occur, that variable is not moved.

The variable movement algorithm starts at the outermost quantifier level and sweeps
inwards, at each step moving all possible definition variables to the current level. A
definition variable x can be moved if x >Π z for all z ∈ Zx, and x is not universally
quantified. It can be moved to Tm where m = max{λ(z) | z ∈ Zx}, and will be
moved during iteration m of the algorithm. A look up table is used to efficiently find
definitions with the innermost defining variable at level m. Once a definition variable
has been moved, if it was a defining variable for some other definitions, those definitions
are checked for movement and the look up table is updated. Since the iteration starts at
the outermost level, it guarantees variables that can be moved within our framework are
moved as far as possible. This requires a single pass, so moved definitions will not be
revisited.

4.2 XOR Processing

In an XOR definition multiple variables are left-total and right-unique. Additional infor-
mation is required to determine which variable is the proper candidate for movement.
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If a variable is defined elsewhere and appears in an XOR, it must be a defining variable
in the XOR. In addition, universal variables must be defining variables. However, a dis-
tinction cannot be made between the remaining variables before beginning movement.

Example 3. Given the QBF, ∃1x1, x2∀y1∃2x3∀y2∃3x4∀y3∃4x5∀y4∃5x6, x7.(x6 ↔ x1
∧ xi) ∧ (x3 ⊕ x4 ⊕ x5) ∧ (x1 ⊕ x5 ⊕ x6) ∧ . . . , determining the definition variables
for the XOR definitions will hinge on the movement of x6. Case 1, Let xi = x7 in the
AND definition, x6 cannot be moved. Then, x5 can be moved to ∃3 as the definition
variable of (x3⊕x4⊕x5). No other variables can be moved. Case 2, Let xi = x2 in the
AND definitions, x6 can be moved to ∃1. Then, x5 can be moved to ∃1 as the definition
variable of (x1 ⊕ x5 ⊕ x6). Next, x4 can be moved to ∃2 as the definition variable of
(x3 ⊕ x4 ⊕ x5). The possible movement of x6 will determine how the XOR definitions
are moved. This information is not known until runtime, so the definition variable of an
XOR cannot be determined before variable movement is performed.

As seen in the example, movement of definition variables can affect what variable in
an XOR is eventually moved. The definition variable for an XOR must be determined
during the movement process. The definition variable is initially set as the innermost
variable in the XOR. If that variable is defined elsewhere and moved, the definition
variable of the XOR is reset to the new innermost variable. We perform the same check
as the general case to see if the definition variable can be moved. With XOR definitions,
the algorithm is still deterministic and produces optimal movement, since all variables
that can be moved are moved to their outermost level.

4.3 Proving Variable Movement

In this section we describe how to modify a formula through a series of QRAT clause
additions and deletions to achieve variable movement. Moving a definition variable x
in the formula Π.ψ involves:

– Introducing a new definition variable x′ to replace x.
– Deriving an equivalence between x′ and x.
– Transforming the formula ψ to ψ[x′/x] with x removed from Π and x′ placed in

the existential quantifier level following its innermost defining variable.

The algorithm for moving a definition variable x proceeds in five steps, each involv-
ing some clause additions or deletions. Some of the steps can be simplified depending
on the type of definition. Moving a one-sided definition requires slight modifications to
a few steps, and these are discussed following each of the relevant steps.

1. Add the defining clauses δ(x′) and δ(x′).
We introduce a fresh existential variable x′ and add the defining clauses δ(x)[x′/x]
and δ(x̄)[x′/x]. Each clause is Q-blocked on x′ or x′ since the definition is left-total
and variable x′ is in the quantifier level following its innermost defining variable.

2. Add the equivalence clauses x↔ x′.
Both x and x′ are fully defined by the same set of variables, so it is possible to
derive the equivalence clauses (x ∨ x′) and (x ∨ x′). The first implication added
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is Q-blocked-subsumed. Consider (x ∨ x′), for each clause C ′ ∈ δ(x′). The outer
resolvent ofC ′ with (x∨x′) on x is subsumed by the correspondingC ∈ δ(x). This
is not the case for (x ∨ x′) because the outer resolvent of (x ∨ x′) with (x ∨ x′) is
not subsumed by the formula. The clause (x ∨ x′) is QRAT for certain definitions,
in particular AND/OR. In the general case we generate a chain of Q-resolutions
that imply (x ∨ x′). We use defining variable elimination to eliminate Zx from the
formula δ(x)∪δ(x′). The procedure produces the clause (x∨x′). The resolution tree
rooted at (x∨x′) is traversed in post-order giving the list of clausesC1, ..., Cn, (x∨
x′). We add the clauses in order, deriving (x ∨ x′). The clauses are subsumed by
(x ∨ x′) and deleted. If defining variable elimination does not produce (x ∨ x′),
then the definition is not right-unique. The variable x cannot be moved in this case.
ONE-SIDED: assuming for the one-sided definition that x occurs positively in the
defining clauses, the implication (x′ ∨ x) is added. The implication is Q-blocked-
subsumed for the same reasons as the first implication above. If x occurs negatively
the implication (x ∨ x′) is added. We will continue the remaining steps under the
assumption that x occurs positively in the defining clauses for the one-sided case.

3. Add and remove the remaining clauses ρ(x) and ρ(x).
For all clauses C ∈ ρ(x) , C ′ ∈ ρ(x′) is the Q-resolvent of C with (x ∨ x′) on
pivot x, so C ′ can be added. C can be deleted because it is the Q-resolvent of C ′

with (x′ ∨ x) on pivot x′. Similar reasoning is used for C ∈ ρ(x).
ONE-SIDED: All C ′ ∈ ρ(x′) are added with the same reasoning as above. However,
there is no (x ∨ x′) so C ∈ ρ(x) cannot be deleted until step 5.

4. Remove the equivalence clauses x↔ x′

Equivalence clauses (x∨x′), (x∨x′) are deleted. (x∨x′) is Q-blocked-subsumed
on variable x since for all D ∈ δ(x), the outer resolvent of (x ∨ x′) and D is
subsumed by the defining clause D′ ∈ δ(x′), and the outer resolvent of (x ∨ x′)
with (x ∨ x′) is a tautology. Similarly, (x ∨ x′) is Q-blocked-subsumed.
ONE-SIDED: the definition clauses need the implication in order to be deleted, and
so deletion is deferred to step 5.

5. Remove the defining clauses δ(x) and δ(x̄).
The defining clauses on x are all Q-blocked and are deleted.
ONE-SIDED: The defining clauses D ∈ δ(x) can be deleted because they are Q-
resolvents of D′ ∈ δ(x′) with (x′ ∨ x) on x′. Now the clauses (x′ ∨ x) and ρ(x)
are Q-blocked on x because x only occurs negatively. They are deleted.

Given the QBF Π.ψ, applying the transformation sequentially with definition vari-
ables x1, . . . , xn will yield the QBF Π.ψ′ where all definition variables xi have been
replaced by new variables x′i and the new variables are in the appropriate quantifier
levels. The concatenated series of clause additions and deletions generated for each
definition variable gives a QRAT proof of the equivalence between Π.ψ and Π.ψ′

The steps above can also be used to move a definition variable to some existential
quantifier between the variable and its innermost defining variable. In addition, a def-
inition variable that is inside its defining variables can be moved further inwards by
reversing the steps, but it is not clear when this would be useful.

Example 4. Given the QBF ∃x1∀x2.(x1 ∨ x2) ∧ (x1 ∨ x2), we have the definition
x1 ↔ x2. The definition is right-unique but the defining clauses are not Q-blocked on
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x1 since x1 is at an outer quantifier level. The QBF is false but moving x1 inward would
make it true. To avoid this, we only move variables outward.

Example 5. Given the definition x1⊕x2⊕x3 with x1 as the definition variable we have
δ(x1) = {(x1∨x2∨x3), (x1∨x2∨x3)} and δ(x′1) = {(x′1∨x2∨x3), (x′1∨x2∨x3)}.
Defining variable elimination will perform the following steps:

Eliminate x2 :{(x1∨x2∨x3)⊗x2 (x′1 ∨ x2 ∨ x3), (x′1 ∨ x2 ∨ x3)⊗x2 (x1 ∨ x2 ∨ x3)}
θ1 = {(x1 ∨ x′1 ∨ x3), (x1 ∨ x′1 ∨ x3)}

Eliminate x3 :{(x1 ∨ x′1 ∨ x3)⊗x3 (x1 ∨ x′1 ∨ x3)}
θ2 = {(x1 ∨ x′1)}

The clause additions to derive the second implication in step 2 would be (x1 ∨ x′1 ∨
x3), (x1 ∨ x′1 ∨ x3), (x1 ∨ x′1). Each subsequent clause in the list is implied by Q-
resolution. With more defining variables, the resolution tree becomes more complex.
The derivation will be of the form θ′1, ..., θ

′
n−1 for θ′i ⊂ θi where θ′i will include only

the clauses needed to derive (x1 ∨ x′1). These can be determined by working through
the resolution chain backwards from (x1 ∨ x′1).

Example 6. Given the formula ∃x1x2x3∀x5x6∃x4(x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x4) ∧
(x2 ∨x4)∧ (x3 ∨x4)∧ (x4 ∨x5)∧ (x4 ∨x6), we show the steps generating the QRAT
proof of movement for variable x4 with the pivot appearing as the first literal in the
clause. Clauses following a d are deleted from the formula.

1. (x′4 ∨ x1 ∨ x2 ∨ x3), (x′4 ∨ x1), (x′4 ∨ x2), (x′4 ∨ x3)
2. (x′4 ∨ x4), (x′4 ∨ x4)
3. (x′4 ∨ x5), d(x4 ∨ x5), (x′4 ∨ x6), d(x4 ∨ x6)
4. d(x4 ∨ x′4), d(x4 ∨ x′4)
5. d(x4 ∨ x1 ∨ x2 ∨ x3), d(x4 ∨ x1), d(x4 ∨ x2), d(x4 ∨ x3)

The definition variable x4 is replaced by the fresh variable x′4 which will be placed
in the prenex as ∃x1x2x3∃x′4∀x5x6 achieving the desired movement. The QRAT proof
system uses a stronger redundancy notion that avoids auxiliary clauses for an AND
definition in step 2.

We verified all instances of variable movement on QBFEVAL’20 benchmarks using
QRAT-TRIM [8]. By default, QRAT-TRIM will check a satisfaction proof with forward
checking, verifying the clause deletion steps are correct in the order they appear. A
refutation proof is checked with backward checking, verifying the clause addition steps
are correct starting at the empty clause and working backwards. It is not known whether
the problem is true or false at the variable movement stage, so both clause addition and
deletion steps are checked to preserve equivalence. To do this, we modified QRAT-
TRIM by adding a DUAL-FORWARD mode that performs a forward check, verifying
both clause additions and deletions. We verified several end-to-end proofs for formulas
solved by BLOQQER after variable movement. We appended the BLOQQER proof onto
the variable movement proof, and verified it against the original formula with QRAT-
TRIM. All formulas that BLOQQER solved after movement were verified in this way.
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5 Evaluation

Variable movement is evaluated on 494 of the 521 QBFEVAL’20 benchmarks. Two
benchmark families were removed due to resource limits preventing proof verification.
We compare definition detection tools KISSAT and CNFTOOLS, then evaluate the affect
of variable movement on solver performance. We ran our experiments on StarExec [18].
The compute nodes that ran our experiments were Intel Xeon E5 cores with 2.4 GHz,
and all experiments ran with 32 GB. The repository with programs and data is archived
at https://zenodo.org/record/5733440.

5.1 Evaluating Definition Detection

The tools are given 10 seconds to detect definitions. KISSAT attempts to check each
variable, whereas CNFTOOLS will iterate through root clauses until the time limit. Root
clause selection is split into max-var (mv) and minimally-unblocked (mb). We consider
all definitions extracted up to a timeout if one occurs. The combined approach takes the
union of definitions found in each tool, and each tool is still allotted 10 seconds.

Figure 1 shows the number of definitions found (top) and moved (bottom) com-
pared to the combined approach. The tools do not go above the diagonal in either plot
because the combined approach takes a union of found definitions and movement can-
not be worsened by additional definitions. For many formulas multiple tools contribute
to the combined total, shown by a column of points where none are on the diagonal.
There is a noticeable pattern between CNFTOOLS (mb) and (mv) where (mb) performs
slightly worse due to the additional time spent computing the minimally-unblocked root
clauses. But there are some instances where the minimally-unblocked heuristic finds
definitions that lead to more movement. For combined, definitions were found in 493
instances and moved in 157 instances In comparing the plots it is clear that the num-
ber of definitions found is not a strict predictor of movement. KISSAT finds a similar
number of definitions as CNFTOOLS for many instances but consistently moves more.
Table 1 shows the breakdown of definitions found and moved by type, and the AND/OR
found more frequently by KISSAT are moved more often.

Table 1 further illuminates the differences between the tools. CNFTOOLS has syntac-
tic definition detection similar to KISSAT for BiEQ, AND/OR, XOR, but fails to move
a fraction of the XOR definitions. CNFTOOLS does detect tens of XORs as monotonic
definitions with the wrong definition variable, meaning the BFS picked up nested def-
initions in the wrong direction w.r.t. quantifier levels. But, the reason for the large gap
between CNFTOOLS and KISSAT is efficiency. CNFTOOLS does not detect the vast ma-
jority of XOR definitions moved by KISSAT within the time limit, and the same is true
for the other definitions. KISSAT uses the entire 10 seconds on 11 formulas whereas
CNFTOOLS times out on 111 (mv) and 99 (mb). Increasing the timeout for each tool
in the combined approach to 50 seconds produces only 780 more moved variables over
2 formulas. It is clear from the bottom plot in Figure 1 that CNFTOOLS contributes to
the movement of the combined approach in a handful of cases where KISSAT is not on
the diagonal. Combining the output of the tools makes use of KISSAT’s speed in detect-
ing many simple definitions and CNFTOOLS’s ability to find one-sided definitions using
complex heuristics and hierarchical search.
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Fig. 1. Comparison of definitions found (top) and moved (bottom) per instance between combined
and the individual tools.

No variables found by semantic detection were moved in KISSAT and only 88 were
moved in CNFTOOLS (mb). KISSAT found 159,544 right-unique definitions with KIT-
TEN, but only 23,457 were left-total. Of those, the majority had defining variables in the
same level as the definition variable, and a smaller fraction had the definition variable
at an outer level. For CNFTOOLS 48,715 (mb) and 147,170 (mv) semantic definitions
were detected via. right-uniqueness checks. These semantic definitions may not be in-
troduced or manipulated by users in the same way as the standard definitions, explaining
why they already occur in the desired quantifier level.

The far most common reason definitions cannot be moved is that they already appear
in the same quantifier level as some of their defining variables. For example, many
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Table 1. The number of definitions found and moved over all instances. Definitions moved are
broken down by a selection of the types, omitting ITE and semantic. Some one-sided definitions
CNFTOOLS moves are fully-defined, and combined will move them based on the fully-defined
definition provided by KISSAT. So, the missing one-sided definitions for combined are spread
across the other definition types.

Detection Tool Found Moved BiEQ AND/OR One-Sided XOR

CNFTOOLS(mv) 3,525,559 1,032,807 21,198 969,630 37,642 0
CNFTOOLS(mb) 2,856,306 935,336 4,619 891,027 39,863 0
KISSAT 9,243,158 1,567,746 308,987 1,215,036 — 42,364
combined 9,624,654 1,664,655 309,793 1,273,381 37,646 42,476

Table 2. The number of definitions found that were not left-total, split by existentially and uni-
versally quantified variables, along with monotonic definitions that could not be moved because
they were not one-sided. If any universally quantified variable was left-total, the formula would
be trivially false.

Detection Tool Existential Universal One-sided

CNFTOOLS(mv) 43,278 11,360 1,107
CNFTOOLS(mb) 23,690 3,771 1,421
KISSAT 32,681 3,219 —

formulas have only two quantifier levels, so there would be no possible movement with
all existential variables in the same level. Table 2 shows other reasons a variable may
not be moved. A definition is not left-total when the definition variable is at a level
outer to some of its defining variables. The tools detected several of these definitions
on both universally and existentially quantified variables. Example 2 shows why these
variables cannot be moved inwards. Additionally, some of the monotonic definitions
extracted by CNFTOOLS are neither fully-defined nor one-sided. These checks are not
made until a variable becomes a candidate for movement because a large fraction will
be preemptively filtered out due to their quantifier level placement.

CNFTOOLS detect 2,038,407 (mv) and 1,897,482 (mb) monotonic definitions, but
this does not match the number of one-sided definitions moved. The majority of mono-
tonic definitions found and moved are actually fully defined. This means for many of
the definitions, either δ(x) or δ(x̄) can be removed from the QBF while preserving
equivalence. This can be done in QRAT by recursing through the monotonic definitions
and deleting the redundant defining clauses. The large number of fully-defined mono-
tonic definitions shows that QBF formulas generally do not take advantage of optimized
encodings, such as the Plaisted-Greenbaum transformation.

5.2 Evaluating Solvers

We used the following solvers to evaluate the impact of variable movement.

– RAREQS (Recursive Abstraction Refinement QBF Solver) [11] pioneered the use
of counterexample guided abstraction refinement (CEGAR)-driven recursion and
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learning in QBF solvers. The 2012 version has comparable performance to current
top-tier solvers.

– CAQE (Clausal Abstraction for Quantifier Elimination) [17] is the first place winner
of the 2017, 2018, and 2020 competitions. The solver is written in RUST and based
on the CEGAR clausal abstraction algorithm.

– DEPQBF implements the adapted DPLL algorithm QDPLL, relying on depen-
dency schemes to select independent variables for decision making [14]. DEPQBF
incorporates QBCE [2] as inprocessing which complicates its relation to prepro-
cessors like BLOQQER.

– GHOSTQ is a non-clausal QBF solver [13]. The solver attempts to convert CNF
or QCIR to the GHOSTQ format which introduces Ghost variables, the dual of
Tseitin variables. The structural information gained by the conversion is important
to GHOSTQ’s performance. The conversion relies on the discovery of definitions,
which is significantly hampered by preprocessors that delete or change clauses.
GHOSTQ also supports a CEGAR extension.

Table 3 shows that variable movement always improves solver performance with
and without BLOQQER. Figure 2 provides a more detailed view of the QBF solvers’
performance on the original (-o) and moved (-m) formulas using the combined defi-
nition detection. The times include definition detection and proof generation, adding
50 seconds on average. In moved formulas, adjacent quantifier levels of the same type
were conjoined into a single quantifier level because of GHOSTQ’s internal definition
detection. This did not impact the other solvers. Movement significantly improves per-
formance of CAQE, DEPQBF, and GHOSTQ-p (plain mode). GHOSTQ-ce (CEGAR
mode) and RAREQS improve slightly with movement. Since both GHOSTQ modes
use the same conversion to the GHOSTQ format, the impact of variable movement on
the conversion does not explain the difference in performance. . Separate experiments
moving all definitions except XORs did improve the performance of GHOSTQ in both
modes while not affecting other solvers. This is because the conversion to the GHOSTQ
format only checks the innermost quantifier level for XOR definitions, and cannot find
them if they have been moved. The three solvers implementing CEGAR, GHOSTQ-
ce, RAREQS, and CAQE, were affected differently by movement. This may be due to
internal heuristics.

Most state-of-the-art QBF solvers make use of preprocessors. The exception is
GHOSTQ because its definition detection suffers after the application of QBCE. Fig-

Table 3. The number of instances solved within the 5,000 time-limit over benchmarks where
variable movement was possible.

Solver Original Moved BLOQQER Moved-BLOQQER

CAQE 74 84 99 103
GHOSTQ(p) 55 61 47 52
GHOSTQ(ce) 77 80 65 70
RAREQS 72 72 94 98
DEPQBF 64 70 64 71
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Fig. 2. Cumulative number of solved instances considering only the 157 benchmarks which had
variables that could be moved.
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Fig. 3. Cumulative number of solved instances after applying BLOQQER for 100 seconds consid-
ering only the 157 benchmarks with movement.

ure 3 shows solver performance with moving variables before applying BLOQQER (m-
b) and only applying BLOQQER (-b). The solving time includes the variable movement
and BLOQQER runtime within a 100 second timeout. After moving variables, BLO-
QQER solved 3 formulas and those data are reflected in the plot. In addition, each
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of the 14 formulas BLOQQER solved before movement, BLOQQER also solved after
movement. Performance improved for all solvers when applying variable movement
before BLOQQER. One reason for this is movement may allow for more applications
of universal reduction. We also experimented with moving variables after BLOQQER
preprocessed the formulas. Few variables were moved, and it did not affect solver per-
formance. This is likely due to QBCE removing defining clauses from the formula.

6 PGBDDQ Case Study

Two player games can be succinctly represented in QBF, as an existential player versus
a universal opponent. Problem variables encode moves alternating between quantifier
levels, and definition variables encode the game state as moves are played over time.
Given a 1 × N board, the linear domino placement game has two players alternately
placing 1× 2 dominos on the board. The first player who cannot place a domino loses.
The game can be encoded with around N2/2 problem and 3N2/2 definition variables.

PGBDDQ is a BDD-based, proof-generating QBF solver. [3] It starts at the inner-
most quantifier level and performs bucket elimination, linearizing variables and elim-
inating them through a series of BDD operations that are equivalence-preserving. As
BDDs are manipulated, PGBDDQ generates a dual proof through a series of clause
additions and deletions. PGBDDQ can solve the linear domino placement problem
with polynomial performance when definitions are placed in carefully selected quan-
tifier levels after their defining variables (Manual). In this configuration, moves are
processed from the last to the first, with the BDDs at each quantifier level effectively
encoding the outcomes of the possible end games for each board state. The performance
deteriorates when definition variables are placed in the innermost quantifier level (End).

0 1,000 2,000 3,000 4,000 5,000

10

20

30

CPU time

N

LDomino with Varying Definition Variable Placement

Manual
Move
End

Fig. 4. Performance on boards of size N for false formulas where player two wins. The Move
placement times out at N = 30 and the End placement runs out of memory at N = 14.
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In this configuration, the BDDs at each quantifier level must encode the outcomes of
the possible end games in terms of the history of all moves up to that point in the game.

Figure 6 shows the performance of PGBDDQ on false formulas where the second
player will win. In each configuration, the same hand-crafted BDD variable ordering
was used. With the End encoding PGBDDQ runs out of memory on 32 GB RAM
at N = 12. Applying our movement algorithm to this encoding (Move), the solver
performs significantly better and solves all formulas up to N = 30 before timeouts
occur. This shows how the general problem of memory inefficiency within a BDD can
be eased by moving definition variables across quantifier levels. The gap in performance
between the Move placement and the Manual placement may be due to the ordering
of variables within a quantifier block or moving variables too far outward. When a
variable is moved it can be placed anywhere within a quantifier level as this does not
change semantics. Also, variables do not need to be moved all the way to their innermost
defining variable. Exploring these options in the context of a structurally dependent
solver PGBDDQ may lead to improvements that affect other QBF solvers.

7 Conclusion and Future Work

We presented a technique for moving definition variables in QBFs. The movement can
be verified within the QRAT proof system, and we validated all proofs in the evaluation
with QRAT-TRIM. Using the tools KISSAT and CNFTOOLS to detect definitions, we
created a tool-chain for variable movement. On the QBFEVAL’20 benchmarks, one
quarter of formulas had definitions that could be moved, and the movement increased
solver performance. In addition, we found that movement followed by BLOQQER was
more effective than preprocessing with BLOQQER.

For future work, incorporating quantifier level information into definition detection
could reduce the costs. For example, the hierarchical detection could recurse outwards
based on quantifier levels, reducing the number of root clauses explored and reducing
the number of unmoveable definitions detected. Additionaly, there are ways to expand
on variable movement. It is possible to place variables anywhere within a given quan-
tifier level and also to adjust how far variables are moved. Optimizing movement may
require understanding how variable movement impacts each solver’s internal heuristics
and solving algorithm. Separately, monotonic definitions that are not one-sided present
an interesting challenge for variable movement, as they occur in both polarities outside
of the definition. It might also be possible to move the approximately 160,000 semantic
definitions found be KITTEN that were right-unique but not left-total.
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mits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not in-
cluded in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
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