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Abstract. Chain reduction enables reduced ordered binary decision diagrams
(BDDs) and zero-suppressed binary decision diagrams (ZDDs) to each take ad-
vantage of the others’ ability to symbolically represent Boolean functions in com-
pact form. For any Boolean function, its chain-reduced ZDD (CZDD) represen-
tation will be no larger than its ZDD representation, and at most twice the size
of its BDD representation. The chain-reduced BDD (CBDD) of a function will
be no larger than its BDD representation, and at most three times the size of
its CZDD representation. Extensions to the standard algorithms for operating on
BDDs and ZDDs enable them to operate on the chain-reduced versions. Experi-
mental evaluations on representative benchmarks for encoding word lists, solving
combinatorial problems, and operating on digital circuits indicate that chain re-
duction can provide significant benefits in terms of both memory and execution
time.

1 Introduction

Decision diagrams (DDs) encode sets of values in compact forms, such that operations
on the sets can be performed on the encoded representation, without expanding the
sets into their individual elements. In this paper, we consider two classes of decision
diagrams: reduced ordered binary decision diagrams (BDDs) [4] and zero-suppressed
binary decision diagrams (ZDDs) [11, 12]. These two representations are closely related
to each other, with each achieving more compact representations for different classes of
applications. We present extensions to both representations, such that BDDs can take
advantage of the source of compaction provided by ZDDs, and vice-versa.

Both BDDs and ZDDs encode sets of binary sequences of some fixed length n,
defining a Boolean function over n variables. We can bound their relative sizes as fol-
lows. Suppose for some function, we encode it according to the different DD types. For
function f, let T'(f) indicate the number of nodes (including leaf nodes) in the repre-
sentation of type T'. Let R;(T7,T>) denote the relative sizes when representing f using
types 11 and T5:

Ry(Ty, T2) = 155

Comparing BDDs and ZDDs, Knuth [9] has shown that for any function f:
R;(BDD,ZDD) < n/2 + o(n) (1)
R;(ZDD,BDD) < n/2 + o(n) )
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Fig. 1. Size bound relations between different representations

As these bounds show, ZDDs may be significantly (a factor of n/2) more compact than
BDDs, or vice-versa. In practice, the comparative advantage of one representation over
the other can be very significant, given that the size of the data structure is often the
limiting factor in the use of DDs.

In this paper, we introduce two new representations: chain-reduced ordered binary
decision diagrams (CBDDs), and chain-reduced zero-suppressed binary decision dia-
grams (CZDDs). The key idea is to associate two levels with each node and to use such
nodes to encode particular classes of linear chains found in BDDs and ZDDs. Chain re-
duction can be defined in terms of a set of reduction rules applied to BDDs and ZDDs,
giving bounds for any function f

R;(CBDD,BDD)
R;(CZDD, ZDD)

1 (3)

<
<1 )

We show bounds on the relative sizes of the representations as:

R;(CBDD, CZDD) < 3 (5)
R;(CZDD,BDD) < 2 (6)

These relations are summarized in the diagram of Fig. 1. In this figure, each arc from
type T to type T3 labeled by an expression F indicates that R¢(T7,T5) < E + o(E).
We also show these bounds are tight, by demonstrating parameterized families of func-
tions that achieve the bounding factors of (5) and (6).

These results indicate that the two compressed representations will always be within
a small constant factor (2 for CZDDs and 3 for CBDDs) of either a BDD or a ZDD
representation. While one representation may be more slightly compact than the other,
the relative advantage is bounded by a constant factor, and hence choosing between
them is less critical.

This paper defines the two compressed representations, derives the bounds indi-
cated in (5) and (6) and presents extensions of the core BDD and ZDD algorithms to
their chained versions. It describes an implementation based on modifications of the
CUDD BDD package [14]. It presents some experimental results and concludes with a
discussion of the merits of chaining and possible extensions.



Chain Reduction for BDDs and ZDDs 3

(A) Levelized BDD (B) BDD (C) ZDD

Fig. 2. Reductions in BDDs and ZDDs. Each reduces the representation size with with edges
between nonconsecutive levels.

2 Related Work

In independent work, van Dijk and his colleages devised a hybrid of BDDs and ZDDs
they call tagged BDDs [6]. Their representation augments BDDs by associating a vari-
able with each edge, in addition to the variable associated with each node, enabling
them to represent both BDD and ZDD reductions along each edge. For any function,
a tagged BDD is guaranteed to have no more nodes than either its BDD or its ZDD
representation. They avoid the constant factor in node growth that CBDDs or CZDDs
may require, at the cost of requiring storage for three variables per node (one for the
node, and one for each of the outgoing edges) versus two. Choosing between their rep-
resentation or ours depends on a number of implementation factors. Both achieve the
larger goal of exploiting the reductions enabled by both BDDs and ZDDs.

3 BDDs and ZDDs

Both BDDs and ZDDs encode sets of binary sequences of length n as directed acyclic
graphs with two leaf nodes, labeled with values 0 and 1, which we refer to as “leaf
0” and “leaf 1,” respectively. Each nonleaf node v has an associated level [, such that
1 <[ < n, and two outgoing edges, labeled lo and ki to either a leaf node or a nonleaf
node. By convention, leaf nodes have level n 4+ 1. An edge from v to node u having
level I must have [ < I'.

Fig. 2 shows three decision-diagram representations of the set .S, defined as:

S = {0001,0011,0101,0111, 1000} )
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The lo edge from each node is shown as a dashed line, and the hi edge is shown as a
solid line. As a shorthand, we omit leaf 0 and all branches to it.

Graph A represents S as a levelized binary decision diagram, where an edge from
a node with level [ must connect to either leaf 0 or to a node with level [ + 1. Each path
from the root to leaf 1 encodes an element of set .S. For a given path, the represented
sequence has value O at position [ when the path follows the /o edge from the node with
level [ and value 1 when the path follows the Ai edge.

Graph A has nodes forming two linear chains: a DON’T-CARE chain, consisting
of nodes a and b, and an OR chain, consisting of nodes d, e, and f. A DON’T-CARE
chain is a series of DON’T-CARE nodes, each having its two outgoing edges directed
to the same next node. In terms of the set of represented binary sequences, a DON’T-
CARE node with level [ allows both values 0 and 1 at sequence position /. An OR chain
consists of a sequence where the outgoing i edges for the nodes all go the same node—
in this case, leaf 0. An OR chain where all hi edges lead to leaf 0 has only a single path,
assigning value 0O to the corresponding positions in the represented sequence. We will
refer to this special class of OR chain as a ZERO chain.

BDDs and ZDDs differ from each other in the interpretations they assign to a level-
skipping edge, when a node with level [ has an edge to a node with level I’ such that
I+ 1 < I'. For BDDs, such an edge is considered to encode a DON’T-CARE chain.
Thus, graph B in Fig. 2 shows an BDD encoding set .S. The edge on the left from level
1 to level 4 is equivalent to the DON’T-CARE chain formed by nodes a and b of graph
A. For ZDDs, a level skipping edge encodes a ZERO chain. Thus, graph C shows a
ZDD encoding set S. The edge on the right from level 1 to the leaf encodes the ZERO
chain formed by nodes d, e, and f of graph A. Whether the set is encoded as a BDD or a
ZDD, one type of linear chains remains. Introducing chain reduction enables BDDs and
ZDDs to exploit both DON’T-CARE and OR (and therefore ZERO) chains to compress
their representations.

4 Chain Patterns and Reductions

Fig. 3 shows the general form of OR and DON’T-CARE chains, as were illustrated in the
examples of Fig. 2. These chains have levels ranging from ¢ to b, such that 1 < ¢ <
b < n. Each form consists of a linear chain of nodes followed by two nodes f and g
with levels greater than b. Nodes f and g are drawn as triangles to indicate that they are
the roots of two subgraphs in the representation. In an OR chain, the /o edge from each
node is directed to the next node in the chain, and the hi edge is directed to node g. The
chains eliminated by ZDDs are a special case where ¢ = 0. In a DON’T-CARE chain,
both the /o and the ki edges are directed toward the next node in the chain.

As was illustrated in Fig. 2, having edges that skip levels allows BDDs to compactly
represent DON’T-CARE chains and ZDDs to eliminate OR chains when g = 0. The goal
of chain reduction is to allow both forms to compactly represent both types of chains.
They do so by associating two levels with each node, as indicated in Fig. 3(C). That
is, every nonleaf node has an associated pair of levels ¢ : b, such that 1 < ¢t < b < n.
In a chain-reduced ordered binary decision diagram (CBDD), such a node encodes the
OR chain pattern shown in Fig. 3(A), while in a chain-reduced zero-suppressed binary
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(A) OR chain (B) DON’T-CARE chain (C) Compressed representation

Fig. 3. Chain patterns. These patterns remain after BDD reduction (A), and ZDD reduction (B),
but can be represented in compressed form (C).

decision diagram (CZDD), such a node encodes the DON’ T-CARE chain pattern shown
in Fig. 3(B). A node with levels ¢ and b such that ¢ = b encodes a standard node with
respect to the indicated variable.

Fig. 4 shows the effect of chain reduction, starting with the levelized graph A. In
the CBDD (B), a single node f’ replaces the OR chain consisting of nodes d, e, and f.
In the CZDD (C), the DON’T-CARE chain consisting of nodes a and b is incorporated
into node ¢ to form node ¢’. These new nodes are drawn in elongated form to emphasize
that they span a range of levels, but it should be emphasized that a/l nodes in a chained
representation have an associated pair of levels.

To generalize from these examples, let us denote a node of the form illustrated in
Fig. 3(C) with the modified if-then-else notation (¢ : b — g, f). That is, the node has a
range of levels from ¢ to b, an outgoing Ai edge to node g, and an outgoing lo edge to
node f.

A BDD representation of a function can be transformed into a CBDD as follows.
The process starts by labeling each node having level [ in the BDD with the pair ¢ : b,
such that t = b = [. Then, we repeatedly apply a reduction rule, replacing any pair
of nodes u and v of the form u = (t:m — g,v) andv = (m+1:b — g, f) by the
single node (t:b — g, f). A similar process can transform any ZDD representation
of a function into a CZDD, using the reduction rule that a pair of nodes v and v of
the form v = (t:m — v,v) and v = (m+1:b— g, f) is replaced by the single
node (t:b— g, f). In practice, most algorithms for constructing decision diagrams
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(A) Levelized BDD (B) CBDD (C) CZDD
1:1
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Fig. 4. Chain Reduction Examples. Each now reduces both chain types.

operate from the bottom up. The reduction rules are applied as nodes are created, and
so unreduced nodes are never actually generated.

5 Size Ratio Bounds

These reduction rules allows us to bound the relative sizes of the different representa-
tions, as given by (5) and (6).

First, let us consider (5), bounding the relative sizes of the CBDD and CZDD rep-
resentations of a function. Consider a graph G representing function f as a CZDD. We
can generate a CBDD representation G’ as follows. G’ contains a node v’ for each node
v in G. However, if v has levels ¢ : b, then v’ has levels b : b, because any DON’T-CARE
chain encoded explicitly in the CZDD is encoded implicitly in a CBDD.

Consider an edge from node u to node v in G, where the nodes have levels ¢, : b,
and t, : b, respectively. If ¢, = b, + 1, then there can be an edge directly from u’ to
v’ If t, < by, + 1, then we introduce a new node to encode the implicit zero chain in G
from u to v. This node has the form (b, +1: ¢, — 1 — 0,v’) and has an edge from v’
to 1t.

The size of G’ is bounded by the number of nodes plus the number of edges in G.
Since each node in G has at most two outgoing edges, we can see that G’ has at most
three times the number of nodes as G. Graph G’ may not be reduced, but it provides an
upper bound on the size of a CBDD relative to that of a CZDD.

This bound is tight—Fig. 5 illustrates the reduced representations for a family of
functions, parameterized by a value k£ (k = 3 in the example), such that the function is
defined over 3k + 2 variables. The ZDD and CZDD representations are identical (A),
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(A) ZDD/CZDD representation (B) CBDD representation
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Fig. 5. Worst case example for effectiveness of CBDD compression. The implicit ZERO chains
in the ZDD (A) must be explicitly encoded in the CBDD (B), increasing its size by a factor of 3.

having 2k + 3 nodes (including both leaf nodes.) The CBDD representation has 6k + 2
nodes (B). We can see in this example that the CBDD requires nodes (shown in gray)
to encode the ZERO chains that are implicit in the ZDD.

Second, let us consider (6), bounding the relative sizes of the CZDD and BDD
representations of a function. Consider a graph G representing function f as a BDD.
We can construct its representation G’ as a CZDD. Consider each edge G from node u,
having level [, to node v, having level [,,. Let » = lo(v) and s = hi(v). G’ has a node
Wy Of the form (1, + 1 : 1, = Weys, Wyy-). That s, w,,, encodes any DON’T-CARE chain
between v and v, and it has edges to the nodes generated to encode the edges between
v and its two children. The size of G’ is bounded by the number of edges in G, which
is at most twice the number of nodes.

This bound is also tight—Fig. 6 illustrates the reduced representations for a family
of functions, parameterized by a value k (k = 3 in the example), such that the function is
defined over 2k + 1 variables. The BDD representations (A) has 2k + 3 nodes (including
both leaf nodes.) The CZDD representation has 4k + 3 nodes (B). We can see that most
of the nodes in the BDD must be duplicated: once with no incoming DON’T-CARE
chain, and once with a chain of length one.
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(A) BDD representation (B) CZDD representation

Level Level

Fig. 6. Worst case example for effectiveness of CZDD compression. The nodes in the BDD
(A) must be duplicated to encode the incoming DON’T-CARE chains (B), increasing the size by a
factor of 2.

As can be seen in Fig. 1, these bounds contain an asymmetry between BDDs and
ZDDs and their compressed forms. The bound of 3 holds between CBDDs and CZDDs,
and hence by transitivity between CBDDs and ZDDs, while the bound of 2 holds only
between CZDDs and BDDs. The general form of the OR chain (Fig. 3(A)), where g is
something other than 0, cannot be directly encoded with CZDD nodes.

6 Operating on CBDDs and CZDDs

The APPLY algorithms for decision diagrams operate by recursively expanding a set
of argument decision diagrams according to a Shannon expansion of the represented
functions [4, 5]. These algorithms allow functions to be combined according to standard
binary Boolean operations, as well as by the if-then-else operation ITE.

As notation, consider a step that expands k argument nodes {v;|1 < i < k} where
v; = (t;:b; = g;, f;). For example, operations AND, OR, and XOR use the APPLY
algorithm with k£ = 2, while ternary operations, such as ITE use £ = 3. A step can be
summarized as follows:

1. If one of the terminal cases apply, then return the result.
2. If the computed cache contains an entry for this combination of operation and ar-
guments, then return the previously computed result.
3. Recursively compute the result:
(a) Choose splitting level(s) based on the levels of the arguments.
(b) Generate hi and lo cofactors for each argument.
(c) Recursively compute the hi and lo values of the result using the APPLY algo-
rithm with the hi cofactors and the lo cofactors, respectively.
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(d) Determine the result node parameters based on the computed hi and lo cofac-
tors, the splitting level(s), and the reduction rules.
(e) Either reuse an existing node or create a new one with the desired level(s) and
hi and lo children.
4. Store an entry in the computed cache.
5. Return the computed value.

In generalizing from conventional BDDs and ZDDs to their chained versions, we need
only modify 3(a) (splitting), 3(b) (cofactoring), and 3(d) (combining) in this sequence.
In the following presentation, we first give formal definitions and then provide brief
explanations.

For CBDDs, we define the splitting levels ¢ and b as:

t= min t; 8
Zin, & (8)
bi, ti=t
b= min < t;, ti=n+1
1sisk t; — 1, else

We then define the two cofactors for each argument node v;, denoted lo(v;,t : b) and
hi(v;,t : b), according to the following table:

Case Condition lo(v;,t:b) hi(v;,t : b)
1 b<t V5 (%
2 b=10; fi gi
3 ti<b<b (b+1:b;—gi fi) 9i

These three cases can be explained as follows:

Case 1: Splitting spans levels less than the top level of v;. Since level-skipping edges
encode DON’T-CARE chains, both cofactors equal the original node.

Case 2: Splitting spans the same levels as node v;. The cofactors are therefore the
nodes given by the outgoing edges.

Case 3: Splitting spans a subset of the levels covered by node v;. We construct a new
node spanning the remaining part of the encoded OR chain for the /o cofactor and
have g; as the hi cofactor.

Recursive application of the APPLY operation on the cofactors generates a pair of
nodes ug and ;. Using the variable levels ¢ and b defined in (8), these are combined to
form a result node u, defined as follows:

UQ, Uy = U1 Case 1
u=7< (t:b = up,wp),ug = {b+1,0": = uy,wgy) Case 2 9)
(t:b— ug,ug), else Case 3

These three cases can be explained as follows:

Case 1: The hi and lo cofactors are identical, and so the don’t-care reduction rule can
be applied.
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Case 2: Chain compression can be applied to create a node that absorbs the lo cofactor.
Case 3: No special rules apply.

Similar rules hold for applying operations to CZDDs, although there are important
differences, due to the different interpretations of level-skipping edges.
We define the splitting levels ¢ and b as:

t = min t; 10
2in b (10)
bi, ti=t
b= min ¢ n+1,v;,=0
1<i<k
t else

)

The cofactors for argument node v; are defined according to the following table:

Case Condition lo(v;,t:b) hi(v;, t:b)
1 b<t; Vi 0
2 b=1"b; fi Gi
3 t; <b< b <b+12bi—)gi,fi> <b+1lbi—>gi,fl‘>

These three cases can be explained as follows:

Case 1: The splitting spans levels less than the top level of v;. Since level-skipping
edges encode ZERO chains, the /o cofactor equals the original node and the Ai co-
factor equals leaf 0.

Case 2: The splitting spans the same levels as node v;. The cofactors are therefore the
nodes given by the outgoing edges.

Case 3: The splitting spans a subset of the levels covered by node v;. We construct a
new node spanning the remaining part of the encoded DON’ T-CARE chain for both
cofactors.

Recursive application of the APPLY operation on the cofactors generates a pair of
nodes ug and u;. Using the variable ranges ¢ and b defined in (10), these are combined
to form a result node u, defined as follows:

Uug, uy =0andt=>5 Case 1

" — (t:b—1— up,up),us =0andt <b Case 2 an
) Y = wi,wo),  wo=up = (b4 1,0 = wy,wy) Case 3
(t:b— uy,ug), else Case 4

These four cases can be explained as follows:

Case 1: The zero-suppression rule can be applied to return a direct pointer to ug

Case 2: The zero-suppression rule can be applied, but we must construct a node en-
coding the DON’T-CARE chain between levels ¢t and b — 1.

Case 3: Chain compression can be applied to create a node that absorbs the lo cofactor.

Case 4: No special rule applies.
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7 Experimental Results

We implemented both CBDDs and CZDDs by modifying version 3.0.0 of the CUDD
BDD package [14]. When compiled for 64-bit execution, CUDD stores a 32-bit field
index in each node, where this index is translated into a level according to the variable
ordering. For our implementation, we split this field into two 16-bit fields index and
bindex to (indirectly) encode the top and bottom levels of the node. Thus, there was
no storage penalty for the generalization to a chained form.

CUDD uses complement edges when representing BDDs [2, 13]. Complement edges
can potentially reduce the size of a BDD by a factor of two, invalidating the size ratio
bounds derived in (5) and (6). For our experimental results, we therefore use a represen-
tation based on CUDD’s support for Algebraic Decision Diagrams (ADDs) [1]. ADDs
generalize BDDs by allowing arbitrary leaf values. Restricting the leaf values to 0 and
1 yields conventional BDDs without complement edges.

To evaluate the effectiveness of chain reduction, we chose three different categories
of benchmarks to compare the performance of BDDs, ZDDs, and their chained versions.
One set of benchmarks evaluated the ability of DDs to represent information in compact
form, a second to evaluate their ability to solve combinatorial problems, and a third to
represent typical digital logic functions. All experiments were performed on a 4.2 GHz
Intel Core 17 processor with 32 GB of memory running the OS X operating system.

7.1 Encoding a Dictionary

As has been observed [9], a list of words can be encoded as a function mapping strings
in some alphabet to either 1 (included in list) or O (not included in list). Strings can
further be encoded as binary sequences by encoding each symbol as a sequence of bits,
allowing the list to be represented as a Boolean function. We consider two possible
encodings of the symbols, defining the radix r to be the number of possible symbols. A
one-hot encoding (also referred to as a “1-of-N” encoding) requires 7 bits per symbol.
Each symbol is assigned a unique position, and the symbol is represented with a one in
this position and zeros in the rest. A binary encoding requires [log, r| bits per symbol.
Each symbol is assigned a unique binary pattern, and the symbol is represented by this
pattern. Lists consisting of words with multiple lengths can be encoded by introducing
a special “null” symbol to terminate each word.

Eight benchmarks were derived from two word lists to allow comparisons of differ-
ent encoding techniques and representations. The first list is a set of English words in the
file /usr/share/dict/words found on Macintosh systems. It contains 235,886
words with lengths ranging from one to 24 symbols, and where the symbols consist
of lower- and upper-case letters plus hyphen. We consider two resulting symbol sets: a
compact form, consisting of just the symbols found in the words plus a null symbol (54
total), and an ASCII form, consisting of all 128 ASCII characters plus a null symbol.
The second word list is from an online list of words employed by password crackers.
It consists of 979,247 words ranging in length from one to 32 symbols, and where the
symbols include 79 possible characters. Again, we consider both a compact form and
an ASCII form. The choice of one-hot vs. binary encoding has a major effect on the
number of Boolean variables required to encode the words. With a one-hot encoding,
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One-hot Node counts Ratios

BDD CBDD (C)ZDD BDD:CBDD CBDD:CZDD
Compact word list 9,701,439 626,070 297,681 15.50 2.10
ASCII word list 23,161,501 626,071 297,681 37.00 2.10
Compact password list 49,231,085 2,321,572 1,130,729 21.21 2.05
ASCII password list 79,014,931 2,321,792 1,130,729 34.03 2.05
Binary Node counts Ratios

BDD CBDD (C)ZDD BDD:CBDD CBDD:CZDD
Compact word list 1,117,454 1,007,868 723,542 1.11 1.39
ASCII word list 1,464,773 1,277,640 851,580 1.15 1.50
Compact password list 4,422,292 3,597,474 2,506,088 1.23 1.44
ASCII password list 4,943,940 4,307,614 2,875,612 1.15 1.50

Fig. 7. Node counts and ratios of node counts for dictionary benchmarks

the number of variables ranges between 1,296 and 4,128, while it ranges between 144
and 256 with a binary representation. To generate DD encodings of a word list, we first
constructed a trie representation the words and then generated Boolean formulas via a
depth-first traversal of the trie.

Fig. 7 shows the number of nodes required to represent word lists as Boolean
functions, according to the different lists, encodings, and DD types. The entry labeled
“(C)ZDD” gives the node counts for both ZDDs and CZDDs. These are identical, be-
cause there were no DON’T-CARE chains for these functions. The two columns on the
right show the ratios between the different DD types. Concentrating first on one-hot
encodings, we see that the chain compression of CBDDs reduces the size compared
to BDDs by large factors (15.50-34.03). Compared to ZDDs, representing the lists by
CBDDs incurs some penalty (2.05-2.10), but less than the worst-case penalty of 3.
Increasing the radix from a compact form to the full ASCII character set causes a sig-
nificant increase in BDD size, but this effect is eliminated by using the zero suppression
capabilities of CBDDs, ZDDs, and CZDDs.

Using a binary encoding of the symbols reduces the variances between the different
encodings and DD types. CBDDs provide only a small benefit (1.11-1.23) over BDDs,
and CBDDs are within a factor of 1.50 of ZDDs. Again, chaining of ZDDs provides
no benefit. Observe that for both lists, the most efficient representation is to use either
ZDDs or CZDDs with a one-hot encoding. The next best is to use CBDDs with a one-
hot encoding, and all three of these are insensitive to changes in radix. These cases
demonstrate the ability of ZDDs (and CZDDs) to use very large, sparse encodings of
values. By using chaining, CBDDs can also take advantage of this property.

Although the final node counts for the benchmarks indicate no advantage of chain-
ing for ZDDs, statistics characterizing the effort required to derive the functions show
a significant benefit. Fig. 8 indicates the total number of operations and the total time
required for generating ZDD and CZDD representations of the benchmarks. The op-
erations are computed as the number of times the program checks for an entry in the
operation cache (step 2 in the description of the APPLY algorithm). There are many
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One-hot Operations Time (secs.)
ZDD CZDD Ratio ZDD CZDD Ratio

Compact word list 142,227,877 12,097,435 11.76 48.78 15.04 3.24

ASCII word list 375,195,184 28,574,814 13.13 173.56 21.84 7.95

Compact password list 806,017,001 62,785,274 12.84 713.15 46.73 15.26
ASCII password list ~ 1,383,534,557 104,059,626 13.30 658.21 57.81 11.39

Binary Operations Time (secs.)
ZDD CZDD Ratio ZDD CZDD Ratio

Compact word list 15,701,738 1,826,171 8.60 13.11 9.70 1.35

ASCII word list 20,921,746 2,139,574 9.78 14.40 10.20 1.41

Compact password list 66,489,058 7,499,615 8.87 52.52 30.62 1.72
ASCII password list 75,556,080 7,936,321 9.52 50.77 30.33 1.67

Fig. 8. Impact of chaining on effort required to generate DD representations of word lists.

operational factors that can affect the number of operations, including the program’s
policies for operation caching and garbage collection. Nevertheless, it is some indica-
tion of the amount of activity required to generate the DDs. We can see that chaining
reduces the number of operations by factors of 8.87-13.30. The time required depends
on many attributes of the DD package and the system hardware and software. Here we
see that chaining improves the execution time by factors of 1.35-15.26.

With unchained ZDDs, many of the intermediate functions have large DON’T-CARE
chains. For example, the ZDD representation of the function x, for variable x, requires
n~+2 nodes—one for the variable, n — 1 for the DON’ T-CARE chains before and after the
variable, and two leaf nodes. With chaining, this function reduces to just four nodes: the
upper DON’T-CARE chain is incorporated into the node for the variable, and a second
node encodes the lower chain. Our dictionary benchmarks have over 4,000 variables,
and so some of the intermediate DDs can be more than 1,000 times more compact due
to chaining.

7.2 The 15-Queens Problem

A second set of benchmarks involved representing all possible solutions to the n-queens
problem [12] as a Boolean function. This problem attempts to place n queens onan xn
chessboard in such a way that no two queens can attack each other. For our benchmark
we chose n = 15 to stay within the memory limit of the processor being used.

Once again, there are two choices for encoding the positions of queens on the board.
A one-hot encoding uses a Boolean variable for each square. A binary encoding uses
[log, n] = 4 variables for each row, encoding the position of the queen within the row.

Our most successful approach for encoding the constraints with Boolean operations
worked from the bottom row to the top. At each level, it generated formulas for each
column and diagonal expressing whether it was occupied in the rows at or below this
one, based on the formulas for the level below and the variables for the present row.

We considered two ways of ordering the variables for the different rows. The top-
down ordering listed the variables according to the row numbers 1 through 15. The
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One-hot Node counts Ratios

Ordering Graph(s)  BDD CBDD CZDD BDD:CBDD CBDD:CZDD
Top-down Final 51,889,029 10,529,738 4,796,504 4.93 2.20
Top-down Peak 165,977,497 39,591,936 18,625,659 4.19 2.13
Center-first Final 65,104,658 12,628,086 5,749,613 5.16 2.20
Center-first Peak 175,907,712 42,045,602 19,434,105 4.18 2.16
Binary Node counts Ratios

Ordering Graph(s)  BDD CBDD CzZDD BDD:CBDD CBDD:CZDD
Top-down Final 13,683,076 11,431,403 7,383,739 1.20 1.55
Top-down Peak 43,954,472 38,898,146 26,682,980 1.13 1.46
Center-first Final 17,121,947 14,185,276 9,054,115 1.21 1.57
Center-first Peak 46,618,943 41,362,659 28,195,596 1.13 1.47

Fig. 9. Node counts and ratios of node counts for 15-queens benchmarks

center-first ordering listed variables according to the following row number sequence:

8,9,7,10,6,11,5,12,4,13,3,14,2,15, 1.

Our hope was that ordering the center rows first would reduce the DD representation
size. This proved not to be the case, but the resulting node counts are instructive.

Fig. 9 shows the node counts for the different benchmarks. It shows both the size
of the final function representing all solutions to the 15-queens problem, as well as
the peak size, computed as the maximum across all rows of the combined size of the
functions that are maintained to express the constraints imposed by the row and those
below it. For both the top-down and the center-first benchmarks, this maximum was
reached after completing row 3. Typically the peak size was around three times larger
than the final size.

For a one-hot encoding, we can see that CBDDs achieve factors of 4.18-5.16 com-
paction over BDDs, and they come within a factor of 2.20 of CZDDs. For a binary
encoding, the levels of compaction are much less compelling (1.13-1.20), as is the ad-
vantage of CZDDs over BDDs. It is worth noting that the combination of a one-hot
encoding and chaining gives lower peak and final sizes than BDDs with a binary en-
coding.

Fig. 10 compares the sizes of the ZDD and CZDD representations of the 15-queens
functions. We can see that the final sizes are identical—there are no DON’T-CARE
chains in the functions encoding problem solutions. For the top-down ordering, CZDDs
also offer only a small advantage for the peak requirement. For the center-first ordering,
especially with a one-hot encoding, however, we can see that CZDDs are significantly
(3.81x) more compact. As the construction for row 3 completes, the variables that will
encode the constraints for rows 2 and 5 remain unconstrained, yielding many DON’T-
CARE chains. Once again, this phenomenon is much smaller with a binary encoding.
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One-hot Node counts Ratios

Ordering Graph(s) ZDD CZDD ZDD:CZDD
Top-down Final 4,796,504 4,796,504 1.00
Top-down Peak 18,632,019 18,625,659 1.00
Center-first Final 5,749,613 5,749,613 1.00
Center-first Peak 73,975,637 19,434,105 3.81
Binary Node counts Ratios

Ordering Graph(s) ZDD CZDD ZDD:CZDD
Top-down Final 7,383,739 17,383,739 1.00
Top-down Peak 26,684,315 26,682,980 1.00
Center-first Final 9,054,115 9,054,115 1.00
Center-first Peak 33,739,362 28,195,596 1.20

Fig. 10. Effect of chaining for ZDD representations of 15-queens benchmarks

Node counts Ratios
Circuit BDD ZDD CzZDD ZDD:BDD CZDD:BDD
c432 31,321 48,224 41,637 1.54 1.33
c499 49,061 49,983 48,878 1.02 1.00
c880 23,221 52,436 32,075 2.26 1.38
c1908 17,391 18,292 17,017 1.05 0.98
2670 67,832 261,736 85,900 3.86 1.27
c3540 3,345,341 4,181,847 3,538,982 1.25 1.06
c5315 636,305 898,912 681,440 141 1.07
c6288 48,181,908 48,331,495 48,329,117 1.00 1.00
c7552 4,537 37,689 4,774 8.31 1.05

Fig. 11. Node counts and ratios of node counts for digital circuit benchmarks

7.3 Digital Circuits

BDDs are commonly used in digital circuit design automation, for such tasks as verifi-
cation, test generation, and circuit synthesis. We selected the circuits in the ISCAS ’85
benchmark suite [3]. These were originally developed as benchmarks for test genera-
tion, but they have also been widely used as benchmarks for BDDs [7, 10]. We gener-
ated variable orderings for all but last two benchmarks by traversing the circuit graphs,
using the fanin heuristic of [10]. Circuit c6288 implements a 16 x 16 multiplier. For
this circuit, the ordering of inputs listed in the file provided a feasible variable ordering,
while the one generated by traversing the circuit exceeded the memory limits of our
machine. For ¢7552, neither the ordering in the file, nor that provided by traversing the
graph, generated a feasible order. Instead, we manually generated an ordering based on
our analysis of a reverse-engineered version of the circuit described in [8].

Fig. 11 presents data on the sizes of the DDs to represent all of the circuit outputs.
We do not present any data for CBDDs, since these were all close in size to BDDs.
We can see that the ZDD representations for these circuits are always larger than the
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BDD representations, by factors ranging up to 8.31. Using CZDDs mitigates that effect,
yielding a maximum size ratio of 1.38.

8 Observations

Our experiments, while not comprehensive, demonstrate that chaining can allow BDDs
to make use of large, sparse encodings, one of the main strengths of ZDDs. They also
indicate that CZDDs may be the best choice overall. CZDDs have all of the advantages
of ZDDs, while avoiding the risk of intermediate functions growing excessively large
due to DON’T-CARE chains. They are guaranteed to stay within a factor of 2 x of BDDs.
Even for digital circuit functions, we found this bound to be conservative—all of the
benchmarks stayed within a factor of 1.4x.
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