
Formal Verification of Infinite State Systems Using
Boolean Methods⋆

Randal E. Bryant

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA
Randy.Bryant@cs.cmu.edu

Most successful automated formal verification tools are based on a bit-level model
of computation, where a set of Boolean state variables encodes the system state. Using
powerful inference engines, such as Binary Decision Diagrams (BDDs) and Boolean
satisfiability (SAT) checkers, symbolic model checkers andsimilar tools can analyze
all possible behaviors of very large, finite-state systems.

For many hardware and software systems, we would like to go beyond bit-level
models to handle systems that are truly infinite state, or that are better modeled as
infinite-state systems. Examples include programs manipulating integer data, concur-
rency protocols involving arbitrary numbers of processes,and systems containing buffers
where the sizes are described parametrically.

Historically, much of the effort in verifying such systems involved automated theo-
rem provers, requiring considerable guidance and expertise on the part of the user. We
would like to devise approaches for these more expressive system models that retain
the desirable features of model checking, such as the high degree of automation and the
ability to generate counterexamples.

We have developedUCLID [1], a prototype verifier for infinite-state systems. The
UCLID modeling language extends that of SMV [9], a bit-level modelchecker, to in-
clude state variables that are integers, as well as functions mapping integers to integers
and integers to Booleans. Functional state variables can beused to define array and
memory structures, including arrays of identical processes, FIFO buffers, and content-
addressable memories.

System operation is defined inUCLID in terms of the initial values and next-state
functions of the state variables. Integer operations include linear arithmetic and rela-
tional operations. Functions can be defined using uninterpreted function symbols, as
well as via a restricted form of lambda expression. The underlying logic is reason-
ably expressive, yet it still permits a decision procedure that translates the formula into
propositional logic and then uses a SAT solver [7].

UCLID supports multiple forms of verification, requiring different levels of sophis-
tication in the handling of quantifiers. All styles verify that a safety property of the form
∀XP (s) holds for some set of system statess, whereX denotes a set of integerindex
variables. Index variables can be used to express universal properties for all elements
in an array of identical processes, all entries in a FIFO buffer, etc.

The simplest form ofbounded property checkingallows the user to determine that
property∀XP (s) holds for all states reachable within a fixed number of stepsk from an

⋆ This research was supported by the Semiconductor Research Corporation, Contract RID
1029.001



initial state. Verifying such a property can be done by direct application of the decision
procedure. In practice, the effort required to verify such aproperty grows exponen-
tially in k, limiting the verification to around 10–20 steps. However, it provides a useful
debugging tool. In our experience, most errors are detectedby this approach.

Of course, it is important to verify that properties hold forall reachable states of the
system. Unfortunately, the standard fixed-point methods for bit-level model checking
do not work for infinite-state systems. In many cases, the system will not reach a fixed
point within a bounded number of steps. Even for those that do, checking convergence
is undecidable, and our efforts to implement incomplete methods for this task have had
limited success [2].

To prove that property∀XP (s) holds for all reachable statess, UCLID supportsin-
ductive invariantchecking, where the user provides an invariantQ such thatQ holds
for all initial states,Q impliesP , and any successor for a state satisfyingQ must also
satisfyQ. This latter condition requires proving the validity of a formula containing
existentially quantified index variables. Although this problem is undecidable for our
logic, we have successfully implemented an incomplete approach using quantifier in-
stantiation [8].

A more automated technique is to derive an inductive invariant via predicate ab-
straction[4]. Predicate abstraction operates much like the fixed-point methods of sym-
bolic model checking, but using the concretization and abstraction operations of abstract
interpretation [3] on each step. We have generalized predicate abstraction to handle the
indexed predicates supported byUCLID [6]. Each step requires quantifier elimination
to eliminate the current state variables, much like the relational product step of sym-
bolic model checking. We implement this step by performing SAT enumeration on the
translated Boolean formula.

As a final level of automation, we can automatically discovera set of relevant pred-
icates for predicate abstraction based on the propertyP and the next-state expressions
for the state variables [5].

We have successfully verified a number of systems withUCLID, including out-of-
order microprocessors, distributed cache protocols, and distributed synchronization pro-
tocols.

References

1. R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Modeling and verifying systems using a logic
of counter arithmetic with lambda expressions and uninterpreted functions. In E. Brinksma
and K. G. Larsen, editors,Computer-Aided Verification (CAV ’02), LNCS 2404, pages 78–92,
2002.

2. R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Convergence testing in term-level bounded model
checking. InCorrect Hardware Design and Verification Methods (CHARME ’03), LNCS,
September 2003.

3. P. Cousot and R. Cousot. Abstract interpretation : a unified lattice model for the static analysis
of programs by construction or approximation of fixpoints. In Principles of Programming
Languages (POPL ’77), pages 238–252, 1977.

4. S. Graf and H. Saı̈di. Construction of abstract state graphs with PVS. In O. Grumberg, editor,
Computer-Aided Verification (CAV ’97), LNCS 1254, pages 72–83, 1997.



5. S. K. Lahiri and R. E. Bryant. Indexed predicate discoveryfor unbounded system verification.
In Computer-Aided Verification (CAV ’04), LNCS 3114, pages 135–147, 2004.

6. S. K. Lahiri and R. E. Bryant. Indexed predicate abstraction. ACM Transactions on Compu-
tational Logic, To appear.

7. S. K. Lahiri and S. A. Seshia. The UCLID decision procedure. In Computer-Aided Verification
(CAV ’04), LNCS 3114, pages 475–478, 2004.

8. S. K. Lahiri, S. A. Seshia, and R. E. Bryant. Modeling and verification of out-of-order mi-
croprocessors in UCLID. In M. D. Aagaard and J. W. O’Leary, editors, Formal Methods in
Computer-Aided Design (FMCAD ’02), LNCS 2517, pages 142–159, 2002.

9. K. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1992.


