Formal Verification of Infinite State Systems Using
Boolean Methods

Randal E. Bryant

School of Computer Science, Carnegie Mellon UniversititsBurgh, PA
Randy. Bryant @s. cnu. edu

Most successful automated formal verification tools aretas a bit-level model
of computation, where a set of Boolean state variables esxctiid system state. Using
powerful inference engines, such as Binary Decision Diagré@BDDs) and Boolean
satisfiability (SAT) checkers, symbolic model checkers amdilar tools can analyze
all possible behaviors of very large, finite-state systems.

For many hardware and software systems, we would like to gorzk bit-level
models to handle systems that are truly infinite state, or dh& better modeled as
infinite-state systems. Examples include programs maatiimgl integer data, concur-
rency protocols involving arbitrary numbers of procesaas,systems containing buffers
where the sizes are described parametrically.

Historically, much of the effort in verifying such systenmydlved automated theo-
rem provers, requiring considerable guidance and expeastighe part of the user. We
would like to devise approaches for these more expressistesymodels that retain
the desirable features of model checking, such as the higied®f automation and the
ability to generate counterexamples.

We have developedcLID [1], a prototype verifier for infinite-state systems. The
ucLID modeling language extends that of SMV [9], a bit-level modetcker, to in-
clude state variables that are integers, as well as furetimpping integers to integers
and integers to Booleans. Functional state variables camséé to define array and
memory structures, including arrays of identical procesB#-O buffers, and content-
addressable memories.

System operation is defined wcLID in terms of the initial values and next-state
functions of the state variables. Integer operations thellinear arithmetic and rela-
tional operations. Functions can be defined using uningéedrfunction symbols, as
well as via a restricted form of lambda expression. The ugihey logic is reason-
ably expressive, yet it still permits a decision procedbeg translates the formula into
propositional logic and then uses a SAT solver [7].

UcLiD supports multiple forms of verification, requiring differtdevels of sophis-
tication in the handling of quantifiers. All styles verifyata safety property of the form
VX P(s) holds for some set of system statesvhereX denotes a set of integérdex
variables Index variables can be used to express universal propéotiaall elements
in an array of identical processes, all entries in a FIFOdyyétc.

The simplest form obounded property checkiralows the user to determine that
propertyv X’ P(s) holds for all states reachable within a fixed number of skefpsm an

* This research was supported by the Semiconductor Reseangior@tion, Contract RID
1029.001



initial state. Verifying such a property can be done by diegiplication of the decision
procedure. In practice, the effort required to verify sucphraperty grows exponen-
tially in &, limiting the verification to around 10-20 steps. Howeugprovides a useful
debugging tool. In our experience, most errors are detdstelis approach.

Of course, it is important to verify that properties hold &irreachable states of the
system. Unfortunately, the standard fixed-point methodbielevel model checking
do not work for infinite-state systems. In many cases, theesysvill not reach a fixed
point within a bounded number of steps. Even for those thatkiecking convergence
is undecidable, and our efforts to implement incompletehmas for this task have had
limited success [2].

To prove that property X’ P(s) holds for all reachable statesucLID supportsn-
ductive invariantchecking, where the user provides an invari@msuch that}) holds
for all initial states,Q implies P, and any successor for a state satisfyihghust also
satisfy ). This latter condition requires proving the validity of arfitula containing
existentially quantified index variables. Although thi®blem is undecidable for our
logic, we have successfully implemented an incomplete egugr using quantifier in-
stantiation [8].

A more automated technique is to derive an inductive invénga predicate ab-
straction[4]. Predicate abstraction operates much like the fixedtpoethods of sym-
bolic model checking, but using the concretization andralbibn operations of abstract
interpretation [3] on each step. We have generalized pagel@bstraction to handle the
indexed predicates supported bgLID [6]. Each step requires quantifier elimination
to eliminate the current state variables, much like thetieral product step of sym-
bolic model checking. We implement this step by performidd ®numeration on the
translated Boolean formula.

As a final level of automation, we can automatically discaveet of relevant pred-
icates for predicate abstraction based on the progednd the next-state expressions
for the state variables [5].

We have successfully verified a number of systems withiD, including out-of-
order microprocessors, distributed cache protocols, etdited synchronization pro-
tocols.

References

1. R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Modeling andfyag systems using a logic
of counter arithmetic with lambda expressions and uniméegl functions. In E. Brinksma
and K. G. Larsen, editor§omputer-Aided Verification (CAV '02INCS 2404, pages 78-92,
2002.

2. R.E.Bryant, S. K. Lahiri,and S. A. Seshia. Convergenstrtg in term-level bounded model
checking. InCorrect Hardware Design and Verification Methods (CHARMB),(LNCS,
September 2003.

3. P.Cousot and R. Cousot. Abstract interpretation : a whiittice model for the static analysis
of programs by construction or approximation of fixpoints Principles of Programming
Languages (POPL '77pages 238—-252, 1977.

4. S. Graf and H. Saidi. Construction of abstract statetgrapth PVS. In O. Grumberg, editor,
Computer-Aided Verification (CAV '9/MNCS 1254, pages 72-83, 1997.



. S.K. Lahiriand R. E. Bryant. Indexed predicate discoferyunbounded system verification.
In Computer-Aided Verification (CAV '040NCS 3114, pages 135-147, 2004.

. S. K. Lahiri and R. E. Bryant. Indexed predicate abstoactACM Transactions on Compu-
tational Logig To appear.

. S.K.Lahiriand S. A. Seshia. The UCLID decision procedim€omputer-Aided Verification
(CAV '04), LNCS 3114, pages 475-478, 2004.

. S. K. Lahiri, S. A. Seshia, and R. E. Bryant. Modeling andfieation of out-of-order mi-
croprocessors in UCLID. In M. D. Aagaard and J. W. O’Leanyit@d, Formal Methods in
Computer-Aided Design (FMCAD '02ANCS 2517, pages 142—-159, 2002.

. K. McMillan. Symbolic Model Checkindluwer Academic Publishers, 1992.



