Verifying a Static RAM Design
by Logic Simulation:

Randal E. Bryant

Computer Science Department
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

A logic simulator can prove the correctness of a digital circuit if it can be
shown that only circuits implementing the system specification will produce
a particular response to a sequence of simulation commands. Three-valued
modeling, where the third state X indicates a signal with unknown digital
value, can greatly reduce the number of patterns that need to be simulated for
complete verification.

As an extreme case, an N -bit random-access memory can be verified by sim-
ulating just O(N log N) patterns. The technique has been applied to a CMOS
static RAM design using the COSMOS switch-level simulator. This approach
to verification is fast, requires minimal attention on the part of the user to
the circuit details, and can utilize more sophisticated circuit models than
other approaches to formal verification.

1. Introduction

Although logic simulators are widely used to test circuit designs in-
formally, they have not been recognized as tools for formally proving
the correctness of circuits. Conventional wisdom holds that verifying
a circuit by simulation is at best impractical and at worst impossi-
ble. The large number of possible input and initial state combinations
would seem to require an overwhelming amount of simulation to test
exhaustively. Furthermore, as Moore has shown [9], a sequential system
cannot be fully characterized by observing its response to a sequence
of stimuli. This would seem to indicate that, unless supplemented by
detailed knowledge of the circuit structure, no amount of simulation
can prove the correctness of a sequential system.

Most researchers have turned to automated theorem provers [1, 6] to

1To appear in the proceedings of the Fifth MIT Conference on Advanced Re-
search in VLSI, March 1988.

demonstrate that a circuit meets the specification of its desired be-
havior. With the current state of the art, this process is only par-
tially automated. The user must provide complete specifications of
every component of the circuit and guide the program on proof strate-
gies. Furthermore, these programs cannot operate with the detailed,
transistor-level models required to verify complex MOS circuits. As
an exception to this generalization, Weise [10] has developed a verifier
that utilizes a very detailed electrical model. When composing circuits
hierarchically, however, his program will at times resort to an exhaus-
tive case analysis. This yields unsatisfactory performance for certain
classes of circuits.

Other researchers have applied model checking programs [2] to con-
struct a data structure representing the finite state behavior of the
circuit, allowing the user to then prove assertions about the circuit
behavior. This approach works especially well for small, asynchronous
controller circuits but is impractical for circuits, such as memories, hav-
ing large numbers of possible states.

The conventional wisdom about logic simulation overlooks the capa-
bilities provided by three-valued logic modeling, in which the state set
{0,1} is augmented by a third value X indicating an unknown digital
value. Most modern logic simulators provide this form of modeling, if
for nothing more than to provide an initial value for the state variables
at the start of simulation. Assuming the simulator obeys a relatively
mild monotonicity property, a three-valued simulator can verify the
circuit behavior for many possible input and initial state combinations
simultaneously. That is, if the simulation of a pattern containing X’s
yields 0 or 1 on some node, the same result would occur if these X’s
were replaced by any combination of 0’s and 1’s. This technique is
effective for cases where the behavior of the circuit for some opera-
tion is not supposed to depend on the values of some of the inputs or
state variables. Three-valued modeling can also overcome the machine
identification problem of Moore, assuming the user can command the
simulator to set all state variables to X.

For performance reasons, most simulators err on the side of pessimism
in modeling the effects of X values. That is, they will produce an
X at some point even though it can be shown that the circuit would
produce a 0 or 1 in all cases covered by the X values on the input and
initial state variables. This can cause a verifier based on three-valued
simulation to give a false negative response, labeling a correct design as
defective. Fortunately, these erroneous responses always have the form

of producing an X at some point where a 0 or 1 was expected.

On the other hand, a verifier based on three-valued simulation can never
produce a false positive response, labeling a defective design as correct.
That is, if a circuit passes our verification tests, then no other simulation
sequence will uncover additional errors. Although this claim is only
demonstrated informally in this paper, it is backed up by a more formal
theory and proof [5]. Of course, this style of verification proves the
correctness of the actual circuit only if the simulator faithfully models
the circuit behavior. Any approach to formal verification must assume
that its abstract model of circuit behavior is valid.

Random access memories are particularly amenable to verification by
logic simulation. Although an N-bit memory has 2V possible states, an
operation on one memory location should not affect or be affected by
the value at any other memory location. Thus many aspects of circuit
operation can be verified by simulating the circuit with all, or all but
one, bits set to X, covering a large number of circuit conditions with a
single simulation operation.

This paper develops these ideas in more detail, using as a case study
the verification of a CMOS static RAM circuit design by the switch-
level simulator COSMOS [4]. The circuit design was constructed solely
as a benchmark for verification. However, it contains the same circuit

structures found in actual CMOS static RAM’s [7].

This circuit provides a convincing demonstration of the advantages of
verification by simulation. No other automatic verifiers are currently
capable of verifying this design for nontrivial memory sizes. Most ver-
ifiers based on theorem provers do not provide a sufficiently detailed
model of transistor operation to capture the behavior of the circuit.
Weise’s verifier would attempt an exhaustive case analysis of the cir-
cuitry forming the entire memory array due to the connections formed
by the pass transistors in the column selector. Verifiers based on model
checking would attempt to construct a finite automaton containing all
2V possible memory states.

A high-level specification of the desired circuit behavior can be ex-
pressed quite easily. A straightforward translation of the specifica-
tion into a set of simulation patterns, however, yields false negative
responses. Overcoming these problems requires taking into account
the details of the row and column addressing structure. Although this
places additional burden on the user, it does not compromise the rigor
of the verification in any way, and the amount of detail is reasonably
small.

The resulting verification requires simulating only O(N log N) patterns.
Even a minimal test of a memory design requires simulating Q(N) pat-
terns to make sure that each location can be written and read properly.
The added log N factor seems a modest price to pay for a rigorous ver-
ification. Furthermore, we have been able to tune the performance of
our simulator to match the characteristics of the simulation patterns
arising from formal verification. This tuning makes formal verification
require no more simulation time than a minimal design test.

2. Verification Methodology

Specifications are expressed in a notation similar to Floyd-Hoare asser-
tions [8]. Each assertion is an equation of the form

Initial { Action }Result

where Initial specifies a precondition on the initial circuit state, Action
specifies a circuit operation, and Result specifies a postcondition on the
circuit output and state. All conditions are expressed as propositional
formulas of the form Ly A Ly A --+ A Ly, where each L; is a literal of
the form var = 1 or var = 0, for some circuit input, output, or state
variable var. For this paper, an Action will specify a condition on the
inputs for a single cycle of circuit operation. An assertion states that
for any initial circuit state satisfying Initial, and any circuit operation
satisfying Action, the resulting circuit state and output should satisfy
Result.

With a three-valued simulator, a circuit can be shown to satisfy an
assertion by simulating a single pattern. Starting with every input and
state variable set to X, the input and state variables appearing in the
formulas Initial and Action are set to their specified values. Then the
circuit is simulated for one cycle, and the values on the output and state
variables appearing in Result are compared to their specified values.
The monotonicity requirement imposed on the simulator guarantees
that a circuit satisfies the assertion if it passes this test.

3. System Specification

The circuit to be verified is an N x 1 bit static RAM. Memories with
larger word sizes can be verified similarly, by verifying each bit of each
word individually while setting all other bits to X. Figure 1 illustrates

4

A, — Expanded View of Cell ¢

Ag —
write —

Din —

Dout +—

Figure 1: Static RAM Circuit

the general plan of the circuit. Assuming N = 2", the circuit has ad-
dress inputs A,,_q,..., A, a data input Din, and a control input write
that is set to 1 for a write and to 0 for a read operation. The circuit
has a single output Dout. Each memory cell « contains a feedback path
with a pair of inverters connecting nodes B; and B;, along with a pair of
access transistors [7]. As a shorthand, the formula Store(i, v) expresses
the fact that value v € {0, 1} is stored in memory cell i:

Store(i,v) = B;=v A B;=-w.

Unlike many other sequential systems, the desired behavior of a memory
circuit can be specified quite easily. First, a write operation should
cause the addressed memory cell to be updated. For all v € {0,1} and
all 0 <1 < N:

True { Din=v NA =1 ANwrite =1 } Store(i,v), (1)

where the notation A = 1 is a shorthand indicating that for 0 < k <
n, each input line Ay equals 1, the corresponding bit in the binary
representation of 7. These assertions can be verified by simulating 2NV
patterns, two for each memory location. Starting with all state variables
set to X, each test writes a value to a location, and then checks that the
value has been stored correctly. These patterns are called the “write”
tests.

Second, a read operation should cause contents of the addressed mem-
ory bit to appear on Dout without altering the cell. For all v € {0, 1}
and all 0 <1 < N:

Store(t,v) { A=1 ANwrite =0 } Dout = v A Store(i,v). (2)

These assertions can be verified by simulating a total of 2V patterns,
two for each memory location. Each test involves initializing one mem-
ory cell to a value, all other locations to X, and then reading from
the cell’s address. The test passes if the stored bit appears on Dout,
and the cell contents remain unchanged. These simulation patterns are
called the “read” tests.

Finally, any memory operation on one cell should not affect the value
stored in any other memory cell. For allv € {0,1}, and all0 <i,57 < N,
such that ¢ # 7:

Store(t,v) { A=]} Store(i,v). (3)

This set of assertions represents 2N? combinations of address and data
values. However, we can obtain the same effect with just 2N log N
combinations. For an address ¢ with bit representation (i,_1,...,10),
all addresses j such that j # ¢ are covered by the n patterns of the
form (X, ..., X, -k, X,..., X) for 0 < k < n. Thus, the assertions can
be replaced by the following assertions for v € {0,1}, 0 < < N, and
0<k<n:

Store(i,v) { Ap = 1y, } Store(i,v). (4)

These assertions can be verified by patterns in which a memory cell
is initialized to some value, one of the address inputs is set to the
complement of the corresponding bit in the cell’s address, and all other
input and state variables are set to X. Following the simulation of one
cycle, the cell value is compared to its original value. These simulation
patterns are termed the “address” tests.

4. Circuit Dependent Refinements

Equations 1, 2, and 4 translate directly into a total of 4N + 2N log N
simulation patterns. However, on our example circuit, the simulator
gives false negative responses for all of the read and address tests. By
adding one new assertion and refining the existing ones, we can devise
an equally rigorous test that the circuit passes.

11 1111 1101 1110 1100

Az — 10 1011 1001 1010 1000
Ay — 01 0111 0101 0110 0100
00 0011 0001 0010 0000

write —

— Dout
Din —

Figure 2: Detailed Addressing Structure of a 16-Bit RAM. Each cell is

labeled with the binary representation of its address.

Refining the specification into a set of simulation patterns requires a
more detailed consideration of the control sequencing and of the row
and column addressing structure. Even with these details, we can ig-
nore many aspects of the design, letting the simulator capture their
behavior by its simulation model. Assume that the circuit is organized
as a VN x v/N array of memory cells, where address bits Arow =
Ap_1,..., A, select the row, and address bits Acol = A, /5_1,..., Ao
select the column.

As an example, Figure 2 shows the addressing structure for a 16-bit
RAM. Address inputs Az and A, are decoded to generate the signals
on the 4 word lines. Address inputs A; and Ag control a tree of bidirec-
tional multiplexors to create a path between the selected column and
the data input or output.

4.1. Control Line Initialization

Correct operation of this circuit relies on the fact that when the circuit
is quiescent, the access transistors to all memory cells are shut off. That
is, at the beginning of every memory cycle, Word, = 0 for 0 < r < v/N.
Without this property, two cells in a single column could interact in
undesirable ways. This fact is formulated as a system invariant

Inu = Y(0<r<VN)|[Word, =0).
The invariance of this condition is expressed by a single assertion:
True { True } Inv (5)

That is, following any memory operation, the word lines will return to
a quiescent condition. Testing this invariant involves simply simulating
a single cycle of memory operation with all state and input variables
initialized to X and then checking that all word lines are set to 0 at
the end.

Once the assertion has been established, the invariant Inv can be as-
sumed as a precondition in all other assertions, giving a revised asser-
tion for the read tests for all v € {0,1}, and all 0 <7 < NV:

Inv A Store(i,v) { A=1 ANwrite =10 } Dout = v A Store(i,v). (6)

That is, we can begin all simulation read cycles with the word lines
initialized to 0. With this refinement, the circuit passes the read tests.

Most circuits require some form of system invariant expressing condi-
tions about the control logic that can be assumed true at the beginning

8

A). A=0XXX B). A= X1XX Key:

0— X— » Cdl under

ol T+ od [~ test

X— X— Address checked
N 0 by test

Figure 3: Row Address Tests for Memory Location 9. Signals on the
left indicate the values on the word lines. The word line controlling cell
9 remains at 0.

of every input cycle. Devising the invariant requires a combination
of analysis and experimentation. An insufficient system invariant will
become immediately apparent during subsequent simulations, because
output or state variables that should have Boolean values will equal X.

4.2. Row and Column Decoding

Even with the invariant our circuit still passes only half of the the
address tests, namely those corresponding to the following equations
forve {0,1},0<i< N,and n/2 <k < n:

Inv A Store(i,v) { Ap = -1y, } Store(i,v). (7)

For these tests, some bit & of the row address is set to i, a controlling
value for the NOR gate of word line decoder for memory cell . The word
line stays at 0 and the bit stored in cell 7 remains unchanged. These
tests are called the “row address” tests. They prove that no memory
cell is affected by an operation on a cell in a different row.

As an example, Figure 3 illustrates the addressing patterns for the row
address tests for memory location 9 (1001 binary) in the 16-bit RAM
of Figure 2. The two address settings: 0.X XX and X1XX cause the
word lines to have the values shown on the left. In both cases, cell 9
remains isolated from all others. The dark shaded areas indicate the
cell addresses covered by these two tests. The union of these areas
includes all addresses in other rows of the memory.

For the cases that fail, the NOR gates of the word line decoders have
all X’s on their inputs, causing sneak paths to form between the cell
under test and other cells in the column. Figure 4A shows an example
of such a pattern for memory location 9 in the 16-bit RAM of Figure

9

A) A= XX1X B). A=101X Key:

X— 0— + Cdl under
= = test

X— 0— Connected to
N 0 test cell

| | | | Address checked
by test
T

Figure 4: Ezample of Initial (A) and Refined (B) Column Address Test

for Memory Location 9. The tree on the bottom indicates the connec-
tions formed by the column multiplexors, with dotted lines represent-
ing pass transistors with gate value X. In A), the word line value of X
causes cell 9 to be corrupted. This is avoided in B).

2. Although no connection is formed between this cell and the data
input or output, (indicated by the tree structure at the bottom), the
stored bit is corrupted by the other cells in the column (indicated by
the lightly shaded area.)

Fortunately, we can overcome this problem by removing some of the
redundancy from the tests. Once a circuit passes the row address tests,
we need only show that no memory cell is affected by an operation on
a cell in a different column of the same row. This can be expressed by
the following equations for v € {0,1}, 0 < 4,5 < v/N,and 0 < k < n/2:

Inv A Store(j +iV'N, v) { Arow =1 AN Ay = =, } Store(y +iVN, v).

These assertions define a series of tests in which the memory cell at
row 72, column j is initialized to a value v, the row address is set to 1,
and some bit of the column address is set to the complement of the
corresponding bit in j. Figure 4B shows an example of such a pattern
for memory location 9. The word lines are set so that only cells in a
single row are accessed. Furthermore, the column addresses are set so
that the column containing cell 9 remains isolated. This test covers the
two cell addresses indicated by the darkly shaded area.

Even with this refinement, our circuit encounters a new problem due
to the tree structure of the column selector. Under normal operation of
the circuit, all cells in the selected row are read, and the pass transistors
of the column multiplexors form a path between the selected column

10

A). A=10X0 B). A =1000 Key:

0— 0— + Cdl under
T T test

0— 0— Connected to
0 0 test cell

L] | | Address checked
| / by test

Figure 5: Ezample of Refined (A) and More Refined (B) Column Ad-
dress Test for Memory Location 9. In A), a sneak path forms through
the column multiplexor between cell 9 and an adjacent cell. This is

avoided in B).

and the data input and output. When some of the column address
lines equal X, however, the simulator finds false sneak paths throught
the column multiplexor, causing a connection between the cell under
test and one in another column. An example of this problem is shown
in Figure 5A. Even though only a single row of cells is accessed, a
sneak path forms between the column containing cell 9 and an adjacent
column (indicated by the lightly shaded area).

Again, this problem can be overcome by removing some of the redun-
dancy from the tests. For a column address 7 having bit representation
(Jnj2=1,- -, J0), all column addresses not equal to j are covered by pat-
terns of the form (—7,/2-1,X,..., X), (Jnj2—1, "Jnj2-2, X, ..., X), and
so on up to (Juj2-1,---,J1, Jo). Each of these patterns has the prop-
erty that the simulator will never find a path of potentially conducting
transistors (i.e., with gate value 1 or X') between the bit lines of column
7, and those of any other column. These tests can be expressed by a
revised set of equations for v € {0,1},0 <1,5 < /N, and 0 < k < n/2:

Inv A Store(j + i\/ﬁ, v) (8)
{ Arow =1 N Ap = —Jp N Y(k <t <n/2)[A: = j] }
Store(y + VN, v).
These tests are called the “column address” tests.

The pattern of Figure 4B shows one of the column address tests for
location 9 in the 16-bit RAM of Figure 2. The other is shown in Figure

11

5B. Observe that in both cases, the column containing cell 9 remains
isolated, avoiding any corruption of the value stored there. The darkly
shaded areas indicate the cell addresses tested by these patterns. The
union of these areas includes all other cells in the row containing cell
9. These, combined with the two row address tests of Figure 3 cover
all possible addresses other than location 9.

Equations 1, 5, 6, 7, and 8 together define a total of 1 +4N +2N log N
simulation patterns that our circuit passes and that prove its correct-
ness.

5. Simulator Performance

The simulation operations called for by our memory verification tests
differ markedly from those used in more traditional simulation method-
ologies. Each involves resetting the simulator to a condition where all
input and state variables equal X, setting a small number of inputs
and state variables to Boolean values, and then simulating a single
cycle. In contrast, most simulators are designed to simulate long se-
quences of Boolean patterns. The differences between these two styles
of simulator usage place differing demands on simulator functionality
and performance. In developing the switch-level simulator COSMOS,
we attempted to satisfy the needs of both forms of simulation.

Most simulators employ very pessimistic or inefficient algorithms for
computing the behavior of a circuit in the presence of X’s. With con-
ventional usage, there is no need to do better, because most X’s are
eliminated at the start of simulation and never arise again. For our ver-
ification patterns, however, X’s are the rule rather than the exception,
and hence the algorithms must be as accurate and efficient as possible.
The algorithms used by COSMOS satisfy these goals reasonably well,
although, as the static RAM example shows, developing a set of verifi-
cation patterns requires some understanding of both the circuit design
and the simulation algorithm.

In the design of the switch-level simulator COSMOS, we were also able
to optimize the efficiency when simulating many short sequences. Most
of these optimizations involved simply tuning the performance of code
that is normally considered non-critical, such as the code to reset all
state variables of a circuit to X. More significantly, however, we were
able to exploit the bit-level parallelism available with computer logic
operations to simulate up to 32 sequences in parallel on a machine with
a 32 bit word size. The COSMOS preprocessor transforms a transistor

12

N | Transistors || Marching Serial Parallel
Test Verification | Verification
4 113 1.0s. 2.0s. 0.6s.
16 235 8.4s. 22.6s. 2.0s.
64 611 117s. 385s. 19.3s.
256 1931 30.8m. 122m. 4.4m.
1024 6875 10.4h. 47.9h. 1.5h.

Table 1: COSMOS CPU Times on DEC MicroVax-I11

network into a set of evaluation procedures that utilize only memory
references and logical operations. Hence, bit-level parallelism adds lit-
tle extra cost. Experiments indicate that it increases simulation per-
formance by a factor of 10-30. Although this would appear to be an
obvious source of speed-up, most simulators make no use of bit-level
parallelism. Many simulation algorithms cannot exploit it. Further-
more, with conventional simulator usage, the simulation patterns are
not formulated as a set of independent tests that can be run in parallel.

6. Experimental Results

The verification methodology has been applied to memory sizes ranging
from 4 to 1024 bits. The performance of the program is shown in
Table 6. The last 3 columns of this table show simulation CPU times,
measured on a Digital Equipment Corporation MicroVax-II. The first
of these columns shows the time to simulate a marching test, giving
a minimal test that all locations can be written and read, but not
proving the circuit’s correctness. The second shows the time to simulate
the verification patterns without using bit-level parallelism. The final
column shows the time to simulate the verification patterns using 32
way bit-level parallelism.

As can be seen, the parallel verification is faster than a simple marching
test! Although a marching test requires simulating only O(N) cycles,
the extra log IV factor of the verification patterns is more than compen-
sated for by the speed-up provided by bit-level parallelism. Observe,
however, that the overall simulation time in all 3 cases grows roughly
quadratically with the memory size. As the memory size grows, both
the number of patterns and the time to simulate a single pattern grow
at least linearly. This complexity becomes noticeable for larger memory
sizes. We estimate that the verification of a 4096-bit memory will re-

13

quire between 1 and 2 days of CPU time even in parallel mode. Clearly,
this is approaching the limit of practicality.

7. Observations and Conclusions

This paper has shown that a typical CMOS static RAM design can
be formally verified easily and efficiently by three-valued, switch-level
logic simulation. Although these patterns were developed specifically
for this design, similar techniques can develop patterns for almost all
RAM designs. Other classes of memory designs can also be verified
by simulating a linear, or nearly-linear number of patterns. Included
among these are shift registers, FIFO’s, and stacks. On the other hand,
content-addressable memories do not seem to fit into this class, since
it is not as easy to identify where a particular datum will be stored.

Other classes of circuits cannot be verified by simulating a polynomial
number of patterns. Many functions computed by logic circuits, such
as addition and parity, depend on a large number of input or state
variables. For these circuits, we propose symbolic simulation [3] as a
feasible and straightforward approach to design verification. A sym-
bolic simulator resembles a conventional logic simulator, except that
the user may introduce symbolic Boolean variables to represent input
and initial state values, and the simulator computes the behavior of
the circuit as a function of these Boolean variables. Symbolic simu-
lation can utilize a methodology similar to that shown in this paper,
by allowing the formulas in an assertion to be predicates containing
universally-quantified Boolean variables. For example, we could view
Equations 1, 2, and 3 as each representing a single assertion, and ver-
ify the RAM by simulating just 3 symbolic patterns. Although the
additional overhead required by symbolic simulation would probably
cause it to require longer for the RAM verification, there would be less
need for circuit-dependent refinements. In addition, symbolic simula-
tion would yield polynomial-time performance for a much wider range
of circuits.

Although we have set a new standard for the size and class of circuit
that can be verified formally, it is clear that some other technique is
required to verify very large memories. Ideally, a verifier should be
able to prove the correctness of an entire family of circuits given a
parameterized description of the family [6]. Families of RAM circuits
have very concise descriptions and hence seem ideal for this style of
verification. However, developing such a verifier that can handle a

14

sufficiently detailed MOS circuit model is no easy task.

Acknowledgements

This research was supported by the Defense Advanced Research Projects
Agency, ARPA Order Number 4976.

References

References

[1]

2]

Barrow, H. G. VERIFY: a program for proving correctness of dig-
ital hardware designs. Artificial Intelligence 24 (1984), 437-491.

Browne, M. C., Clarke, E. M., Dill, D. L., and Mishra, B. Auto-
matic verification of sequential circuits using temporal logic. [EEE

Transactions on Computers C-35, 12 (Dec. 1986), 1035-1044.

Bryant, R. E. Symbolic verification of MOS circuits. 1985 Chapel
Hill Conference on VLSI, Fuchs, H., Ed. Computer Science Press,
Rockville, MD, 1985, 419-438.

Bryant, R. E., Beatty, D., Brace, K., Cho, K., and Sheffler, T.
COSMOS: a compiled simulator for MOS circuits. 24th Design
Automation Conference, 1987, 9-16.

Bryant, R. E. A methodology for hardware verification based on
logic simulation. Technical Report CMU-CS-87-128, Carnegie Mel-
lon University, June, 1987.

German, S. M., and Wang, Y. Formal verification of parameterized
hardware designs. Int. Conf. on Computer Design, IEEE, 1985,
549-552.

Glasser, L. A.,; and Dobberpuhl, D. W. The Design and Analysis
of VLSI Circuits, Addison-Wesley, Reading, MA, 1985.

Hoare, C. A. R. An axiomatic basis for computer programming.

Comm. ACM 12 (1969), 576-530.

Moore, E. F. Gedanken-experiments on sequential machines. Au-
tomata Studies, Shannon C. E., and McCarthy, J., Eds. Princeton
University Press, Princeton, NJ, 1956, 129-153.

15

[10] Weise, D. Functional verification of MOS circuits, 24th Design
Automation Conference, ACM and IEEE, 1987, 265-270.

16

