
ATLAS: Automatic Term-Level Abstraction
of RTL Designs

Bryan A. Brady
UC Berkeley

bbrady@eecs.berkeley.edu

Randal E. Bryant
CMU

randy.bryant@cs.cmu.edu

Sanjit A. Seshia
UC Berkeley

sseshia@eecs.berkeley.edu

John W. O’Leary
Intel

john.w.oleary@intel.com

Abstract—Abstraction plays a central role in formal verification.
Term-level abstraction is a technique for abstracting word-level
designs in a formal logic, wherein data is modeled with abstract
terms, functional blocks with uninterpreted functions, and memories
with a suitable theory of memories. A major challenge for any
abstraction technique is to determine what components can be
safely abstracted. We present an automatic technique for term-level
abstraction of hardware designs, in the context of equivalence and
refinement checking problems. Our approach is hybrid, involving
a combination of random simulation and static analysis. We use
random simulation to identify functional blocks that are suitable
for abstraction with uninterpreted functions. Static analysis is then
used to compute conditions under which such function abstraction is
performed. The generated term-level abstractions are verified using
techniques based on Boolean satisfiability (SAT) and satisfiability
modulo theories (SMT). We demonstrate our approach for verifying
processor designs, interface logic, and low-power designs. We present
experimental evidence that our approach is efficient and that the
resulting term-level models are easier to verify even when the
abstracted designs generate larger SAT problems.

I. INTRODUCTION

Register-transfer-level (RTL) descriptions are often the most
authoritative models of a system, so it is essential for formal
verification tools to operate on RTL. In practice, however, RTL
is written at a very low level of abstraction: data are represented
as bits and bit vectors, and operations on the data are accom-
plished by bit-level manipulation. In verification tasks that involve
proving strongly data-dependent properties such as equivalence
or refinement checking, bit-level RTL quickly causes state-space
explosion, and additional abstraction is required.

Term-level modeling seeks to make formal verification of data-
intensive properties tractable by abstracting away details of data
representations and operations, viewing data as symbolic terms.
Term-level abstraction has been found to be especially useful
in microprocessor design verification, using techniques such as
term-level bounded model checking, correspondence checking,
refinement verification, and predicate abstraction [12], [15], [17],
[18]. The precise functionality of operations of units such as
instruction decoders and the ALU are abstracted away using
uninterpreted functions, and decidable fragments of first-order
logic are employed in modeling memories, queues, counters, and
other common constructs. Efficient satisfiability modulo theories
(SMT) solvers for fragments of first-order logic [5] are used as
the computational engines for term-level verifiers.

A major obstacle for term-level verification is the need to
generate term-level models from word-level RTL. On the one
hand, constructing these models by hand is a tedious process
prone to errors, hence automation is essential. On the other
hand, automatically abstracting all bit-vector signals to terms and
all operators to uninterpreted functions results in too coarse an
abstraction, in which properties of bit-wise and finite-precision

arithmetic operators are obscured, leading to a huge number of
spurious counterexamples. While such spurious counterexamples
can in many cases be eliminated by selectively abstracting only
parts of the design to the term level, manual abstraction requires
detailed knowledge of the RTL design and the property to be
verified it is difficult for a human to decide what functional blocks
or operators to abstract in order to obtain efficiency gains and also
avoid spurious counterexamples.

In this paper, we present ATLAS, an approach for automatically
generating a term-level verification model from a word-level
description such as Verilog RTL. In particular, we focus on
function abstraction: ATLAS conditionally abstracts functional
blocks in the original design with uninterpreted functions. To
perform such abstraction, ATLAS employs a combination of
random simulation and static analysis, exploiting the module
structure specified by the designer. Random simulation is used to
identify functional blocks corresponding to module instantiations
that are suitable for abstraction with uninterpreted functions. It is
always sound to replace a functional block with an uninterpreted
function, in the sense that the correctness of the resulting design
implies that of the original. However, because such abstraction
loses information, it is necessary to rule out spurious counterex-
amples. For this purpose, ATLAS aims to use static analysis
to compute conditions under which such function abstraction
can be performed without loss of precision; i.e., if the resulting
term-level design is incorrect, then so is the original word-level
design. However, as we show in this paper, even checking that a
candidate function abstraction is precise is co-NP-hard. Therefore,
we provide heuristics to statically compute conditions which in
many cases are sufficiently precise that spurious counterexamples
are avoided. The generated term-level abstractions are verified
using techniques based on Boolean satisfiability (SAT) and sat-
isfiability modulo theories (SMT). We demonstrate our approach
for verifying processor designs, interface logic, and low-power
designs. We present experimental evidence that our approach
is efficient and that the resulting term-level models are easier
to verify even when the abstracted designs generate larger SAT
problems.

The rest of this paper is organized as follows. We present
background material on term-level abstraction and discuss related
work in Section II. Formal notation is introduced in Section III,
along with a running example. The ATLAS approach is described
in Section IV. Experimental results are presented in Section V and
we conclude in Section VI.

II. BACKGROUND AND RELATED WORK

Background material on term-level abstraction is presented in
Sec. II-A and related work in Sec. II-B.

A. Term-Level Abstraction

Informally, a (word-level) design is said to be abstracted to
the term-level if one or more of the following three abstraction
techniques is employed:

1. Function Abstraction: In function abstraction, bit-vector op-
erators and modules computing bit-vector values are treated
as “black-box,” uninterpreted functions constrained only by
functional consistency: that they must evaluate to the same
values on the same arguments. It is possible for the inputs and
outputs of uninterpreted functions to be bit vectors or to be
abstract terms (say, interpreted over Z). Function abstraction is
the focus of this paper, and we limit ourselves to uninterpreted
functions that map bit vectors to bit vectors.

2. Data Abstraction: Bit-vector expressions are modeled as ab-
stract terms that are interpreted over a suitable domain (typ-
ically a subset of Z). Data abstraction is effective when it
is possible to reason over the domain of abstract terms far
more efficiently than it is to do so over the original bit-vector
domain, through use of small-domain or bit-width reduction
techniques. Data abstraction is not the focus of this paper.

3. Memory Abstraction: In memory abstraction, memories and
data structures are modeled in a suitable theory of arrays
or memories, such as by the use of special read and write
functions [12] or lambda expressions [10]. We do not address
automatic memory abstraction in this paper.

We illustrate the concept of function abstraction using a toy ALU
design. Consider the simplified ALU shown in Figure 1(a). Here
a 20-bit instruction is split into a 4-bit opcode and a 16-bit data
field. If the opcode indicates that the instruction is a jump, the data
field indicates a target address for the jump and is simply passed
through the ALU unchanged. Otherwise, the ALU computes the
square of its input 16-bit data field and generates as output the
resulting 16-bit result.

19 15 0

=

JMP

1 0

4 16

16-bit

multiplier

16

16

ALU

19 15 0

=

JMP

1 0

4 16

SQ

20

instr

instr
instr

(a) Original word-level ALU

out

out

out

(b) Fully

 uninterpreted ALU

(c) Partially-interpreted

ALU

16

16

16

Fig. 1. Three versions of an ALU design. Boolean signals are shown as dashed
lines and bit-vector signals as solid black lines.

Using very coarse-grained term-level abstraction, one could ab-
stract the entire ALU module with a single uninterpreted function
(UF), as shown in Figure 1(b). However, we lose the precise
mapping from instr to out.

Such a coarse abstraction is quite easy to perform automatically.
However, this abstraction loses information about the behavior of
the ALU on jump instructions and can easily result in spurious
counterexamples. In Section III-B, we will describe a larger

equivalence checking problem within which such an abstraction
is too coarse to be useful.

Suppose that reasoning about the correctness of the larger circuit
containing this ALU design only requires one to precisely model
the difference in how the jump and squaring instructions are
handled. In this case, it would be preferable to use a partially-
interpreted ALU model as depicted in Figure 1(c). In this model,
the control logic distinguishing the handling of jump and non-
jump instructions is precisely modeled, but the datapath is ab-
stracted using the uninterpreted function SQ. However, creating
this fine-grained abstraction by hand is difficult in general and
places a larger burden on the designer. It is this burden that we
seek to mitigate using our ATLAS approach.

B. Related Work

The first automatic term-level abstraction tool was Vapor [4],
which aimed at generating term-level models from Verilog. The
underlying logic for term-level modeling in Vapor is CLU, which
originally formed the basis for the UCLID system [10]. Vapor
uses a counterexample-guided abstraction-refinement (CEGAR)
approach [4]. Vapor has been since subsumed by the Reveal
system [2], [3] which differs mainly in the refinement strategies
in the CEGAR loop.

Both Vapor and Reveal start by completely abstracting a Verilog
description to the UCLID language by modeling all bit-vector
signals as abstract terms and all operators as uninterpreted func-
tions. Next, verification is attempted on the abstracted design.
If the verification succeeds, the tool terminates. However, if the
verification fails, it checks whether the counterexample is spurious
using a bit-vector decision procedure. If the counterexample
is spurious, a set of bit-vector facts are derived, heuristically
reduced, and used on the next iteration of term-level verification.
If the counterexample is real, the system terminates, having found
a real bug.

The CEGAR approach has shown promise [3]. In many cases,
however, several abstraction-refinement iterations are needed to
infer fairly straightforward properties of data, thus imposing
a significant overhead. For instance, in one example, a chip
multiprocessor router [20], the header field of a packet must be
extracted and compared several times to determine whether the
packet is correctly forwarded. If any one of these extractions is not
modeled precisely at the word-level, a spurious counterexample
results. The translation is complicated by the need to instantiate
relations between individually accessed bit fields of a word mod-
eled as a term using special uninterpreted functions to represent
concatenation and extraction operations.

Our paper is the first to combine random simulation with static
analysis to perform automatic conditional function abstraction.
Potentially, if the statically-computed conditions generated by
ATLAS make the problem size too large, one can fall back to
a CEGAR approach.

We also note that the ATLAS approach presented herein could
in principle be combined with bitwidth reduction techniques
(e.g. [6], [16]) to perform combined function and data abstraction.

III. DEFINITIONS AND OVERVIEW

A. Formal Definitions

We model a design at the word level as a word-level netlist N =
(I, O, S, C, Init , A) where

• I is a finite set of input signals;
• O is a finite set of output signals;
• S is a finite set of intermediate sequential (state-holding)

signals;
• C is a finite set of intermediate combinational (stateless)

signals;
• Init is a set of initial states, i.e., initial valuations to elements

of S, and
• A is a finite set of assignments to outputs and to sequential

and combinational intermediate signals. An assignment is an
expression that defines how a signal is computed and updated.
We elaborate below on the form of assignments.

First, note that input and output signals are assumed combina-
tional, without loss of generality. Moreover, although the signals
in the designs we consider can all be modeled as bit vectors
of varying sizes, it is useful to distinguish Boolean signals for
the control logic from bit-vector valued signals modeling the
datapath. In word-level designs, a memory is modeled as a flat
array of bit-vector signals.

A combinational assignment is a rule of the form v ← e, where v
is a signal in the disjoint union C]O and e is an expression that
is a function of C] S] I. Combinational loops are disallowed.
We differentiate between combinational assignments based on the
type of the right-hand side expression and write them as follows:

v ← bv | b← bool

Here bv and bool represent bit-vector and Boolean expressions in
a word-level design, as listed in the grammar in Fig. 2.

bv ::= c | v | ITE(b, v1, v2) | bvop(v1, . . . , vk) (k ≥ 1)
bool ::= true | false | b | ¬b | b1 ∨ b2

| b1 ∧ b2 | v1 = v2 | bvrel(v1, . . . , vk) (k ≥ 1)

Fig. 2. Syntax for Bit-Vector and Boolean Expressions. c and v denote a
bit-vector constant and variable respectively, and b is a Boolean variable. bvop
denotes any arithmetic operator mapping bit vectors to bit vectors, while bvrel is
a relational operator other than equality mapping bit vectors to a Boolean value.

A sequential assignment is a rule of the form v := e, where v is
a signal in S and e is an expression that is a function of C]S]I.
Again, we differentiate between sequential assignments based on
type, and write them as follows (where v, u are any bit-vector
signals and b, ba are any Boolean signals):

v := u | b := ba

Note that we assume that the right-hand side of a sequential
assignment is a signal; this loses no expressiveness since we can
always introduce a new name to represent any expression.

A word-level design D is a tuple 〈I,O, {Ni | i = 1, . . . , N}〉,
where I and O denotes the set of input and output signals of
the design, and the design is partitioned into a collection of N
word-level netlists. A well-formed design is one where (i) every
output of a netlist is either an output of the design or an input to
some netlist (including itself) – i.e., there are no dangling outputs;

and (ii) every input of a netlist is either an input to the design or
exactly one output of some netlist. We refer to the netlists Ni as
functional blocks, or fblocks.

We revise the expression syntax in order to model designs at
the term level, with the revisions shown in Fig. 3. Since data
abstraction is not addressed in this paper, we exclude abstract
term-level expressions from the syntax. We include memories
in the syntax since we employ memory abstraction in this
paper for some verification problems. The interpreted memory
functions read and write are used for brevity; we can use any
specific memory modeling technique including the use of lambda
expressions [10].

bv ::= read(M, v) | UF (v1, . . . , vk) (k ≥ 0)
bool ::= UP (v1, . . . , vk) (k ≥ 0)
mem ::= A |M | write(M, v1, v2)

Fig. 3. Syntax for Term-Level Expressions. We only show additions to the
expression syntax of Fig. 2. UF and UP denote an uninterpreted function and
predicate symbol respectively. A and M denote constant and variable memories.
The second argument to read and write denote addresses and the third argument
to write denotes the data value to be written.

A term-level netlist is a generalization of a word-level netlist
where expressions can be both from the syntax shown in Figure 2
and that in Fig. 3. Additionally, a term-level netlist can have
sequential and combinational assignments to memory variables,
of the form below (where M,M1 are any memory signals and
mem is any memory expression):

M := mem

A term-level netlist that has at least one expression of the form
UF (v1, . . . , vk) or UP (v1, . . . , vk) is referred to as a strict term-
level netlist.

A term-level design T is a tuple (I,O, {Ni | i = 1, . . . , N}),
where each fblock Ni is a term-level netlist.

Given a word-level design D = (I,O, {Ni | i = 1, . . . , N}), we
say that T is a term-level abstraction of D if T is obtained from
D by replacing some word-level fblocks Ni by strict term-level
fblocks N ′

i .

The verification problems of interest in this paper are equivalence
checking and refinement checking.

Given two word-level designs D1 and D2, the word-level equiv-
alence (word-level refinement) checking problem is to verify that
D1 is sequentially equivalent to (refines) D2.

The definition is similarly extended to a pair of term-level designs
T1 and T2. We also consider bounded equivalence checking
problems, where the designs are to be proved equivalent for a
bounded number of cycles from the initial state.

The term-level abstraction problem we consider in this paper is
as follows.

Given a pair of word-level designs D1 and D2, abstract
them to term-level designs T1 and T2, such that D1 is
equivalent to (refines) D2 if and only if T1 is equivalent
to (refines) T2.

In this paper, we demonstrate that such term-level abstraction
can be performed efficiently and automatically, and it can scale
up verification by orders of magnitude.

B. Illustrative Example

Figure 4 depicts the equivalence checking problem that we will
use as a running example in this section. Two variants of the same
circuit, denoted Design A and Design B, are to be checked for
output equivalence.

Consider Design A. This design models a fragment of a processor
datapath. PC models the program counter register, which is
an index into the instruction memory denoted as IMem. The
instruction is a 20-bit word denoted instr, and is an input to
the ALU design shown earlier in Figure 1(a). The top four bits
of instr are the operation code. If the instruction is a jump
instruction (instr[19 : 16] equals JMP), then the PC is set equal
to the ALU output out; otherwise, it is incremented by 4.

Design B is virtually identical to Design A, except in how the
PC is updated. For this version, if instr[19 : 16] equals JMP,
the PC is directly set to be the jump address instr[15 : 0].

JMP

4

16

ALU

IMem

=

out
16

20

PC

=

out_ok

pc_ok

Design A Design B

0 1

+4

[15:0]

[19:16]

16

JMP

4

16

ALU

IMem

=

out
16

20

PC

0 1

+4

[15:0]

[19:16]

16

=

V1

V2

V5

V4

V6

V7

V8

V3

V11

V9

V10

V12

V13

V14

V15

V16

V17

Fig. 4. Equivalence checking of two versions of a portion of a processor
design. Boolean signals are shown as dashed lines and bit-vector signals as solid
lines.

Note that we model the instruction memory as a read-only
memory using an uninterpreted function IMem. The same un-
interpreted function is used for both Design A and Design B. We
also assume that Designs A and B start out with identical values
in their PC registers.

The two designs are equivalent iff their outputs are equal at every
cycle, meaning that the Boolean assertion out ok ∧ pc ok is
always true.

It is easy to see that this is the case, because from Fig-
ure 1(a) we know that A.out always equals A.instr[15 : 0] when
A.instr[19 : 16] equals JMP. The question is whether we can
infer this without the full word-level representation of the ALU.

Consider what happens if we use the abstraction of Figure 1(b).
In this case, we lose the relationship between A.out and
A.instr[19 : 16]. Thus, the verifier comes back to us with a
spurious counterexample, where in cycle 1 a jump instruction
is read, with the jump target in Design A different from that in
Design B, and hence A.PC differs from B.PC in cycle 2.

However, if we instead used the partial term-level abstraction
of Figure 1(c) then we can see that the proof goes through,
because the ALU is precisely modeled under the condition that
A.instr[19 : 16] equals JMP, which is all that is necessary.

The challenge is to be able to generate this partial term-level

abstraction automatically. We describe our approach to solving
this problem below.

IV. THE ATLAS APPROACH

Our term-level abstraction approach, ATLAS, operates in three
stages:

1. Perform Random Simulation: For each fblock in the design,
this step determines whether or not to mutate the module.
We replace each candidate fblock with a random, functionally-
consistent fblock, where each output of the fblock is a random
function of its inputs. For every such replacement, we perform
verification by random simulation. If replacing an fblock by a
random function causes the verification to fail in more than a
specific fraction of random simulations, we do not consider it
further for function abstraction. Those fblocks that survive are
analyzed in the next step.

2. Perform Static Analysis: We perform static dataflow analysis
on every fblock that survives Step 1 above. For each output sig-
nal of every such fblock, we compute conditions under which
that output signal is modeled as an uninterpreted function of
the input signals to that fblock.

3. Generate Term-Level Abstraction: Finally, we generate the
term-level netlist from the word-level netlist by replacing
each fblock with a term-level fblock where some outputs are
modeled as a partially-interpreted function of the inputs. The
conditions under which the output is partially interpreted are
the ones computed in Step 2 above.

We then use SAT and SMT based methods to verify equivalence
(refinement) on the resulting term-level designs.

In this paper, we limit ourselves to abstracting fblocks as com-
binational uninterpreted functions of their inputs. It is possible
to also abstract fblocks as uninterpreted functions of a bounded
history of inputs; however, we leave an exploration of this
direction to future work.

Each step in ATLAS is described in detail below. We also discuss
optimizations to the basic approach outlined above, such as
skipping conditional abstraction when unconditional abstraction
is also precise.

A. Identifying candidate fblocks

Word-level designs D1 and D2 are derived from RTL designs in
languages such as Verilog and VHDL. In such languages, modules
defined by the designer provide natural boundaries for function
abstraction.

Consider the flat word-level netlist obtained from an RTL design
after performing all module instantiations. Every module instance
corresponds to a functional block, or fblock, of the flat netlist.
However, only some of these fblocks are of interest for function
abstraction.

The first important notion in this regard is that of isomor-
phic fblocks. Two fblocks N1 = (I1,O1,S1, C1, Init1,A1) and
N2 = (I2,O2,S2, C2, Init2,A2) are said to be isomorphic if
there is a bijective function ϕ such that ϕ(I1,O1,S1, C1) =
(I2,O2,S2, C2) and if we substitute every signal s in Init1 and
A1 by ϕ(s) we obtain Init2 and A2.

Thus, of all the fblocks that are candidates for function ab-
straction, we only consider those fblocks in D1 that have an
isomorphic counterpart in D2 (and vice-versa). Such an fblock
is termed as a replicated fblock.

For example, each ALU in Fig. 4 is a replicated fblock.

In equivalence or refinement checking, replicated fblocks are easy
to identify as instances of the same RTL module that appear in
both designs, and this is how we identify them in this work. Note,
however, that it is also possible for fblocks that are not instances
of the same module to be isomorphic.

Given that we identify replicated fblocks as instances of the same
module, the question then becomes one of selecting RTL mod-
ules whose instances generate candidates fblocks for abstraction.
Currently, we make this selection based on heuristic rules, such
as the size of the module in terms of the number of input, output
and internal signals, or the presence of operators such as mul-
tiplication or XOR that are hard for formal verification engines
(such as SAT solvers) to reason efficiently about. Note however,
that this is purely an optimization step. One can identify any set
of replicated fblocks as candidates for function abstraction.

To summarize, given designs D1 and D2 that are to be checked for
equivalence or refinement, we can generate the set containing all
replicated fblocks in those designs. This set can be partitioned into
a collection of sets of fblocks FS = {F1,F2, . . . ,Fk}. Each set
Fj comprises replicated fblocks that are isomorphic to each other.
We term each Fj as an equivalence class of the fblocks it contains.
Our ATLAS approach uses the same function abstraction for every
fblock in Fj . For example, in the design of Fig. 4, A.ALU and
B.ALU are isomorphic to each other and together constitute one set
Fj . ATLAS will compute the same function abstraction, shown
in Fig. 1(c), for both fblocks.

In the following sections, we describe how ATLAS analyzes the
sets in FS in two phases. In the first phase, random simulation
is used to prune out replicated fblocks that most likely cannot
be abstracted with uninterpreted functions. Every fblock that
survives the first phase is then statically analyzed in the second
phase in order to compute conditions under which that fblock
can be abstracted with an uninterpreted function. The resulting
conditions are used to generate a term-level netlist for further
formal verification.

B. Random simulation

Given an equivalence class of functional blocks F , we use
random simulation to determine whether the fblocks it contains
are considered for abstraction with an uninterpreted function.

We begin by introducing some notation.

Let the cardinality of F be l. Let each fblock fi ∈ F have
m bit-vector output signals 〈vi1, . . . , vim〉, and n input signals
〈ui1, . . . , uin〉. Then, we term the tuple of corresponding output
signals χ = (v1j , v2j , . . . , vlj), for each j = 1, 2, . . . ,m, as a
tuple of isomorphic output signals.

Given a tuple of isomorphic output signals χ =
(v1j , v2j , . . . , vlj), we create a random function RFχ unique to χ
that has n inputs (corresponding to input signals 〈vi1, . . . , vin〉,
for fblock fi).

For each fblock fi, i = 1, 2, . . . , l, we replace the assignment
to the output signal vij with the random assignment vij ←

RFχ(ui1, . . . , uin). This substitution is performed for all output
signals j = 1, 2, . . . ,m.

The resulting designs D1 and D2 are then verified through
simulation. This process is repeated for T different random
functions RFχ.

If the fraction of failing verification runs is greater than a
threshold τ , then we drop the equivalence class F from further
consideration. (The values of T and τ we used in experiments are
given in Sec. V-B.) Otherwise, we retain F for static analysis, as
described in the following section.

C. Static analysis

The goal of static analysis is to compute conditions under which
fblocks can be abstracted with uninterpreted functions (UFs)
without loss of precision – i.e., without generation of spurious
counterexamples. ATLAS performs this analysis by attempting to
compute the opposite condition, under which the fblocks are not
abstracted with UFs.

More specifically, for each tuple of isomorphic output signals χ of
each equivalence class F , we compute a Boolean condition under
which the elements of χ should not be abstracted as uninterpreted
functions of the inputs to their respective fblocks. We term these
conditons as interpretation conditions, with the connotation that
the fblocks are precisely interpreted iff these conditions are true.

Clearly, true is a valid interpretation condition, but it is a trivial
one and not very useful. It turns out that even checking whether a
given interpretation condition is precise is co-NP-hard. We prove
this by formalizing the problem as below:

INTCONDCHK: Given word-level designs D1 and D2,
let f1 and f2 be fblocks in D1 and D2 respectively,
where f1 and f2 are isomorphic. Let c be a Boolean
condition such that c 6≡ true. Let designs T1 and T2
result from conditionally abstracting f1 and f2 with an
uninterpreted function UF only when condition c is
false.
Then, the INTCONDCHK problem is to decide whether,
given 〈D1,D2, f1, f2, c〉, D1 is equivalent to D2 iff T1
is equivalent to T2.

Theorem 1: Problem INTCONDCHK is co-NP-hard.

Proof: The proof is by reduction from UNSAT – the Boolean
unsatisfiability problem. We map an arbitrary Boolean formula f
to a tuple 〈D1,D2, f1, f2, c〉, so that f is unsatisfiable if and only
if D1 is equivalent to D2 iff T1 is equivalent to T2.

Consider the word-level circuit in Fig. 5, where the D1 is the
circuit rooted at the left-hand input of the equality node, and D2 is
the circuit rooted at the right-hand input. Clearly, D1 is equivalent
to D2. Let c = false, in other words, we want to know if uncon-
ditional abstraction is precise. Consider the multiplier blocks in
D1 and D2 respectively. Since these blocks are isomorphic, we
can consider replacing them with the same uninterpreted function.
Note that, unless f(x1, x2, . . . , xn) is equivalent to false, this
abstraction can result in spurious counterexamples, since it is
possible that UF (2, 5) 6= UF (1, 10), whereas MULT(2, 5)
= MULT(1, 10) always. In other words, we answer ’yes’ to
this instance of INTCONDCHK iff f(x1, x2, . . . , xn) ≡ false,
implying that INTCONDCHK is co-NP-hard.

Algorithm 1 Procedure CONDITIONALFUNCABSTRACTION(D, FS): abstracting fblocks with uninterpreted functions, either wholly
or partially.

1: // Input: Combined netlist (miter) D := 〈I,O, {Ni | i = 1, . . . , N}〉
2: // Input: Equivalence classes of fblocks FS := {Fj | j = 1, . . . , k},
3: // Output: Rewritten netlist (miter) D′ := 〈I,O, {N ′

i | i = 1, . . . , N}〉
4: for each Fj ∈ FS do
5: for each tuple of isomorphic output signals χj = (v1, v2, . . . , vlj), where lj = |Fj |, vi ∈ fi for fblock fi ∈ Fj , i = 1, 2, . . . , lj

do
6: for each output signal vi ∈ χj do
7: Compute equivalence class E(vi) of vi by repeatedly applying rules in Table I to all assignments in D except for those

inside the fblock fi
8: If E(vi) contains a signal u s.t. u is assigned a bit-vector constant or is the input to or output of a bit-vector operator,

mark χj .
9: end for

10: If χj is unmarked { Fj ← ABSTRACTWITHUF(Fj ,χj) }
11: end for
12: end for
13: For all Fj ∈ FS , if all isomorphic output signal tuples χj are unmarked, delete Fj from FS .
14: // Now compute conditions for partial abstraction with a UF
15: for each remaining Fj ∈ FS do
16: for each tuple of isomorphic output signals χj = (v1, v2, . . . , vlj), where vi ∈ fi for fblock fi ∈ Fj , i = 1, 2, . . . , lj do
17: Compute interpretation conditions cvi for all i by repeatedly applying rules in Table II to the netlist obtained by deleting

all signals (and corresponding assignments) inside fblocks in Fj . The rules are applied until the conditions do not change
or up to a specified bounded number of iterations, whichever is smaller.

18: Compute ocj :=
∨lj
i=1 cvi

.
19: Perform partial function abstraction of Fj with ocj : Fj ← CONDITIONALABSTRACTWITHUF(Fj ,χj ,ocj)
20: end for
21: end for

+10 +1 +5 +2

x1

=

f

...

0 1 0 1

0

MULT MULT

x x2 xn

Fig. 5. Circuit for showing NP-hardness of INTCONDCHK. f is any arbitrary
Boolean function of x1, x2, . . . , xn.

Given this hardness result, ATLAS uses the following three-step
procedure for verification by term-level abstraction:

1. Unconditionally abstract all isomorphic fblocks with the same
unintepreted function, for all equivalence classes of fblocks.
Verify the resulting term-level designs. If the term-level verifier
returns “VERIFIED”, then return that result and terminate.
However, if we get a counterexample, evaluate the counterex-
ample on the word-level design to check if it is spurious. If
non-spurious, return the counterexample, else go to Step 2.

2. Call Procedure CONDITIONALFUNCABSTRACTION to condi-
tionally abstract to the term-level. Again, verify the resulting
term-level designs, performing exactly the same checks as in

Step 1 above: If the term-level verifier returns “VERIFIED”,
we return that result; otherwise, we return the counterexample
only if it is non-spurious, going to Step 3 if it is spurious.

3. Invoke a word-level verifier on the original word-level designs.

The following theorem about ATLAS follows easily.

Theorem 2: ATLAS is sound and complete.

Proof: (sketch) Soundness follows from the fact that ATLAS
only attempts to verify over-approximate abstractions of the
original designs. Completeness follows because ATLAS only
outputs a counterexample if it is evaluated to be a counterexample
on the original word-level design.

Algorithm 1 summarizes our static abstraction procedure. Proce-
dure CONDITIONALFUNCABSTRACTION takes two inputs. The
first is the netlist D obtained by combining D1 and D2 to do
equivalence or refinement checking. For equivalence checking,
this is the standard “miter” circuit. For refinement checking, D is
obtained by connecting inputs to D1 and D2 for use in symbolic
simulation (e.g., a “flush” input to the pipeline for Burch-Dill style
processor verification), as well as logic to compare the outputs
of D1 and D2. The second input to CONDITIONALFUNCAB-
STRACTION is the set of all equivalence classes of fblocks FS .
Given these inputs, CONDITIONALFUNCABSTRACTION gener-
ates a rewritten netlist as output where some outputs of fblocks
are conditionally rewritten as outputs of uninterpreted functions.

Algorithm 1 operates in two phases. In the first phase (lines 4-
12), we identify outputs of fblocks that can be unconditionally
abstracted with an uninterpreted function. This is performed by
first computing, for every bit-vector output signal v in FS ,

the equivalence class of signals E(v) that its value flows to or
which it is compared to. Table I lists the rules for computing
E(v). Suppose there is no signal in E(v) that is assigned or
compared to a bit-vector constant, or is the input or output of
a bit-vector arithmetic or relational operator other than equality.
This implies that the value of v does not flow to any bit-vector
operation, arithmetic or relational, and is never compared with
a specific bit-vector constant. In such a scenario, it is possible
to always abstract v as the output of an uninterpreted function.
Procedure ABSTRACTWITHUF listed as Algorithm 2 performs
such a full function abstraction.

The second phase of Algorithm 1 comprises lines 13-21. We
first remove from consideration fblocks all of whose (bit-vector)
outputs have been abstracted using uninterpreted functions in
phase 1 (line 13). Then, in each remaining fblock fj , we compute
an interpretation condition cv for every bit-vector signal v ∈ fj .
Table II lists all rules for iteratively computing cv . Most of the
rules are intuitive, so we describe them only briefly. Consider
rules 1,4, and 6: all of these involve a bit-vector operator or
constant. Therefore, any signal involved in such an assignment
is assigned an interpretation condition of true. For equality
comparisons or combinational assignments (rules 2 and 3), both
sides of the comparison or assignment must have the same
interpretation condition. For a multiplexor assignment (rule 5),
the condition under which an input of the mux flows to its
output is incorporated into the interpretation conditions. Rule 7,
for a sequential assignment, makes use of special prev and next
operators. The prev operator indicates that the condition is to
be evaluated in the preceding cycle, whereas the next operator
indicates that it must be evaluated in the following cycle. During
symbolic simulation for term-level equivalence or refinement
checking, these operators are translated to point to the conditions
in the appropriate cycles. If we only symbolically simulate for a
bounded number of cycles, it is sufficient to evaluate these rules a
bounded number of times. Rules 8 and 9 deal with memory reads
and writes. Finally, rules 10 and 11 handle the case where we
have some fblock outputs replaced with uninterpreted functions,
but not others; in this case, the interpretation conditions remain
unchanged because we do not maintain a precise connection
between inputs and outputs of uninterpreted functions.

Once the interpretation conditions are computed (by performing
a bounded number of iterations of the rules in Table II), we
use them to perform conditional function abstraction. Lines 20-
21 of Algorithm 1 indicate the process: we first compute the
disjunction of all conditions computed for output signals in an
isomorphic tuple χj , and then use this disjunction ocj within
Procedure CONDITIONALABSTRACTWITHUF to compute the
new output assignment for each element of χj as an conditional
(ITE) expression.

The new design D′ resulting from substitutions performed
in Procedures ABSTRACTWITHUF and CONDITIONALAB-
STRACTWITHUF is the output of Procedure CONDITIONALFUN-
CABSTRACTION.

D. Illustrative Example

We illustrate the operation of our approach on the equivalence
checking problem in Fig. 4. Note that all signals in this design
have been given names from v1 (A.out) to v17 (B.out).

Assume that the ALU modules have passed the first two steps

Assignment Type Update Rule
Bitvector arithmetic operator: Merge

v ← bvop(v1, . . . , vk) E(v), E(v1), . . . , E(vk)
Relational operator: Merge
bvrel(v1, . . . , vk) E(v1), . . . , E(vk)

Equality: Merge
v1 = v2 E(v1), E(v2)

Sequential/combinational assignment: Merge
v ← u E(v), E(u)
v := u

Multiplexor assignment: Merge
v ← ITE(b, v1, v2) E(v), E(v1), E(v2)
Memory operations:
v ← read(M, u) Merge E(v), E(M)

M := write(M, u, v) Merge E(M), E(v)

TABLE I
Rules for merging equivalence classes. We extend the E notation to memories

also to track dependencies through memory reads and writes.

Algorithm 2 Procedure ABSTRACTWITHUF(F , χ): wholly ab-
stract outputs in χ with uninterpreted functions.

1: // Input: Equivalence class of functional blocks,
F = {f1, f2, . . . , fl}

2: // Input: Tuple of isomorphic output signals of fi’s,
χ = (v1, v2, . . . , vl)

3: // Output: Updated functional blocks F ′.
4: Create a fresh uninterpreted function symbol UFχ.
5: for each output signal vi ∈ χ do
6: Let (i1, . . . , iki) denote the input symbols to fblock fi.
7: Replace the assignment vi ← e in fi with the assignment

vi ← UFχ(i1, . . . , iki
).

8: Transitively delete all assignments u ← e or u := e in fi
where signal u does not appear on the right-hand side of
any assignment in fi.

9: Denote the resulting fblock by f ′
i .

10: end for
11: Return the updated equivalence class of fblocks F ′ =
{f ′

1, f
′
2, . . . , f

′
l}.

in ATLAS: identifying replicated fblocks A.ALU and B.ALU and
performing random simulation.

We describe how procedure CONDITIONALFUNCABSTRACTION
operates on this example. The first phase of CONDITIONAL-
FUNCABSTRACTION computes equivalence classes of the output
signals v1 and v17 of the two ALUs. We observe that

E(v1) = E(v17)
= {v1, v2, v4, v5, v13, v10, v9, v12, v16, v14, v15, v11, v17}

Clearly, since some of the above signals are outputs or inputs of
bit-vector arithmetic operators such as + and bit-extraction, we
cannot abstract the two ALUs unconditionally with an uninter-
preted function.

Therefore, CONDITIONALFUNCABSTRACTION performs the sec-
ond phase: computing interpretation conditions for the signals in
Designs A and B.

As stated in the caption of Table II, all conditions are initialized
to false.

Next, consider all signals that are inputs or outputs of bit-vector

Rule English Form of Rules for Updating
No. Description Assignments Interpretation Condition

1. Bit-vector constant v ← c c′
v := true

2. Combinational v ← u c′
v := cv ∨ cu

copy c′
u := cv ∨ cu

3. Equality b← v = u c′
v := cv ∨ cu

comparison c′
u := cv ∨ cu

4. Bit-vector b← bvrel(v1, v2, . . . , vk) c′
vi

:= true
relational operator ∀i = 1, 2, . . . , k

5. Multiplexor v ← ITE(b, v1, v2) c′
v := cv ∨ (b ∧ cv1 ∨ ¬b ∧ cv2)

assignment c′
v1

:= cv1 ∨ (b ∧ cv)
c′
v2

:= cv2 ∨ (¬b ∧ cv)
6. Bit-vector v ← bvop(v1, v2, . . . , vk) c′

v := true
operator c′

vi
:= true ∀i = 1, 2, . . . , k

7. Sequential v := u c′
v := cv ∨ prev(cu)

assignment c′
u := cu ∨ next(cv)

8. Memory read v ← read(M, u) c′
v := cv ∨ cM

c′
M := cv ∨ cM

9. Memory write M := write(M, va, vd) c′
M := cM ∨ prev(cvd)

c′
vd

:= next(cM) ∨ cvd

10. Uninterpreted function v ← UF (v1, . . . , vk) c′
v := cv , c′

vi
:= cvi ∀i = 1, . . . , k

11. Uninterpreted predicate b← UP (v1, . . . , vk) c′
vi

:= cvi ∀i = 1, . . . , k

TABLE II
Rules for computing the interpretation condition cv for every bit-vector (or memory) signal v (or M) in a set of signals V . Every condition cv initially starts

out as false. c′
x denotes the updated value of cx for a bit-vector or memory signal x.

Algorithm 3 Procedure CONDITIONALABSTRACTWITHUF(F ,
χ, oc): conditionally abstract outputs in χ with uninterpreted
functions using condition oc.

1: // Input: Equivalence class of functional blocks,
F = {f1, f2, . . . , fl}

2: // Input: Tuple of isomorphic output signals of fi’s,
χ = (v1, v2, . . . , vl)

3: // Input: Boolean condition: oc :=
∨l
i=1 cvi .

4: // Output: Updated functional blocks F ′.
5: Create a fresh uninterpreted function symbol UFχ.
6: for each output signal vi ∈ χ do
7: Let (i1, . . . , iki) denote the input symbols to fblock fi.
8: Replace the assignment vi ← e in fi with the assignment

vi ← ITE(oc, e, UFχ(i1, . . . , iki
)).

9: Denote the resulting fblock by f ′
i .

10: end for
11: Return the updated equivalence class of fblocks F ′ =
{f ′

1, f
′
2, . . . , f

′
l}.

operators, or compared with a bit-vector constant (such as JMP).
We apply Rules 1 and 6 to these signals, to get:

cv2 = cv5 = cv8 = cv6 = cv7 = true and
cv13 = cv10 = cv14 = cv1 = cv15 = true

Since we have the assignments v5 := v4 and v13 := v12, we can
apply Rule 7 to obtain

cv4 = next(cv5) = true and cv12 = next(cv13) = true

Now, using Rule 5 for the multiplexor in Design A, we obtain

cv1 = {(v7 = JMP) ∧ cv4} = (A.instr[19 : 16] = JMP)

Finally, using Rule 3 for the equality corresponding to out ok,
we conclude that cv17 = cv1 = (A.instr[19 : 16] = JMP).

The computation of interpretation conditions terminates here. We
can thus compute a partial abstraction of the ALUs using a
fresh uninterpreted function symbol UF by employing the new
assignments below:

v1 ← ITE(A.instr[19 : 16] = JMP, ALU(v8), UF (v8))
v17 ← ITE(A.instr[19 : 16] = JMP, ALU(v16), UF (v16))

Note that ALU above refers to the original ALU as shown in
Fig. 1(a). The right-hand side expressions in the new assignments
shown above are instances of the partially-abstracted ALU shown
in Fig. 1(c).

In summary, for our running example, ATLAS correctly computes
the conditions under which the ALU can be abstracted with an
uninterpreted function, as we discussed in Sec. III.

V. EXPERIMENTAL RESULTS

A. Benchmarks

In addition to the running example, we performed experiments
on four benchmarks: a simple pipelined processor [7], the packet
disassembler from the USB 2.0 function core [19], a power-gated
calculator design [21], and the Y86 processor designs [9]. We
describe the additional benchmarks here.

Pipelined Datapath. (PIPE) The simple pipelined processor con-
sists of 3-stages: fetch, execute, and writeback. It supports 7
arithmetic instructions and has a 32x32-bit, dual-read, single-write
register file. The design we use here differs from the one in the
UCLID manual [7] only in that it does not use memory abstraction
for the register file. We verify that the pipelined processor refines
(i.e., is simulated by) a single-cycle, sequential version of the
processor. The shared state variables that are checked for equality
are the program counter (PC) and register file (RF). Excluding
the top-level processor modules, there are 3 candidate modules for
abstraction: PC update, RF, and arithmetic-logic unit (ALU). The
PC update and ALU modules both pass the random simulation
stage of ATLAS, however, we only abstract the ALU due to the

small size of the PC update module. The RF module does not pass
random simulation and, hence, we don’t abstract it. By replacing
the RF with a combinational random function, we lose the ability
to store values, which causes random simulation to fail.

USB controller. (USB) For the USB design [19], we created a
refinement of the original packet disassembler. In the refined ver-
sion, we removed the notion of a TOKEN packet and updated the
state machine and other relevant logic accordingly. We performed
bounded equivalence checking on the original and refined packet
disassemblers by injecting tokens on each cycle. The property
checked was that the disassembler state, error condition state,
and cyclic redundancy check (CRC) error signals were the same
for each cycle. The two candidate modules for abstraction were
the 16- and 5-bit CRC modules. Both passed random simulation,
which is expected because neither influences the state machine
control, however, only the 16-bit CRC module was abstracted
because the 5-bit CRC module is not in the cone-of-influence of
the property being checked.

Calculator. (CALC) This design has 4 input and output ports and
accepts 4 instructions: add, subtract, shift left, and shift right.
Each port can have up to 4 outstanding instructions. A two-
bit tag is used to keep track of outstanding instructions. For
this experiment, we created a power-gated version of an existing
calculator design, in a manner similar to that in [14]. In the
power-gated version, the adder-subtractor unit (ASU) is powered
down (by fencing the outputs) whenever there are no add or
subtract instructions in the add/subtract queue. We performed
equivalence checking on the outputs of the two versions to
make sure that the correct results come out in the same order,
with the proper tags, and on the correct ports. For this design,
there are only 2 modules which passed random simulation: the
ASU and the shifter. There are many modules which didn’t
pass random simulation. An example is the priority module.
The priority module takes the incoming commands and adds
them to the appropriate queues and dispatches commands to the
appropriate unit (ASU or shifter). The priority module has state
holding elements which combinational functions can not properly
represent.

Y86 processor. (Y86) The Y86 processor is a pipelined CISC
microprocessor design described by Bryant and O’Hallaron [9],
[11]. Sequential and several pipelined implementations of the Y86
design are available from the textbook website [11]; the netlists
we used are the versions after memory abstraction was performed.
Similar to PIPE, we check that the pipelined implementations
refine the sequential version. Only the ALU module survived the
random simulation phase.

B. Results

The hypothesis we test with our experiments is that performing
automatic term-level abstraction before verification can yield
substantial speedups over verifying the original word-level de-
sign. While we would have liked to compare with the Reveal
or Vapor systems, they are not publicly available. Our own
experience with performing fine-grained term-level abstraction
as with Reveal/Vapor is that there are far too many spurious
counterexamples generated to yield any improvements, especially
given the recent advances in bit-vector SMT solvers.

Our experiments were performed by first extracting ATLAS
netlist representations from the Verilog RTL. Random simulations

were performed using the Icarus Verilog simulator [22]. We used
T = 1000 random functions for each equivalence class of fblocks,
selecting a class for function abstraction if at most τ = 50
(5%) simulations failed. ATLAS translates both word-level and
term-level netlists into UCLID format [1], before using UCLID’s
symbolic simulation engine to perform bounded equivalence
checking or refinement (correspondence) checking of processor
designs. Experiments were run on a Linux workstation with 64-
bit 3.0 GHz Xeon processors and 2 GB of RAM.1

Some characteristics of the benchmarks are given in the first six
columns of Table III. The size of the designs is described in terms
of the numbers of latches as well as the number of signals in the
word-level netlist (based on ATLAS’ representation). In general,
random simulation was very effective at pruning out fblocks that
cannot be replaced with uninterpreted functions. For the PIPE,
USB, and Y86 designs, only two fblocks survived the results of
random simulation, both being instantiations of the same Verilog
module (one in each circuit in the equivalence/refinement check).
For the CALC, the ADD/SUB as well as the Shifter fblocks could
be abstracted, again symmetrically on each side of the miter.

Once candidate fblocks are identified for abstraction, ATLAS
generates word-level and term-level UCLID models using the
approach outlined in Sec. IV-C. UCLID is used to perform sym-
bolic simulation. For refinement checking of processor designs,
the number of cycles of symbolic simulation is defined by the
Burch-Dill approach [12] and based on the pipeline depth. For
equivalence checking tasks, we performed symbolic simulation
for various numbers of cycles. Both verification tasks, at the
end, generate a decision problem in a combination of logical
theories. For word-level models, this problem is in the theory
of finite-precision bit-vector arithmetic, possibly including the
theory of arrays if memory abstraction is performed (as for Y86
benchmarks). For term-level models, the decision problem is in
the combination of bit-vector arithmetic, uninterpreted functions,
and arrays. We experimented with several SMT solvers for
this combination of theories, including Boolector, MathSAT, and
Yices, three of the top solvers in the 2008 and 2009 SMTCOMP
competition [13]. We present our results for Boolector [8], the
SMT solver that performs best for the word-level designs.

The experimental results are presented in the last 9 columns
of Table III. Consider the last two columns of the table. Here
we present two ratios: “SMT” indicates the speedup of running
Boolector on ATLAS output versus the original design. We
observe that we get a speedup on all benchmarks, ranging from
a factor of 2 to 92. However, when the running time for random
simulations and static analysis is factored in (“Total”), we observe
that ATLAS does worse on the USB design, and has a somewhat
smaller speedup on the other designs. The main reason is the
time spent in random simulation. We believe there is scope for
optimizing the performance of the random simulator, as well as
amortizing simulation time across different formal verification
runs.

We also experimented with a purely SAT-based approach. Here
the word-level problems are bit-blasted to a SAT problem. For
term-level problems, UCLID’s internal elimination of uninter-
preted functions (using the “Ackermann method”) is first invoked,
and then the resulting word-level problem is bit-blasted to SAT.

1A more detailed description of experimental data and benchmarks are available
at http://uclid.eecs.berkeley.edu/atlas/.

Name
Benchmark Characteristics Performance Comparison

L Norig Nfb Nabs Abs N Word-Level (sec.) ATLAS & Term-Level (sec.) Speedup
SMT Total Iter RSim Static SMT Total Total SMT

PIPE 2233 1233 2 42 ALU (2) 9 171.09 171.22 0 3.71 0.20 1.86 5.77 29.7 92.0

USB 134 892 2 252 CRC16 (2) 15 0.29 0.38 0 3.52 0.06 0.11 3.69 0.1 2.6
25 0.53 0.62 0 5.63 0.06 0.20 5.89 0.1 2.7

CALC 5539 2913 4 54 Add/Sub (2), 15 11.82 12.64 0 8.43 0.88 2.40 11.71 1.1 4.9
Shifter (2) 25 133.72 134.76 0 14.14 1.16 23.86 39.16 3.4 5.6

Y86-BTFNT 567 936 2 36 ALU (2) 13 1077.72 1077.84 1 5.20 0.09 1385.34 1390.63 0.7 0.7
Y86-FULL 567 961 2 36 ALU (2) 13 2166.66 2166.78 0 4.44 0.09 56.30 60.83 35.6 38.5
Y86-LF 567 931 2 36 ALU (2) 13 728.05 728.17 0 4.18 0.09 42.11 46.38 15.7 17.3
Y86-NT 567 928 2 36 ALU (2) 13 1736.66 1736.77 1 4.37 0.08 1350.95 1355.40 1.28 1.28
Y86-STD 567 923 2 36 ALU (2) 13 1239.00 1239.12 0 5.22 0.08 54.19 59.49 20.8 22.9

TABLE III
Performance Comparison and Benchmark Characteristics. Column headings are as follows: L: Number of latches in original word-level netlist; Norig : Number
of signals in word-level netlist; Nfb: Number of fblocks selected by random simulation; Nabs: Total number of signals in the selected fblocks, Abs are the names of
the RTL module abstracted (with number of instances); “Word-level” indicates columns for verification of original word-level model; “Term-level” indicates columns

for verification of ATLAS-generated term-level model; N : Number of steps of symbolic simulation for equivalence/refinement checking; SMT indicates the time
taken by the Boolector SMT solver; Iter is the number of iterations of interpretation condition computation; RSim is the runtime for random simulation; Static is the

time for ATLAS’ static analysis; Total indicates the total verifier time (for the word-level model, this includes SMT time, for the term-level model, this includes
RSim, Static, and SMT times); “Speedup”: the speedup of the term-level verification over the word-level verification tasks, for both SMT time and Total time.

We experimented with several SAT engines, including MiniSat,
PicoSat, and Precosat. Table IV reports the SAT problem sizes
and run-times for a selected subset of generated SAT problems.
The run-time of the best SAT solver is reported for each run. For
the PIPE and USB examples, term-level abstraction by ATLAS
performs significantly better even when the SAT problem size is
much bigger. This indicates the benefit of abstracting modules
such as CRC16 which can have operators such as XORs that
are hard for SAT engines. For the CALC example, the SAT
solvers perform better on the original word-level model, which
is understandable, since reasoning about ADD/SUB/SHIFT is not
particularly hard for SAT engines, and the impact of SAT problem
size is observed.

Name N Abs? SAT Size Run-time
#Vars #Clauses (sec.)

PIPE 9 No 41911 122203 >3600
Yes 45644 133084 29.86

USB 25 No 17667 51916 >3600
Yes 159509 475057 68.74

CALC 25 No 351892 1039501 823.71
Yes 753164 2234485 1771.66

TABLE IV
Performance Comparison of SAT-based Verification. N is the number of

cycles symbolically simulated. “Abs?” indicates whether term-level abstraction
via ATLAS was used or not.

VI. CONCLUSION

We presented an automatic approach to perform term-level ab-
straction of RTL designs. Our results indicate that verification
time can be greatly reduced in many cases. For future work,
we plan to expand the approach to “sequential” uninterpreted
functions, as well as combining it with data abstraction.

Acknowledgments. This research was supported in part by SRC
contracts 1355.001 and 2045.001 and by an Alfred P. Sloan
Research Fellowship.

REFERENCES

[1] UCLID Verification System. Available at http://uclid.eecs.berkeley.edu.

[2] Z. S. Andraus, M. H. Liffiton, and K. A. Sakallah. Refinement strategies
for verification methods based on datapath abstraction. In Proceedings of
ASP-DAC, pages 19–24, 2006.

[3] Z. S. Andraus, M. H. Liffiton, and K. A. Sakallah. CEGAR-based formal
hardware verification: A case study. Technical Report CSE-TR-531-07,
University of Michigan, May 2007.

[4] Z. S. Andraus and K. A. Sakallah. Automatic abstraction and verification of
Verilog models. In Proceedings of the 41st Design Automation Conference
(DAC), pages 218–223, 2004.

[5] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability modulo
theories. In Handbook of Satisfiability, volume 4, chapter 8. IOS Press,
2009.

[6] P. Bjesse. A practical approach to word level model checking of industrial
netlists. In CAV ’08: Proceedings of the 20th international conference
on Computer Aided Verification, pages 446–458, Berlin, Heidelberg, 2008.
Springer-Verlag.

[7] B. A. Brady, S. A. Seshia, S. K. Lahiri, and R. E. Bryant. A User’s Guide
to UCLID Version 3.0, October 2008.

[8] R. D. Brummayer and A. Biere. Boolector: An efficient SMT solver for
bit-vectors and arrays. In In Proc. of TACAS, March 2009.

[9] R. E. Bryant. Term-level verification of a pipelined CISC microproces-
sor. Technical Report CMU-CS-05-195, Computer Science Department,
Carnegie Mellon University, 2005.

[10] R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Modeling and verifying
systems using a logic of counter arithmetic with lambda expressions and
uninterpreted functions. In Proc. Computer-Aided Verification (CAV’02),
LNCS 2404, pages 78–92, July 2002.

[11] R. E. Bryant and D. R. O’Hallaron. Computer Systems: A Programmer’s
Perspective. Prentice-Hall, 2002. Website: http://csapp.cs.cmu.edu.

[12] J. R. Burch and D. L. Dill. Automated verification of pipelined micropro-
cessor control. In D. L. Dill, editor, Computer-Aided Verification (CAV ’94),
LNCS 818, pages 68–80. Springer-Verlag, June 1994.

[13] S. Competition. http://www.smtcomp.org/.
[14] C. Eisner, A. Nahir, and K. Yorav. Functional verification of power gated

designs by compositional reasoning. In CAV, pages 433–445, 2008.
[15] W. A. Hunt. Microprocessor design verification. Journal of Automated

Reasoning, 5(4):429–460, 1989.
[16] P. Johannesen. BOOSTER: Speeding up RTL property checking of digital

designs through word-level abstraction. In Computer Aided Verification,
2001.

[17] S. K. Lahiri and R. E. Bryant. Deductive verification of advanced out-of-
order microprocessors. In Proc. 15th International Conference on Computer-
Aided Verification (CAV), volume 2725 of LNCS, pages 341–354, 2003.

[18] P. Manolios and S. K. Srinivasan. Refinement maps for efficient verification
of processor models. In Design, Automation, and Test in Europe (DATE),
pages 1304–1309, 2005.

[19] Opencores.org. Usb controller. http://www.opencores.org/project,usb.
[20] L.-S. Peh. Flow Control and Micro-Architectural Mechanisms for Extending

the Performance of Interconnection Networks. PhD thesis, Stanford Univer-
sity, August 2001.

[21] B. Wile, J. Goss, and W. Roesner. Comprehensive Functional Verification:
The Complete Industry Cycle. Morgan Kaufmann, 2005.

[22] S. Williams. Icarus verilog. http://www.icarus.com/eda/verilog/.

