System Modeling and Verification with UCLID

Randal E. Bryant
Carnegie Melon University
School of Computer Science

Pittsburgh, PA 15213 USA
Randy. Bryant @s. cnu. edu

Formal verification has had a significant impact on the
semiconductor industry, particularly for companies that can
devote significant resources to creating and deploying inter-
nally developed verification tools. If we look more closely,
however, we see that the major industrial applications of
formal verification have been either in verifying individ-
ual blocks, such as floating-point units and memories, or
in verifying an abstracted representation of some aspect of
the system, such as a cache coherence protocol. Attempt-
ing to verify overall system correctness is beyond the reach
of current tools. For example, these tools are not capable
of verifying that an out-of-order execution microprocessor
correctly replicates the behavior of its sequential instruction
set architecture (ISA) model.

Most existing verification tools model system operation
at a detailed bit level. Using powerful inference engines,
such as Binary Decision Diagrams (BDDs) and Boolean
satisfiability (SAT) checkers, symbolic model checkers [3,
5] and similar tools can analyze all possible behaviors of
very large, finite-state systems. Modeling a system at the
bit level makes it difficult to scale formal verification to sys-
tems that store and manipulate large amounts of data, such
as microprocessors and many forms of embedded software.
The many bits of state held in the various memories, queues,
and caches lead to state explosion problems that overwhelm
even the most advanced model checkers.

Taking a cue from the hardware design principle of sepa-
rating data from control, we believe that systems should be
modeled and verified using a more abstract representation
of data. If we assume individual functional units, such as
ALUs and instruction decoders can be verified separately,
then there is no need to track the value of every bit in the
system. Instead, we can represent words of data as sym-
bolic termvalues that are generated by function units, com-
municated among different subunits, and stored in different
buffers and memories. For some term value x, we need not
keep track of its bit width, its encoding, or even its actual
value. With this term-level abstraction of data, verification
can focus on the behavior of the control logic.

Term-level abstraction has long been used by researchers
using automatic theorem provers to verify hardware design
[10]. Burch and Dill [4] were among the first to demonstrate
that highly automated tools based on term-level models
could be used to verify pipelined microprocessors. Rather
than using Boolean inference engines, these tools make use
of decision procedures for highly restricted subsets of first-
order logic. Over the years, these procedures have improved
greatly in their speed [11] and the richness of the logic they
can handle [1, 6].

We have developed UCLID [2], a prototype verifier for
infinite-state systems. The UCLID modeling language ex-
tends that of SMV, a bit-level model checker, to include
integer and function state variables, addition by constants,
and relational operations. The underlying logic is expres-
sive enough to model a wide range of systems, but it still
permits a decision procedure where we transform the for-
mula into propositional logic and then use either BDDs or
a SAT solver. Most recently, we have developed powerful
predicate abstraction methods that can automatically gen-
erate and prove system invariants using techniques similar
those used in symbolic model checking [8]. UCLID has
been used to verify a variety of hardware designs, including
out-of-order microprocessors [7] and cache coherency pro-
tocols, as well as abstract synchronization protocols such as
Lamport’s Bakery algorithm [9].

References

[1] C. Barrett, D. Dill, and A. Stump. Checking satisfiability
of first-order formulas by incremental translation to SAT. In
E. Brinksma and K. G. Larsen, editors, Computer-Aided Ver-
ification (CAV ’02), LNCS 2404, pages 236-249, 2002.

[2] R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Modeling
and verifying systems using a logic of counter arithmetic
with lambda expressions and uninterpreted functions. In
E. Brinksma and K. G. Larsen, editors, Computer-Aided Ver-
ification (CAV ’02), LNCS 2404, pages 78-92, 2002.

[3] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill.
Sequential circuit verification using symbolic model check-



[4]

5]

(6]

[7]

(8]

(9]

[10]

[11]

ing. In 27th Design Automation Conference (DAC ’90),
pages 46-51, 1990.

J. R. Burch and D. L. Dill. Automated verification of
pipelined microprocessor control. In D. L. Dill, editor,
Computer-Aided Verification (CAV ’94), LNCS 818, pages
68-80, 1994.

E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded
model checking using satisfiability solving. Formal Methods
in System Design, 19(1):7-34, 2001.

J.-C. Filliatre, S. Owre, H. Ruef, and N. Shankar. ICS: In-
tegrated Canonizer and Solver. In G. Berry, H. Comon, and
A. Finkel, editors, Computer-Aided Verification (CAV ’01),
LNCS 2102, pages 246-249, 2001.

S. K. Lahiri and R. E. Bryant. Deductive verification of ad-
vanced out-of-order microprocessors. In Computer-Aided
Verification (CAV "03), LNCS 2725, pages 341-354, 2003.
S. K. Lahiri, R. E. Bryant, and B. Cook. A symbolic ap-
proach to predicate abstraction. In W. A. Hunt, Jr. and
F. Somenzi, editors, Computer-Aided Verification (CAV ’03),
LNCS 2725, pages 141-153, 2003.

L. Lamport. A new solution of Dijkstra’s concurrent pro-
gramming problem. Communications of the ACM, 17:453—
455, August 1974,

J. Sawada and W. A. Hunt, Jr. Processor verification with
precise exceptions and speculative execution. In A. J. Hu
and M. Y. Vardi, editors, Computer-Aided Verification (CAV
’98), LNCS 1427, pages 135-146, 1998.

M. N. Velev and R. E. Bryant. Effective use of Boolean
satisfiability procedures in the formal verification of super-
scalar and VLIW microprocessors. In 38th Design Automa-
tion Conference (DAC "01), pages 226-231, 2001.



