
A View from the Engine Room: Computational Support
for Symbolic Model Checking?

Randal E. Bryant

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA

Randy.Bryant@cs.cmu.edu

1 Introduction

Symbolic model checking owes much of its success to powerful methods for reasoning
about Boolean functions. The first symbolic model checkers used Ordered Binary Deci-
sion Diagrams (OBDDs) [1] to represent system transition relations and sets of system
states [9]. All of the steps required for checking a model can be expressed as a series
of operations on these representations, without ever enumerating individual states or
transitions. More recently, bounded [3] and unbounded [10, 11] model checkers have
been devised that use Boolean satisfiability (SAT) solvers as their core computational
engines. Methods having a SAT solver work on a detailed system model and OBDDs
operate on an abstracted model have shown that the combination of these two reasoning
techniques can be more powerful than either operating on its own [4]. Boolean meth-
ods have enabled model checkers to scale to handle some of the complex verification
problems arising from real-world hardware and software designs.

Given the importance of Boolean reasoning in symbolic checking, we take this op-
portunity to examine the capabilities of SAT solvers and BDD packages. We use several
simple experimental evaluations to illustrate some strengths and weaknesses of current
approaches, and suggest directions for future research.

2 Experiments in (Un)SAT

Verification problems typically use SAT solver to find an error in the design, and hence
the task is to prove that a formula is unsatisfiable. Currently, the Davis-Putnam-Logemann-
Loveland (DPLL) method [5] for solving SAT problems by backtracking search is heav-
ily favored among complete SAT algorithms. Recent progress in these solvers has led to
remarkable gains in speed and capacity [13], especially in proving that a formula is un-
satisfiable. By contrast, using OBDDs seems like an inefficient approach to solving SAT
problems, since it will generate a representation of all possible solutions, rather than a
single solution. There are some common, and seemingly simple problems, for which
DPLL performs poorly. We illustrate this and compare the performance of OBDDs for
two sets of benchmarks.
? This research was supported by the Semiconductor Research Corporation, Contract RID

1355.001



Size Exhaustive LIMMAT ZCHAFF SIEGE MINISAT CUDD

8 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
16 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
24 3.6 10.0 0.6 0.5 0.3 < 0.1
32 TIME TIME 13.0 3.8 3.7 < 0.1
40 TIME TIME TIME 72.0 162.2 < 0.1
48 TIME TIME TIME TIME TIME < 0.1

Fig. 1. SAT Solver Performance on Parity Tree Benchmarks. Each number is the median time
for comparing 16 different random trees to a linear chain. The timeout limit was set to 900 sec-
onds.

Our first set of benchmarks compares functions for computing the parity of a set of
n Boolean values using a tree of exclusive-or operators. Each instance of the problem
compares a randomly generated tree to a linear chain. We generated 16 different trees
for six different values of n, ranging from 8 to 48. The results, run on an 3.2 GHz
Intel Pentium 4 Xeon, are shown in Figure 1. Since SAT solvers times can vary greatly
depending on minor differences in the problem encoding, we report the median time
for the 16 cases for each value of n. We set a timeout limit of 900 seconds for each
instance.

These parity tree problems are known to be difficult cases for DPLL, or in fact any
method based on resolution principle. Zhang and Malik submitted one such problem
for n = 36 as a benchmark for the SAT solver competition held in conjunction with
the SAT 2002 [14]. None of the solvers at the time could solve the problem within the
40-minute time limit on an Intel Pentium III.

We tested six different solution methods:

Exhaustive Enumerate all 2n possible solutions and test each one.
LIMMAT The LIMMAT solver by Armin Biere from 2002. This solver uses the innova-

tions introduced by the GRASP [8] and CHAFF solvers [13], but without the level of
tuning found in more recent solvers.

ZCHAFF The ZCHAFF 2004 solver, carrying on the work by Malik and his students
[13].

SIEGE The SIEGE version 4 solver, winner of the 2003 SAT competition.
MINISAT The MINISAT version 1.14 solver, winner of the 2005 SAT competition.
CUDD An OBDD-based implementation using the CUDD library from the University

of Colorado.

As can be seen from the results of Figure 1, exhaustive evaluation can readily han-
dle problems up to n = 24, but it becomes impractical very quickly due to the expo-
nential scaling. The LIMMAT solver actually performs slightly worse than exhaustive
evaluation. The other DPLL solvers (ZCHAFF, SIEGE, and MINISAT) can handle all 16
instances for n = 32. Only MINISAT can handle all 16 instances for n = 40, and even
it can solve only 4 of the 16 instances for n = 48. These experiments illustrate that
DPLL solvers have progressed considerably since the 2002 SAT competition, but they
all experience exponential growth for this class of problems.



By contrast, OBDDs can solve parity tree problems with hardly any effort, never
requiring more than 0.1 seconds for any of the instances. Parity functions have OBDD
representations of linear complexity [1], and hence the tree comparison problem can be
solved in worst-case O(n2) time using OBDDs. It would be feasible to solve instances
of this problem for n = 1000 or more.

As a second class of benchmarks, we consider ones that model the bit-level be-
havior of arithmetic operations. Consider the problem of proving that integer addition
and multiplication are associative. That is, we wish to show that the following two C
functions always return the value 1:

int assocA(int x, int y, int z)
{

return (x+y)+z = x+(y+z);
}

int assocM(int x, int y, int z)
{

return (x*y)*z = x*(y*z);
}

We created a set of benchmark problems from these C functions, where we varied the
number of bits n in the argument words x, y, and z, up to a maximum of n = 32. Since
there are three arguments, the number of possible argument combinations is 8n.

Problem Exhaustive CUDD MINISAT

Addition 12 > 32 > 32
Multiplication 12 8 5

Fig. 2. Performance in Solving Associativity Problems Numbers indicate the maximum word
size that can be solved in under 900 seconds of CPU time.

Figure 2 shows the performance for this benchmark by exhaustive evaluation, OB-
DDs using the CUDD package, and MINISAT (the best DPLL-based approach tested).
In each case, we show the maximum number of argument bits n for which the prob-
lem can be solved within a 900 second time limit. Exhaustive evaluation works up to
n = 12, but then becomes impractical, with each additional bit requiring eight times
more evaluations. Both DPLL and OBDDs can show that addition is associative up to
the maximum value tested. For multiplication, we see that OBDDs outperform DPLL,
but neither does as well as brute-force, exhaustive evaluation. For OBDDs, we know
that the Boolean functions for integer multiplication require OBDDs of exponential
size [2], and hence OBDD-based methods for this problem incur exponential space and
time. Evidently, DPLL-based methods also suffer from exponential time performance.



3 Observations

Our first set of benchmarks illustrates one of the challenges of the Boolean satisfiability
problem. While DPLL works well on many problems, it has severe weaknesses, some
of which can be filled by more “niche” approaches, such as OBDDs. Some attempts
have been made to develop SAT solvers that use different combinations of DPLL and
OBDDs, e.g., [7], but none of these has demonstrated consistent improvements over
DPLL. In particular, it seems like the main advantage of current DPLL/OBDD hybrids
is that they can solve problems that are tractable using either DPLL or OBDDs. We
have not seen meaningful examples of them solving problems that cannot be solved by
one of the two approaches operating in isolation.

An additional concern of ours is that the recent success of DPLL methods is having
the effect that the research field is narrowly focusing on this approach to SAT solving.
Researchers have found they can do better in SAT competitions by fine tuning DPLL
solvers rather than trying fundamentally different approaches. While this tuning has
led to remarkable improvements, it is not healthy for the field to narrow the “gene
pool” of SAT techniques. Rather, we should be encouraging researchers to explore new
approaches, even if they only outperform DPLL on small classes of problems, as long
as these classes have practical applications. Steps in this direction include recent work
by Jain, et al [6].

Our arithmetic problems illustrate that, while both DPLL and OBDDs are adequate
for addition and related functions, neither performs well for operations related to integer
multiplication. Indeed, companies that market circuit equivalence checkers have had to
devise ad hoc workarounds for checking circuits containing multipliers. We believe that
the rresearch community should invest more effort in tackling problems that are well
beyond the capability of existing SAT solvers. Examples of challenging problems arise
in the fields of cryptanalysis [12] and combinatorial optimization.

4 Conclusion

2006 marks the twenty-fifth anniversary of model checking, but also the twentieth an-
niversary of powerful tools for Boolean reasoning, first with OBDDs and more recently
with DPLL-based SAT solvers. The field has advanced considerably due to both clever
ideas and careful engineering. Model checking and many other application areas have
directly benefited from these tools. It is important that the research community keeps
pushing ahead with new approaches and new improvements in Boolean reasoning.
There remain many important problems that are beyond the reach of today’s methods.

References

1. R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Transac-
tions on Computers, C-35(8):677–691, August 1986.

2. R. E. Bryant. On the complexity of VLSI implementations and graph representations of
Boolean functions with application to integer multiplication. IEEE Transactions on Com-
puters, 40(2):205–213, February 1991.



3. E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using satisfiability
solving. Formal Methods in System Design, 19(1):7–34, 2001.

4. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction
refinement for symbolic model checking. JACM, 50(5):752–794, 2003.

5. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving. Com-
muncations of the ACM, 5(7):394–397, 1962.

6. H. Jain, C. Bartzis, and E. M. Clarke. Satisfiability checking of non-clausal formulas using
general matings. In A. Biere and C. P. Gomes, editors, Proceedings of Ninth International
Symposium on the Theory and Applications of Satisfiability Testing (SAT 2006), LNCS 4121,
pages 75–89, 2006.

7. H. Jin and F. Somenzi. CirCus, a hybrid satisfiability solver. In H. H. Hoos and D. G.
Mitchell, editors, Proceedings of Eighth International Symposium on the Theory and Appli-
cations of Satisfiability Testing (SAT 2005), LNCS 3542, pages 211–223, 2005.

8. J. P. Marques-Silva and K. A. Sakallah. GRASP: A search algorithm for propositional satis-
fiability. IEEE Transactions on Computers, 48(5):506–521, May 1999.

9. K. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1992.
10. K. McMillan. Applying SAT methods in unbounded symbolic model checking. In

E. Brinksma and K. G. Larsen, editors, Computer-Aided Verification (CAV ’02), LNCS 2404,
pages 250–264, 2002.

11. K. McMillan. Interpolation and SAT-based model checking. In W. A. Hunt, Jr. and
F. Somenzi, editors, Computer-Aided Verification (CAV ’03), LNCS 2725, pages 1–13, 2003.

12. I. Mironov and L. Zhang. Applications of SAT solvers to cryptanalysis of hash functions.
In A. Biere and C. P. Gomes, editors, Proceedings of Ninth International Symposium on the
Theory and Applications of Satisfiability Testing (SAT 2006), LNCS 4121, pages 102–115,
2006.

13. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an efficient
SAT solver. In 38th Design Automation Conference (DAC ’01), pages 530–535, 2001.

14. L. Simon, D. Le Berre, and E. A. Hirsch. The SAT2002 competition. Annals of Mathematics
and Artificial Intelligence, 43(1–4), 2005.


