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Abstract

We compare SAT-checkers and decision diagrams on the evaluation of
Boolean formulas produced in the formal verification of both correct and
buggy versions of superscalar and VLIW microprocessors. The micro-
processors are described in a high-level hardware description language,
based on the logic of Equality with Uninterpreted Functions and Memo-
ries (EUFM). The formal verification is done with Burch and Dill’s cor-
rectness criterion, using flushing to map the state of the implementation
processor to the state of the specification. The EUFM correctness formula
is translated to an equivalent Boolean formula by exploiting the property
of Positive Equality, and using the automatic tool EVC. We identify the
SAT-checkers Chaff and BerkMin as significantly outperforming the rest
of the SAT tools when evaluating the Boolean correctness formulas. We
examine ways to enhance the performance of Chaff and BerkMin by vari-
ations when generating the Boolean formulas. We reassess optimizations
we developed earlier to speed up the formal verification.

1. Introduction

In the past few years, SAT-checkers made dramatic improvements in both their
speed and capacity. We compare 31 of them with decision diagrams—BDDs
(Bryant, 1986, 1992) and BEDs (Williams, 2000)—as well as with ATPG tools
(Hamzaoglu and Patel, 1999)(Tafertshofer, et al., 2000), when used as Boolean
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Satisfiability (SAT) procedures in the formal verification of microprocessors. The
comparison is based on two benchmark suites, each consisting of 101 Boolean
formulas generated in the verification of 1 correct and 100 buggy versions of the
same design—a superscalar and a VLIW microprocessor, respectively. Unlike
existing benchmark suites, e.g., ISCAS85 (Brglez and Fujiwara, 1985) and
ISCASS89 (Brglez, et al., 1989), which are collections of circuits that have nothing
in common, each of our suites is based on a single design and hence provides a
point for consistent comparison of different evaluation methods.

The correctness condition that we use is expressed in a decidable subset of
First-Order Logic (Burch and Dill, 1994). That allows it either to be checked
directly with a customized decision procedure, such as SVC!, or to be translated
to an equivalent Boolean formula (Velev and Bryant, 1999) that can be evaluated
with SAT engines for either proving correctness or finding a counterexample. The
latter approach can directly benefit from improvements in the SAT tools.

We identify Chaff (Moskewicz, et al., 2001; Zhang, et al., 2001) and BerkMin
(Goldberg and Novikov, 2002) as the most efficient SAT-checkers for the second
verification strategy. Chaff and BerkMin significantly outperform BDDs and the
SAT-checker DLM-3 (Shang and Wah, 1998), the previous most efficient SAT
procedures for, respectively, correct and buggy processors. We reevaluate opti-
mizations we developed earlier to enhance the performance of BDDs and DLM-3,
and conclude that many of them are no longer crucial on the same benchmark
suites. This study allows us to eliminate conservative approximations that can
lead to false negative results—a source of annoyance for users.

Our initial research was on developing an Efficient Memory Model (EMM) for
abstracting memory arrays in symbolic ternary simulation at the bit level (Velev
and Bryant, 1998a). The ternary value X, representing a don’t-care condition
and encoded symbolically, allows us to dramatically reduce the number of sym-
bolic vectors that need to be simulated. Additionally, it gives us a way to express
ambiguity in signal values—a property that we exploited to model violations in
the setup and hold time requirements for memory inputs, as well as to represent
the uncertainty of memory output delays that can range between a minimum
and a maximum value.

The EMM dynamically introduces consistent initial state for accessed sym-
bolic addresses, and that allowed us to use read-only EMMs to abstract bit-level
combinational functional units (Velev and Bryant, 1998b). However, the presence
of feedback loops in pipelined processors (e.g., as introduced by the forwarding
logic or the Register File) resulted in impossible to satisfy variable-ordering con-
straints when BDDs were used to evaluate the Boolean correctness formulas. By
restricting the style for defining processors, while still able to model the same
features, we obtained correctness formulas where most of the word-level values
appear only in positive (not negated) equality comparisons. This structure of
the formulas allowed us to treat such word-level values as distinct constants,

1sve (Stanford Validity Checker) is available from: http://sprout.Stanford.EDU/SVC.
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thus dramatically pruning the solution space, while still performing exhaustive
formal proofs. We called this property Positive Equality (Bryant, German, and
Velev, 2001), and showed that it results in orders of magnitude speedup (Velev
and Bryant, 1999).

Next, we demonstrated that the same modeling techniques can be used to
define and formally verify single-issue pipelined, and dual-issue superscalar pro-
cessors that implement exceptions, branch prediction, and multicycle functional
units (Velev and Bryant, 2000). A more complex VLIW processor—imitating
the Intel® Itanium® (Sharangpani and Arora, 2000) in features such as predi-
cated execution, advanced loads, and speculative register remapping—was then
formally verified (Velev, 2000a). A method to automatically abstract memory
arrays, whose correct operation is enforced by the interaction of forwarding and
stalling logic, resulted in an order of magnitude speedup of the BDD-based
evaluation of the correctness formula (Velev, 2001). A significant breakthrough
occurred with the development of the SAT-checker Chaff, as reported in our
earlier study (Velev and Bryant, 2001a). The current paper gives more details
of that work, and presents additional experimental results.

The rest of the paper is organized as follows. Section 2 presents the background
of high-level modeling and formal verification of microprocessors. Section 3 de-
scribes our microprocessor benchmarks used in the experiments. Section 4 lists
the compared SAT procedures, explains the translation of the Boolean correct-
ness formulas to CNF format, and presents results showing that only two SAT
tools—Chaff and BerkMin—scale for our complex benchmarks. Then, we explore
ways to efficiently use these two SAT-checkers. Section 5 studies the impact of
variations when generating and evaluating the Boolean correctness formulas.
Section 6 compares two ways to encode word-level equality comparisons in the
correctness formulas. Section 7 evaluates the benefits of decomposing the cor-
rectness criterion. Section 8 studies the usefulness of conservative approxima-
tions and Positive Equality. Section 9 concludes the paper, and prioritizes the
optimizations that help Chaff and BerkMin.

2. Background

The formal verification is done by correspondence checking—comparison of the
single-issue pipelined, or superscalar, or VLIW implementation processor against
a non-pipelined specification processor, by using Burch and Dill’s flushing tech-
nique (1994). The correctness criterion is expressed as a formula in the logic of
Equality with Uninterpreted Functions and Memories (EUFM), also proposed
by Burch and Dill (1994), and states that all architectural state elements in the
processor should be updated in synchrony by either 0, or 1, or up to k£ instruc-
tions after each clock cycle, where £ is the maximum number of instructions that
the design can fetch in a clock cycle. The correctness formula is then translated
to an equivalent Boolean formula by the automatic tool EVC (Velev and Bryant,
2001b) that exploits the properties of Positive Equality (Bryant, German, and
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Velev, 2001), the e;; encoding (Goel, et al., 1998), and a number of conservative
approximations. The resulting Boolean correctness formula should be a tautol-
ogy (or, equivalently, its complement should be unsatisfiable) in order for the
processor to be correct, and can be evaluated by any SAT procedure.

The syntax of EUFM (Burch and Dill, 1994) includes terms and formulas—see
Figure 1.

term = ITE(formula, term, term)
| uninterpreted-function(term, ..., term)
| read(term, term)

| write(term, term, term)

formula = true | false | (term=term)

| (formula A formula) | (formula Vv formula) | ~formula
| ITE(formula, formula, formula)

| uninterpreted-predicate(term, . .., term)

Figure 1: Syntax of the logic of Equality with Uninterpreted Functions and Memories.

Terms are used to abstract word-level values of data, register identifiers, mem-
ory addresses, as well as the entire states of memory arrays. A term can be an
Uninterpreted Function (UF) applied to a list of argument terms; a term variable
(that can be viewed as an UF symbol without arguments); or an ITE operator
selecting between two argument terms based on a controlling formula, such that
ITE((formula, termy, terms) will evaluate to term; when formula = true and to
terms when formula = false. The syntax for terms can be extended to model
memories by means of the interpreted functions read and write (Burch and Dill,
1994)(Velev, 2001). Function read takes two terms, serving as memory state and
address, respectively, and returns a term for the data at that address. Function
write takes three terms—memory state, address, and data—and returns a term
for the new memory state after the update. The two functions satisfy the for-
warding property of the memory semantics—a read returns the data written by
the last write, if their addresses are equal, or the data from the previous memory
state otherwise. The initial state of a memory is abstracted with a term variable.

Formulas are used to model the control path of a microprocessor, as well as to
express the correctness condition. A formula can be an Uninterpreted Predicate
(UP) applied to a list of argument terms; a propositional variable (that can be
viewed as an UP symbol without arguments); an ITE operator selecting between
two argument formulas based on a controlling formula; or an equation (equality
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comparison) of two terms. Formulas can be negated, conjuncted, or disjuncted.
We will refer to both terms and formulas as expressions.

UF's and UPs are used to abstract away the implementation details of func-
tional units by replacing them with “black boxes” that satisfy no particular
properties other than that of functional consistency—equal combinations of ex-
pressions at the inputs of the UF (or UP) produce equal output values. Then,
it no longer matters whether the original functional unit is an adder or a mul-
tiplier, etc., as long as the same UF (or UP) is used to replace it in both the
implementation and the specification processor. We assume that the functional
units and memories are formally verified separately.

2.1. Example High-Level Pipelined Microprocessor

The above abstraction techniques are illustrated with the 3-stage pipelined pro-
cessor shown in Figure 2. The 3 stages are Instruction Fetch and Decode (IFD),
Execute (EX), and Write-Back (WB). For illustration purposes, the processor can
execute register-register instructions only. Uninterpreted functions ALU, and +4
are used to abstract, respectively, the ALU, and the adder for incrementing
the Program Counter (PC). The Register File is abstracted with functions read
and write, such that signal WB_RegWrite is used as the condition for performing
writes. In other words, if wb_reqwrite is a symbolic expression for the value of that
signal, then the new Register File state will be ITE (wb_reqwrite, write(prev_state,
wb_destreg, wb_result), prev_state), where prev_state is an expression for the pre-
vious Register File state; wb_destreg and wb_result are expressions for the values
of signals WB_DestReg and WB_Result, respectively, and serve as the address
and data arguments of the write operation. All the word-level values—register
identifiers, opcodes, data operands, ALU result, and PC—are modeled as terms.
The opcode, Op, specifies the operation to be performed by the ALU. We will
assume that the processor does not execute self-modifying code, which allows
us to represent the (read-only) Instruction Memory, InstrMemory, as a collection
of UFs and UPs that take the PC as argument and abstract the fetching and
decoding of the corresponding field of a new instruction. The processor has for-
warding logic, situated in EX, only for the second data operand. Data hazards
for the first data operand are avoided by the stalling logic in IFD, so that the
dependent instruction is delayed in IFD until the result it needs is written back to
the Register File. The Register File is assumed to be write-before-read, which is
modeled by synchronizing its updates with a phase clock that precedes the phase
clock controlling the updates of pipeline latch IFD_EX. These modeling details
are expressed in a high-level hardware description language that is accepted by
the term-level symbolic simulator TLSim (Velev and Bryant, 2001b).

The correct behavior is defined by a non-pipelined specification processor that
is built from the same UFs, UPs, and architectural state elements (PC and
Register File in the example) as the pipelined implementation—see Figure 3.
This design is the Instruction Set Architecture (ISA) put together in a single-
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Figure 2: Block diagram of a 3-stage pipelined processor.

_ RegWrite
DestReg
“ Result
> ) Data2 _
»| RegFile Datal o aLu Result

\

Op t
|DestReg I:
|RegWriteI :

L — — — — a

Figure 3: Block diagram of the non-pipelined specification processor.

cycle model. The processor fetches, executes, and completes one new instruction
on every clock cycle. Because of its simplicity, it is easy to define correctly.
Furthermore, it will be extremely easy to formally verify—the action of every
instruction type can be checked directly against its expected behavior, as defined
in the ISA.

Note that by applying all of the abstractions, we get a much more general
pipelined processor than the original, such that the functional units are only
functionally consistent, but do not satisfy any other properties of their original
implementations. However, proving the correctness of such abstract processors is
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much easier. If the pipeline is correct, it will work properly for any functionally
consistent implementation of the logic that is abstracted with UFs or UPs.

2.2. Overview of Translating the EUFM Correctness Formula to Equivalent
Boolean Formula

In order to translate the EUFM correctness formula to an equivalent Boolean
formula, we need to eliminate the UFs and UPs in a way that their property of
functional consistency is enforced, as well as to encode the term-level equality
comparisons with Boolean formulas such that the property of transitivity of
equality is satisfied.

Two possible ways to eliminate UFs and UPs, while enforcing their property
of functional consistency, are Ackermann constraints (Ackermann, 1954), and
nested ITEs (Velev and Bryant, 1999)(Bryant, German, and Velev, 2001). The
Ackermann scheme replaces each UF (UP) application in the EUFM formula
F with a new term variable (propositional variable), and then adds external
constraints for functional consistency. For example, the UF application f(as, b)
will be replaced by a new term variable ¢;, another application of the same UF,
f(az, bs), will be replaced by a new term variable c,. Then, the resulting EUFM
formula F’ will be extended as

[(0,1 = CLQ) N (bl = bg) = (01 = Cg)] = F'.

In the nested-ITE scheme, the first application of the UF above will still be
replaced by a new term variable c;. However, the second will be replaced by

ITE((as = a1) A (by = b1), 1, C2),
where ¢, is a new term variable. A third, f(as, b3), will be replaced by
]TE((CLg = al) A (bg = bl), C1, ITE((a3 = ag) A (b3 = bg), Co, 03)),

where c3 is a new term variable, and so on. UPs are eliminated similarly by using
new Boolean variables, instead of new term variables.

Positive Equality allows the identification of two types of terms in the structure
of an EUFM formula—those that appear in only positive equations (p-equations)
and are so called p-terms (for positive terms), and those that appear in both
positive and negative equations and are so called g-terms (for general terms).
A negative equation is one that appears under an odd number of negations,
or as part of the controlling formula for an ITE operator. The efficiency from
exploiting Positive Equality is due to the observation that the truth of an EUFM
formula under a maximally diverse interpretation of the p-terms implies the truth
of the formula under any interpretation. A maximally diverse interpretation
is one where the equality comparison of a term variable with itself evaluates
to true, that of a p-term variable with a syntactically distinct term variable
evaluates to false, and that of a g-term variable with a syntactically distinct
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g-term variable could be either true or false and can be encoded either with a
Boolean variable (Goel, et al., 1998) or with a Boolean function (Pnueli, et al.,
1999)—details of these encodings are presented in Section 6. We call the equality
comparison of two syntactically distinct g-term variables a g-equation. Evaluating
the EUFM correctness formula under a maximally diverse interpretation results
in dramatic simplifications, and thus in orders of magnitude speedup.

As a result, the EUFM correctness formula is translated to an equivalent
Boolean formula that has to be a tautology in order for the EUFM correct-
ness formula to be valid. The Boolean formula can be evaluated with any SAT
procedure—see Section 4.

3. Microprocessor Benchmarks

We base our comparison of SAT procedures on a set of high-level microprocessors:

e 1xDLX-C (Velev and Bryant, 1999): a single-issue 5-stage pipelined DLX,
as described by Hennessy and Patterson (2002);

e 2xDLX-CC (Velev and Bryant, 1999): a dual-issue superscalar DLX, which
is an extended version of a processor verified by Burch (1996);

e 2xDLX-CC-MC-EX-BP (Velev and Bryant, 2000): a version of 2x DLX-CC
with multicycle functional units, exceptions, and branch prediction;

e 9VLIW-MC-BP (Velev, 2000a): a 9-wide VLIW processor that imitates the
Intel® Ttanium® (Intel, 1999)(Sharangpani and Arora, 2000) in specula-
tive features such as predicated execution, speculative register remapping,
advanced loads, and branch prediction.

The single-issue pipelined processor, 1 x DLX-C, has five stages: Fetch, Decode,
Execute, Memory, and Write-Back. The design can execute seven instruction
types: register-register ALU instructions, register-immediate ALU instructions,
loads, stores, branches, jumps, and nops. A nop only increments the Program
Counter (PC), but does not modify other architectural state elements. Branches
do not have delay slots, i.e., an instruction that immediately follows a branch is
completed only if the branch is not taken. The processor is biased for branch-
not-taken, and continues to fetch instructions that sequentially follow a branch
(i.e., instructions from the path when the branch is not taken) until the branch
is resolved in the Execute stage. Then, if the branch is taken, as can be checked
in the Memory stage, the three speculatively fetched sequential instructions that
are in the Fetch, Decode, and Execute stages are squashed (canceled), and the
PC is updated with the target of the branch. Read-After-Write hazards—due
to pending updates of the Register File by instructions that are in the Memory
and Write-Back stages, when a dependent instruction is in the Execute stage—
are resolved by forwarding of the data values from the Memory and Write-Back
stages to the inputs of the functional units in the Execute sage. However, the
processor does not have a forwarding path from the output of the Data Memory
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in the Memory stage to the Execute stage in order to satisfy a data dependency
when a load gets data from memory and that value is used in the Execute stage
by the instruction immediately following the load. Although such a forwarding
path is feasible, it will likely lengthen the clock cycle in order to allow a signal to
propagate through the Data Memory, the forwarding logic, and then the ALU in
the Execute stage, thus slowing all instructions only to satisfy a data dependency
in the infrequent case of a load immediately followed by a dependent instruction.
Instead, commercial pipelined processors and our design adopt an alternative
solution that avoids such data hazards by stalling the dependent instruction in
the Decode stage, when the load providing a data operand is in the Execute stage.
That means that the dependent instruction stays in the Decode stage during the
next clock cycle, while the load is allowed to advance to the Memory stage, and a
bubble (a combination of control bits that will not modify any architectural state
element) is inserted in the Execute stage. A cycle later, the dependent instruction
is allowed to advance to the Execute stage, while the load will have gotten the
data from the Memory stage and will be in the Write-Back stage, so that the
data dependency can be satisfied by the forwarding path from the Write-Back
to the Execute stage. This mechanism, preventing data hazards in the case of a
load immediately followed by a dependent instruction, is called a load interlock
(Hennessy and Patterson, 2002). A pipelined processor should be able to handle
any combination of hazards that might occur between instructions in the pipeline
stages. We assume that the processor does not execute self-modifying code, which
allows us to model the (read-only) Instruction Memory in the Fetch stage and
the Data Memory in the Memory stage as separate memories. Otherwise, the
processor has to be extended with a mechanism to re-execute instructions that
get modified by store instructions still in later pipeline stages; this mechanism
is similar to the one for correcting branch mispredictions, e.g., as implemented
in 2xDLX-CC-MC-EX-BP.

The dual-issue superscalar implementation, 2xDLX-CC, consists of two
1xDLX-C pipelines, and can fetch up to two sequential instructions per clock
cycle. Now there are two load interlock conditions per instruction in the Decode
stage, since each of these two instructions has to be checked for data dependen-
cies on the two possible loads in the Execute stage. If the first instruction in
Decode gets stalled, the second is also stalled. Additionally, the second instruc-
tion is stalled if it has a data dependency on the first. 2x DLX-CC-MC-EX-BP
extends 2xDLX-CC with multicycle functional units, exceptions, and branch
prediction. Each of the Instruction Memory, the two ALUs in the Execute stage,
and the Data Memory can take multiple cycles to produce a result, and can raise
an exception. The Fetch stage has an abstraction of a branch predictor that pre-
dicts both the direction (taken or not-taken) and the target of a newly fetched
branch, but only the target of a newly fetched jump, since jumps are always
taken. Based on these predictions, the PC is speculatively updated, such that
when the actual branch/jump outcome is known in the Memory stage, special
logic corrects mispredictions by squashing the speculatively fetched instructions.
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Figure 4: Block diagram of the VLIW architecture that was formally verified.

The VLIW benchmark, 9VLIW-MC-BP (see Figure 4), is far more complex
than any other processor that has been formally verified previously in an auto-
matic way. It has a fetch engine that supplies the execution engine with a packet
of 9 instructions, with no Read-After-Write dependencies between any two of
them. Each of these instructions is already matched with one of 9 execution
pipelines of 4 stages: 4 integer pipelines, two of which can perform both integer
and floating-point memory accesses; 2 floating-point pipelines; and 3 branch-
address computation pipelines. Data values are stored in 4 register files: integer,
floating-point, predicate, and branch-address. In addition to these 4 register files,
the architectural state consists of a PC, a Data Memory, as well as two state
elements from Intel’s 64-bit architecture, IA-64 (Intel, 1999)(Sharangpani and
Arora, 2000)—a Current Frame Marker (CFM) that is used for register remap-
ping, and an Advanced Load Address Table (ALAT) that is used to implement
advanced loads. Every instruction is predicated with a qualifying predicate reg-
ister identifier, such that the result of that instruction affects architectural state
only when the qualifying predicate register has value 1. The two floating-point
ALUs, as well as the Instruction and Data Memories, can each take multiple
cycles for computing a result or completing a fetch, respectively. There can be
up to 42 instructions in flight. An extended version, 9VLIW-MC-BP-EX that
also implements exceptions, was later designed as described in Section 7.

For both 2xDLX-CC-MC-EX-BP and 9VLIW-MC-BP, we created 100 incor-
rect versions by injecting bugs into the designs. The bugs were variants of actual

—
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errors made in the design of the correct versions, as well as variants of errors
detected in Intel microprocessors (Bentley, 2001)(Jones, 2002), and in academic
processors (Van Campenhout, et al., 1998, 2000). The injected bugs included:

e Omitted inputs to logic gates. For example, a speculatively fetched instruc-
tion is not squashed when a preceding branch is mispredicted, or a load
interlock does not account for all cases when a value loaded from memory
will be used by a dependent instruction.

e Incorrect inputs to logic gates, functional units, or memories. For example,
an input with the same name but a different index. Such bugs were detected
in the formal verification of an TA-32 instruction-length decoder in an actual
Intel processor, as discussed by Jones (2002, pages 85—86). Bentley (2001)
similarly lists typos and cut-and-paste errors in a category of ” Goof” bugs,
detected in the Intel® Pentium® 4 microprocessor.

e Incorrect types of logic gates. For example, an AND gate instead of an OR
gate, as was the case in an actual Intel processor bug described by Jones
(2002, page 85).

e Lack of a mechanism to correct a speculative update of an architectural
state element, if the speculation turns out to be wrong. For example, the
PC is updated speculatively, based on a prediction for the direction and
target of a newly fetched branch, but there is no logic to update the PC with
the correct branch target if the prediction happens to be wrong. Similarly,
when designing 9VLIW-MC-BP, a bug was inadvertently made in that the
CFM could be updated speculatively by instructions along the predicted
path after a branch, but there was no mechanism to restore the correct
CFM state if the branch was mispredicted.

Hence, the variations introduced were not completely random, as done in other
efforts to generate benchmark suites (Harlow and Brglez, 2001)(Iwama, et al.,
1992, 1994) (Mitchell, et al., 1992), but reflected realistic scenarios for errors that
can be made when designing high-level microprocessors. The bugs were spread
over the entire designs, and occurred either as single or multiple errors.

4. Comparison of SAT Procedures

We evaluated 31 SAT-checkers. Nine of them were complete (i.e., could prove
unsatisfiability), were based on the Davis-Putnam-Logemann-Loveland (DPLL)
algorithm (Davis, et al., 1962), and implemented learning:

e SAT0.3.2.1 (Zhang, 1997);

e GRASP (Marques-Silva and Sakallah, 1999)(Marques-Silva, 1999)?, imple-
menting nonchronological backtracking, was used both with a single strat-
egy and in a mode with restarts, randomization, and recursive learning
(Baptista and Marques-Silva, 2000);

2GRASP is available from: http://vinci.inesc.pt/~jpms/grasp.
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CGRASP (Marques-Silva and e Silva, 1999)3, a version of GRASP that ex-
ploits structural information;

rel_sat.1.0, and rel_sat.2.1 (Bayardo and Schrag, 1997)%;
rel_sat_rand.1.0 (Gomes, et al., 2000)*;

Chaff (Moskewicz, et al., 2001; Zhang, et al., 2001)°, implementing lazy
Boolean constraint propagation, conflict-based relevance-limited learning,
restarts, randomization, and decision heuristics guided by recent conflict
clauses;

SIM0.2.0 (Copty, et al., 2001)%; and

BerkMin version 62 (Goldberg and Novikov, 2002), extending the ideas from
Chaff with decision heuristics and database management procedures that
attempt to satisfy the most recently deduced conflict clauses.

Eight SAT-checkers were also complete and based on the DPLL algorithm, but
did not have learning:

satz, and satz.v213 (Li and Anbulagan, 1997)*;
satz-rand.v4.6 (Gomes, et al., 2000)%;
eqgsatz.v20 (Li, 2000);

posit (Freeman, 1995)*;

ntab (Crawford and Auton, 1996)*; and

ASAT, and C-SAT (Dubois, et al., 1993).

Seven SAT-checkers were incomplete (i.e., could not prove unsatisfiability):

DLM-2, and DLM-3 (Shang and Wah, 1998), as well as DLM-2000 (Wu and
Wah, 1999), all based on global random search and discrete Lagrangian
Multipliers as a mechanism to not only get the search out of local min-
ima, but also steer it toward a global minimum, i.e., toward a satisfying
assignment;

GSAT.v41 (Selman and Kautz, 1993)%;
WalkSAT.v37 (Selman, et al., 1996)*;
CLS (Prestwich, 2000); and

UnitWalk (Hirsch and Kojevnikov, 2001)7, based on local search guided by
unit clause elimination.

3CGRASP is available from: http://vinci.inesc.pt/~lgs/cgrasp.

4The SAT-checker is available from: http://www.satlib.org/solvers.html.
®We used the version mChaff with parameter file cherry 032301 (Moskewicz, 2001).

6SIM0.2.0 is available from: http://frege.mrg.dist.unige.it/star/sim/home.html.

"UnitWalk is available from: http://logic.pdmi.ras.ru/~arist/UnitWalk.
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And seven other SAT-checkers, based on different methods:

e QSAT (Plaisted, et al., 2002), and QBF (Rintanen, 1999), both targeted to
quantified Boolean formulas;

e ZRes (Chatalic and Simon, 2000), combining Zero-Suppressed BDDs
(Minato, 1996, 2001) with the original Davis and Putnam (1960) proce-
dure;

e BSAT, and IS-USAT, both using BDDs and exploiting the properties of unate
Boolean functions (Kalla, et al., 2000);

e Prover, a commercial SAT-checker using Stalmarck’s method (Stalmarck,
1989); and

e HeerHugo (Groote and Warners, 2000), a publicly available SAT-checker
that also uses Stalmarck’s method.

Additionally, we experimented with 2 ATPG tools—ATOM (Hamzaoglu and
Patel, 1999), and TIP (Tafertshofer, et al., 2000)—used to test the output of a
benchmark for being stuck-at-0, thus triggering the justification of value 1 at the
output, and turning the ATPG tool into a SAT-checker.

We also used Binary Decision Diagrams (BDDs) (Bryant, 1986, 1992), and
Boolean Expression Diagrams (BEDs) (Williams, 2000). The latter is not a
canonical representation of Boolean functions, but was shown by Williams, et
al. (2000) to be extremely efficient when formally verifying multipliers.

The translation to the CNF format (Johnson and Trick), used as input to most
SAT-checkers, was done after inserting a negation at the top of the Boolean cor-
rectness formula that has to be a tautology in order for the processor to be
correct. If the formula is indeed a tautology, then its negation will be constantly
false, and a complete SAT-checker will be able to prove unsatisfiability. Other-
wise, a satisfying assignment for the negation will be a counterexample.

In translating to CNF, we introduced a new auziliary Boolean variable for ev-
ery A, V, or ITE operator in the Boolean correctness formula, and then imposed
disjunctive constraints (clauses) that the value of a variable for an operator must
be consistent with the values of the variables for the operands of that operator,
given its semantics—see Figure 5.a—c. Negations (—) do not generally require
introducing new variables and clauses. Instead, we can represent the value of a
negation by using the complement of the variable for its argument. For exam-
ple, rather than introducing variables a’ and 3’ in Figure 6.a, we use negated
versions of variables a and y respectively in Figure 6.b, thus reducing the num-
ber of variables and clauses in the CNF formula. Only the negation inserted at
the top of the original Boolean correctness formula was explicitly represented
with clauses, e.g., those restrictig variable w to be the negation of variable z in
Figure 6. All clauses were conjuncted together, including a constraint that the
top-level formula (the negation of the original Boolean correctness formula)—
represented by variable w in Figure 6—must be true. The same translation
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Figure 5: Translation of Boolean operators to CNF: (a) A; (b) V; (¢) ITE; and (d) —.
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Figure 6: Translation of a Boolean formula (a) to a CNF formula (b) by replacing internal
negations with the complements of their arguments, when we want to find a falsifying assign-
ment for the original output z. Variables a, b, ¢, d, e, and f are primary variables since they
represent inputs to the formula. Variables x, y, and z are auxiliary variables and are intro-
duced to represent the values of operators other than negations. The top negation with output
w, also an auxiliary variable, and the last constraint ”A w” were added so that a satisfying
assignment for the CNF formula (b) will be a falsifying assignment for the original output z.

of Boolean formulas to CNF format was used by Larrabee (1992), except that
negations were explicitly represented with clauses (see Figure 5.d). When gen-
erating the Boolean correctness formula in EVC (Velev and Bryant, 2001b), we
hashed the expressions and kept only one copy of isomorphic operators. This
significantly reduced the size of the correctness formula, as well as the number
of CNF variables and clauses. The variables in the original Boolean correctness
formula will be called primary Boolean variables.
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We ran the experiments on a 336-MHz Sun4 with 4 GB of physical memory. For
the BDD-based runs, we used the BDD package CUDD version 2.3.0 (Somenzi,
2001)®, and the sifting dynamic variable reordering heuristic (Rudell, 1993).
In the BED evaluations’, we experimented with converting the final BED into
a BDD with both the up_one() and up_all() functions (Williams, 2000) by
employing 4 different variable ordering heuristics—variants of the depth-first
and fanin heuristics (Malik, et al., 1988)—that were the most efficient when
verifying multipliers (Williams, et al., 2000).

% Satisfiable in

SAT Procedure

< 24 sec < 240 sec < 2,400 sec
Chaff 100 100 100
BerkMin 97 100 100
DLM-3 51 82 98
DLM-2 50 84 97
UnitWalk 45 81 98
CGRASP 44 49 68
QSAT 33 47 52
SATO 22 30 69
GRASP 14 21 24
rel_sat.1.0 13 17 22
WalkSAT 10 16 27
rel_sat_rand 10 19 29
SIMO 7 14 16
CLS ) 8 10
GRASP with restarts 4 11 14
rel_sat.2.1 3 58 97
DLM-2000 2 24 66
BDDs 2 2 3
eqsatz 1 5 7

Table 1: Comparison of SAT procedures on 100 buggy versions of 2xDLX-CC-MC-EX-BP.

The SAT procedures that scaled for the 100 buggy variants of 2xDLX-CC-
MC-EX-BP are listed in Table 1. The rest of the SAT solvers had trouble even
with the single-issue processor, 1 X DLX-C (whose CNF correctness formula had
776 variables, and 3,725 clauses), or could not scale for its dual-issue version,
2xDLX-CC (1,516 CNF variables, and 12,812 clauses) that does not imple-
ment exceptions, multicycle functional units, and branch prediction. For exam-
ple, Prover could not solve the Boolean formula for correctness of 2xDLX-CC
within 24 hours, as reported in our earlier work (Velev and Bryant, 1999). The
SAT-checker Chaff had the best performance, finding a satisfying assignment
for each benchmark in less than 24 seconds (indeed, less than 23.24 seconds). It

8CUDD is available from: http://vlsi.colorado.edu/~fabio.
9Based on BED package version 2.5, available from: http://www.it-c.dk/research/bed.
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was closely followed by BerkMin that solved 97 instances in less than 24 seconds
each, and required less than 29 seconds for each of the other three benchmarks.
We ran the rest of the SAT procedures for 240 and 2,400 seconds—one and two
orders of magnitude more than Chaff. DLM-3 and DLM-2 were third and fourth,
respectively, but could solve only half the instances within the time limit of
24 seconds. UnitWalk and CGRASP solved 45 and 44 instances, respectively, in
24 seconds for each, followed by QSAT with 33 of the benchmarks under 24 sec-
onds. The rest of the SAT procedures, including BDDs, performed significantly
worse. DLM-2000 is slower than DLM-3 and DLM-2 because of extensive analysis
before each decision.

The 100 buggy variants of 2xDLX-CC-MC-EX-BP are available as benchmark
suite SSS-SAT.1.0 (Velev, 2000b), and have been used for SAT experiments by
many researchers. Lynce, et al. (2001) present the SAT-checker Quest0.5, built
on top of GRASP and based on restarts and random backtracking. They report
that Quest0.5 took 292 seconds to solve the 100 buggy variants of 2xDLX-CC-
MC-EX-BP on their computer, while Chaff required 84 seconds, i.e., was ap-
proximately 3.5 times faster. Janssen (2001) describes a pointerless BDD package
that required less memory than CUDD version 2.3.0 when run on the benchmarks
in suite SSS.1.0 (Velev, 1999), consisting of 48 variants of 2x DLX-CC. His BDD
package was up to 3 times faster on 8 of the benchmarks, but required compara-
ble CPU time for the rest. He does not present results for the more challenging
100 buggy variants of 2xDLX-CC-MC-EX-BP.

When verifying the correct version of 2xDLX-CC-MC-EX-BP (4,583 CNF
variables, and 41,704 clauses), BerkMin was the fastest—requiring 15 seconds,
followed by Chaff with 22 seconds. BDDs took 2,635 seconds (Velev and Bryant,
2000), while QSAT—14 hours and 37 minutes. CGRASP, SATO, GRASP, and GRASP
used in a mode with restarts, randomization, and recursive learning did not finish
in 24 hours.

We then compared Chaff and BerkMin on the 100 buggy VLIW designs:
Chaff was better in 73 cases; BerkMin was faster by at least 60 seconds on only
7 benchmarks. For Chaff, the minimum time per benchmark was 3.7 seconds
and the maximum 180.4 seconds, as compared to a minimum of 8.7 seconds and
a maximum of 151.4 seconds for BerkMin. The average time was 32.5 seconds
for Chaff, and 43.6 seconds for BerkMin. The variations in the times to find
a satisfying assignment, i.e., to detect bugs, can be explained with the fact
that the single or multiple errors in a buggy design affect a different number
of architectural state elements and under different conditions than the errors
in another buggy design. Generally, errors that affect fewer architectural state
elements and under rare conditions are harder to detect. The SAT-checker DLM-3
did not complete 5 of the VLIW benchmarks in 3,600 seconds. The CNF formulas
from verification of the 100 buggy VLIW designs are available as benchmark suite
VLIW-SAT.1.0 (Velev, 2000D).

The correct 9VLIW-MC-BP had a CNF formula with 20,093 variables, and
179,492 clauses. Chaff took 759 seconds to prove the unsatisfiability of that
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formula, while BerkMin required 224 seconds. In the original experiments, BDDs
took 31.5 hours (Velev, 2000a).

While preparing the final version of this paper, we learned of another pro-
prietary SAT-checker (Pilarski and Hu, 2002), recently developed at Synopsys,
Inc., and also extending the ideas from Chaff. Pilarski and Hu (2002) report
that their SAT solver is 2.4 times faster than zChaff'® on the 100 buggy su-
perscalar benchmarks (SSS-SAT.1.0), 3.3 times faster on the 100 buggy VLIW
benchmarks (VLIW-SAT.1.0), and more than 6 times faster on the unsatisfiable
CNF instances from correct designs (FVP-UNSAT.1.0) that include the VLIW
processor. However, we found zChaff to be slower than mChaff, which is used
in this paper. We could not obtain Pilarski and Hu’s SAT-checker in order to
directly compare it with Chaff (i.e., mChaff) and BerkMin.

Figure 7 compares Chaff and BDDs on the 100 buggy VLIW designs, such
that Chaff is evaluating only one monolithic correctness criterion, while BDDs
evaluate 16 weak and simpler correctness criteria in parallel (Velev, 2000a)—
see Section 7. The assumption is that there are enough computing resources for
parallel runs of the verification tool EVC (Velev and Bryant, 2001b) that can
directly use BDDs, instead of saving the formula in CNF format. As soon as
one of these parallel runs finds a counterexample, we terminate the rest, and
consider the minimum time as the verification time. As shown, the difference
between BDDs and Chaff is up to 4 orders of magnitude. In a different body
of work—Bounded Model Checking—Clarke, et al. (2001), Bjesse, et al. (2001),
and Copty, et al. (2001) also report that SAT-checkers performed much better
than BDDs.
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Figure 7: Comparison of Chaff (with 1 run) and BDDs (with 16 parallel runs) on the 100
buggy versions of 9VLIW-MC-BP. The benchmarks are sorted in ascending order of their
times for the BDD-based experiments.

10 Available from http://www.ee.princeton.edu/~chaff/software.php.
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Applying the script simplify (Marques-Silva, 2000) in order to algebraically
simplify the CNF formula for one of the buggy VLIW designs required more than
47,000 seconds, while Chaff took only 14 seconds to find a satisfying assignment
without simplifications. This is not surprising, given that the buggy VLIW de-
signs had CNF formulas of up to 25,000 variables, and up to 450,000 clauses.
Another simplifier, presented by Brafman (2001), took 130 seconds to process
the CNF formula, but did not speed up Chaff. We also tried the MINCE heuris-
tic (Aloul, et al., 2001) that uses a min-cut linear placement algorithm in order
to statically rename the CNF variables in a way that reduces the cutwidth of the
formula. MINCE took 3,203 seconds, and the resulting CNF formula required an
almost doubled CPU time for a solution by Chaff. Finally, Wang, et al. (2001)
propose another algorithm for computing a CNF variable ordering that reduces
the cutwidth. They ran it on the 9 satisfiable CNF instances in benchmark suite
SSS.1.0a (Velev, 1999)—formulas generated in the formal verification of buggy
variants of 2x DLX-CC. Their algorithm could not complete five of the instances
within a time limit of 10,000 seconds for each, and solved the other four after
more than 5,700 seconds total. In contrast, Chaff solves these 9 instances in
26 seconds total. Therefore, attempts to preprocess CNF formulas prior to SAT-
checking did not yield improvement.

Hence, based on experiments with two benchmark suites, each consisting of
one correct high-level processor and 100 buggy variants of the same design, we
identified Chaff and BerkMin as the most efficient SAT procedures for solving
satisfiable CNF instances generated in the formal verification of incorrect pro-
cessors, with BerkMin being significantly faster on unsatisfiable instances from
formal verification of the correct designs. As observed in our earlier work (Velev
and Bryant, 2001a), the breakthrough occurred with Chaff, which was more
than 2 orders of magnitude faster than the other SAT solvers available at the
time. BerkMin was created later and further develops the ideas from Chaff, but
is a proprietary SAT solver that is not publicly available.!' How do such powerful
SAT-checkers change the frontier of possibilities? The rest of the paper examines
ways to increase the productivity in microprocessor formal verification by using
Chaff and BerkMin as the back-end SAT procedures.

5. Impact of Variations in Eliminating UFs and UPs

When translating the EUFM correctness formula to an equivalent Boolean for-
mula, we can apply the following two structural variations:

e Early reduction of p-equations. In eliminating UFs and UPs and en-
forcing functional consistency with nested ITFEs (see Section 2.2), the trans-
lation algorithm introduces equations between argument terms in order to
control the nested ITFEs. Although such equations are implicitly negated
for the case when they select the else-term of one of these nested ITFEs, we

1We thank E. Goldberg for releasing BerkMin to us.
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can still treat them as p-equations as long as each of their argument terms
has only p-term variables in its support (Velev and Bryant, 1999)(Bryant,
German, and Velev, 2001). This results in replacing the UFs and UPs with
lookup tables that map each unique combination of symbolic expressions
at the inputs of the UFs or UPs to a corresponding new term variable or
Boolean variable, respectively, for the output value. The elimination of UF's
and UPs is done recursively, starting from the leaves of the EUFM correct-
ness formula. Then, when an application of an UF or UP is eliminated, the
expressions for its input terms will consist of only nested ITEs that select
one from a set of supporting term variables. If the terms on both sides of an
equation have disjoint supports of p-term variables, then the two compared
terms will not be equal under a maximally diverse interpretation, and their
equation can be replaced with the constant false. This is done in the fi-
nal step of the translation algorithm (Velev and Bryant, 1999). However,
an early reduction of such equations will result in a different (but equiva-
lent) structure of the Boolean correctness formula, i.e., in a different (but
equivalent) CNF formula to be evaluated by SAT-checkers.

e Eliminating UPs with Ackermann constraints. Using Ackermann
constraints (Ackermann, 1954) to enforce the functional consistency of elim-
inated UFs and UPs, as discussed in Section 2.2, yields a negated equation
for the new variables, ¢; and co, that replace the original UF or UP appli-
cations:

[(0,1 = ag) N (bl = bg) = (Cl = Cg)] = F,,

which is equivalent to:
(a1 = CLQ) A (bl = b2) A _|(Cl = 02) V FI,

The negated equation for the new variables ¢; and ¢, means that they can-
not be p-terms—something that we want to avoid in order to exploit the
computational efficiency of Positive Equality. Therefore, Ackermann con-
straints should not be used to eliminate UFs whose results appear only in
positive equations. However, Ackermann constraints can be used to elimi-
nate UPs—then the negated equations will be over Boolean variables, and
that is not a problem when using Positive Equality. Hence, Ackermann
constraints can be used instead of nested ITFEs to eliminate UPs.

In order to exploit the above structural variations, we can run parallel copies
of the formal verification tool flow, all of them applied to the same design, and
each using a different structural variation or combination thereof. Then, one
satisfying assignment is enough to detect a bug, i.e., we take the minimum of
the run times as the time to find the bug.

As Table 2 shows, when each of Chaff and BerkMin was used in 4 parallel
runs—1 base run without structural variations and 3 runs with such variations
(i.e., base, ER, AC, ER+AC, as explained in the table)—the average time was
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reduced by a factor of 2—from 32.5 to 14.4 seconds for Chaff, and from 43.6 to
20.3 seconds for BerkMin. Similarly, the maximum time was reduced by a factor
of 2.5 for both tools—from 180.4 to 74.9 seconds for Chaff, and from 151.4 to
62.0 seconds for BerkMin. We also ran Chaff with 3 parameter variations in
the base configuration file, cherry 032301, as suggested by Moskewicz (2001):
1) the restart period was increased from 2,000 to 3,000; 2) the restart period was
increased from 2,000 to 4,000; and 3) the randomness at restart was increased
from 3 to 10. The results of these 3 runs with parameter variations, combined
with the base run, are summarized in the last row of Table 2. The reduction in the
average time was comparable to that achieved in any of the other experiments
with 4 parallel runs where Chaff was used. BerkMin was released to us without
the option to vary its command parameters. However, when verifying the correct
VLIW processor, structural variations slowed both Chaff and BerkMin, while
parameter variations slowed Chaff.

SAT-Checker Variations Comment Parallel Max. Average
for each tool Runs  Time Time

[sec] [sec]

Chaff base — 1 180.4 32.5
BerkMin base — 1 1514 43.6
Chaff, BerkMin base 1 run per tool 2 138.3 22.3
Chaff base, ER, AC, ER+AC — 4 74.9 14.4
BerkMin base, ER, AC, ER+AC — 4 62.0 20.3
Chaff, BerkMin base, ER 2 runs per tool 4 132.0 171
Chaff, BerkMin base, AC 2 runs per tool 4 61.3 17.0
Chaff, BerkMin base, ER+AC 2 runs per tool 4 68.2 15.1
Chaff base, basel, base2, base3 — 4 176.8 15.0

Table 2: Maximum and average times for finding satisfying assignments in the formal verifi-
cation of the 100 buggy VLIW designs when structural and parameter variations were used:
”base” means no structural variations; "ER” stands for early reductions of p-equations; ” AC”
for Ackermann constraints in eliminating UPs; ”basel,” ”base2,” and ”base3” mean no struc-
tural variations when generating the Boolean correctness formula, but variations of Chaff’s
command parameters as explained in the text.

Therefore, although structural or parameter variations can speedup the detec-
tion of bugs, if resources are available for parallel runs of the tool flow, that was
not critical for the 100 buggy VLIW designs, since the maximum and average
times for the base runs with either Chaff or BerkMin were so low. Neither struc-
tural nor parameter variations accelerated the verification of the correct VLIW
processor, regardless of the SAT-checker.
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6. Impact of G-Equation Encodings

When translating the EUFM correctness formula to an equivalent Boolean for-
mula, we can encode the g-equations with one of the following two schemes:

e The e;; encoding. The equation g; = g;, where g; and g; are g-term
variables, is replaced by a new Boolean variable e;; (Goel, et al., 1998).
Transitivity of equality, i.e., the property (g; = g;) A (g; = gx) = (9 = 9&),
has to be enforced additionally, e.g., by triangulating the equality compar-
ison graph of the e;; variables that affect the final Boolean formula and
then enforcing transitivity for each of the resulting triangles, as done in our
sparse transitivity scheme (Bryant and Velev, 2002)—see Figure 8 for an
example. The triangulation is done iteratively, in a greedy manner, such
that at each step: nodes of degree 1 and their single edges are removed,
since such nodes are not part of cycles for which transitivity of equality has
to hold; the node of the smallest degree n > 2 is found; up to n — 1 extra
edges are added, if they do not exist already, in order to form n—1 triangles
with the node’s edges (e.g., edge go—g4 is added in Figure 8.c in order to
triangulate the two edges, g1—¢> and g;—g4, of node g;); the node and its
edges are removed, and the procedure is applied to the remaining nodes
by considering the newly added edges; finally, the original and the extra
edges are put together to form the triangulated equality comparison graph.
Although not every correct microprocessor requires transitivity for its cor-
rectness proof, that property is needed in order to avoid false negatives for
buggy designs or for processors that do need transitivity.

F Transitivity of
equality for g;—g,—0y:

(meppU-exnUey)
(mexs U-e Uep)
(e O-ep Uey)

94 94 94
e €14 = Transitivity of
= equality for g,-0z-0s;
g1 ‘ ' g3 01 g3 O 93
G & 6 (mexzU-exn Uey)
o2 s (~egq D-ep Do)

% % % (€24 D3 Degy)
(@ (b) (© (d)

Figure 8: The e;; encoding of g-equations. (a) An EUFM formula F', where g-term variables
91, 92, 93, and g4 are compared for equality in a cycle of length four; (b) the equality com-
parison graph between g1, g2, g3, and g;—an edge indicates an equality comparison; (c) the
triangulated equality comparison graph, with one extra edge g»—g4 added, and e;; variables
assigned to the edges; (d) transitivity of equality constraints for the two triangles of the graph
in (c).
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Figure 9: The small-domain encoding of g-equations, applied to the equality comparison graph
in Figure 8.b with the greedy strategy of assigning a characteristic constant to the unprocessed
node of highest degree. Ties are broken randomly. A circled node, e.g., g; in (a), means that the
node is currently being processed, i.e., assigned a characteristic constant. The same constant
is also added to the sets of constants for the nodes that can be reached via a path of edges
starting from the currently processed node. After a node is processed, its edges are removed.
An empty node, e.g., g1 in (b), means that the node has already been processed. (a) Node g;
was chosen randomly, since all nodes have degree 2 initially. (b) Node g3 was chosen, since it
has the highest degree 2. (¢) Node g4 was chosen randomly from the unprocessed nodes g»
and g4 of degree 0. (d) The only unprocessed node, g», was assigned a characteristic constant.
(e) Based on the constants in its set, each g-term variable g; is assigned a nested-ITE expres-
sion that is controlled by new indexing variables z;;, and evaluates to one of these constants,
given an assignment to the variables z;;. (f) Each edge in the equality comparison graph is
labeled with a Boolean formula, encoding the conditions when the two g-term variables at the
ends of the edge will simultaneously evaluate to a common constant, i.e., will be equal.

e The small-domain encoding. Every g-term variable is assigned a set of
constants that it can take on in a way that allows it to be either equal to or
different from any other g-term variable with which it can be transitively
compared for equality (Pnueli, et al., 1999)—see Figure 9.a—d. If there are
N constants in the set for a g-term variable, those can be indexed with
[log2(N)| new Boolean variables that will be used to control nested ITFEs
selecting a mapping of the g-term variable to a constant in the set—see Fig-
ure 9.e. For example, g-term variable g, is assigned a set, of three constants
{ec1, co, ¢4} in Figure 9.d, so that we can introduce two indexing variables,
Zo1 and Tgy, and form the expression ITE (o1, c1, ITE (x93, 2, ¢4)) that will
be used to replace go. Then, two g-term variables will be equal if their
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indexing variables simultaneously select the same common constant—see
Figure 9.f. Hence, g-term variables in a cycle can be equal if they simultane-
ously evaluate to the same common constant, so that transitivity of equality
is automatically enforced in this encoding. Depending on the structure of
the equality comparison graph, the small-domain encoding might introduce
fewer primary Boolean variables than the e;; encoding. That would mean
a smaller search space. However, now many g-equations will get replaced
by a Boolean formula—a disjunction of conjuncts, each consisting of many
Boolean variables or their complements, and encoding the possibility that
two g-term variables evaluate to the same common constant. In contrast,
in the e;; encoding, a g-equation always gets replaced by a single Boolean
variable.

We compared the two encodings on the 100 buggy VLIW designs—see Ta-
ble 3. When using Chaff with a single run of the tool flow, the e;; encoding (used
for the experiments before this section) resulted in 3 times faster detection of
bugs—the maximum and average times were 180.4 and 32.5 seconds, compared
to 594.0 and 100.4 seconds with the small-domain encoding. Constraints for tran-
sitivity of equality were included when using the e;; encoding. When four parallel
runs with structural variations were employed (base, ER, AC, ER+AC—see Sec-
tion 5), the e;; encoding was again faster—at least 2.5 times—with maximum
and average times of 74.9 and 14.4 seconds, compared to 338.4 and 35.2 seconds
with the small-domain encoding. BerkMin was similarly faster with the e;; en-
coding. Figure 10 shows a detailed plot of BerkMin’s performance on one run
with each encoding—the e;; encoding resulted in faster detection of bugs for
87 of the 100 designs.

G-Equation Encoding

Parallel €ij small-domain
SAT-Checker Runs Max. Average Max. Average
Time Time Time Time
[sec] [sec] [sec] [sec]
Chaff 1 180.4 32.5 594.0 100.4
4 74.9 14.4 338.4 35.2
BerkMin 1 151.4 43.6 245.0 85.0
4 62.0 20.3 226.5 56.7

Table 3: Comparison of the e;; and small-domain encodings on the 100 buggy versions of
9VLIW-MC-BP, using both Chaff and BerkMin. The experiments with 1 run of the tool flow
are without structural variations. The experiments with 4 runs also include a run with early
reduction of p-equations, another with Ackermann constraints used to eliminate UPs, and a
fourth run with both of these transformations (see Section 5).
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Figure 10: Comparison of the e;; and small-domain encodings on the 100 buggy versions of
9VLIW-MC-BP, using BerkMin and one run of the tool flow without structural variations.
The benchmarks are sorted in ascending order of their times with the small-domain encoding.
BerkMin was used for this plot, because BerkMin performed better than Chaff on one run
with the small-domain encoding (see Table 3).

When verifying the correct 9VLIW-MC-BP, the e;; encoding required more
than twice as many primary Boolean variables as the small-domain encoding,
but half the CPU time for SAT-checking with Chaff—2,615 primary Boolean
variables (2,353 of them being e;; variables) and 759 seconds of CPU time, com-
pared with 1,152 primary Boolean variables (890 of them being indexing vari-
ables) and 1,479 seconds of CPU time with the small-domain encoding. BerkMin
took 224 seconds with the e;; encoding, but 418 seconds with the small-domain
encoding. Again, constraints for transitivity of equality were included in the
formula generated with the e;; encoding.

We also compared the two encodings on correct designs that do require transi-
tivity of equality for their correctness proofs—superscalar processors with out-of-
order execution that can execute register-register, and load instructions. Because
instructions are dispatched when they do not have Write-After-Write (in addi-
tion to Write-After-Read and Read-After-Write) dependencies (Hennessy and
Patterson, 2002) on instructions that are earlier in the program order but are
stalled due to data dependencies, transitivity of equality is required in proving
the equality of the final states of the Register File reached after the implemen-
tation and the specification sides of the commutative correctness diagram.

As shown in Table 4, the small-domain encoding introduces fewer primary
Boolean variables—one fourth of those required by the e;; encoding for the 6-
wide design—but results in approximately 50% more CNF variables, and 10-20%
more CNF clauses, and thus in longer CPU times with either SAT-checker—see
Table 5. BerkMin was an order of magnitude faster than Chaff on the 4-; 5-,
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G-Equation Encoding

Issue €ij small-domain
Width  Primary CNF  CNF Primary CNF  CNF
Boolean Variables Clauses Boolean Variables Clauses

Variables U Variables

2 139 925 8,213 81 1,294 9,803
3 308 2,577 33,270 127 3,780 39,475
4 553 5,525 96,480 194 8,362 112,636
5 857 10,113 240,892 249 15,647 275,581
6 1,243 17,186 528,962 304 26,738 590,832

Table 4: Statistics for the e;; and small-domain encodings when verifying correct out-of-
order superscalar processors. These designs require transitivity of equality for their correctness
proofs. The results are listed as a function of the processor issue width.

G-Equation Encoding

Issue €;j small-domain

Width Chaff BerkMin Chaff BerkMin
Time Time Time Time
[sec] [sec] [sec] [sec]
2 3.9 1.6 7.3 1.7

3 46 15 49 19

4 653 65 1,049 99

5 1,381 154 1,864 255

6 68,896 1,957 132,428 3,206

Table 5: CPU time to prove unsatisfiability when verifying correct out-of-order superscalar
processors. These designs require transitivity of equality for their correctness proofs. Both
Chaff and BerkMin were run on the same correctness formula, which was generated without
structural variations. The results are listed as a function of the processor issue width.

and 6-wide designs, due to BerkMin’s heuristics that are fine-tuned for CNF
formulas derived from deeply nested expressions (Goldberg, 2002)—the case in
these benchmarks. The CNF formulas from the out-of-order processors are avail-
able as benchmark suite FVP-UNSAT.2.0 (Velev, 2000b).

The efficiency of the e;; encoding can be explained by the impact of g-equations
on the instruction flow, and hence on the correctness formula. Such equations de-
termine forwarding and stalling conditions, based on equality comparisons of reg-
ister identifiers, as well as instruction squashing conditions for correcting branch
mispredictions, based on equality comparisons of actual and predicted branch
targets. Therefore, g-equations affect the branching behavior in instruction exe-
cution. A single Boolean variable, introduced in the e;; encoding, naturally fits
the purpose of accounting for both cases—that the equality comparison is ei-
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ther true or false. Transitivity of equality is enforced by automatic application
of the unit-clause rule implemented in SAT-checkers—if there is a single unas-
signed literal in a CNF clause, with the rest of the literals being false, then the
unassigned literal has to get value true in order for the clause to be satisfied.
Such an assignment is called an implication. Hence, as soon as two variables,
ei; and eji, in triangle e;;—e;,—€x; become true, the third variable eg; in that
triangle will be assigned value true, due to the imposed transitivity constraint
(—eij Ve Vegi), where both —e;; and —ej;, will be already false. Transitivity of
equality is similarly enforced on cycles of any length (Bryant and Velev, 2002),
since cycles longer than 3 are triangulated with new e;; variables.

The small-domain encoding requires more CNF variables and more implica-
tions to enforce transitivity of equality. In the example cycle of length 4 in
Figure 9.f, we will need to introduce auxiliary Boolean variables fo3 and f34 to
represent the values of the Boolean functions that encode the equality compar-
isons (go = g3) and (g3 = g4), respectively. Also, since each of these formulas is
a disjunction of two conjuncts, we will need an auxiliary variable for the out-
put of each conjunct, for a total of 6 auxiliary Boolean variables, in addition to
the 5 indexing variables—xq;, %99, 31, T41, and x4. Hence, the small-domain
encoding will require 11 CNF variables to encode the equality comparisons (no
additional constraints are needed to enforce transitivity) in the example cycle of
length 4. In contrast, the e;; encoding will introduce 5 CNF variables—one for
each of the original 4 equality comparisons, and another for the triangulating
edge (g2 = g4) that was added to enforce transitivity—see Figure 8.c. Therefore,
given an assignment of values to 3 CNF variables representing the outputs of 3 of
the g-equations in the cycle of length 4, the small-domain encoding will require
up to 8 implications (one for each of the other 8 CNF variables related with the
cycle) to enforce transitivity of equality, as compared to at most 2 implications
with the e;; encoding, where each triangle may trigger an implication.

With the e;; encoding, the number of Boolean variables, encoding equality
and transitivity constraints for a cycle, does not depend on the number of out-
side edges (i.e., equality comparisons) that are not part of a cycle and that are
connected to nodes in the cycle. On the other hand, with the small-domain en-
coding, outside edges might result in more constants being added to the sets for
all or some of the nodes in the cycle. Those constants will come from outside
nodes (i.e., g-term variables) that are not part of the cycle, but that can be
transitively compared for equality with each node in the cycle. Such extra con-
stants might result in extra indexing variables and conjuncts in the disjunctive
formulas encoding the equality comparisons in the cycle, thus increasing both
the complexity of those formulas and the number of implications required to
enforce transitivity. Also, if the same additional constant gets included in the
sets of all g-term variables in a cycle—e.g., due to an outside node that gets
assigned a characteristic constant before the nodes in the cycle, such that this
node is transitively connected with the nodes in the cycle—then the nodes in
the cycle can be equal in more than one way, which will increase the number of
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implications required to enforce transitivity. Hence, the small-domain encoding
enumerates all mappings of g-term variables to a sufficient set of distinct con-
stants, thus introducing more information than actually required to solve the
problem.

An additional source of inefficiency in the small-domain encoding is that an
fi; variable, representing the output of a function encoding the equality g; = g;,
can be true for many assignments to its supporting indexing variables, and can
be false for many other assignments to those variables. Hence, it is possible that
portions of the search space (e.g., where f;; = true) will be revisited multiple
times. Although learning, employed in both Chaff and BerkMin, can reduce
or even eliminate such revisits, both SAT-checkers age the learned clauses and
periodically discard old learned clauses—hence the possibility to revisit portions
of the search space. Note that each feasible assignment to e;; variables (i.e.,
assignment not violating transitivity of equality) is a feasible assignment to f;;
variables, except that it can be justified with many possible assignments to the
indexing variables. Therefore, multiple branches in the formula could be revisited
for what would be just one visit with the e;; encoding. As a result of all these
factors, the e;; encoding is more efficient than the small-domain encoding.

In a different application—encoding constraint satisfaction problems as SAT
instances—Hoos (1999) similarly found that better performance is achieved with
an encoding that introduces more primary Boolean variables, but results in con-
ceptually simpler search spaces.

In their decision procedure based on the small-domain encoding, Pnueli, et al.
(1999) use Ackermann constraints to eliminate all UF's, including those that ap-
pear only in p-equations in the EUFM correctness formula. Thus, when enforcing
functional consistency, they introduce negated equations for the new term vari-
ables that replace such UFs (as discussed in Section 5), turning these term vari-
ables into g-terms, whose equations will have to be encoded with Boolean func-
tions. In contrast, by exploiting Positive Equality and the nested-ITFE scheme
for eliminating UF's, we treat the new term variables as p-terms, thus reducing
the number of g-equations that have to be encoded with new Boolean variables.

7. Impact of Decomposing the Correctness Criterion

The correctness criterion can be evaluated with one monolithic computation:

(fO,l A f()’g VANPRIVAN fO,N) V..V (fk,l A fk,g VANPRVAN fk:,N) = true,

where f ,,, is a Boolean formula checking whether memory element m is updated
by [ instructions, 0 < [ < k, given the fetch width k of the processor. Formulas
fim are produced after translating a corresponding EUFM formula to a Boolean
formula by exploiting Positive Equality. However, the evaluation can be decom-
posed (Velev, 2000a) by selecting a set of disjoint window functions w;, one for
each index [, where w; consists of either just one of the functions f;,, or a con-
junction of several of them with the same index [, such that wg V...V w, = true,
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and then proving that w; = f;; for each [ and each 7 such that f;; is not used
in forming w;. That results in a set of smaller computations (weak correctness
criteria), each depending on only a subset of the formulas f;,, in the monolithic
computation. However, proving all of these weak criteria is sufficient to imply
that the monolithic criterion is true, without actually evaluating it. That re-
sulted in a factor of 4 reduction in the CPU time for the BDD-based evaluation
of the correct 9VLIW-MC-BP (Velev, 2000a). Note that when proving correct-
ness with multiple parallel runs by using decomposition, we need to wait until
all of them complete, taking the maximum CPU time as the verification time.
All experiments in this section use the e;; encoding of g-equations.

The benefits of decomposition when verifying the 100 buggy versions of
9VLIW-MC-BP with Chaff and BerkMin are shown in Table 6. Using Chaff
and running 8 weak correctness criteria, the maximum CPU time is reduced
from 180.4 to 31.3 seconds and the average from 32.5 to 4.1 seconds, while run-
ning 16 weak criteria results in a maximum of 17.5 seconds and an average of
2.8 seconds. The performance of BerkMin is very similar on these benchmarks.
While the achieved reductions are not critical for the present set of benchmarks,
decomposition might become important for detecting bugs in more complex de-
signs.

Parallel Chaff BerkMin
Runs Min. Max. Average Min. Max. Average
1 3.7 180.4 32.5 8.7 151.4 43.6
8 0.3 31.3 4.1 2.2 32.7 8.5
16 0.2 17.5 2.8 2.3 18.6 6.3

Table 6: CPU time (in seconds) to detect error in the 100 buggy versions of 9VLIW-MC-BP,
using Chaff or BerkMin. Each SAT-checker was run in parallel on up to 16 weak correctness
criteria, stopping as soon as one of the runs finds a satisfying assignment that triggers a bug.

Both Chaff and BerkMin had sufficient capacity to verify an extension of
9VLIW-MC-BP that implements exceptions, yielding the processor 9VLIW-MC-
BP-EX. The Instruction Memory, the ALUs, and the Data Memory could each
raise an exception. The exception conditions were stored in three new archi-
tectural state elements—one for each of the exception sources. The Program
Counter (PC) of the instruction that raises an exception was stored in another
new architectural state element, the Exception PC (EPC). The design also imple-
mented a return-from-exception instruction that transfers the value of the EPC
to the PC, allowing the program execution to resume after a software exception
handler fixes the cause of the exception.

Four bugs were generated inadvertently when creating 9VLIW-MC-BP-EX,
but were detected in 12.2 to 108.4 seconds by Chaff when run on a monolithic
correctness criterion—see Table 7. BerkMin was consistently slower than Chaff
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when using a monolithic correctness criterion, but was faster when detecting
Bugs 3 and 4 with 22 weak correctness criteria checked in parallel.

Bugs while Parallel Max. Chaff BerkMin
Designing Runs Primary CPU CPU
9VLIW-MC-BP-EX Boolean Time Time
Variables [sec] [sec]

Bugl 1 5,127 16.2 65.0
20 4,926 10.2 154

Bug2 1 5,400 12.2 50.0
20 5,043 10.9 16.4

Bug3 1 3,500 29.3 53.0
22 3,106 18.3 5.4

Bug4 1 3,500 108.4 153.0
22 3,106 39.5 22.0

Table 7: Effect of decomposing the correctness condition when detecting 4 actual bugs in
the design of 9VLIW-MC-BP-EX, using Chaff and BerkMin. The experiments with 1 run are
based on a monolithic correctness criterion.

Processor Parallel Max. Chaff BerkMin
Runs Primary CPU CPU

Boolean Time Time

Variables [sec] [sec]

9VLIW-MC-BP 1 3,108 759 224
8 2,273 349 134

16 2,273 264 63

9VLIW-MC-BP-EX 1 3,587 1,094 347
11 3,243 519 167

22 3,175 473 173

Table 8: Effect of decomposing the correctness condition when verifying the correct versions
of 9VLIW-MC-BP and its extension with exceptions, 9VLIW-MC-BP-EX, using Chaff and
BerkMin. The experiments with 1 run are based on a monolithic correctness criterion.

Table 8 shows the effect of decomposition when verifying correct designs.
Using 8 weak correctness criteria to verify 9VLIW-MC-BP resulted in approx-
imately a factor of two speedup with both Chaff and BerkMin. Doubling the
weak correctness criteria to 16 produced another factor of two speedup for
BerkMin, but a smaller speedup for Chaff. When verifying the more complex
9VLIW-MC-BP-EX, using 11 weak correctness criteria resulted in a factor of
two speedup for both SAT-checkers, but 22 weak correctness criteria produced a
negligible speedup for Chaff and slightly lengthened the run time for BerkMin.
Hence, extensive decomposition has diminishing returns for complex designs, but
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does help reduce the CPU time. While Chaff was usually faster when detecting
bugs in the four incorrect variants of 9VLIW-MC-BP-EX (see Table 7), espe-
cially when using a monolithic correctness criterion, BerkMin was approximately
3 times faster than Chaff when verifying the two correct designs in Table 8.

8. Impact of Conservative Approximations and Positive
Equality
We previously used conservative approximations, such as:

e Translation boxes. These are dummy UFs or UPs with one input (Velev
and Bryant, 2000) that are manually inserted before the inputs of archi-
tectural state elements in both the implementation and the specification
processor. Such UFs or UPs result in common subexpression substitution,
and could produce simpler Boolean correctness formulas.

e Automatically abstracted memories. The interpreted functions read
and write are abstracted automatically (Velev, 2000a, 2001) with com-
pletely general UFs that do not satisfy the forwarding property of the
memory semantics.

These conservative approximations have the potential to speed up the verifi-
cation of correct designs, but might result in false negatives requiring manual
intervention and analysis. When such optimizations were not used in the verifi-
cation of the correct 9VLIW-MC-BP-EX, Chaff took 914 seconds to prove the
unsatisfiability of the CNF formula, compared to 660 seconds with the optimiza-
tions; BerkMin took 969 seconds (longer than Chaff), compared to 275 seconds
with the optimizations. In both cases, the verification was done with the e;;
encoding and monolithic evaluation of the correctness criterion. Hence, the over-
head is insignificant, compared with the time to manually identify false negatives
that might result from the optimizations.

We then evaluated the benefits of exploiting Positive Equality, given the ex-
tremely efficient SAT-checkers Chaff and BerkMin. This was implemented by
introducing an e;; Boolean variable for the equality comparison of two syntacti-
cally distinct p-term variables—as done originally by Goel, et al. (1998)—instead
of treating such p-term variables as not equal. The results are listed in Table 9.

As Table 9 shows, when verifying the first three benchmarks, Positive Equality
resulted in up to 4 orders of magnitude speedup for Chaff, and in up to 3 orders
of magnitude speedup for BerkMin. When verifying the last three benchmarks
that are much more complex, and when we did not use Positive Equality, Chaff
did not complete in 24 hours for 2x DLX-CC-MC-EX-BP, and ran out of mem-
ory (given the available 4 GB) for 9VLIW-MC-BP-buggy and 9VLIW-MC-BP;
BerkMin did not finish in 24 hours for each of these three benchmarks. In con-
trast, with Positive Equality, Chaff needed 27 MB of memory for the satisfiable
CNF formula from 9VLIW-MC-BP-buggy, and 241 MB for the unsatisfiable
CNF formula from 9VLIW-MC-BP.
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Chaff BerkMin

Processor No No

Positive Positive Positive  Positive

Equality Equality Equality Equality
1xDLX-C-buggy 0.13 17 0.02 2
1xDLX-C 0.19 9,177 0.07 229
2xDLX-CC-MC-EX-BP-buggy 12 9,409 4 2,816
2xDLX-CC-MC-EX-BP 22 >24h 15 >24h
9VLIW-MC-BP-buggy 5 out of memory 10 >24h
9VLIW-MC-BP 759 out of memory 224 >24h

Table 9: Time for satisfiability checking with and without Positive Equality. Unless specified,
the time is measured in seconds. The experiments were run on a 336-MHz Sun4 with 4 GB of
physical memory.

Therefore, Positive Equality is still the main reason for the efficiency of our
tool flow when formally verifying complex microprocessors. The CNF formulas
generated without Positive Equality are available as benchmark suite NPE-1.0
(Velev, 2002).

9. Conclusions

We found the SAT-checkers Chaff (Moskewicz, et al., 2001; Zhang, et al., 2001)
and BerkMin (Goldberg and Novikov, 2002) to be the most efficient for evaluating
Boolean formulas generated in the formal verification of both correct and buggy
microprocessors, dramatically outperforming 29 SAT-checkers, 2 ATPG tools,
and 2 decision diagrams—BDDs (Bryant, 1986, 1992) and BEDs (Williams,
2000). The microprocessors were described in a high-level hardware description
language (Velev and Bryant, 2001b) based on the logic of Equality with Unin-
terpreted Functions and Memories (EUFM), proposed by Burch and Dill (1994).
The formal verification was done with Burch and Dill’s correctness criterion, us-
ing flushing of the implementation processor to map its state to the state of the
specification. The EUFM correctness formula was translated to an equivalent
Boolean formula by exploiting Positive Equality (Bryant, German, and Velev,
2001), and using the automatic tool EVC (Velev and Bryant, 2001b).

Reassessing various optimizations that can be applied when generating the
Boolean formulas for the microprocessor correctness, we conclude that the sin-
gle most important step is exploiting Positive Equality. Without it, neither Chaff
nor BerkMin would have scaled for realistic superscalar and VLIW microproces-
sors with exceptions, multicycle functional units, branch prediction, and other
speculative features. BerkMin was consistently faster on unsatisfiable CNF for-
mulas from complex correct designs, since BerkMin was developed after Chaff
and was better optimized for CNF formulas derived from expressions with many
levels (Goldberg, 2002).
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Exploiting the e;; encoding (Goel, et al., 1998) of g-equations resulted in a
speedup of 2 for the base VLIW processor, 9VLIW-MC-BP, compared to the
small-domain encoding (Pnueli, et al., 1999) when verifying correct designs, and
consistently performed better on buggy versions. Although the e;; encoding intro-
duces more than twice as many primary Boolean variables for our benchmarks, it
results in less CNF variables and less CNF clauses than the small-domain encod-
ing, and produces a conceptually simpler search space—with each e;; Boolean
variable naturally encoding the equality between a pair of g-term variables. Tran-
sitivity of equality is enforced with fewer implications than in the case of the
small-domain encoding. In contrast, the small-domain encoding enumerates all
mappings of g-term variables to a sufficient set of distinct constants, thus in-
troducing more information than actually required to solve the problem. This
results in the potential to revisit portions of the search space, for what would be
just one visit with the e;; encoding.

Conservative approximations, such as manually inserted translation boxes
(Velev and Bryant, 2000) or automatically abstracted memories (Velev, 2000a,
2001), are not as essential to the fast verification of correct VLIW and dual-issue
superscalar processors when using Chaff or BerkMin, as these optimizations were
when using BDDs—previously the most efficient SAT procedure for correct de-
signs.

Decomposing the evaluation of the Boolean correctness formula (Velev, 2000a),
by evaluating many simpler formulas in parallel, resulted in a speedup of up to
3.5 times for the base VLIW processor, but in a speedup of 2 for its version with
exceptions. Decomposition consistently accelerated the generation of counterex-
amples for buggy microprocessors.

Structural variations in generating the Boolean correctness formulas—early
reductions of p-equations, and using Ackermann constraints for eliminating un-
interpreted predicates—as well as variations of Chaff’s command parameters
(we could not vary BerkMin’s command parameters) accelerated the detection
of bugs, although no single variation performed best. Again, the assumption
is that we can run several parallel copies of the tool flow. Neither structural
nor parameter variations accelerated the verification of the correct base VLIW
processor.

Algebraic simplifications (Marques-Silva, 2000)(Brafman, 2001), or renaming
the CNF variables in order to minimize the cutwidth of the formulas (Aloul, et
al., 2001)(Wang, et al., 2001) did not result in speedups, due to the complexity
of the CNF formulas generated in the formal verification of realistic micropro-
Cessors.

To conclude, we showed that Chaff and BerkMin can easily handle complex
CNF formulas that are produced in microprocessor formal verification with-
out applying conservative transformations. Such transformations were previously
needed in BDD-based evaluations, but have the potential to result in false nega-
tives, taking extensive human effort to analyze. We identified the optimizations
that help increase the performance of Chaff and BerkMin on realistic dual-issue
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superscalar and VLIW designs—Positive Equality, combined with the e;; encod-
ing. Helpful, but not essential, are decomposed evaluation of the Boolean cor-
rectness formulas, and use of structural /parameter variations in multiple parallel
runs. Our study will increase the productivity of microprocessor design engineers
and shorten the time-to-market for VLIW and DSP architectures that consti-
tute a significant portion of the microprocessor market (Tennenhouse, 2000).
The benchmarks used in this paper are available as (Velev, 2000b, 2002).
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