
Noname manuscript No.
(will be inserted by the editor)

Chain Reduction for
Binary and Zero-Suppressed Decision Diagrams

Randal E. Bryant

the date of receipt and acceptance should be inserted later

Abstract Chain reduction enables reduced ordered binary decision diagrams (BDDs) and
zero-suppressed binary decision diagrams (ZDDs) to each take advantage of the other’s abil-
ity to symbolically represent Boolean functions in compact form. For any Boolean function,
its chain-reduced ZDD (CZDD) representation will be no larger than its ZDD representa-
tion, and at most twice the size of its BDD representation. The chain-reduced BDD (CBDD)
of a function will be no larger than its BDD representation, and at most three times the size
of its CZDD representation. Extensions to the standard algorithms for operating on BDDs
and ZDDs enable them to operate on the chain-reduced versions.

Experimental evaluations on representative benchmarks for encoding word lists, solving
combinatorial problems, and operating on digital circuits indicate that chain reduction can
provide significant benefits in terms of both memory and execution time. The experimental
results are further validated by a quantitative model of how decision diagrams scale when
encoding sets of sequences. This model explains why the combination of a one-hot encoding
of the symbols in the sequences, plus a CBDD, CZDD, or ZDD representation of the set,
yields the most compact form.

Keywords

Binary decision diagrams, zero-suppressed binary decision diagrams, Boolean functions

1 Introduction

Decision diagrams (DDs) encode sets of values in compact forms, such that operations
on the sets can be performed on the encoded representation, without expanding the sets
into their individual elements. In this paper, we consider two classes of decision diagrams:
reduced ordered binary decision diagrams (BDDs) [5] and zero-suppressed binary deci-
sion diagrams (ZDDs) [21,22]. These two representations are closely related to each other,
with each achieving more compact representations for different classes of applications. We

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213 USA, E-mail:
Randy.Bryant@cs.cmu.edu

2 Randal E. Bryant

BDD ZDD

CBDD CZDD

n/2

n/2

11

3

2

Fig. 1 Size bound relations between different representations

present extensions to both representations, such that BDDs can take advantage of the source
of compaction provided by ZDDs, and vice-versa.

Both BDDs and ZDDs encode sets of binary sequences of some fixed length n, defining
a Boolean function over n variables. We can bound their relative sizes as follows. Suppose
for some function, we encode it according to the different DD types. For function f , let
T (f) indicate the number of nodes (including leaf nodes) in the representation of type T .
Let R f (T1,T2) denote the relative sizes when representing f using types T1 and T2:

R f (T1,T2) =
T1(f)
T2(f)

Comparing BDDs and ZDDs, Knuth [18] has shown that for any function f :

R f (BDD,ZDD) ≤ n/2+o(n) (1)

R f (ZDD,BDD) ≤ n/2+o(n) (2)

These bounds improve on the size ratios of n derived by Wegener [27]. As these bounds
show, ZDDs may be significantly (a factor of n/2) more compact than BDDs, or vice-versa.
In practice, the comparative advantage of one representation over the other can be signifi-
cant, given that the size of the data structure is often the limiting factor in the use of DDs.

In this paper, we introduce two new representations: chain-reduced ordered binary de-
cision diagrams (CBDDs), and chain-reduced zero-suppressed binary decision diagrams
(CZDDs). The key idea is to associate two levels with each node and to use such nodes to
encode particular classes of linear chains found in BDDs and ZDDs. Like BDDs and ZDDs,
both CBDDs and CZDDs provide canonical representations of Boolean functions. Chain
reduction can be defined in terms of a set of reduction rules applied to BDDs and ZDDs,
giving bounds for any function f

R f (CBDD,BDD) ≤ 1 (3)

R f (CZDD,ZDD) ≤ 1 (4)

In terms of graph sizes, using chain reduction can only lead to more compact representations.
We show bounds on the relative sizes of the representations as:

R f (CBDD,CZDD) ≤ 3 (5)

R f (CZDD,BDD) ≤ 2 (6)

Chain Reduction for BDDs and ZDDs 3

These relations are summarized in the diagram of Fig. 1. In this figure, each arc from type
T1 to type T2 labeled by an expression E indicates that R f (T1,T2)≤ E +o(E). We also show
these bounds are tight by demonstrating parameterized families of functions that achieve the
bounding factors of (5) and (6). These arcs define a transitive relation, and so we can also
infer that R f (CBDD,ZDD)≤ 3+o(1).

These results indicate that the two compressed representations will always be within a
small constant factor (2 for CZDDs and 3 for CBDDs) of either a BDD or a ZDD represen-
tation. While one representation may be slightly more compact than the other, the relative
advantage is bounded by a constant factor, and hence choosing between them is less critical
than is the case when choosing between BDDs and ZDDs. The asymmetry in Fig 1—that
CBDDs can compactly encode CZDDs, but not vice-versa—is explained in Section 6.

This paper defines the two compressed representations, derives the bounds indicated in
(5) and (6), and presents extensions of the core BDD and ZDD algorithms to their chained
versions. It describes an implementation based on modifications of the CUDD BDD package
[26].

The paper presents experimental results for encoding word lists, solutions to a combina-
torial problem, and representing the Boolean functions computed by a digital circuit. Both
the word list and combinatorial problems can be viewed as representing sets, where each
set element is a sequence over an alphabet of symbols. The paper presents a quantitative
model for how DDs scale when representing such sets, according to the encoding method
used and the DD type. This model further validates our finding that the combination of a
one-hot encoding of the symbols, plus a CBDD, CZDD, or ZDD representation of the set
yields the most compact form.

The paper concludes with a discussion of the merits of chaining and possible extensions.
This paper is an extended version of [8]. As a supplement to this paper, we have set up a
web page [9] containing additional material, including links to all source code, copies of all
benchmark data, and auxilliary information.

2 Related Work

Over the years, many variants to BDDs have been proposed. One property most variants
have preserved is that the reduced version of the decision diagram serves as a canonical
form. That is, it provides a unique representation of the given function. All the variants we
discuss in this paper, including ours, guarantee this property.

Some variants have focused on the interpretation assigned to a node in the graph. For
example, Drechsler and Becker [13] allow different decompositions of the variables, in ad-
dition to the standard Shannon expansion of BDDs [5]. Others have extended decision dia-
grams to represent non-Boolean functions [2,16].

Minato’s work on zero-supressed binary decision diagrams [21] was perhaps the first
to find a new interpretation for level-skipping edges—those that span nonadjacent levels in
the variable ordering. His zero-suppression rule can be remarkably effective when encoding
very sparse sets of binary strings of some fixed length n. Here, sparseness refers to two
properties:

– The total set size is much smaller than the maximum of 2n strings.
– The set elements tend to have many 0s in their strings.

Our experimental results in Section 9 demonstrate the advantages of ZDDs over BDDs when
representing such sets. Our analysis in Section 10 extends these empirical observations with

4 Randal E. Bryant

a model quantifying this advantage. Our goal in this work is to be able to harness the relative
strengths of both BDDs and ZDDs in a unified framework.

Other recent work has found other methods to unify BDDs and ZDDs. van Dijk and his
colleagues devised a hybrid of BDDs and ZDDs they call tagged BDDs [12]. Their represen-
tation augments BDDs by associating a variable with each edge, in addition to the variable
associated with each node, enabling them to represent both BDD and ZDD reductions along
each edge. For any function, a tagged BDD is guaranteed to have no more nodes than ei-
ther its BDD or its ZDD representation. They avoid the constant factor in node growth that
CBDDs or CZDDs may require, at the cost of requiring storage for three variables per node
(one for the node, and one for each of the outgoing edges) versus two. Choosing between
their representation or ours depends on a number of implementation factors. Both achieve
the larger goal of exploiting the reductions enabled by both BDDs and ZDDs. We provide
some additional comparisons to their approach in Section 12, where we consider possible
extensions to the work presented here.

Babar and his colleagues devised a technique for labeling the edges in a DD with four
different edge types and then introducing a set of reduction rules that assign the most advan-
tageous edge type for each local context [1]. Their edge types can interpret level-skipping
edges as don’t-care or zero-suppressed with respect to the skipped variables, correspond-
ing to BDDs and ZDDs, respectively. They also introduce a new interpretation of these
variables as one-suppressed. (The fourth edge type is for an edge between adjacent levels.)
Their Edge-Specified-Reduction BDDs (ESRBDDs) have the property that they are guaran-
teed to be no larger than the BDD or ZDD representation of a function. Moreover, relative
to BDDs and ZDDs, they only require adding two bits of information for each edge, rather
than adding an extra integer index to each node (as in our work) or each edge (as in tagged
BDDs). As will be discussed in Section 12, the introduction of the one-suppressed rule al-
lows ESRBDDs to be more compact than all other considered variants (BDDs, ZDDs, their
chained counterparts, and tagged BDDs) under some conditions. In their publication, they
cite the development of an associated set of algorithms for generating and manipulating ES-
RBDDs as future work. It therefore remains to be seen how useful this variant of BDDs will
be in practice.

3 BDDs and ZDDs

Both BDDs and ZDDs encode sets of binary sequences of length n as directed acyclic graphs
with two leaf nodes, labeled with values 0 and 1, which we refer to as “leaf 0” and “leaf 1,”
respectively. Each nonleaf node v has an associated level l, such that 1 ≤ l ≤ n, and two
outgoing edges, labeled lo and hi to either a leaf node or a nonleaf node. By convention, leaf
nodes have level n+1. An edge from v to node u having level l′ must have l < l′.

Fig. 2 shows three decision-diagram representations of the set S, defined as:

S = {0001,0011,0101,0111,1000} (7)

We refer to these as graphs 2a, 2b, and 2c, respectively. In our illustrations, nonterminal
nodes are shown as circles labeled by their levels, and terminal nodes are shown as squares
labeled by their values. The lo edge from each node is shown as a dashed line, and the hi
edge is shown as a solid line. To simplify the illustrations, we omit leaf 0 and all branches
to it.

Graph 2a represents S as a levelized binary decision diagram, where an edge from a
node with level l must connect to either leaf 0 or to a node with level l+1. (This is similar to

Chain Reduction for BDDs and ZDDs 5

a. Levelized BDD

1

2

4

3

4

1

4

2

e

f

a

3b

c

d

b. BDD

1

2

4

3

4

1

d

e

f

c. ZDD

1

1

4

2a

3b

c

Fig. 2 Reductions in BDDs and ZDDs. Each reduces the representation size with edges between noncon-
secutive levels

the quasi-reduced form described by Knuth [18], except that his representation only allows
edges to leaf 0 from nodes at level n.)

Each path from the root to leaf 1 encodes an element of set S. For a given path, the
represented sequence has value 0 at position l when the path follows the lo edge from the
node with level l and value 1 when the path follows the hi edge.

Graph 2a has nodes forming two linear chains: a DON’T-CARE chain, consisting of
nodes a and b, and an OR chain, consisting of nodes d, e, and f . A DON’T-CARE chain is a
series of DON’T-CARE nodes, each having its two outgoing edges directed to the same next
node. In terms of the set of represented binary sequences, a DON’T-CARE node with level
l allows both values 0 and 1 at sequence position l. An OR chain consists of a sequence
where the outgoing hi edges for the nodes all go to the same node—in this case, leaf 0. An
OR chain where all hi edges lead to leaf 0 has only a single path, assigning value 0 to the
corresponding positions in the represented sequence. We will refer to this special class of
OR chain as a ZERO chain.

BDDs and ZDDs differ from each other in the interpretations they assign to a level-
skipping edge, when a node with level l has an edge to a node with level l′ such that l+1< l′.
For BDDs, such an edge is considered to encode a DON’T-CARE chain. Thus, graph 2b
shows a BDD encoding set S. The edge on the left from level 1 to level 4 is equivalent to
the DON’T-CARE chain formed by nodes a and b of graph 2a. For ZDDs, a level skipping
edge encodes a ZERO chain. Thus, graph 2c shows a ZDD encoding set S. The edge on
the right from level 1 to the leaf encodes the ZERO chain formed by nodes d, e, and f of
graph A. Whether the set is encoded as a BDD or a ZDD, one type of linear chains remains.
Introducing chain reduction enables BDDs and ZDDs to exploit both DON’T-CARE and OR

(and therefore ZERO) chains to compress their representations.

6 Randal E. Bryant

a. OR chain

t

f g

t+1

b–1

b

b. DON’T-CARE chain

t

f g

t+1

b–1

b

c. Compressed representation

f g

t

b

Fig. 3 Chain patterns. These patterns remain after BDD reduction (a), and ZDD reduction (b), but can be
represented in compressed form (c).

4 Chain Patterns and Reductions

Fig. 3 shows the general form of OR and DON’T-CARE chains, as were illustrated in the
example of Fig. 2. These chains have levels ranging from t to b, such that 1 ≤ t < b ≤ n.
Each form consists of a linear chain of nodes followed by two nodes f and g with levels
greater than b. Nodes f and g are drawn as triangles to indicate that they are the roots of two
subgraphs in the representation. In an OR chain, the lo edge from each node is directed to
the next node in the chain, and the hi edge is directed to node g. The chains eliminated by
ZDDs are a special case where g = 0. In a DON’T-CARE chain, both the lo and the hi edges
are directed toward the next node in the chain.

As was illustrated in Fig. 2, having edges that skip levels allows BDDs to compactly
represent DON’T-CARE chains and ZDDs to eliminate OR chains when g = 0. The goal of
chain reduction is to allow both forms to compactly represent both types of chains. They do
so by associating two levels with each node, as indicated in Fig. 3c. That is, every nonleaf
node has an associated pair of levels t : b, such that 1≤ t ≤ b≤ n. In our illustrations, nodes
are labeled by both values t and b when these are distinct, and by a single level when they
are not. We draw a node in elongated form to span from its top level t to its bottom level b.
In a chain-reduced ordered binary decision diagram (CBDD), such a node encodes the OR

chain pattern shown in Fig. 3a, while in a chain-reduced zero-suppressed binary decision
diagram (CZDD), such a node encodes the DON’T-CARE chain pattern shown in Fig. 3b.

Fig. 4 shows the effect of chain reduction for the example function, starting with the
levelized graph (a). In the CBDD (b), a single node f ′ replaces the OR chain consisting of
nodes d, e, and f . In the CZDD (c), the DON’T-CARE chain consisting of nodes a and b is
incorporated into node c to form node c′. These new nodes are drawn in elongated form to

Chain Reduction for BDDs and ZDDs 7

a. Levelized BDD

1

2

4

3

4

1

4

2

e

f

a

3b

c

d

b. CBDD

4

2

1

f’

1

4

c. CZDD

1

c’

1

4

2

Fig. 4 Chain Reduction Examples. Each now reduces both chain types.

a. BDD chain reduction

f g

u

v

t

m

m+1

b

b. ZDD chain reduction

f g

u

v

t

m

m+1

b

c. Compressed representation

f g

t

b

Fig. 5 Chain Reduction Cases. These cases define how chain reduction can be applied to BDDs (a) and
ZDDs to obtain the single chain node (c).

emphasize that they span a range of levels, but it should be emphasized that all nodes in a
chained representation have an associated pair of levels.

5 Generating CBDDs and CZDDs

To generalize from these examples, let us denote a node of the form illustrated in Fig. 3c
with the modified if-then-else notation 〈t : b→ g, f 〉. That is, the node has a range of levels
from t to b, an outgoing hi edge to node g, and an outgoing lo edge to node f .

A BDD representation of a function can be transformed into a CBDD as follows. The
process starts by labeling each node having level l in the BDD with the pair t : b, such that

8 Randal E. Bryant

t = b = l. Then, we repeatedly apply a reduction rule, replacing any pair of nodes u and v
of the form u = 〈t : m→ g,v〉 and v = 〈m+1 : b→ g, f 〉 (illustrated in Fig. 5a) by the single
node 〈t : b→ g, f 〉 (illustrated in Fig. 5c).

Since reduced BDDs form canonical representations of Boolean functions, and repeated
application of the chain compression rule of Fig. 5a will only serve to merge all the nodes
in each OR chain, one can readily see that reduced CBDDs also provide canonical represen-
tations.

A similar process can transform any ZDD representation of a function into a CZDD,
using the reduction rule that a pair of nodes u and v of the form u = 〈t : m→ v,v〉 and
v = 〈m+1 : b→ g, f 〉 (illustrated in Fig. 5b) is replaced by the single node 〈t : b→ g, f 〉
(illustrated in Fig. 5c). Again, one can readily see that reduced CZDDs provide canonical
representations of Boolean functions.

In practice, most algorithms for constructing decision diagrams operate from the bottom
up. The reduction rules are applied as nodes are created, and so unreduced nodes are never
actually generated.

6 Size Ratio Bounds

The reduction rules for CBDDs and CZDDs (Fig. 5) allow us to bound the relative sizes of
the different representations, as given by (5) and (6).

First, let us consider (5), bounding the relative sizes of the CBDD and CZDD representa-
tions of a function. Consider a graph G representing function f as a CZDD. We can generate
a (possibly unreduced) CBDD representation G′ as follows. G′ contains a node v′ for each
node v in G. However, if v has levels t : b, then v′ has levels b : b, because any DON’T-CARE

chain encoded explicitly in the CZDD is encoded implicitly in a CBDD.
Consider an edge from node u to node v in G, where the nodes have levels tu : bu and

tv : bv, respectively. If tv = bu + 1, then there can be an edge directly from u′ to v′. If tv <
bu + 1, then we introduce a new node to encode the implicit zero chain in G from u to v.
This node has the form 〈bu +1 : tv−1→ 0,v′〉 and has an edge from u′ to it.

The size of G′ is bounded by the number of nodes plus the number of edges in G. Since
each node in G has at most two outgoing edges, we can see that G′ has at most three times
the number of nodes as G. Graph G′ may not be reduced, but it provides an upper bound on
the size of a CBDD relative to that of a CZDD.

This bound is tight—Fig. 6 illustrates the reduced representations for a family of func-
tions, parameterized by a value k (k = 3 in the example), such that the function is defined
over 3k+2 variables. The ZDD and CZDD representations are identical (a), having 2k+3
nodes (including both leaf nodes.) The CBDD representation has 6k+2 nodes (b). We can
see in this example that the CBDD requires nodes (shown in gray) to encode the ZERO

chains that are implicit in the ZDD. To construct the graphs for different values of k, the
graph pattern enclosed in the diagonal boxes can be replicated as many times as are needed.

Second, let us consider (6), bounding the relative sizes of the CZDD and BDD repre-
sentations of a function. Consider a graph G representing function f as a BDD. We can
construct its (possibly unreduced) representation G′ as a CZDD. Consider each edge of G
from node u, having level lu to node v, having level lv. Let r = lo(v) and s = hi(v). G′ has
a node wuv of the form 〈lu +1 : lv→ wvs,wvr〉. That is, wuv encodes any DON’T-CARE chain
between u and v, and it has edges to the nodes generated to encode the edges between v and
its two children. The size of G′ is bounded by the number of edges in G, which is at most
twice the number of nodes.

Chain Reduction for BDDs and ZDDs 9

a. ZDD/CZDD representation

1

Level

1

2

3

4

5

6

7

8

9

10

11

b. CBDD representation

1

Level

1

2

3

4

5

6

7

8

9

10

11

Fig. 6 Worst case example for effectiveness of CBDD compression. The implicit ZERO chains in the ZDD
(a) must be explicitly encoded in the CBDD (b)), increasing its size by a factor of 3.

This bound is also tight—Fig. 7 illustrates the reduced representations for a family of
functions, parameterized by a value k (k = 3 in the example), such that the function is defined
over 2k + 1 variables. The BDD representation (a) has 2k + 3 nodes (including both leaf
nodes.) The CZDD representation has 4k+ 3 nodes (b). We can see that most of the nodes
in the BDD must be duplicated: once with no incoming DON’T-CARE chain, and once with
a chain of length one. To construct the graphs for different values of k, the graph pattern
enclosed in the diagonal boxes can be replicated as many times as are needed.

As can be seen in Fig. 1, these bounds contain an asymmetry between BDDs and ZDDs
and their compressed forms. The bound of 3 holds between CBDDs and CZDDs, and hence
by transitivity between CBDDs and ZDDs, while the bound of 2 holds only between CZDDs
and BDDs. The general form of the OR chain (Fig. 3a), where g is something other than 0,
cannot be directly encoded with a constant number of CZDD nodes.

7 Operating on CBDDs and CZDDs

The APPLY algorithms for decision diagrams operate by recursively expanding a set of argu-
ment decision diagrams according to a Shannon expansion of the represented functions [5,
7]. These algorithms allow functions to be combined according to standard binary Boolean
operations, as well as by the if-then-else operation ITE.

As notation, consider a step that expands k argument nodes {vi|1 ≤ i ≤ k} where vi =
〈ti : bi→ gi, fi〉. For example, operations AND, OR, and XOR use the APPLY algorithm with

10 Randal E. Bryant

a. BDD representation

Level

1

2

3

4

5

6

7

1

b. CZDD representation

Level

1

2

3

4

5

6

7

1

Fig. 7 Worst case example for effectiveness of CZDD compression. The nodes in the BDD (a) must be
duplicated to encode the incoming DON’T-CARE chains (b), increasing the size by a factor of 2.

k = 2, while ternary operations, such as ITE, use k = 3. A step can be summarized as
follows:

1. If one of the terminal cases apply, then return the result.
2. If the computed cache contains an entry for this combination of operation and argu-

ments, then return the previously computed result.
3. Recursively compute the result:

(a) Choose splitting level(s) based on the levels of the arguments.
(b) Generate hi and lo cofactors for each argument.
(c) Recursively compute the hi and lo values of the result using the APPLY algorithm

with the hi cofactors and the lo cofactors, respectively.
(d) Determine the result node parameters based on the computed hi and lo cofactors,

the splitting level(s), and the reduction rules.
(e) Either reuse an existing node or create a new one with the desired level(s) and hi and

lo children.
4. Store an entry in the computed cache.
5. Return the computed value.

In generalizing from conventional BDDs and ZDDs to their chained versions, we need only
modify 3(a) (splitting), 3(b) (cofactoring), and 3(d) (combining) in this sequence. In the
following presentation, we first give formal definitions and then provide brief explanations.

7.1 APPLY operation for CBDDs

For CBDDs, we define the splitting levels t and b as:

t = min
1≤i≤k

ti (8)

Chain Reduction for BDDs and ZDDs 11

b = min
1≤i≤k


bi, ti = t
ti, ti = n+1
ti−1, else

We then define the two cofactors for each argument node vi, denoted lo(vi, t : b) and hi(vi, t :
b), according to the following table:

Case Condition lo(vi, t : b) hi(vi, t : b)
1 b < ti vi vi
2 b = bi fi gi
3 ti ≤ b < bi 〈b+1 : bi→ gi, fi〉 gi

These three cases can be explained as follows:

Case 1: Splitting spans levels less than the top level of vi. Since level-skipping edges encode
DON’T-CARE chains, both cofactors equal the original node.

Case 2: Splitting spans the same levels as node vi. The cofactors are therefore the nodes
given by the outgoing edges.

Case 3: Splitting spans a subset of the levels covered by node vi. We construct a new node
spanning the remaining part of the encoded OR chain for the lo cofactor and have
gi as the hi cofactor.

As an example of the splitting and cofactoring rules, Fig. 8 shows the series of recursive
calls generated when applying the OR operation to the arguments indicated by graphs A and
B at the top of the figure. The recursive steps proceed as follows. Here we describe them in
a breadth-first manner, although the actual control flow would be depth first.

1. The initial recursion has t = b = 1, generating arguments A0 and B0 as the lo cofactors
of A and B, and A1 and B1 as the hi cofactors. Observe how generating B0 invoked
Case 3 to generate a new node with t = 2 and b = 4.

2. A1 and B1 form a terminal case, but the recursion for A0 and B0 has t = 2 and b = 3,
yielding lo cofactors A00 and B00 and hi cofactors A01 and B01. Again observe how
generating B00 invoked Case 3 to generate a new node with t = b = 4.

3. A01 and B01 also form a terminal case, but a final recursive call is required for A00 and
B00 to generate lo cofactors A000 and B000, and hi cofactors A001 and B001.

Observe that in the recursive steps for this example, no splitting was ever required at level 3.
The APPLY operation can exploit chaining to span a range of levels while splitting.

Recursive application of the APPLY operation on the cofactors generates a pair of nodes
u0 and u1. Using the variable levels t and b defined in (8), these are combined to form a
result node u, defined as follows. In Case 2 of the equation, b′ denotes the bottom level of
node u0 (and therefore b < b′), and w0 denotes lo(u0).

u =


u0, u0 = u1 Case 1
〈t : b′→ u1,w0〉 , u0 = 〈b+1 : b′→ u1,w0〉 Case 2
〈t : b→ u1,u0〉 , else Case 3

(9)

These three cases can be explained as follows:

Case 1: The hi and lo cofactors are identical, and so the don’t-care reduction rule can be
applied.

Case 2: Chain compression can be applied to create a node that absorbs the lo cofactor.
Case 3: No special rules apply.

12 Randal E. Bryant

1

4

1

2

3

A

1

4

1

B

4

1

A0

2

4

1

B0

1

2

3

A1

0

B1

4

1

A00

0

B01

1

B00

4 4

1

A01

0

A000

1

B000

0

B001

1

A001

t = b = 1

t = 2, b = 3

t = b = 4

Fig. 8 Recursive calls in example APPLY operation. The goal is to compute the OR of arguments A and B.
They are recursively split until terminal cases are reached.

Chain Reduction for BDDs and ZDDs 13

1

U000

1

U001

1

U00

4

1

U01

1

2

3

U1

4

1

2

3

U0

1

U

2

3

4

1

2

3

Fig. 9 Construction of result CBDD U as recursive calls in example APPLY operation return. The dia-
gram flows from the bottom to the top.

14 Randal E. Bryant

As an example of the combining rules, Fig. 9 shows how the recursive calls diagrammed
in Fig. 8 would construct result CBDD U as they return. The construction flows from the
bottom to the top of the diagram, inverting the flow of the recursive calls.

1. The lowest level recursive calls yield constant leaf 0 for results U000 and U001.
2. These are combined with by the don’t-care reduction (Case 1) to yield leaf 0 for result

U00. Meanwhile, the terminal case for arguments A01 and B01 yielded U01 equal to
A01.

3. Results U00 and U01 are combined to generate result U0. Since the recursive call had
t = 2 and b = 3, the resulting root node spans these two levels. Meanwhile, the terminal
case for arguments A1 and B1 yielded U1 equal to A1.

4. The final result U is generated by combining U0 and U1 with a node having t = b = 1.

Observe that the generated result U makes use of the general form of an OR chain—the node
on the left has a nonzero value for its hi child.

7.2 APPLY operation for CZDDs

Similar rules hold for applying operations to CZDDs, although there are important differ-
ences, due to the different interpretations of level-skipping edges.

We define the splitting levels t and b as:

t = min
1≤i≤k

ti (10)

b = min
1≤i≤k


bi, ti = t
n+1, vi = 0
t, else

The cofactors for argument node vi are defined according to the following table:

Case Condition lo(vi, t : b) hi(vi, t : b)
1 b < ti vi 0
2 b = bi fi gi
3 ti ≤ b < bi 〈b+1 : bi→ gi, fi〉 〈b+1 : bi→ gi, fi〉

These three cases can be explained as follows:

Case 1: The splitting spans levels less than the top level of vi. Since level-skipping edges
encode ZERO chains, the lo cofactor equals the original node and the hi cofactor
equals leaf 0.

Case 2: The splitting spans the same levels as node vi. The cofactors are therefore the nodes
given by the outgoing edges.

Case 3: The splitting spans a subset of the levels covered by node vi. We construct a new
node spanning the remaining part of the encoded DON’T-CARE chain for both co-
factors.

Recursive application of the APPLY operation on the cofactors generates a pair of nodes
u0 and u1. Using the variable ranges t and b defined in (11), these are combined to form a
result node u, defined as follows. Case 3 of this equation covers the case where u1 = u0. For

Chain Reduction for BDDs and ZDDs 15

Low child

High child

Hash link

Index Reference count

a. Standard representation

Low child

High child

Hash link

Index BIndex Reference count

b. Modified representation

Fig. 10 Data structures for representing DD nodes in the standard implementation of CUDD (a) and modified
for chaining (b)

this case, b′ denotes the bottom level for the two nodes (and therefore b < b′), and w1 and
w0 denote their children.

u =


u0, u1 = 0 and t = b Case 1
〈t : b−1→ u0,u0〉 , u1 = 0 and t < b Case 2
〈t : b′→ w1,w0〉 , u0 = u1 = 〈b+1 : b′→ w1,w0〉 Case 3
〈t : b→ u1,u0〉 , else Case 4

(11)

These four cases can be explained as follows:

Case 1: The zero-suppression rule can be applied to return a direct pointer to u0

Case 2: The zero-suppression rule can be applied, but we must construct a node encoding
the DON’T-CARE chain between levels t and b−1.

Case 3: Chain compression can be applied to create a node that absorbs the lo cofactor.
Case 4: No special rule applies.

8 Implementation

We implemented both CBDDs and CZDDs by modifying version 3.0.0 of the CUDD BDD
package [26]. We chose CUDD because it already provides implementations of both BDDs
and ZDDs, and it has been highly optimized. Fig. 10a illustrates the representation of a node
in CUDD, when compiled for 64-bit execution. Each node requires 32 bytes: four bytes for
an index, which is translated via a table to indicate the variable level (to support dynamic
variable ordering [25]), four bytes for a reference count to support garbage collection, and
three eight-byte pointers. One pointer is used to create a singly-linked list of nodes for each
bucket in the hash table implementing the unique table [3]. The other two point to the two
children. As indicated by the black rectangles on the right-hand edges of these pointers, the
low-order bits are used to support complement edges [3,23], indicating a reference to either
a function or its complement.

Fig. 10b shows our modifications to support chaining. We simply split the index field
into two fields, each having two bytes, for top and bottom indices. These are used to deter-
mine the top and bottom variable levels for the node. Two bytes is enough to encode 65,535
levels, and so this reduction from four bytes to two imposes no real limitation. Overall, we
see that there is no storage penalty for the generalization to a chained form.

16 Randal E. Bryant

Dictionary type Words Radix Length One-hot variables Binary variables
Compact word list 235,886 54 24 1,296 144
ASCII word list 235,886 129 24 3,096 192
Compact password list 979,247 80 32 2,560 192
ASCII password list 979,247 129 32 4,128 256

Table 1 Characteristics of dictionary benchmarks

Incorporating chaining required modifications to many parts of the code, including how
node keys are generated for the unique table and computed cache, how reductions are per-
formed, and how Boolean operations are applied to functions. In addition, many of the com-
monly used functions, such as computing the number of satisfying solutions to a function,
computing its support, and enumerating a minterm representation of a function required
modifications. Most significantly, none of these changes are visible to applications making
use of the CUDD application-program interface (API). The representation of a node is not
exported to the API, and we made no changes to any of the API function signatures.

The complement edges used by CUDD when representing BDDs can reduce the size
of a BDD by a factor of up to two. Such reduction could invalidate the size ratio bounds
derived in (5) and (6), and generally make the experimental results more difficult to inter-
pret. For our experimental evaluation, we therefore use a representation based on CUDD’s
support for Algebraic Decision Diagrams (ADDs) [2]. ADDs generalize BDDs by allowing
arbitrary leaf values. Restricting the leaf values to 0 and 1 yields conventional BDDs without
complement edges. We revisit the use of complement edges in Section 9.5.

9 Experimental Results

To evaluate the effectiveness of chain reduction, we chose three different categories of
benchmarks to compare the performance of BDDs, ZDDs, and their chained versions. One
set of benchmarks evaluated the ability of DDs to represent information in compact form,
a second to evaluate their ability to solve combinatorial problems, and a third to represent
typical digital logic functions. All experiments were performed on a 4.2 GHz Intel Core
i7 (I7-7700K) processor with 32 GB of memory running the Macintosh macOS operating
system, version 10.13.6.

9.1 Encoding a Dictionary

As has been observed [18], a list of words can be encoded as a function mapping strings
in some alphabet to either 1 (included in list) or 0 (not included in list). Strings can further
be encoded as binary sequences by encoding each symbol as a sequence of bits, allowing
the list to be represented as a Boolean function. We consider two possible encodings of the
symbols, defining the radix R to be the number of possible symbols. A one-hot encoding
(also referred to as a “1-of-N” encoding) requires R bits per symbol. Each possible symbol
is assigned a unique position, and the symbol is represented with a one in this position and
0s in the rest. A binary encoding requires dlog2 Re bits per symbol. Each symbol is assigned
a unique binary pattern, and the symbol is represented by this pattern. Lists consisting of
words with multiple lengths can be encoded by padding the shorter words with a special
“null” symbol.

Chain Reduction for BDDs and ZDDs 17

One-hot Node counts Ratios
BDD CBDD (C)ZDD BDD:CBDD CBDD:CZDD

Compact word list 9,701,439 626,070 297,681 15.50 2.10
ASCII word list 23,161,501 626,071 297,681 37.00 2.10
Compact password list 49,231,085 2,321,572 1,130,729 21.21 2.05
ASCII password list 79,014,931 2,321,792 1,130,729 34.03 2.05

Binary Node counts Ratios
BDD CBDD (C)ZDD BDD:CBDD CBDD:CZDD

Compact word list 1,117,454 1,007,868 723,542 1.11 1.39
ASCII word list 1,464,773 1,277,640 851,580 1.15 1.50
Compact password list 4,422,292 3,597,474 2,506,088 1.23 1.44
ASCII password list 4,943,940 4,307,614 2,875,612 1.15 1.50

Table 2 Node counts and ratios of node counts for dictionary benchmarks

Table 1 shows the characteristics of eight Boolean functions derived from two word lists
to allow comparisons of different encoding techniques and representations. Both lists are
avaiable at the supplementary website [9] The first list is a set of English words in the file
/usr/share/dict/words found on Macintosh systems and used in early spell checkers.
It contains 235,886 words with lengths ranging from one to 24 symbols, and where the
symbols consist of lower- and upper-case letters plus hyphen. We consider two resulting
symbol sets: a compact form, consisting of just the symbols found in the words plus a null
symbol (54 total), and an ASCII form, consisting of all 128 ASCII characters plus a null
symbol.

The second word list is from an online list of words employed by password crackers. It
consists of 979,247 words ranging in length from one to 32 symbols, and where the symbols
include 79 possible characters. Again, we consider both a compact form and an ASCII form.

As Table 1 shows, the choice of one-hot vs. binary encoding has a major effect on the
number of Boolean variables required to encode the words. With a one-hot encoding, the
number of variables ranges between 1,296 and 4,128, while it ranges between 144 and 256
with a binary representation.

To generate DD encodings of a word list, we first constructed a Trie representation of
the words [14] and then generated Boolean formulas via a depth-first traversal of the Trie.

Table 2 shows the number of nodes required to represent word lists as Boolean functions,
according to the different lists, encodings, and DD types. The entry labeled “(C)ZDD” gives
the node counts for both ZDDs and CZDDs. These are identical, because there were no
DON’T-CARE chains for these functions. The two columns on the right show the ratios be-
tween the different DD types. Concentrating first on one-hot encodings, we see that the chain
compression of CBDDs reduces the size compared to BDDs by large factors (15.50–34.03).
Compared to ZDDs, representing the lists by CBDDs incurs some penalty (2.05–2.10), but
less than the worst-case penalty of 3. Increasing the radix from a compact form to the full
ASCII character set causes a significant increase in BDD size, but this effect is eliminated
by using the zero suppression capabilities of CBDDs, ZDDs, and CZDDs.

Using a binary encoding of the symbols reduces the variances between the different
encodings and DD types. CBDDs provide only a small benefit (1.11–1.23) over BDDs, and
CBDDs are within a factor of 1.50 of ZDDs. Again, chaining of ZDDs provides no benefit.
Observe that for both lists, the most efficient representation is to use either ZDDs or CZDDs
with a one-hot encoding. The next best is to use CBDDs with a one-hot encoding, and
all three of these are insensitive to changes in radix. These cases demonstrate the ability

18 Randal E. Bryant

One-hot Operations Time (secs.)
ZDD CZDD Ratio ZDD CZDD Ratio

Compact word list 142,227,877 12,097,435 11.76 48.78 15.04 3.24
ASCII word list 375,195,184 28,574,814 13.13 173.56 21.84 7.95
Compact password list 806,017,001 62,785,274 12.84 713.15 46.73 15.26
ASCII password list 1,383,534,557 104,059,626 13.30 658.21 57.81 11.39

Binary Operations Time (secs.)
ZDD CZDD Ratio ZDD CZDD Ratio

Compact word list 15,701,738 1,826,171 8.60 13.11 9.70 1.35
ASCII word list 20,921,746 2,139,574 9.78 14.40 10.20 1.41
Compact password list 66,489,058 7,499,615 8.87 52.52 30.62 1.72
ASCII password list 75,556,080 7,936,321 9.52 50.77 30.33 1.67

Table 3 Impact of chaining on effort required to generate DD representations of word lists

of ZDDs (and CZDDs) to use very large, sparse encodings of values. By using chaining,
CBDDs can also take advantage of this property.

We further quantify the impact of the encoding scheme (binary vs. one-hot) and the
decision-diagram type for representing dictionaries in Section 10.

Although the final node counts for the benchmarks indicate no advantage of chaining for
ZDDs, statistics characterizing the effort required to derive the functions show a significant
benefit. Table 3 indicates the total number of operations and the total time required for gen-
erating ZDD and CZDD representations of the benchmarks. The operations are computed
as the number of times the program checks for an entry in the operation cache (step 2 in the
description of the APPLY algorithm). There are many low-level factors that can affect the
number of operations, including the program’s policies for operation caching and garbage
collection. Nevertheless, it is some indication of the amount of activity required to generate
the DDs. We can see that chaining reduces the number of operations by factors of 8.87–
13.30. The time required depends on many attributes of the DD package and the system
hardware and software. Here we see that chaining improves the execution time by factors of
1.35–15.26.

With unchained ZDDs, many of the intermediate functions have large DON’T-CARE

chains. For example, the ZDD representation of the function x, for variable x, requires n+2
nodes—one for the variable, n− 1 for the DON’T-CARE chains before and after the vari-
able, and two leaf nodes. With chaining, this function reduces to just four nodes: the upper
DON’T-CARE chain is incorporated into the node for the variable, and a second node en-
codes the lower chain. Our dictionary benchmarks have over 4,000 variables, and so some
of the intermediate DDs can be more than 1,000 times more compact due to chaining.

9.2 The 15-Queens Problem

A second set of benchmarks involves representing all possible solutions to the N-queens
problem [22] as a Boolean function. This problem attempts to place N queens on an N×N
chessboard in such a way that no two queens can attack each other. For our benchmark we
chose N = 15 to stay within the memory limit of the processor being used.

Once again, there are two choices for encoding the positions of queens on the board. A
one-hot encoding has a Boolean variable for each square. A binary encoding has dlog2 15e=
4 variables for each row, encoding the position of the queen within the row.

Chain Reduction for BDDs and ZDDs 19

One-hot Node counts Ratios
Ordering Graph(s) BDD CBDD CZDD BDD:CBDD CBDD:CZDD

Top-down Final 51,889,029 10,529,738 4,796,504 4.93 2.20
Top-down Peak 165,977,497 39,591,936 18,625,659 4.19 2.13
Center-first Final 65,104,658 12,628,086 5,749,613 5.16 2.20
Center-first Peak 175,907,712 42,045,602 19,434,105 4.18 2.16

Binary Node counts Ratios
Ordering Graph(s) BDD CBDD CZDD BDD:CBDD CBDD:CZDD

Top-down Final 13,683,076 11,431,403 7,383,739 1.20 1.55
Top-down Peak 43,954,472 38,898,146 26,682,980 1.13 1.46
Center-first Final 17,121,947 14,185,276 9,054,115 1.21 1.57
Center-first Peak 46,618,943 41,362,659 28,195,596 1.13 1.47

Table 4 Node counts and ratios of node counts for 15-queens benchmarks

Our most successful approach for encoding the N-queens problem with Boolean op-
erations worked from the bottom row to the top, the details of which are available at the
supplementary website [9] At each level, it generated formulas for each square, expressing
the conditions under which the column directly below, as well as the diagonals downward
to the left and to the right, are unoccupied. For each row, the generated formula imposes the
constraint that the row must contain a single queen, and it must not conflict with any of the
rows below.

Overall, the formulas require around 11N2 Boolean operations for a one-hot encoding,
and (8+ log2 N) ·N2 Boolean operations for a binary encoding. Although a strict asymptotic
complexity analysis would consider log2 N to be a significant term in the count, keep in
mind that the largest benchmark we have ever successfully completed has N = 16, and that
N = 27 is the largest value for which the total number of solutions is known [24]. It is
therefore reasonable to assume that log2 N will not exceed 5 for the forseeable future, and
hence the total number of operations is O(N2) for both one-hot and binary encodings.

We considered two ways of ordering the variables for the different rows. The top-down
ordering listed the variables according to the row numbers 1 through 15. The center-first
ordering listed variables according to the following row number sequence:

8,9,7,10,6,11,5,12,4,13,3,14,2,15,1.

Our hope in using this sequence was that ordering the center rows first would reduce the
DD representation size. This proved not to be the case, but the resulting node counts are
instructive. We did not attempt any other variable orderings. We conjecture that the top-
down ordering (or its symmetric counterpart, a bottom-up ordering) is optimal. Even if not,
our purpose here is to show the relative performance of different DD implementations, and
so the optimality of the ordering is not important.

Table 4 shows the node counts for the different benchmarks. It shows both the size of
the final function representing all solutions to the 15-queens problem, as well as the peak
size, computed as the maximum across all rows of the combined size of the functions that
are maintained to express the constraints imposed by the row and those below it. For both
the top-down and the center-first benchmarks, this maximum was reached after completing
row 3. Typically the peak size was around three times larger than the final size.

For a one-hot encoding, we can see that CBDDs achieve factors of 4.18–5.16 com-
paction over BDDs, and they come within a factor of 2.20 of CZDDs. For a binary encod-
ing, the levels of compaction are much less compelling (1.13–1.20), as is the advantage

20 Randal E. Bryant

One-hot Node counts Ratios
Ordering Graph(s) ZDD CZDD ZDD:CZDD

Top-down Final 4,796,504 4,796,504 1.00
Top-down Peak 18,632,019 18,625,659 1.00
Center-first Final 5,749,613 5,749,613 1.00
Center-first Peak 73,975,637 19,434,105 3.81

Binary Node counts Ratios
Ordering Graph(s) ZDD CZDD ZDD:CZDD

Top-down Final 7,383,739 7,383,739 1.00
Top-down Peak 26,684,315 26,682,980 1.00
Center-first Final 9,054,115 9,054,115 1.00
Center-first Peak 33,739,362 28,195,596 1.20

Table 5 Effect of chaining for ZDD representations of 15-queens benchmarks

of CZDDs over BDDs. It is worth noting that the combination of a one-hot encoding and
chaining gives lower peak and final sizes than BDDs with a binary encoding.

We further quantify the impact of the encoding scheme (binary vs. one-hot) and the
decision-diagram type for representing solutions to the N-queens problem in Section 10.

Table 5 compares the sizes of the ZDD and CZDD representations of the 15-queens
functions. We can see that the final sizes are identical—there are no DON’T-CARE chains
in the functions encoding problem solutions. For the top-down ordering, CZDDs also offer
only a small advantage for the peak requirement. For the center-first ordering, especially
with a one-hot encoding, we can see that CZDDs have a significantly lower (3.81×) peak
requirement. As the construction for row 3 completes, the variables that will encode the
constraints for rows 2 and 5 remain unconstrained, yielding many DON’T-CARE chains.
Once again, this phenomenon is much smaller with a binary encoding. In the end, the center-
first variable ordering does not outperform the more obvious, top-down ordering, but it was
beneficial to be able to test it. By using chaining, CZDDs can mitigate the risk of trying a
nonoptimal variable order.

By way of comparison, Kunkle, Slavici, and Cooperman [19] also used the N-queens
problem to test their BDD implementation performed on a cluster of 64 machines. They
used a one-hot encoding, but generated the formula by forming a conjunction of all of the
constraints on each single position on the board, requiring N2 constraints, each with around
4N terms, requiring a total of θ(N3) Boolean operations. In constructing a representation
of the 15-queens problem, their program reached a peak of 917,859,646 nodes, a factor of
5.5 times greater than our peak. Our row-by-row encoding technique requires only θ(N2)
Boolean operations, and it significantly reduces the peak memory requirement. Minato de-
scribed a third approach for encoding the N-queens problem, but his method also requires
θ(N3) operations [22].

9.3 Digital Circuits

BDDs are commonly used in digital circuit design automation, for such tasks as verification,
test generation, and circuit synthesis. Their ability to represent functions typically found in
digital circuits has been widely studied. It is natural to study the suitability of ZDDs, as well
as chained versions of BDDs and ZDDs for these applications.

Chain Reduction for BDDs and ZDDs 21

Node counts Ratios
Circuit BDD ZDD CZDD ZDD:BDD CZDD:BDD
c432 31,321 48,224 41,637 1.54 1.33
c499 49,061 49,983 48,878 1.02 1.00
c880 23,221 52,436 32,075 2.26 1.38
c1908 17,391 18,292 17,017 1.05 0.98
c2670 67,832 261,736 85,900 3.86 1.27
c3540 3,345,341 4,181,847 3,538,982 1.25 1.06
c5315 636,305 898,912 681,440 1.41 1.07
c6288 48,181,908 48,331,495 48,329,117 1.00 1.00
c7552 4,537 37,689 4,774 8.31 1.05

Table 6 Node counts and ratios of node counts for digital circuit benchmarks

We selected the circuits in the ISCAS ’85 benchmark suite [4]. These were originally
developed as benchmarks for test generation, but they have also been widely used as bench-
marks for BDDs [15,20]. We generated variable orderings for all but the last two bench-
marks by traversing the circuit graphs, using the fan-in heuristic of [20]. Circuit c6288
implements a 16× 16 multiplier. For this circuit, the ordering of inputs listed in the file
provided a feasible variable ordering, while the one generated by traversing the circuit ex-
ceeded the memory limits of our machine. For c7552, neither the ordering in the file, nor that
provided by traversing the graph, generated a feasible order. Instead, we manually generated
an ordering based on our analysis of a reverse-engineered version of the circuit described in
[17].

Fig. 6 presents data on the sizes of the DDs to represent all of the circuit outputs. We do
not present any data for CBDDs, since these were all close in size to BDDs. We can see that
the ZDD representations for these circuits are always larger than the BDD representations,
by factors ranging up to 8.31. Using CZDDs mitigates that effect, yielding a maximum size
ratio of 1.38.

Circuit c6288 has historical interest. Integer multiplication is known to be intractable for
BDDs regardless of variable ordering [6]. As a result, this benchmark was long considered
out of reach for a BDD representation and therefore typically omitted from many benchmark
comparisons. With a modern machine, the benchmark is achievable, requiring a peak of
around 16 GB to represent the data structures. On the other hand, we see that these functions
contain very few DON’T-CARE or OR chains, and hence all four DD types require around 48
million nodes.

9.4 Observations

Our experiments, while not comprehensive, demonstrate that chaining can allow BDDs to
make use of large, sparse encodings, one of the main strengths of ZDDs. They also indicate
that CZDDs may be the best choice overall. CZDDs have all of the advantages of ZDDs,
while avoiding the risk of intermediate functions growing excessively large due to DON’T-
CARE chains. They are guaranteed to stay within a factor of 2× of BDDs. Even for digital
circuit functions, we found this bound to be conservative—all of the benchmarks stayed
within a factor of 1.4×.

Experienced ZDD users take steps to avoid DON’T-CARE chains, for example, by imple-
menting special algorithms that operate directly on ZDDs, rather than expressing a compu-
tation as a sequence of Boolean operations [18,28]. By using chaining, CZDDs reduce the

22 Randal E. Bryant

Complement edges
Metric No Yes Ratio

Final size 48,177,349 41,417,996 1.16
Operations 675,645,812 272,783,843 2.48
Time (secs.) 1757 280 6.27

Table 7 Benefits of complement edges for CBDD representations of c6288 benchmark

cost of these chains, enabling users to express their computations at the more abstract level
of Boolean expressions, rather than implementing special algorithms.

9.5 Complement Edges

As mentioned earlier, CUDD uses complement edges in its representation of BDDs, and
hence our experiments showed the results for ADDs to avoid confounding factors in our
experimental evaluation. We also implemented CBDDs with complement edges by modify-
ing CUDD’s implementation of BDDs. The standard rules for deciding how to canonicalize
complement edges [3] can be used without modification with CBDDs. Interestingly, these
rules imply that there are no ZERO chains in our CBDDs, because the canonicalization for-
bids having a hi pointer to leaf 0. Instead, such chains are represented by chain nodes with
the hi edges pointing to leaf 1, and with their incoming edges complemented. Although
Minato’s original paper on ZDDs [23] includes a set of conventions for using complement
edges with ZDDs, these are not implemented in CUDD. Thus, we did not attempt this feature
in our implementation of CZDDs.

Fig. 7 illustrates the impact of complement edges for CBDDs, based on the c6288 bench-
mark. Similar results hold without chaining. As can be seen, although complement edges can
potentially yield a 2× reduction in the number of nodes, the actual reduction is much smaller
(1.16×). However, it can greatly affect the number of operations required (2.48×), since
complement edges enable complementing a function in a single step, rather than traversing
the graph. (The circuit consists mostly of NOR gates, each requiring a complement opera-
tion.) The impact on time (6.27×) is even greater, since the large number of complement
operations pollutes the operation cache. The performance gain achieved by complement
edges was much less significant for the other benchmarks, in part due to the different mixes
of logic gate types.

In terms of implementing and using a BDD package, complement edges provide many
sources of complications, bugs, and debugging challenges. Nonetheless, this evaluation in-
dicates that complement edges can, at times, provide a significant performance benefit.

10 Quantitative Model

Both the dictionary and N-queens problem require representing sets of sequences of some
length K over an alphabet of R symbols. In the case of a dictionary, the symbols are the
characters appearing in the words, along with a null terminator, and each sequence is a
word (possibly padded with null symbols). In the case of N-queens, a symbol indicates the
position of a queen within a row (R = N), and the sequence indicates the placement of the
queens in every row. So, for example, 0241C8DBE5F63A79 is the hexadecimal representation
of one solution to the 16-queens problem.

Chain Reduction for BDDs and ZDDs 23

a. Trie

A O B D

D D A

* D

A

D DD

A O B D

D D A A

D D D D*

b. DAFSA

A O B

D A

D

A O B, D

D D A

*, D D

Fig. 11 Trie and DAFSA representations of the set {AD,ADD,ODD,BAD,DAD}

In this section, we formulate a simple, quantitative model for estimating the number of
nodes in the decision-diagram representations of such sets, as a function of the encoding
method (one-hot or binary) and the decision-diagram type. In comparing this model with
the experimental results of Section 9, we find that the total number of nodes in the DD
representations for both the word sets and for the N-queens solutions match the model’s
predictions well. The model provides further insight into the scaling properties of different
DD representations.

As notation, for integer x, define bits(x) = dlog2 xe. So, for example, a binary coding of
R symbols requires bits(R) bits.

Our analysis does not attempt to quantify any advantage CZDDs may have over ZDDs.
As we saw with the experimental results, CZDDs do not outperform ZDDs when encoding
word sets, except possibly during intermediate points in their construction.

10.1 DAFSA Representations of Sequence Sets

A more direct representation of a finite set of sequences, all of length K is as a reduced
finite-state automata representing the set as a language over the symbols in the sequence.
This representation is sometime referred to as a deterministic acyclic finite-state automaton,
or “DAFSA” [11,10]. As an illustration, Fig. 11 shows Trie (a) [14] and DAFSA (b) repre-
sentations of the set {AD,ADD,ODD,BAD,DAD}, using symbol ’*’ as the null terminator.
Nonterminal nodes are shown as hollow circles and accepting nodes as solid circles. In a Trie
representation, the common prefixes of the words provide a source of sharing by the nodes.
With a DAFSA, the suffixes of the words also provide a source of sharing, potentially yield-
ing a considerable reduction in the number of nodes. This sharing of suffixes is precisely
the source of compaction that reduced decision diagrams achieve through their sharing of
common subgraphs.

We define the size of a DAFSA to be the sum of the outdegrees of all of the nodes in the
graph, where the outdegree of a node is defined to be the number of symbols for which the
node has a successor. As an example, the graph shown in Fig. 11b has size ten, even though
it contains eight edges, since all of the labels for an edge count separately when computing
the outdegree.

24 Randal E. Bryant

10.2 Encoding Metric

In representing a sequence of symbols as a binary sequence, we must encode each symbol
as a sequence of Boolean values. We have considered both one-hot and binary encodings.
Assuming the overall ordering of the binary sequence consists of the concatenation of the
encodings for the individual symbols, the DD representation of a single sequence then con-
sists of a chain of selector function DDs, each yielding 1 for a single symbol. As examples,
Fig. 12 shows DD representations of the selector function for the symbol assigned index 9
in a set of 12 symbols.

Define the function ENCT
DD(R), to be the average number of nodes per symbol to encode

the set consisting of a single sequence as a DD of type DD (either BDD, CBDD, or ZDD)
using an encoding of type T (either O for one-hot or B for binary). R denotes the size, or
radix, of the symbol set. That is, if the entire DD has m nodes (not counting the two terminal
nodes), and the sequence is of length K, then we compute m/K, and average this across all
possible sequences. We assume all symbol values are equally likely.

The selector function examples of Fig. 12 provide some insights into these averages.
For a one-hot encoding (a), we see that a BDD encoding of the selector requires R = 12
nodes, while a ZDD representation requires only 1. The CBDD representation has three
nodes, compressing the zero chains above and below the variable with index 9. When we
consider the CBDD representation of an entire sequence, we can see that it will contain
around 2K nodes, since the zero chain at the end of one symbol will merge with the zero
chain at the beginning of the next. The encoding metric for one-hot encoding can therefore
be characterized as ENCO

BDD(R) = R, ENCO
ZDD(R) = 1, and ENCO

CBDD(R) = 2.
As Fig. 12b illustrates, for a binary encoding, the BDD will require bits(R) variables

(4, in this case). We assume the variables are ordered from most significant bit to least,
although the DDs will be of the same size if this ordering is inverted. The figure shows the
representations for index 9, having binary representation 1001. A BDD will have exactly 4
nodes, but both the ZDD and CBDD representations can have fewer nodes, due to the 0s
that occur in the binary representation of the index.

To estimate the values of the encoding metric with binary encoding, let r = bits(R) and
consider the binary sequence of length r ·K, representing a sequence of K symbols. The
BDD representing this sequence will then contain r ·K nonterminal nodes. For the ZDD
representation, any position in the sequence with value 0 does not require a node. Similarly,
for the CBDD representation, any pair of consecutive 0s can be encoded as part of a chained
node. Assuming 0s and 1s are equally likely and uniformly distributed, we would expect the
DD representations encoding each symbol in a sequence to have, on average, r nodes for a
BDD, 0.5r nodes for a ZDD, and 0.75r nodes for a CBDD.

These simple estimates for the ZDD and CBDD encodings are accurate only for the case
of R being a power of two. For other values of R, they are too large, because, in these cases,
there will be more 0s than 1s in the sequences, and the 0s are not uniformly distributed.
Although the computation of an accurate estimate for all values of R is complex, we can
introduce a correction factor for the prevalence of 0s in the most significant bits of the
encodings. That is, the most significant bits will be zero, on average, for fraction 2r−1/R of
the cases. These 0s will reduce the number of ZDD nodes required to represent the selector
functions, and they will provide more opportunities for chaining in CBDDs. For both cases,
the correction factor is −0.5(2r/R−1). When R = 2r, this factor drops to zero, but it can be
close to −0.5 when R is close to its lower bound value of 2r−1 +1.

Fig. 12c summarizes these estimates on the average number of nodes to encode each
symbol in the DD representation of a sequence of symbols.

Chain Reduction for BDDs and ZDDs 25

a. One-hot
Index

1

2

3

4

5

6

7

8

9

10

11

0

BDD ZDD CBDD

b. Binary
Index

1

2

3

0

BDD ZDD CBDD

c. Approx. average nodes, with r = bits(R)

One-Hot Binary
BDD R 1.00 · r
ZDD 1 0.50 · r−0.5

(
2r

R −1
)

CBDD 2 0.75 · r−0.5
(

2r

R −1
)

Fig. 12 DD representations of a selector function selecting index 9 (binary 1001) from a set of 12 symbols,
and their average sizes

When representing a set of sequences as a DD, we can estimate its size to be proportional
to the size of its DAFSA representation times the size of the selector functions encoding
the DAFSA nodes. But, the DDs representing these selector functions can have additional
sharing. For example, a DAFSA node with outdegree R = 2r would require just R−1 nodes
to encode as a BDD, when using a binary encoding, well less than the naive estimate of R · r
nodes. Similarly, there can be sharing among the DDs representing different DAFSA nodes
within a single level. For a set of sequences S, let DAFSA(S) be the size of its DAFSA
representation, and let DDT(S) be the size of its DD representation for encoding method T
and DD type DD.

Define the sharing ratio α as

α =
ENCT

DD(R) ·DAFSA(S)
DDT(S)

(12)

That is, α quantifies the degree of sharing among the DD nodes when encoding the DAFSA
nodes.

By its definition, we must have α ≥ 1, since the numerator in (12) represents the size
of the DD obtained by encoding every outgoing branch from a DAFSA node as a separate
selector function. On the other hand, if we find that α can be much greater than 1.0, or that
it varies widely according to the underlying DAFSA, encoding method, or DD type, this
would indicate that our quantitative model is too simplistic to capture the scaling properties
of DDs.

26 Randal E. Bryant

One-hot DAFSA Encoding cost Sharing ratio
size BDD CBDD ZDD BDD CBDD ZDD

Compact word list 411,152 54.00 2.00 1.00 2.29 1.31 1.38
ASCII word list 411,152 129.00 2.00 1.00 2.29 1.31 1.38
Compact password list 1,600,190 80.00 2.00 1.00 2.60 1.38 1.42
ASCII password list 1,600,190 129.00 2.00 1.00 2.61 1.38 1.42
Binary DAFSA Encoding cost Sharing ratio

size BDD CBDD ZDD BDD CBDD ZDD
Compact word list 411,152 6.00 4.41 2.91 2.21 1.80 1.65
ASCII word list 411,152 8.00 5.51 3.51 2.25 1.77 1.69
Compact password list 1,600,190 7.00 4.95 3.20 2.53 2.20 2.04
ASCII password list 1,600,190 8.00 5.51 3.51 2.59 2.05 1.95

Table 8 Sharing ratios for dictionary benchmarks

N 8 9 10 11 12 13 14 15
DAFSA size 452 1,639 3,806 12,985 58,094 264,409 1,190,178 6,380,499

Table 9 DAFSA sizes for N-queens solutions

10.3 Experimental Evaluation of Model

Table 8 shows the sharing ratios for the dictionary benchmarks. These range between 1.31
and 2.61, a fairly tight range considering the 16-fold range in the DD sizes of Table 2.
For the one-hot encodings, we see that BDDs have a significantly higher sharing ratio than
ZDDs. The long chains of BDD nodes in a one-hot encoding (e.g., Fig. 12a) provide many
opportunities for sharing among and between DAFSA node encodings. The sharing ratios
of ZDDs are slightly higher than those for CBDDs. The CBDD nodes encoding zero chains
can be shared only if they match on both their top and bottom indices. The combination of
CBDDs requiring two nodes per symbol, while ZDDs require only one, and the difference
in sharing ratios accounts for the factor of 2.05–2.10 that we saw of CBDDs to ZDDs in the
final column of Table 8.

For the binary encodings, the sharing ratios seem generally comparable, ranging be-
tween 1.65 and 2.59, with BDDs having slightly higher ratios than CBDDs, and these hav-
ing slightly higher ratios than ZDDs. These higher ratios counteract the (already small)
predicted relative advantages of ZDDs over CBDDs, and CBDDs over BDDs.

Overall, we can see that our model explains why the combination of a one-hot encoding
and the use of ZDDs, CZDDs, or CBDDs yields the most compact DD representations
for the sample word sets—this combination provides constant scaling with respect to the
DAFSA size, independent of the radix R. Using a binary encoding causes the DDs to scale
by logR, with only a small advantage of ZDDs over CBDDs and CBDDs over BDDs. As
predicted by the model, and confirmed by our experimental results, BDDs do not scale well
when a one-hot encoding is used.

For the N-queens problem, we computed sharing ratios for all values of N between 8
and 15, and for all six combinations of encoding method and DD type. The DAFSA sizes
are shown in Table 9. Note the very wide range of DAFSA sizes—over three orders of
magnitude. Fig. 13 shows plots of the resulting sharing ratios. For one-hot encodings, the
BDD representations have significantly higher sharing ratios than ZDDs or CZDDs, because
their long chains provide many opportunities for sharing. We see a somewhat higher ratio
for ZDDs than for CBDDs, with the result that the BDDs requires between 2.06 and 2.20

Chain Reduction for BDDs and ZDDs 27

1.00	

1.10	

1.20	

1.30	

1.40	

1.50	

1.60	

1.70	

1.80	

1.90	

2.00	

8	 9	 10	 11	 12	 13	 14	 15	

Sh
ar
in
g	
Ra

tio
	

N-Queens	Sharing	Ratios:	One	Hot	Encodings	

One-hot	BDD	

One-hot	CBDD	

One-hot	ZDD	

1.00	

1.10	

1.20	

1.30	

1.40	

1.50	

1.60	

1.70	

1.80	

1.90	

2.00	

8	 9	 10	 11	 12	 13	 14	 15	

Sh
ar
in
g	
Ra

tio
	

N-Queen	Sharing	Ratios:	Binary	Encodings	

Binary	BDD	

Binary	CBDD	

Binary	ZDD	

Fig. 13 Sharing ratios for N-queens benchmarks

times more nodes to represent than the ZDDs, rather than the factor of 2.00 predicted by our
model. For the binary encodings, the three DD types yield similar sharing ratios.

Our simple model of DD size shows the impact the encoding method and the DD type
have on their sizes. For representing a set of sequences, the fundamental structure is a
DAFSA, encoding all of the sequences with a sharing of prefixes and suffixes. Using a
one-hot encoding with either a ZDD or a CBDD, the resulting DD will be within a small
constant factor of the DAFSA size, with the CBDD being around twice the size of the ZDD.
This shows that our worst-case bound of 3 is pessimistic for this class of applications. Using
a one-hot encoding with a BDD representation is clearly inferior, causing a scaling by a
factor of the radix R. Using a binary encoding of the symbols yields DDs that scale as the
log of the radix, relative to the DAFSA size. The overall sizes scale as ZDD < CBDD <
BDD, but these are by small, constant factors.

Overall, the best choice for minimizing DD size is to use a one-hot encoding with ZDDs,
or possibly CZDDs to reduce the total number of operations. CBDDs with a one-hot encod-
ing are also viable choices.

11 Conclusions

We have shown that incorporating chain compression into a decision diagram representation
can yield DDs that exploit the forms of compaction found in both BDDs and ZDDs. This
allows a user to test different encoding schemes and variable orderings with less risk of a

28 Randal E. Bryant

Low index Low child

High childHigh index

Hash link

Index Reference count

Fig. 14 Possible data structure for representing tagged BDD nodes

blow-up due to a nonoptimal choice of DD type. Our experimental results and our analytic
model show that CBDDs can achieve a level of compaction within a constant factor of
ZDDs, while CZDDs can avoid some of the performance problems that arise when using
ZDDs.

12 Comparisons and Further Work

Our modifications to CUDD to support chaining were only sufficient to evaluate the ba-
sic concepts. Fully integrating these changes into such a complex software package would
require significantly more effort. Perhaps the most challenging would be to implement dy-
namic variable ordering [25]. The basic principles that enable dynamic variable ordering for
BDDs also hold for both CBDDs and CZDDs. That is, an exchange of variables at levels l
and l + 1 can be performed without modifying any of the nodes with levels less than l and
without modifying any external node pointers. Special consideration must be given to nodes
with levels t : b, such that either t = l +1 or b = l. Many low-level details and heuristics of
the implementation would need to be altered to enable dynamic variable ordering to work
well.

The tagged BDD representation of van Dijk and his colleagues [12] has the intriguing
property that it compresses both DON’T-CARE and ZERO chains, and so the tagged-BDD
representation of a function will never have more nodes than either its BDD or its ZDD rep-
resentation. Their approach associates a variable level with each edge in the graph, indicating
a position where the edge transitions from a DON’T-CARE to a ZERO chain. They describe a
modified version of the APPLY algorithm to take account of these transitions. Naturally, the
algorithms are more complex than the standard BDD operations, and indeed somewhat more
complex than the ones we have presented for chained DDs, but the underlying principles are
comparable.

Fig. 14 shows a possible data structure representation of a node in a tagged BDD. Rather
than allocating an eight byte pointer for each child, it reserves two of those bytes for an
index, and the remaining six bytes for the pointer. Given that contemporary processors limit
their virtual address spaces to 248 bits (enough to reference over 281 terabytes), this structure
would not impose a limit on the sizes of DDs that could be represented. On the other hand, it
would greatly complicate the data-structure references, including in many portions of typical
application code. Since node pointers (including the low-order bit for complementation) are
referenced directly in application code, reserving bytes in these pointers for variable indices
would lead to many incompatibilities with existing code. Nonetheless, this extension should
be given careful consideration.

Chain Reduction for BDDs and ZDDs 29

We did not attempt a comparative evaluation of our benchmarks for tagged BDDs, but
the paper by Babar, et al., includes some comparisons between tagged BDDs and other rep-
resentations [1]. On dictionary benchmarks similar to ours, tagged BDDs exactly match the
node counts of ZDDs (and CZDDs). For circuit benchmarks similar to ours (same circuits,
but different variable orderings), the TBDDs were slightly more compact than BDDs (or
CBDDs) for some cases, but never more than by a few percent. It seems, therefore, that
tagged BDDs mainly provide a way to exploit the best aspects of ZDDs and BDDs, rather
than fundamentally improving on either.

By contrast, the experimental results by Babar, et al., show that ESRBDDs can sig-
nificantly outperform all other representations, in terms of node counts, for the dictionary
benchmarks when using binary encodings. In one of their benchmarks, the ESRBDD repre-
sentation has 2,410,589 nodes, versus 3,532,847 for the next-best representation as a ZDD,
a factor of 1.47× smaller. The one-suppression rule of ESRBDDs allows them to have fewer
nodes when representing selector functions for binary patterns containing sequences of con-
secutive 1s as well as sequences of consecutive 0s. At the supplementary website, we present
a derivation that shows that the ESRBDD encoding of a binary sequence of length r has, on
average r/3, nodes, assuming 0s and 1s are equally likely and uniformly distributed [9]. This
is a fundamental improvement on the averages derived for BDDs (r), CBDDs (3r/4), and
ZDDs (r/2). The observed factor of 1.47 for ESRBDDs over ZDDs nearly achieves the ratio
of 1.50 that this analysis predicts. This result is also an indication of the predictive power of
our quantitative model.

Acknowledgements This work has benefited from conversations with Shin-Ichi Minato and Ofer Strichman.
This work was supported, in part, by NSF STARSS grant 1525527.

References

1. Babar, J., Jiang, C., Ciardo, G., Miner, A.: Binary decision diagrams with edge-specified reductions. In:
Tools and Algorithms for the Construction and Analysis of Systems, Lecture Notes in Computer Science,
vol. 11428, pp. 303–318 (2019)

2. Bahar, R.I., Frohm, E.A., Gaona, C.M., Hachtel, G.D., Macii, E., Pardo, A., Somenzi, F.: Algebraic
decision diagrams and their applications. In: Proceedings of the International Conference on Computer-
Aided Design, pp. 188–191 (1993)

3. Brace, K.S., Rudell, R.L., Bryant, R.E.: Efficient implementation of a BDD package. In: Proceedings of
the 27th ACM/IEEE Design Automation Conference, pp. 40–45 (1990)

4. Brglez, F., Fujiwara, H.: A neutral netlist of 10 combinational benchmark circuits and a target translator
in Fortran. In: 1985 International Symposium on Circuits And Systems (1985)

5. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Transactions on Com-
puters C-35(8), 677–691 (1986)

6. Bryant, R.E.: On the complexity of VLSI implementations and graph representations of Boolean func-
tions with application to integer multiplication. IEEE Transactions on Computers 40(2), 205–213 (1991)

7. Bryant, R.E.: Binary decision diagrams. In: E.M. Clarke, T.A. Henzinger, H. Veith, R. Bloem (eds.)
Handbook of Model Checking. Springer Verlag (2018)

8. Bryant, R.E.: Chain reduction for binary and zero-suppressed decision diagrams. In: Tools and Algo-
rithms for the Construction and Analysis of Systems, Lecture Notes in Computer Science, vol. 10805,
pp. 81–98 (2018)

9. Bryant, R.E.: Supplementary material regarding chain reduction for binary and zero-suppressed decision
diagrams. http://www.cs.cmu.edu/~bryant/bdd-chaining.html (2020)

10. Daciuk, J., Mihov, S., Watson, B.W., Watson, R.E.: Incremental construction of minimal acyclic finite
state automata and transducers. Computational Linguistics 26, 3–16 (2000)

11. Daciuk, J., Watson, B.W., Watson, R.E.: Incremental construction of minimal acyclic finite state au-
tomata and transducers. In: Proceedings of the International Workshop on Finite State Methods in Nat-
ural Language Processing, pp. 48–56 (1998)

30 Randal E. Bryant

12. van Dijk, T., Wille, R., Meolic, R.: Tagged BDDs: Combining reduction rules from different decision
diagram types. In: Formal Methods in Computer-Aided Design, pp. 108–115 (2017)

13. Drechsler, R., Becker, B.: Ordered Kronecker function decision diagrams. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 17(10), 965–973 (2006)

14. Fredkin, E.M.: Trie memory. Communications of the ACM 3, 490–500 (1960)
15. Fujita, M., Fujisawa, H., Kawato, N.: Evaluation and improvements of Boolean comparison method

based on binary decision diagrams. In: Proceedings of the International Conference on Computer-Aided
Design, pp. 2–5 (1988)

16. Fujita, M., McGeer, P.C., Yang, J.C.: Multi-terminal binary decision diagrams: An efficient data structure
for matrix representation. Formal Methods in Systems Design 10, 149–169 (1997)

17. Hansen, M., Yalcin, H., Hayes, J.P.: Unveiling the ISCAS-85 benchmarks: A case study in reverse engi-
neering. IEEE Design and Test 16(3), 72–80 (1999)

18. Knuth, D.E.: The Art of Computer Programming, Volume 4A: Combinatorial Algorithms, Part I. Addi-
son Wesley (2011)

19. Kunkle, D., Slavici, V., Cooperman, G.: Parallel disk-based computation for large, monolithic binary
decision diagrams. In: International Workshop on Parallel and Symbolic Computation, pp. 63–72. ACM
(2010)

20. Malik, S., Wang, A., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: Logic verification using binary de-
cision diagrams in a logic synthesis environment. In: Proceedings of the International Conference on
Computer-Aided Design, pp. 6–9 (1988)

21. Minato, S.: Zero-suppressed BDDs for set manipulation in combinatorial problems. In: Proceedings of
the 30th ACM/IEEE Design Automation Conference, pp. 272–277 (1993)

22. Minato, S.: Binary Decision Diagrams and Applications for VLSI CAD. Kluwer Academic Publishers
(1995)

23. Minato, S., Ishiura, N., Yajima, S.: Shared binary decision diagrams with attributed edges for efficient
Boolean function manipulation. In: Proceedings of the 27th ACM/IEEE Design Automation Conference,
pp. 52–57 (1990)

24. Preußer, T.B., Engelhardt, M.R.: Putting queens in carry chains, No. 27. Journal of Signal Processing
Systems 88(2), 185–201 (2017)

25. Rudell, R.L.: Dynamic variable ordering for ordered binary decision diagrams. In: Proceedings of the
International Conference on Computer-Aided Design, pp. 139–144 (1993)

26. Somenzi, F.: Efficient manipulation of decision diagrams. International Journal on Software Tools for
Technology Transfer 3(2), 171–181 (2001)

27. Wegener, I.: Branching Programs and Binary Decision Diagrams: Theory and Applications. SIAM
(2000)

28. Yoneda, T., Hatori, H., Takahara, A., Minato, S.: BDDs vs. zero-suppressed BDDs for CTL symbolic
model checking of Petri nets. In: Formal Methods in Computer-Aided Design, Lecture Notes in Com-
puter Science, vol. 1166, pp. 435–449 (1996)

