
Digital Circuit Verification using
Partially-Ordered State Models

�

Randal E. Bryant
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213 USA

Carl-Johan H. Seger
Department of Computer Science

University of British Columbia
Vancouver, B.C. V6T 1Z4 Canada

Abstract
Many aspects of digital circuit operation can be efficiently

verified by simulating circuit operation over “weakened” state
values. This technique has long been practiced with logic simu-
lators, using the value X to indicate a signal that could be either 0
or 1. This concept can be formally extended to a wider class of
circuit models and signal values, yielding lattice-structured state
domains. For more precise modeling of circuit operation, these
values can be encoded in binary and hence represented symbol-
ically as Ordered Binary Decision Diagrams. The net result is a
tool for formal verification that can apply a hybrid of symbolic
and partially-ordered evaluation.

1 Introduction
Logic simulators have long employed multiple-valued logic,

typically augmenting the binary values 0 and 1 with a value X indi-
cating a undefinedor unknown signal [11]. This value can be used
to indicate an uninitialized state variable or to represent a signal in
transition for hazard detection [9]. In earlier work we have shown
that such ternary modeling can also be effective when formally
verifying circuit correctness [7]. Assuming a monotonicity prop-
erty of the simulation algorithm, one can ensure that any binary
values resulting when simulating patterns containing X’s would
also result when the X’s are replaced by any combination of 0’s
and 1’s. Thus, the number of patterns that must be simulated to
verify a circuit can be reduced, often dramatically, by representing
many different operating conditions with patterns containing X’s.
For example, we can verify that a particular sequence of actions
will yield a 1 (or 0) on some node regardless of the initial state
by verifying that this value results when starting from an initial
state where all nodes are set to X. Using this technique, we have
successfully verified random access memory circuit of up to 4096
bits using a conventional switch-level simulator [6]. Considering
that such a circuit has over 101233 states, this example illustratives
the potential effectiveness of ternary modeling.

�
This research was supported by the Defense Advanced Research

Projects Agency, ARPA Order Number 4976, by the National Science
Foundation, under grant number MIP-8913667, by operating grant OGPO
109688 from the Natural Sciences Research Council of Canada, and by a
fellowship from the Advanced Systems Institute.

Ternary modeling is a special case of a more general abstrac-
tion technique based on partially-ordered system models. That
is, the actual state space of the circuit (in this case all possible
combinations of binary values) is extended with values repre-
senting sets of circuit states, such that the resulting state set is
partially ordered. Lower elements in this ordering are “weaker”
in their information content than the actual circuit states. We can
therefore verify circuit behavior for a range of different operat-
ing conditions by simulating operation on weakened values. By
suitable restrictions of the specification notation and the extended
next-state function, we can guarantee that any property verified
on this more abstract form of simulation must also hold for the
original circuit.

Although ternary modeling, or its generalization, allows us
to cover many conditions with a single simulation sequence, it
lacks the analytic power required for general verification. Simu-
lators that support ternary modeling intentionally err on the side
of pessimism for the sake of efficiency. That is, they will some-
times produce a value X even where exhaustive case analysis
would indicate that the value should be binary (i.e., 0 or 1). We
therefore also need a method for covering a wide range of operat-
ing conditions explicitly, such as symbolic simulation. We have
shown that by combining ternary modeling with symbolic sim-
ulation [1], we can model even complex sets of behaviors with
a single simulation run. With ternary symbolic simulation, the
simulation algorithm designed to operate on scalar values 0, 1,
and X, is extended to operate on a set of symbolic values. Each
symbolic value indicates the value of a signal for many different
operating conditions, parameterized in terms of a set of symbolic
Boolean variables. By representing the multiple-valued signals
with a binary encoding, we can represent and manipulate them
symbolically using Ordered Binary Decision Diagrams (OBDDs)
[3].

In this paper we generalize our previous results on ternary sim-
ulation to a wider class of partially-ordered system models. It also
allows us to apply our methods to more abstract data domains than
simple binary-valued signals. We describe a technique for formal
verfication, called symbolic trajectory evaluation that employs
symbolic simulation over partially-ordered values to verify prop-
erties of a digital system [5, 8]. This paper focusses on the role

1

Symbolic? Model Patterns Variables
No Binary 2

�
0

Yes Binary 1 �
No Ternary ��� 1 0
Yes Ternary 1 � log � ��� 1 ���

Table 1: Requirements for Verifying � -input AND gate.

Scalar Cases Symbolic
Signal 0 1 2 3 4 5 6 7 High Low
in0 0 X X X X X X 1 	 2 	 1 	 0 	 2 	 1 	 0
in1 X 0 X X X X X 1 	 2 	 1 	 0 	 2 	 1 	 0
in2 X X 0 X X X X 1 	 2 	 1 	 0 	 2 	 1 	 0
in3 X X X 0 X X X 1 	 2 	 1 	 0 	 2 	 1 	 0
in4 X X X X 0 X X 1 	 2 	 1 	 0 	 2 	 1 	 0
in5 X X X X X 0 X 1 	 2 	 1 	 0 	 2 	 1 	 0
in6 X X X X X X 0 1 	 2 	 1 	 0 	 2 	 1 	 0
out 0 0 0 0 0 0 0 1 	 2 	 1 	 0 	 2 � 	 1 � 	 0

Table 2: Verification of 7-input AND Gate by Ternary Modeling

of partially-ordered states in our methodology, and how these are
combined with symbolic simulation to give a trade-off between
precision and efficiency. We also show that the formulation in
terms of a lattice relations and operations concisely describes the
operation of the verifier. Having this mathematical model makes
it possible to formally reason about the properties of our tool. A
more complete treatment can be found in [12].

Lattice-structured domains based on an information ordering
havelong beenused for giving denotational semantics to programs
[13]. In this case the lattice structure is a mathematical device for
giving a functional interpretation to a program loop, based on the
least fixed point of the function representing one execution of the
loop body. Our use of lattice-structured domains is more than a
mathematical device—it forms the basis of a tool for automatic
hardware verification. We run simulations in which only some of
the state components are constituted as full binary values, while
the remaining components consist of X’s.

2 Illustrative Example
Consider the task of using a simulator to verify that a given cir-

cuit has the functionality of an � -input AND gate. Four approaches
are tabulated in Table 1, according to whether the simulation is
conventional or symbolic, and whether it uses a binary or a ternary
system model. With binary modeling, we would need to simulate
either 2

�
conventional patterns, or a single symbolic pattern of� variables—one per input. In either case, we must, in effect,

exhaustively evaluate the circuit functionality.
With ternary modeling, we can exploit the property that if

at least one of the inputs to the gate is 0, the output should be 0
regardless of the other inputs. Even with a conventionalsimulator,
we can verify the circuit with just �
� 1 patterns. These are
illustrated for the case of ��� 7 in Table 2. First, there are �
patterns that set one input to 0, the remaining to X, and checks

T

01 11 00 10

X0X1 1X0X

XX

10

X

Figure 1: Construction of State Domain from Multiple, Partially-
Ordered Signals

that the output is 0. The remaining pattern sets all inputs to 1 and
checks that the output is 1.

By the method of symbolic indexing, our ternary symbolic
simulator can encode all of these cases with a single symbolic
pattern [1]. That is, we think of the patterns as being indexed
from 0 to � . These index values are then encoded in binary and
representedsymbolically by a set of � log � �
� 1 ��� index variables.
In our example with �
� 7, we require three index variables: 	 2 ,
	 1, and 	 0 . The signal values are then functions over these index
variables mapping to the set � 0 � 1 � X � . We can in turn represent
each of these functions as a pair of Boolean functions, indicating
the cases where the signal is 1 (“High”) or 0 (“Low”), with the
signal otherwise being X. Table 2 shows the encoding of the
eight ternary patterns by symbolic indexing. The High function
is satisfied only when all index variables are assigned value 1,
correspondingto the binary representation of 7. The Low function
for each signal is satisfied when the index value matches the input
number. Thus, each decoding of the index variables corresponds
to one of the scalar ternary patterns.

This simple example illustrates how multi-valued modeling
can be combined with symbolic simulation. By this method, we
can efficiently cover a wide range of circuit operating conditions
with a single symbolic simulation pattern involving far fewer
variables than would be required for a complete binary symbolic
simulation. In the case of an AND gate, we have reduced the
number of variables to be logarithmic in the circuit size. For large
systems involving many state variables, such reductions can lead
to a dramatic improvement in symbolic manipulation efficiency.

Note also that even though we model circuit operation over
multiple-valued signals, we utilize binary encodings of these sig-
nals so that they can be represented symbolically with OBDDs.
This avoids the need to implement special data structures and
manipulation algorithms for multi-valued functions. In general,
we think of the Boolean variables of the symbolic simulator as
providing a set of index variables. Each decoding of the variables
covers one of the cases required for verification.

X10X

01

X0 1X

11

XX

00 10

Figure 2: Successor Function for Unit-Delay Inverter � 	 � � ����� �

3 Mathematical Model
We represent a circuit as a model structure, denoted by a tuple� ���
	�� ��
�� ����� , where 	�� ��
�� is a complete lattice and �

is a monotone successor function � : ����� . In this model,
the state domain � consists of the set of possible circuit states,
augmented with additional “weakened” states, plus an additonal
“overconstrained” state. These states are partially ordered by
a relation
 , according to their “information content.” The
successor function � represents the excitation function for the
circuit, extended to include the additional states.

As an example of a state domain, consider an inverter with
input 	 � and output ����� . We consider the combination of input,
output, and internal state to form the overall state of the circuit,
and hence there are four possible circuit states: 00, 01, 10, and
11. We then augment the binary signal values to include value
X, giving five more states XX, 0X, 1X, X0, and X1. Finally,
we add a state � representing an overconstrained state in the
verification. The ordering of these ten states is shown in Figure 1.
As indicated on the left side, we consider the individual signals to
be ordered by “information content” with X less than either 0 or
1. States consisting of multiple signals are ordered according to
an elementwise extension of the signal ordering. Thus, we have
XX as the weakest state, ones contain a single X next, and ones
consisting of binary values next. As indicated by the dashed lines,
the state � is added as the maximum value in the domain, above
any state that corresponds to a set of actual signal values. This
example illustrates our general technique for constructing state
domains. We start with partially-ordered signal values for each
node, form a semi-lattice consisting of vectors of signals ordered
element-wise, and complete the lattice with an overconstrained
signal � .

Figure 2 illustrates the successor function for a unit-delay
inverter, where each state is listed � 	 � � ����� � , and each arc maps a
state to its successor. For a unit delay timing model, the successor
for a state involves setting each signal to its excitation. In our
model, primary inputs, such as 	 � , have excitation X, indicating
that the circuit itself imposes no constraint on the value of a
primary input. Signal ����� has the (ternary) complement of 	 �
as its excitation. Finally, state � has itself as successor. It can
be seen that this successor function is monotone: given states �
and � ordered ��
�� , we have that ����� �
�� ��� � . In other words,
strengthening the circuit state can only strengthen the successor.

As this example illustrates, the successorfunction follows from
the circuit representation. Given a logic gate network, we define
the excitation for each gate output to be the ternary extensionof the
logic gate function applied to the gate input signals. The excitation
function of a primary input is always X. The successor function
for the circuit consists of the vector of signal excitations, or is
defined to yield � when the circuit state is � . The restriction that
the successor function be monotone follows as a direct property
of the ternary algebra. For transistor-level circuits, we derive
the excitation functions for the nodes by performing symbolic,
switch-level circuit analysis [4]. For higher level models, we may
wish to increase the granularity of timing to either a clock phase or
clock cycle level, so that one application of the successor function
describes a complete phase or cycle of circuit operation.

We view the behavior of a circuit over time as a trajectory
consisting of an infinite sequence of states ! � ! 0 ! 1 . . . " ��# ,
obeying the property that

����!%$ �&
�!'$
(1 for 	�) 0 *
That is, each state must be consistent with, and possibly stronger
than, the result of applying the successor function to the previous
state. This rule corresponds to a view of the successor function
as defining the constraints imposed on the state sequence by the
circuit operation. Such properties as the initial state and the pri-
mary input values are either unconstrained or imposed by external
agents.

With symbolic evaluation, we model each element of the se-
quence as a function over a set of Boolean variables + . As
described earlier, these variables are viewed simply as indices en-
coding a number of different cases simulated simultaneously. For
any assignment to the variables , : + � � 0 � 1 � , the evaluation
! ��, � denotes some sequence of circuit states. Typically, these
coded forms are derived directly from the form of the specifica-
tion. Similar encoding techniques have been used by Jain and
Gopalakrishnan [10] for generating symbolic patterns to cover
many binary-valued cases simultaneously.

To implement ternary symbolic simulation, we encode the
state of every signal by a pair of OBDDs, similar to the “High”
and “Low” encoding used in Table 2. Every ternary logic gate
function (or transistor network operation) is expressed as a set of
Boolean operations on these encoded values. These operations
are in turn implemented using the APPLY operation on the OBDDs
[3].

4 Symbolic Trajectory Evaluation
Symbolic trajectory evaluation takes the notion of ternary sym-

bolic simulation one step further by providing a concrete means
of specifying the desired behavior of the system operating over
time. Specifications take the form of symbolic trajectory formulas
mixing Boolean expressions and the temporal next-time operator.
The Boolean expressions provide a convenient means of describ-
ing many different operating conditions in a compact form. The
relatively simple use of temporal operators is adequate for ex-
pressing many of the subtleties of system operation, including
clocking conventions and pipelining.

The syntax for symbolic trajectory formulas is defined recur-
sively. It starts as its basis with a set of simple predicates. For

circuit models of the form defined earlier, simple predicates are
of the form � � $ is � � , where � is an allowable signal value for
node � $. Such a predicate is true in any state where node � $ has
the specified value, as well as in state � . In general, trajectory
formulas are constructed as follows:

1. Simple predicates: Any simple predicate is a trajectory
formula.

2. Conjunction: � � 1 � � 2 � is a trajectory formula if
�

1 and
�

2

are trajectory formulas.

3. Domain restriction: ��� � � � is a trajectory formula if
�

is a trajectory formula and � is a Boolean expression over
the set of symbolic Boolean variables + .

4. Next time: � N � � is a trajectory formula if
�

is a trajectory
formula.

A trajectory formula is said to be instantaneous when it constains
no next-time operators. Such a formula expresses constraints on
the system state at only one point in time. Otherwise, a for-
mula expresses contraints for a sequence of states. In particular,
the formula N �

states that formula
�

must hold starting with
the successor to the current state. The presence of Boolean ex-
pressions makes it possible to specify constraints for multiple
operating conditions. For each assignment to the variables in + ,
the formula can be interpreted to give a different set of constraints.

Due to the restricted syntax of trajectory formulas, we can
guarantee that for any formula

�
, there is a unique minimum

state sequence ��� satisfying this formula. That is, a sequence
satisfies the formula if and only if it is greater or equal to (accord-
ing to an extension of
 to symbolic sequences) sequence ��� .
Had we included either negation or disjunction in the syntax, this
property would not hold. The generation of the minimum satisfy-
ing sequence is defined recursively according to the structure of
the formula. Assume that 	 � 	 X � X � . . . � X � represents the min-
imum element of � . Then, state
 ��	 X � X � . . . � X ��� � X � . . . � X �
is the minimum state satisfying simple predicate
 � � � $ is � � ,
where the � is in the 	 th position in the vector, and hence sequence
 ��	 ��	 � . . . is the minimum state sequence satisfying the predi-
cate. Given minimum sequences � � 1 and � � 2 satisfying formulas�

1 and
�

2, the minimum sequence satisfying their conjunction
is ��� 1 � ��� 2 , where � represents the least upper bound opera-
tion over the lattice of symbolic infinite state sequences. If we
consider Boolean expression � to denote a Boolean function
 ,
then formula � � �

has minimum satisfying sequence
 ? � � ,
where “choice” operator ? yields 	 ��	 � . . . when its first argument
evaluates to 0, or yields its second argument otherwise. Finally,	 ��� 0� ��� 1� ��� 2� � . . . must be the minimum sequencesatisfying N �

.
It can also be shown that if the maximum depth of nesting of next
time operators in a formula is � , then every element beyond the� th one in the minimum satisfying sequence must be 	 .

Our decisionalgorithm is basedon a generalizedsymbolic sim-
ulation. It tests the validity of an assertion of the form [� �����],
where both � and � are trajectory formulas. It determines
whether or not every trajectory satisfying � (the “antecedent”)
must also satisfy � (the “consequent”). It does this by simulating
the circuit over the constraints implied by the minimum sequence

satisfying the antecedent, and testing whether the resulting sym-
bolic state sequence is greater or equal to the minimum sequence
satisfying the consequent. Formally, the simulator computes a
sequence � defined as � 0 � � 0� , and � $ � � $� � � ��� $�� 1 � . That is,
at each step 	 we combine the external constraint imposed by the
antecedentat step 	 with the internal constraint imposed by the cir-
cuit excitation. It can be shown that sequence � is the minimum
trajectory satisfying the antecedent. The assertion is therefore
satisfied as long as ���
�� . Furthermore, if the nesting depth of
temporal operators in � is � , we need only run the verification for� steps: beyond this point the assertion is trivially satisfied.

As an example, consider the unit-delay inverter introduced
previously. We would specify the behavior of such a circuit by
stating that given some value on the input in the current state, the
output should have the complement of this value in the next state:�

� in is 0 � ��� N � out is 1 ����
� in is 1 � ��� N � out is 0 ����*

These formulas can be combined using a symbolic expression
over a variable � :�

� � � in is 1 � � � � � in is 0 �!
���

N
�
� � � out is 1 � � � � � in is 0 ��

For binary signals, we can introduce the notation � � $ is � � as
a shorthand for the expression � � � � $ is 1 � � � � � � $ is 0 � .
With this shorthand, we obtain the assertion:�

� in is � � ��� N � out is � �!��*
For the � -input AND gate verification described in Section 2,

we could specify its desired behavior by two assertions. The first
would cover all of the cases where at least one input is 0:� � in � 	 � is 0 � ��� N � out is 0 � �
The second would cover the case where all inputs are 1:

� in � 0 � is 1 � � � in � 1� is 1 � �#"�"�"�� � in � �%$ 1 � is 1 ����
N � out is 1 �

With our current implementation, we would translate these two
assertions separately. For � � 7 the first assertion would yield
symbolic patterns corresponding to cases 0–6 in Table 2. The
indexing of the vector of input nodes translates directly into the
coding shown for the “Low” column in the table, while the “High”
value would be the constant function 0 for all inputs. The second
assertion would yield case 7 of this table, with no symbolic values.
One could imagine a more sophisticated translator that could pack
all eight cases into the single set of symbolic patterns shown in
the table.

An important property of our algorithm is that it requires a
comparatively small amount of simulation and symbolic manipu-
lation to verify an assertion. Due to the restrictions of the formula
syntax, we can verify an assertion by a single symbolic simula-
tion involving only variables explicitly mentioned in the assertion.

MUX

RMem
Old
Addr

Hold

Addr

Clear

In

Out+

Addr

Control
Logic Data

Out
Data

In

Bypass

Figure 3: Pipelined Addressable Accumulator Circuit

The length of the simulation sequence depends only on the depth
of nesting of temporal next-time operators in the assertion.

5 Example Applications
As an example, consider a pipelined implementation of an

“addressable accumulator” circuit, illustrated in Figure 3. This
circuit maintains the sums for � different channels. On each
cycle, the address input Addr specifies which sum to update, the
clear signal Clear indicates whether or not to reset the sum,
and the data input In gives the data value to accumulate. For
efficiency, the write-back to the register file is overlapped with
the operation of the adder. Bypass logic is included to handle the
case where the same address is given in two successive cycles.
In this case, the control logic detects that the current address
matches the saved previous address (stored in register OldAddr,
and transfers the data from the ALU output register Hold directly
into the adder.

In specifying the desired behavior of the circuit, we split the
specificationinto two parts: an abstract model expressingthe high
level behavior without considering the pipeline structure, and a
state mapping describing how the state of the abstract model is
realized by the circuit. This mapping includes sufficient informa-
tion about the pipeline structure to perform the verification. The
actual symbolic assertions are derived by combining these two
parts of the specification [2, 8].

At the abstract level, we want to express three properties of
the addressable accumulator. These can be expressed as three
assertions, each over vectors of Boolean variables representing
possible address (

�� ,
��) and data (

�� ,
��
) values. At this level,

we define the state of the system in terms of an abstract register
array. That is, we introduce predicate Reg � ���� ��
	 stating that the
accumulatedsum with address

�� hasvalue
�� . In each assertion, we

provide just enough context in the antecedent to be able to describe
some aspect of the next state. The full specification consists of

the conjunction of all of the assertions for all valuations of the
symbolic variables.

1. With Clear set to 1, the addressed value should be set to
the input data:�

Addr is
��
��� � Clear is 1 ��� � In is

�������
N � Reg � ���� ���	��

2. With Clear set to 0, the addressed value should be incre-
mented by the input data.�

Addr is
��
��� � Clear is 0 ��� Reg � ���� �� 	
� � In is

�������
N � Reg � ���������� � ���� �� ��	��

where sum represents the vector of Boolean functions de-
scribing binary addition.

3. Any unaddressed location should remain unchanged:�
Addr is

������ Reg � ���� �� 	�����! � ��#" N � Reg � ���� �� 	 �
The state mapping describes how this abstract register array

is realized by the circuit, i.e., where the accumulated values are
stored. Normally, sums are stored in the actual register memory,
RMem. Conditionally, a sum can be in the pipeline register Hold.
This is expressed by defining the predicate Reg � ���� ��
	 as:$ �%'& OldAddr is

�% � � �� � �%(" Hold is
����� � ��! � �%(" RMem � ��)	 is
����+*

In this mapping, we use a vector of existentially quantified vari-
ables

�% to indicate that register OldAddr may hold an arbitrary
address independent of the current operation. Given such an
address, abstract register

�� maps to either the holding register
(
�� � �%), or to register

�� in the register file (
��, � �%). Adding

quantified variables to our assertion logic is straightforward.
To verify the circuit, the high level specification assertions

are combined with the state mapping, and additional information
about circuit clocking and timing is included. The result is a set
of symbolic assertions that can be verified by our switch-level
symbolic trajectory evaluator. We have used this to verify accu-
mulator designs with up to 32 registers of 32 bits each, requiring
less than 10 minutes of CPU time on a workstation. Observe
that even though we are verifying systems with over 1000 state
variables, our symbolic evaluation requires less than 80 Boolean
variables. The resulting patterns make extensive use of symbolic
indexing, where the variables comprising symbolic addresses

��
and

�� index which of the registers hold actual data values, and
which have value X. This demonstrates the efficiency gains of a
partially-ordered state model.

For more complex systems, the detailed modeling in terms
of individual circuit elements becomes impractical. In complex
pipelines, the control logic is typically more problematic than the
data path design. We would therefore like to abstract the details of

a+bba

X

0

Figure 4: Multi-Valued Data Domain for Pipeline Verification

+ � � ��� � 0 X� X ��� � X � X� ��� � X X
�

X��� � X X X ��� � X
0 � � ��� � 0 X
X X X X X X

Table 3: Definition of Addition for Multi-Valued Data Domain

the data path and instead concentrate on the data transfers caused
by the control logic. For this task we can exploit the generality
of our partially-ordered state model. We can construct a special
multi-valued signal domain to represent “interesting” values for
the data path, as illustrated in Figure 4. This domain includes
elements � and

�
to represent arbitrary data values, the value 0

to enable modeling the effect of the clear signal, and a special
element ��� � to indicate the sum of values � and

�
. Any other

value is simply classified as an unknown value X. We define the
operation of the adder over this data domain according to Table
3. Observe how this table assigns value X, except for those cases
where the adder value can be clearly categorized as one of the
other values.

To verify the pipelined accumulator circuit by this method, we
would systematically simplify the data path hardware description
to one operating on abstract data values, while maintaining the
detailed model of the control logic. The assertions to be verified
would be similar to the earlier ones, except that references to vec-
tors of binary data

�� ,
��
, and � ��� � ���� �� � would be changed to data

elements � ,
�
, and ��� � , respectively. The resulting verification

would require just 15 variables for a 32 register accumulator, and
would also be independent of the word size. Thus, our generaliza-
tion from ternary logic to partially-ordered state domains enables
us to exploit forms of data abstraction in verifying complex hard-
ware.

6 Conclusions

We have shown that partially-ordered states, a generalization
of ternary modeling, can be combined with symbolic evaluation
to provide a powerful tool for formal circuit verification. By
defining the behavior of the symbolic verifier in terms of lattice
operations, we can clearly state the functionality of our tool and
prove that it does indeed formally verify temporal properties of
the circuit.

References
[1] D. L. Beatty, R. E. Bryant, and C.-J. H. Seger, “Synchronous

Circuit Verification by Symbolic Simulation: An Illustra-
tion,” Sixth MIT Conference on Advanced Research in VLSI,
1990.

[2] D. L. Beatty, “A Methodology for Formal Verification, with
Application to Microprocessors,” PhD Thesis, Carnegie
Mellon University, 1993. Available as Technical Report
CMU-CS-93-190.

[3] R. E. Bryant, “Graph-Based Algorithms for Boolean Func-
tion Manipulation”, IEEE Transactions on Computers, Vol.
C-35, No. 8 (August, 1986), 677–691.

[4] R. E. Bryant, “Boolean Analysis of MOS Circuits,” IEEE
Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, Vol. CAD-6, No. 4 (July, 1987), 634–649.

[5] R. E. Bryant, and C.-J. H. Seger, “Formal Verification
of Digital Circuits Using Symbolic Ternary System Mod-
els,” Computer-Aided Verification ’90, E. M. Clarke, and
R. P. Kurshan, eds. American Mathematical Society, 1991,
pp. 121–146.

[6] R. E. Bryant, “Formal Verification of Memory Cir-
cuits by Switch-Level Simulation,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
Vol. 10, No. 1 (January, 1991), pp. 94–102.

[7] R. E. Bryant, “A Methodology for Hardware Verification
Based on Logic Simulation,” J.ACM, Vol. 38, No. 2 (April,
1991), pp. 299–328.

[8] R. E. Bryant, D. E. Beatty, and C.-J. H. Seger, “Formal Hard-
ware Verification by Symbolic Ternary Trajectory Evalua-
tion,” 28th Design Automation Conference, June, 1991.

[9] J. A. Brzozowski, and M. Yoeli. “On a Ternary Model of
Gate Networks.” IEEE Transactions on Computers C-28, 3
(March 1979), 178–183.

[10] P. Jain, and G. Gopalakrishnan, “Hierarchical Constraint
Solving in the Parameteric Form with Applications to
Efficient Symbolic Simulation based Verification,” Inter-
national Conference on Computer Design, IEEE, 1993,
pp. 304–307.

[11] J. S. Jephson, R. P. McQuarrie, and R. E. Vogelsberg,
“A Three-Level Design Verification System,” IBM Systems
Journal Vol. 8, No. 3 (1969), 178–188.

[12] C.-J. Seger, and R. E. Bryant, “Formal Verification by Sym-
bolic Evaluation of Partially-Ordered Trajectories,” submit-
ted for publication, April, 1993.

[13] J. Stoy, Denotational Semantics: The Scott-Strachey Ap-
proach to Programming Language Theory, MIT Press,
1977.

