Symbolic Analysis Methods
for Masks, Circuits, and Systems

Randal E. Bryant*
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

Symbolic representations of systems can achieve a high
degree of compaction relative to more explicit forms. By
casting an analysis task in terms of operations on a sym-
bolic representation, large and complex systems can be
analyzed efficiently. This paper summarizes research in
applying symbolic analysis methods to systems at several
levels of abstraction.

1 Introduction

For many aspects of system design, the amount of analysis
that can be performed prior to construction is limited by
the system size and complexity. For example, every 32-bit
register increases the number of possible states by a (mul-
tiplicative) factor of 4 billion. A modern microprocessor
may contain over 5 million transistors, and its mask repre-
sentation may consist of 50 million rectangles. Even when
it is feasible to construct and maintain an representation of
such a system, it becomes too cumbersome to analyze in
a meaningful way.

By representing a system in a symbolic form, we can
effectively decouple the complexity of the representation
from that of the system being represented. Furthermore,
by developing efficient algorithms that operate on these
symbolic representations, it becomes possible to analyze
the system comprehensively.

This paper summarizes recent research in symbolic
analysis methods for digital systems at three levels of ab-
straction ranging from the high level system state space to
the low level physical design. Data structures such as Or-
dered Binary Decision Diagrams (OBDDs) have provided
important tools in these efforts [3, 8]. OBDDs represent
Boolean functions as directed acyclic graphs, providing a
high level of compaction relative to a tree or tabular rep-

*This research was supported by the Advanced Research Project
Agency, ARPA Order 4976, by the National Science Foundation, Grant
MIP-8913667, and by the Semiconductor Research Corporation, con-
tract 91-DC-068

resentation. Operations on Boolean functions can be im-
plemented by efficient graph algorithms operating on OB-
DDs. Many mathematical domains can be expressed in
terms of Boolean functions, and hence OBDDs provide a
powerful technique for many forms of system analysis.

2 System State Space Analysis

Many aspects of system behavior can be expressed as
properties of finite state machines. By introducing non-
determinism, properties such as concurrency, asynchrony,
and “don’t care” conditions can be incorporated into the
machine models. Conventional methods of analyzing state
machines construct explicit models of the state space, such
as transition tables or state graphs. Such representations
are feasible when analyzing very small systems but be-
come totally impractical for systems with a significant
amount of data storage or consisting of multiple, interact-
ing state machines.

Recently, researchers have shown that OBDDs can be
used to represent and analyze finite state machines. Typ-
ically, the Boolean next state functions for the individual
state elements are derived from a gate-level or register-
transfer description of the circuit. From these a state tran-
sistion relation can be derived. This relation is expressed
as a Boolean function over a set of variables represent-
ing the input, the old state and the new state. The func-
tion yields 1 under those conditions where the given in-
put could cause a transition from the old state to the new
state. For systems involving multiple, interacting state
machines, a product construction can be used to derive
a transition relation for the entire system given relations
for the component machines. Based on this relation, iter-
ative methods can be used to derive information such as
the reachable state set. Again, this set is expressed as a
Boolean function over a set of variables representing the
system state yielding 1 when the given state is reachable.

Researchers have shown that symbolic state machine
analysis can determine whether two sequential circuits are



equivalent, even when they use different state encodings
[1], and to determine whether a system satisfies an ab-
stract property expressed as a formula in temporal logic
[9]. Machine models with over 102° states have been con-
structed, far larger than would be possible with an explicit
representation. These methods have been used to analyze
complex system behaviors, such as cache coherency pro-
tocols [11], They have proved effective at detecting subtle
design errors that had escaped detection despite extensive
simulation.

3 Transistor-Level Circuit Analysis

As described above, symbolic state machine models can
be constructed from a gate-level or register-transfer de-
scription of a digital circuit. Many circuits, particularly
high performance microprocessors, are designed directly
at a transistor level. Circuit design techniques such as
domino logic and different bus structures cannot be repre-
sented accurately in terms of logic gates. For such circuits,
there is no straightforward way to derive a state machine
representation, or even to compare the circuit to a register-
transfer representation.

We have developed methods for deriving a logic rep-
resentation of a transistor circuit by switch-level circuit
analysis [5]. This method uses a variant of a switch-level
simulation algorithm, where the circuit behavior is com-
puted symbolically, rather than for a specific set of input
patterns. It can capture many subtle aspects of circuit be-
havior such as bidirectional signal flow, stored dynamic
charge, and different signal strengths. This analysis re-
quires solving systems of equations in a Boolean algebra
to compute the effects of the paths between nodes formed
by conducting transistors. Most significantly, this analy-
sis can use weak symbolic manipulation methods based
on networks of Boolean operations [4] or logic gates [7].
Solving the equations by a direct method based on Gaus-
sian elimination avoids the need for a convergence test and
hence the need to determine Boolean equivalence.

This symbolic analysis generates a logic representation
of a circuit expressed in terms of Boolean operations or
conventional logic gates. From this one can extract and
analyze an abstract state machine representation [2] or ap-
ply symbolic simulation techniques to verify correct cir-
cuit operation [6]. Thus, symbolic transistor circuit anal-
ysis bridges the gap from a purely structural system rep-
resentation to one from which high level behavior can be
computed.

Figure 1: OBDD Representation of Image. An image
can be viewed as a Boolean function over a set of index
variables.

4 Layout-Level Analysis

Most recently, researchers have begun to apply sym-
bolic analysis methods to even lower levels of abstrac-
tion. For example, design-rule checking (DRC) remains
a major computational task for semiconductor manufac-
turers. Most DRC programs are based on an explicit rep-
resentation of the mask geometry, e.g., lists of rectangles
or polygons. Modern checkers exploit the hierarchy in
the layout representation to avoid multiple checking of re-
peated cells, but a large amount of low-level geometric
processing is still required. Furthermore, certain informa-
tion, such as electrical connectivity, is difficult to extract
from these unstructured representations.

If we consider a mask represented in a rasterized for-
mat (as it would be for E-beam lithography), then it can
be viewed as a function I(x,y) mapping discrete coor-
dinate values z and y to 0 or 1. If we now represent x
and y as n-bit binary numbers, then I becomes a Boolean
function over variables z,_1,...,z0 and yn—_1,---,¥o.
Hence, such an image can be represented as an OBDD.
Figure 1 shows an example of the OBDD representation
of a 4 x 4 image with n = 2. The overall OBDD rep-
resents the image shown at the top. If we divide this im-
age into four quadrants, we see that there are three unique
2 x 2 subimages, each represented by a subgraph of the
OBDD as shown in the figure. Each of these subimages
can in turn be decomposed into quadrants, yielding 1 x 1
images represented by leaf values 0 and 1. This exam-
ple illustrates key properties of OBDDs that make them
attractive for representing mask geometry. For a variable
ordering £, 1,Yn_1,-- - Lo, Yo, €ach pair of levels in the
OBDD effectively divides the image into four quadrants,

Page 2



as one would find in a quadtree representation. Unlike a
quadtree, however, there is only one OBDD node for each
unique subimage—in essence the tree becomes a maxi-
mally reduced directed acyclic graph. Thus any repeated
structure in the layout due to a hierarchical design is au-
tomatically exploited to reduce the size of the representa-
tion.

We have experimented with generating OBDD repre-
sentations for a number of university-designed VVLSI chips
[10] and found that OBDDs do indeed provide a com-
pact representation of layouts. Furthermore, we have de-
vised algorithms to perform the various steps of design
rule checking by operating on these representations. As
with other OBDD algorithms, these can exploit the shar-
ing of nodes in the data structure to avoid repeated com-
putations. Thus, the program effectively performs a hier-
archical DRC.

Bit-mapped design rule checkers have fallen out of fa-
vor because of the enormous size of explicit image repre-
sentations. Conventional wisdom states that doubling the
resolution of a bit-mapped image requires quadrupling its
size. For OBDD representations, this conventional wis-
dom does not hold. In particular, once we refine down
to a subimage that is entirely black or white, a simple
leaf value suffices. Thus, the image can be represented
at a very fine level of resolution to handle such features as
non-rectilinear geometry and complex design rules.

5 Conclusion

Symbolic analysis methods, especially those based on
OBDDs, have proven highly effective for a range of tasks
in analysis and synthesis. Researchers are devising clever
techniques to cast a problem into a discrete form that in
turn can be encoded as Boolean functions. As our design-
rule checking example shows, a surprising variety of tasks
can be handled in this manner.

References

[1] C. Berthet, O. Coudert, and J. C. Madre, “New
Ideas on Symbolic Manipulation of Finite State Ma-
chines,” ICCD, 1990, 224-227.

[2] S.Bose, and A. L. Fisher, “Verifying pipelined hard-
ware using symbolic logic simulation,” ICCD, 1989,
217-221.

[3] R. E. Bryant, “Graph-Based Algorithms for Boolean
Function Manipulation,” IEEE Trans. Computers,
\ol. C-35, No. 8 (August, 1986), 677-691.

[4] R. E. Bryant, “Algorithmic aspects of symbolic
switch network analysis,” IEEE Trans. CAD/IC, Vol.
CAD-6, No. 4 (July, 1987), 618-633.

[5] R. E. Bryant, “Boolean analysis of MOS circuits,”
IEEE Trans. CAD/IC, Vol. CAD-6, No. 4 (July,
1987), 634-649.

[6] R. E. Bryant, D. E. Beatty, and C.-J. H. Seger, “For-
mal Hardware Verification by Symbolic Ternary Tra-
jectory Evaluation,” 28th Design Auto. Conf., June,
1991, 397-402.

[7] R. E. Bryant, “Extraction of Gate Level Models from
Transistor Circuits by Four-Valued Symbolic Analy-
sis,” ICCAD, 1991, 350-353.

[8] R. E. Bryant, “Symbolic Boolean Manipulation with
Ordered Binary Decision Diagrams,” ACM Comput-
ing Surveys, Vol. 24, No. 3 (September, 1992), 293—
318.

[9] J. R. Burch, E. M. Clarke, and K. McMillan, “Sym-
bolic model checking: 102 states and beyond,”
Fifth Annual IEEE Symp. Logic in Computer Science
1990, 428-439.

[10] Y.-A. Chen, personal communication, Carnegie
Mellon University, 1993.

[11] K. L. McMillan, Symbolic model checking: an ap-
proach to the state explosion problem, PhD thesis,
School of Computer Science, Carnegie Mellon Uni-
versity, 1992,

Page 3



