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Abstract
We introduce a new method of verifying the timing of custom
CMOS circuits. Due to the exponential number of patterns re-
quired, traditional simulation methods are unable to exhaustively
verify a medium-sized modern logic block. Static analysis can
handle much larger circuits but is not robust with respect to varia-
tions from standard circuit structures. Our approach applies sym-
bolic simulation to analyze a circuit over all input combinations
without these limitations. We present a prototype simulator (Sir-
Sim) and experimental results. We also discuss using SirSim to
verify an industrial design which previously required a special-
purpose verification methodology.

1 Introduction
Custom circuits that have been hand-optimized at the transistor
level appear primarily in microprocessors and other applications
where performance is absolutely crucial and volumes are high
enough to justify the additional design effort. They also ap-
pear in many other applications where small amounts of hand-
optimization can go a long way toward meeting performance,
power, or area goals. Because these circuits are often found in
the critical timing paths of designs, the verification of their tim-
ing behavior is extremely important.

The timing verification of custom circuits is a difficult task due
to their inherent variability, and no automatic methods are known
for verifying them except exhaustive simulation. Unfortunately,
a moderate-sized modern CMOS logic block can easily have over
100 inputs, requiring ��������� simulation patterns and making ex-
haustive simulation infeasible. Thus, designers must either gen-
erate directed simulation patterns by hand or rely on static timing
analysis [9].

However, static timing analyzers are inherently unsuited to the
analysis of highly customized circuits because of their reliance
on heuristics to understand the timing requirements implied by
certain circuit topologies. The analyzer must be able to recog-
nize, for example, all possible latch and flip-flop design styles
and perform any setup and hold-time checks required for proper
operation. Small variations in a standard latch design, which of-
ten occur in custom circuitry, can easily defeat pattern recogni-
tion heuristics and lead to an incorrect analysis. Structures such
as domino or self-timed logic also require recognition and con-
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Figure 1: Data-dependent Delay Examples

straint application and can vary greatly in implementation style.
In a full-custom design environment where designers are free
to develop innovative new circuits, maintaining reliable sets of
heuristics is virtually impossible, resulting in error-prone verifi-
cation and wasted engineering effort.

To address this problem, we are proposing a new methodol-
ogy called Symbolic Timing Simulation, which can be used to
verify the hand-optimized portions of CMOS designs. This ap-
proach utilizes a symbolic simulator with an explicit notion of
time. Seger and Bryant [13] considered the problem of incorpo-
rating gate delays into a symbolic simulator, and Devadas et.al.
[7] used a gate-level symbolic simulator to compute the Transi-
tion Delay of a combinational circuit. However, neither group
attempted to handle continuous data-dependent delays. Section
4.1 discusses the computation of delays using Multi-Terminal Bi-
nary Decision Diagrams (MTBDDs) [2], and section 3.2 presents
a novel simulation algorithm capable of exploiting this informa-
tion.

This approach should not be confused with other techniques
based on MTBDDs (also known as ADDs). Bahar et. al. [1]
proposed a variant of static analysis that represents node arrival
times with MTBDDs to automatically eliminate false paths. Our
approach, being simulation-based, does not explicitly compute
node arrival times, and the MTBDDs are temporary data struc-
tures that are freed after each event processing step.

2 Symbolic Timing Simulation
2.1 Description
Symbolic simulation (without timing information) [5] was devel-
oped for the functional verification of digital designs. It performs
an input-pattern-independent simulation by stimulating the cir-
cuit with a vector of Boolean variables instead of constant 0’s
and 1’s. The values of the circuit nodes then become Boolean
functions of the stimulus variables.

Once we introduce the concept of time into a symbolic sim-
ulator, we immediately discover the problem of data-dependent
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Figure 2: Skewed Inverter Timing Diagram

delays. When an input to a logic gate changes from one Boolean
function to another, the delay through the gate may be dependent
on the particular values the input is switching between. A sim-
ple example is the CMOS inverter in Figure 1(a) having a much
larger pulldown device than pullup device. Delay can also be de-
pendent on the values of stable signals in the gate’s environment,
such as the example in Figure 1(b). Here, the load seen by the
inverter (and thus its delay) is dependent on the state of signal b.

To address this problem, we first recognize that for any given
input pattern, a node transition will occur at some calculable
point in time. Thus, the value of that node at any point is well-
defined, and it can be represented by a Boolean function of the
input variables. This means that the output will progress through
a series of node functions. Consider again the skewed inverter
example, and what happens when its input changes from func-
tion � to function � (Figure 2). If the �������
	���
 delay is 1.1ns,
and the ����
��
	���� delay is 2.3 ns, we obtain the series of 3 node
functions shown. Initially, the output function is � , and eventu-
ally it settles to � . Since a falling transition will occur at the first
timepoint and a rising transition will not occur until the second
timepoint, the only way that out will be high in between is if both
x and y were 0 and the output actually remained high continu-
ously. This behavior is captured in the function ��� . In general,
the output node function will progress from being dependent only
on the old input variables to being dependent on the new.

2.2 Methodology
To verify a block containing arbitrary circuit structures, we sim-
ply perform a symbolic timing simulation while monitoring the
Boolean functions on the output nodes. A specification of the
correct output function must be supplied by the user or extracted
from the RTL description of the block. For datapath circuits,
which often contain highly customized circuits, the output func-
tion can usually be expressed very easily. If the output nodes
settle to the proper functions, while being simulated under a real-
istic delay model, then the timing (and functional) correctness of
the circuit under all input patterns is implied.

If the initial values of particular latch-nodes are required to
express the expected output function, then the user must initialize
them to symbolic values. Although these storage nodes must be
identified, the simulator does not need to understand the detailed
timing requirements of the latches in order to verify them.

2.3 Advantages
Timing constraints on circuits exist to ensure that signal transi-
tions occur in the order required for proper operation. Some con-
straints are imposed by the circuit’s environment, and some are
due to structures internal to the circuit. These structures can be
latches, dynamic gates, self-timed loops, etc. Static timing analy-
sis relies on pattern matching routines to identify these structures

from the circuit netlist and apply timing constraints based on a
set of precompiled rules.

In a full-custom design environment, designers often creatively
hand-optimize circuitry to take advantage of local don’t-care
cases or fix critical timing paths. These hand-optimized circuits
rarely match the patterns built into a static timing analyzer, caus-
ing it to apply incorrect constraints. To perform a timing analysis
in this situation, designers are left with two equally unattractive
options: develop a substantial simulation suite or train the ana-
lyzer to “understand” the circuit. Both options are labor intensive,
and the simulation option may simply be infeasible if the circuit
is large enough. The result in either case is a time-consuming and
error-prone analysis.

Given the same delay computation model, output arrival times
computed by a symbolic simulator will be more accurate than
those computed by a timing analyzer. The simulator is not sus-
ceptible to false paths, which will be eliminated by a dynamic
sensitization criteria. McGeer demonstrates that the dynamic cri-
teria cannot underestimate the true circuit delay, while the static
criteria can [10]. While the dynamic criteria does not satisfy
the monotone speedup property, we argue that it matches real-
ity much more closely and will give a higher quality estimate
of the true delay. Furthermore, McGeer shows in [11] that the
dynamic criteria does satisfy the monotone speedup property for
dynamic(precharge unate) circuits, an application for which this
methodology is particularly well-suited.

In addition, a symbolic timing simulator need not make worst-
case assumptions about the state of the surrounding circuitry
when computing delays. A static analyzer must assume worst-
case loading, simultaneous-switching, and capacitive-coupling
during delay calculation to ensure a conservative analysis. Be-
cause a symbolic simulator knows the state of every node in the
circuit, it can avoid this pessimism if it’s delay model correctly
accounts for these effects.

2.4 Complexity
Since we are performing a complete analysis over all input com-
binations, the worst-case complexity of symbolic timing simula-
tion is necessarily exponential in the size of the circuit. However,
the actual complexity is highly dependent on the efficiency with
which the circuit’s node functions can be represented. Imple-
mentations of symbolic simulators using BDDs to compute and
represent node functions have been shown to be very efficient for
a wide range of interesting circuits.

While the computational complexity of this technique is
clearly greater than that of static timing analysis, we show in Sec-
tion 4.3 that it is feasible for moderately sized circuits. Symbolic
timing simulation will provide designers with an alternative when
static analysis fails. Currently, no such alternative exists.

3 Implementation
3.1 Data structures
Our approach utilizes symbolic simulation, where a circuit node’s
value is a Boolean function of the input variables. We employ the
same node value encoding scheme as COSMOS[4, 5]. Two Bi-
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Figure 3: Example Delay MTBDDs

nary Decision Diagrams (BDDs)[3], node. � 1 and node. � , repre-
sent the current state of each node. These BDDs can be thought
of as representing the on-functions of the pullup and pulldown
chains attached to the node. If, for a given input pattern, both
functions are true, the node is in an indeterminate state X.

At the time that a node value transition occurs, we calculate
a delay function in the form of an MTBDD. Each terminal of
the delay MTBDD �������
	�� represents a point in time at which a
portion of the transition can occur. As an example, Figure 3(a)
shows the delay MTBDD that might result from a static 2-input
NOR gate formed from equally sized transistors. To interpret this
MTBDD, we follow the solid arc when the associated variable is
true, and the dashed arc when it is false. Note that the pulldown
delay is smaller in the case where both a and b are true than in
the case where only one is true. Also note that the pullup delay
(a and b false) is significantly larger than the pulldown delay.

In the worst case, �������
	�� can become exponentially large rela-
tive to the size of the circuit. However, our delay calculations are
performed on single stages of logic, which tend to be quite small.
In addition, larger logic stages are often very regular, allowing for
efficient MTBDD representations. Consider the 4-input dynamic
NOR gate in Figure 3(b), and its delay MTBDD. One terminal is
required for each number of pulldown FETs that can be on at the
same time, resulting in a � �
���
	�� with 17 total nodes. This type of
circuit will produce a � �����
	�� that is quadratic in the circuit size.

The advantage in using MTBDDs is that we can calculate de-
lays by using a simple polynomial-time algorithm for applying
any arbitrary binary operator (+,*,/,. . . ) to two input MTBDDs.
This function,MtbddApply, is similar to the well-known BDD
Apply algorithm[3].

3.2 Symbolic Simulation
Given a method to compute the MTBDD � �����
	�� , we can per-
form a symbolic timing simulation using the algorithm shown
in Figure 4. We believe this to be the first symbolic schedul-
ing algorithm capable of dealing with both continuous time and
data-dependent delays. The key features are the use of MTB-
DDs to represent data-dependent delay values, and the inclusion
of masks specifying the logical conditions under which events
occur.

1BDDs and MTBDDs appear in bold-face

[1] SymbolicSchedule( Node, DCVal, Tdelay )
[2] while( Tdelay != Constant( inf. ) )
[3] dmin = MtbddMinValue( Tdelay )
[4] Event.mask = MtbddEqual(Tdelay,dmin)
[5] Event.value = DCVal
[6] Event.time = curtime + dmin
[7] EnqueueEvent(Node,Event)
[8] Tdelay = ITE(Event.mask,inf.,Tdelay)
[9]
[10] SymbolicSimulate()
[11] while( <Node,Event> = GetNext() )
[12] curtime = Event.time
[13] Node.value = ITE( Event.mask,
[14] Event.value, Node.value )
[15] For each affected node N
[16] DCVal = ComputeDC(N)
[17] Tdelay = ComputeDelay(N)
[18] SymbolicSchedule( N,
[19] DCVal, Tdelay)

Figure 4: Scheduling algorithm

SymbolicSchedule() is the event scheduler. It takes as argu-
ments � ���
� , ��������� and ���
����	�� . ��������� is a BDD represent-
ing the function to which � ����� will settle. Lines 2-3 repeatedly
select the smallest remaining terminal value, �����! , in ���
���
	�� .
Line 4 computes the event mask by selecting the subset of events
which will occur at time " 	$#
� �&%'�)(*�+�,�- . This is done through
the function MtbddEqual( . ,v) which returns a BDD where all
terminals of . that are equal to / are replaced by ‘1’, and all
others by ‘0’. Line 6 computes the time at which the new event
will occur, and line 7 inserts the new event into the queue. Line 8
modifies � �
����	�� so that � ���! will get the next smallest terminal
on the subsequent iteration.

SymbolicSimulate forms the main body of the simulator. Line
11 repeatedly selects the next event to be processed, and line 12
advances the current time. Lines 13-14 compute the new value
of � ����� by selecting the event value for all cases where the
event mask is true, and � ����� ’s current value otherwise. Line
15 determines all nodes which will be affected by the event be-
ing processed. The functions ComputeDC and ComputeDelay
are called to determine each node’s new DC value and the new
delay MTBDD. Line 18 then calls SymbolicSchedule to enqueue
the resultant events.

4 SirSim
4.1 Delay computation
To test these algorithms, we implemented a symbolic version
of IRSIM called SirSim. The delay calculation mechanism,
first introduced in the simulator nRSIM[6], models transistors as
switched resistors, lumps all capacitances to ground, and uses
the first RC time constant as a delay estimate (Elmore delay). It
handles both resistively- and capacitively-driven nodes, and has
a conservative model of nodes in the unknown “X” state.

To perform the nRSIM calculations symbolically, we used the
BDD and MTBDD routines from CUDD version 2.2. Further in-
formation on these routines can be found in [2]. We represent
the symbolic resistance of a transistor by using an MTBDD with
two terminals: 0 and the finite on-resistance. Since we can per-
form multiplication, addition and division on MTBDDs, we can
evaluate series and parallel combinations of these resistors. Sym-
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Figure 5: Runtime vs. Adder Width

bolic capacitances are easily computed using one MTBDD sum-
ming capacitors charged high, and another summing capacitors
charged low. Delay values computed in this manner are identical
to those computed by IRSIM.

While the Elmore delay is not particularly accurate, it is
straight-forward and captures the data-dependent nature of circuit
delays. Since MTBDDs allow arbitrary mathematical operations,
any delay calculator could theoretically be implemented symboli-
cally, although a significantly more complicated algorithm would
be quite inefficient. Instead, one could identify delay cases using
the symbolic Elmore delay, and then compute actual delay values
with a standard circuit simulator.

4.2 Experimental Results
4.2.1 Adders

For our first set of substantial test cases, we ran SirSim on varying
widths of Manchester carry-chain adders. We expected these cir-
cuits to exhibit worst-case behavior for our scheduling algorithm
in two ways. First, event timings are highly dependent on the
choice of input values, resulting in smaller sets of events that can
be scheduled together as symbolic transitions. Second, the depth
of the carry-chain logic is proportional to the width of the adder,
which we expected to generate an exponential number of events
relative to the circuit size. In most other cases, one would expect
the depth of the logic cone to be O(log n), creating a polynomial
number of events.

However, the runtimes were surprisingly good (Table 1), and
in fact only grew as the cube of the adder width. For the 32-bit
adder, SirSim performed a complete analysis in less than 2 min-
utes on a 300MHz UltraSparc system, representing a speedup
over exhaustive conventional simulation of ��� ��� . For the 64-
bit adder, SirSim required less than 15 minutes, and achieved a
speedup of ������� .

We believe the following analysis justifies the cubic behavior.
The runtime will be composed primarily of two factors, the num-
ber of events processed 	 and the average cost of processing one
event 
 . Since most of the processing cost is MTBDD traversal,

 will be proportional to their average size. For an adder, we
know that the output BDDs are linear in the width of the adder,
so we can expect this to be true of the computational MTBDDs
as well, and thus of 
 . To estimate 	 , we look at the � -th adder
bit-slice. Each slice will locally generate a constant number of

Table 1: SirSim Runtimes
Name FETs Inputs MB sec.
adder4 164 10 0.6 0.5
adder8 328 18 4.1 3.2
adder16 656 34 22.3 19.5
adder32 1312 66 102.4 107.1
adder64 2624 130 280.5 783.9
byp adder8 388 18 4.0 3.2
byp adder16 776 34 32.5 25.5
byp adder32 1590 66 249.5 213.3
s298 582 17 0.87 0.9
s349 654 24 0.70 0.7
s382 682 24 3.09 2.7
s444 758 24 6.96 6.2
s820 1786 23 2.48 3.9
s1423 2996 91 0.69 1.3
s1494 3902 14 0.81 1.5
s5378 8902 214 64.7 69.4
sr incr64 4218 129 39.8 40.5

events � on the carry output "
� # #
� � . In the Manchester carry
chain design, there is only one delay path possible from "
� # #
� �
to "
� # # �
��� � . Thus if we assume that � � events were scheduled on
"�� # #
��� , then there should be � � ( � events on "
� # # �
��� � . Since
"�� # #
� � is a constant and has no events, "�� # #
� � will have only
the locally generated � events, and "
� # #
�� will have � � events.
Thus the total event count 	������  

��� � ��� ����� ��� � ,and the total
runtime !"��	#
$����� � � � .

We also constructed several widths of a carry bypass design.
The runtimes (shown in Table 1) were slightly higher than those
for the ripple carry design due to the additional circuitry. This
test case is particularly interesting because carry bypass adders
are notoriously difficult for static timing analysis due to the huge
number of false paths.

To understand the speedup attained by performing the simu-
lation symbolically, we compared the total number of symbolic
events per timestep with the total number of real events for the
8-bit adder. We defined the real event count as the sum of all
events that would occur in a given timestep in an exhaustive con-
ventional simulation. This analysis revealed an average symbolic
compression (ratio of real to symbolic events) of �&%�' �(� for
� ��) , which increases exponentially with the adder width.

4.2.2 Combinational Circuits

To determine how SirSim performs on combinational networks,
we ran several of the ISCAS89 benchmarks. To obtain transistor-
level networks, we replaced each gate with an equivalent
nominally-sized static CMOS subcircuit. We also removed the
DFFs and turned their inputs into primary outputs, and the out-
puts into primary inputs. As can be seen from Table 1, the run-
times varied substantially and were not highly correlated with
the size of the circuit. The efficiency of this technique is heav-
ily dependent on the BDD/MTBDD variable order selected, and
on the compactness of the BDDs for the circuit’s node functions.
However, this data suggests that symbolic timing simulation is
computationally feasible on reasonably large circuits.

4.2.3 Industry Example

We also implemented an industrial self-resetting 64-bit
incrementer[8]. This circuit makes use of self-timed locally-



1

10

100

1e+03

1e+04

1e+05

1e+06

10 10.2 10.4 10.6 10.8 11 11.2
Time (ns)

real events
symbolic events

Figure 6: Symbolic and Real Events

generated reset signals to accept a pulsed input, compute the in-
cremented value, signal a pulsed output, and reset itself to prepare
for the next input. It uses no global clocks, and all operations are
triggered by the pulsing of the input data lines.

We used SirSim throughout the implementation of the incre-
menter to verify both functionality and timing, and found it to
be a very natural way to identify errors. By simulating a pulsed
symbolic input vector and placing checks on the output lines, we
located and debugged problems in connectivity, drive strengths,
reset delays, etc.

In contrast, the original designers made use of a complicated
ad hoc timing verification methodology, which they outlined in
[12]. Their methodology involved adding pulse-propagation and
overlapping pulse-width checks to an in-house static timing an-
alyzer. Since SirSim implements an inertial delay model, it
has virtually identical verification power to these special-purpose
checks. This example clearly demonstrates SirSim’s ability to
handle even highly customized circuit design styles. Further-
more, SirSim’s runtime for this 4200-transistor design was �

� �
seconds(sr incr64 in Table 1), which was less time than required
to generate netlists from our schematics.

4.2.4 Other Results

Of perhaps greater theoretical interest are the traces shown in Fig-
ure 6. In order to determine the limit of speedup attainable by
performing a symbolic simulation, we compared the total num-
ber of symbolic events per timestep with the total number of real
events for the 8-bit adder. We defined the real event count as the
sum of all events that would occur in a given timestep in an ex-
haustive conventional simulation comprised of � ��� IRSIM runs,
and computed it by examining the don’t-care sets of the symbolic
event trace. Despite the highly data-dependent timing behavior of
this circuit, SirSim was quite successful in symbolically encod-
ing large groups of real events. The resulting average symbolic
compression (ratio of real events to symbolic events) is � ��� � for
the 8-bit case and grows exponentially with increasing width.

5 Conclusions
We have introduced a new way to verify the timing and function-
ality of custom digital circuits that has significant advantages in
robustness and accuracy over static timing analysis. We have also

shown algorithms that can be used to realize this technique and
presented the simulator SirSim. Despite higher complexity, our
results demonstrate that symbolic timing simulation is feasible
for many reasonably sized circuits. We believe this methodol-
ogy will provide custom circuit designers with an important new
capability.
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