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Abstract

In this paper welook at the problemof inverter minimization
in multi-levellogic networks.Thenetworkis specifiedn termsof
a setof basefunctionsand the inversionoperation. Thelibrary
is specifiedasa setof allowedpermutation®f phaseassignments
on eachbasefunction. Traditional approaches to this problem
havebeenlimitedto greadyheuristicsbasednlocal information.
Our approachtakesa more global view and mapsthe problem
of inverter minimizationinto a problemof removinga minimum
of verticesfroma graph, so as to makethe remaininggraph 2-
colorable. This approachhasthe flexibility of capturinga vari-
ety of design-specififeaturesthat are relevart to the problemof
inverter minimization. Although,in generalthe problemis NP-
completewe havedevelopedeveralgood heuristicand branch
andboundsearchtechniques.

1 Introduction

TheTechrologyBinding problemis to coveranarbitrarylogic
networkwith a library of primitive cells with the intent of min-
imizing the cost function associatedvith the gatesin the final
representationThe binding processon DAGs hasbeenproven
to be NP-complete]]. A restrictedversionof technologybind-
ing is the inverter minimizationproblem. The logic network is
descibedin termsof a setof basefunctionsand the INVERT
operation. The library of primitive cells are all the basefunc-
tionsin the logic network along with a selectedpermutationof
pha® assignmentgo the input and output pins of thesecells.
The objectiveis to find a phaseassignmentor the logic network
thatminimizesthe numberof inverters.

Previouswork done in this area includes the Dagonf],
MIS[2] andCeresB] systems.All thesesystemausepartitioning
algorithmsto decompos the DAG, representinghe logic net-
work, into forestsof treesandthenperforminverterminimization
at the tree-level. Therehave beenseveralattemptsto overcome
this limitation. In the past,inverter minimization on DAG net-
works hasbeenreferredto asthe generalizecphaseassignment
problemf]. A restrictedform of generalizedphaseassignment
is the global phaseassignmenproblem,where eachgatein the
network can only be replacedby its dual. The global phase
assigment problemwas shownto be NP-completeby a trans-
formation from MAX-CUT[4]. The MIS systemincorporates
two heuristicsfor global phaseassignmenon DAG networksp].
QuickPhaséds basedon computingan inverter savingsfor each
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gate and selectingthe gate with the maximuminverter savings
for replacemenby its dual. QuickPhaséhasa limitation in that
it terminatesafter finding a local minimum. A partial hill climb-
ing schemeis usedin GoodPhasdo obtain betterresultsat the
expenseof CPUtime.

In our approach the library is mappedinto a set of phase-
constraintgraphs The logic network is processd to derive a
polarity graph which stateshow the network differs from the
phase-costraintgraphs. The inverter minimization problemis
mappedinto a problem of eliminating a minimum number of
verticesfrom the polarity graph, so asto make the remaining
graph2-colorable.Section2 is divided into varioussubsetions
eachof which discusssthe stepsin the formulationof the prob-
lem. Section3 showsthe flexibility of our approachn capturing
various designfeaturesthat are relevantto the task of inverter
minimization. Someexperimentakesultsand comparisonswith
phaseassignmenalgorithmsin MIS aregivenin section4.

2 Problem Formulation
21 Thelibrary

The library is a setof allowed permutationof phaseassign-
mentsto the input andoutputpins of eachof the basefunctions.
Phaseassignmets correspondingo a single basefunction are
referredto as a family of patterns Pins are assumedo be or-
dered. For n distinct basefunctionsin the logic network, there
shouldbe » familiesin the library. For a family describedover
a basefunction with m pins, there can be a maximum of 2™
patterndn the family. Eachfamily hasto havethe basefunction
pattern,which correspondgo the patternwith a positive phase
assignedo all the input and outputpins.

A phase-consaintgraphis derivedfor eachfamily of patterns
in thelibrary. A vertexin the phase-cornsaintgraphcorresponds
to a pin in the basefunction. An edgebetweentwo vertices
specifiesthat the correspondingpins have the samephaseas-
signmentin all patternsin the family. As an exampleconsider
the AND/OR primitive cells shownin figure 1. The primitive
cells correspondo a family of two patternswith the AND (OR)
cell asthe patternwith a positive(negative)phaseassignmenon
all pins. The phase-corsaintgraphfor this family has3 vertices
correspondingdo the pinsin the basefunction. The edgesspecify
thatall 3 pins shouldhavethe samephaseassignmenteitherall
positive or all negative).Note the fact that the phase-cortsaint
graphis not uniqueto the setof AND/OR cells. Thusthe 3-way
graphalsorepresentshe constraintsfor the setof NAND/NOR
cells when the basefunction is a NAND gate. Figure 2 shows
the phase-corsaint graphfor the AND/OR/NAND/NOR prim-
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AND/OR constraint graph
Figurel: 3-way phaseconstraint
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itive cells. The 2-way phase-costraintgraph specifiesonly an
input constraint. The outputis unconstrainedsinceit can have
either positive or negativephasefor all allowed assignmets to
the input pins. The constraintgraphscan capturethe concep of
MIS global phaseassignmen Constraintgraphfor an m-input
single-outpubasefunctionwill be a completegraphwith m + 1
vertices.

2.2 TheNetwork

Thelogic networkis describedn termsof a setof basefunc-
tions and the INVERT operation. The network is mappedinto
a polarity graph. The polarity graph stateshow eachgate in
the logic network differs from the phase-costraintgraphof the
correspoding basefunction.

At this point, we introducesometerminologythatwill enable
us to formulate the problem. In the logic network a net 7 is
denotedasn;. A gatek in the logic networkis denotedas gx-
For every netn; servingasan input to a gategs, let y(gx, n:)
denotewhetherthe netis fed to the gatein true (y(gx, ni) = +)
or complemeted (y(gx,n:) = —) form. For a netn; serving
asthe output of gate gk, let (y(gx,n:) = +). Eachnetn; in
thelogic networkwill be mappednto a vertexwv; in the polarity
graph. In the polarity graph, eachedge {v;,v;} hasa label,
denoted\({vi,v;}) € {+,—}. An operatore operatesoverthe
elementsof the set{+, —}, suchthat(+ e +)=(—9¢ —-) =+
and(+e—)=(—eo+)=—.

Foreachnet=; in thelogic network,introducea vertexwv; in
the polarity graph. For eachgateg; in thelogic network,look at
eachedgein thephase-cortsaintgraphof thecorrespondindpase
function. Assumethatn; andn; arenetsin the logic network
correspoding to endpointverticesin the phase-costraintgraph.
Introduceanedgebetweernverticesy; andv; in thepolarity graph
with alabelA({v:,v;}) = v(gr, ni)ov(gr, ;) . A positiveedge
(A({wi, v;}) = +) representshe fact that the verticesv; andv;
are requiredto have the samephaseassignment. A negative
edge(A({vi,v;}) = —) specifiesthat the verticesshould have
opposte phases In generalthe resultantpolarity graphwill bea
multi-graph. Reducethe multi-graphso thattwo verticeshaveat
mosttwo edges(1 positiveand 1 negativeedge)betweenthem.
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Figure 3: Examplenetwork. Bubble representénversion.

A pair of suchedgesis referredto as a double-edge Figure 3
showsan examplenetwork and the associatecpolarity graphs
obtainedfor the AND/OR/NAND/NOR 2-way constraintsand
the AND/OR 3-way constraints. In the polarity graphfor the
AND/OR/NAND/NOR constraint,the positive edgebetweenvs
andws introduceddueto gategs, indicatesthatthe verticesshould
be assignedhe samephasein orderto avoid addingany explicit
inverters. The negativeedgebetweenrthe verticesintroduceddue
to gatesgs andgs, indicatesthatthe verticesshouldbe assigned
oppositephasesn orderto avoid addingany explicit inverters.
Theinverterminimizationproblemis now reducecdto a prob-
lem of assigninga unique phaseto eachvertex. The available
phasesare ¢ € {+,—}. The constraintis that the endpointsof
all positiveedgesshouldbe coloredwith the samephaseandthe
endpointsof all negativeedgesshouldbe coloredwith opposite
phaseslf the polarity graphis colorable thenthe networkhasan
inverter free representation Note that our approachguarantees
obtaininganinverterfree representatioif oneexistsfor the net-
work. In generalthe polarity graphmay not be colorable. This
impliesthat the logic network cannotbe mappednto the library
of primitive cells without the useof explicit inverters. Introduc-
ing aninverterat a netn; implies thatboth phasesareavailable
for this net. The correspondingertexw;, alongwith all incident
edgescanbe removedfrom the polarity graph. Figure 4 shows
one feasible coloring and the resultantgate representatiorfor
the AND/OR/NAND/NOR constraintsor the examplenetwork.
Note the fact that vertex v hasbeenmarkedfor removal. The
resultantgaterepresentatiomasone explicit inversion. Gatesgs
andgs havebeenmappedinto OR and NOR gatesrespectively
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Figure4: 2-way constrainedepresentation

Similarly figure 5 showsa feasiblecoloringandtheresultanigate

representatiofor the AND/OR constraints.The gaterepresenta-
tion hastwo explicit inversions.Gatesga, gs andgz are mapped
into OR gates.

2.3 Phase Assignment Algorithms

The coloring problemcanbe shownto be NP-completeby a
transformationfrom the vertex cover problemp]. This section
looks at some heuristic methodsand branchand bound search
techniqus.

Note the fact that the polarity graphis not colorableiff the
graphhasa cycle with an odd numberof negativeedges(for
simplicity we will refer to theseas odd cycles). The odd cycle
can be brokenby removing any vertex within this cycle. The
QuickColor heuristic picks an odd cycle from the graph and
thenselectsa vertexin the cycle with the maximumdouble-edge
degree.If two verticeshavethe samedouble-edgelegree then
selectthe one with the maximum edgedegree. After removing
the selectedvertex and incident edges,attemptrecoloring the
remaininggraph.

QuickColorpicks anarbitraryodd cycle asthe next candidate
for vertex removal. GoodColorattemptsto pick a “good” next
oddcycle. Notethatall double-edges the polarity graphconsti-
tuteanodd cyclein the graph. A prescarstageremovesvertices
with double-edge the orderof their double-edgelegreesFor
the remainingodd cyclesin the graphpick the smallestcycle in
the graph as the next candidate. GoodColorhas an additional
refinemem which lets the algorithm recoverfrom an earlier po-
tentially “bad” choice. Eacheliminatedodd cycle in the graphis
saidto be coveled by the vertexthat was removedto breakthe
cycle. Eachvertex »; maintainsa cycle count X(v;), which is
the numberof eliminatedcyclesthat containv;. Pick the small-
estcycle in the graphas the next candidateodd cycle cycle.,,
andthen selecta vertex to breakcycle,. GoodColorusesthe
sameedge-degreselectionheuristicusedin QuickColorexcept
when cycle, sharesverticeswith a previously eliminated odd
cycle (say cyclep) wWhich is coveredby a removedvertex (say

Resultant gate Representation for AND/OR constraint
Figure5: 3-way constrainedepresentation

v,) With ®(»,) = 1. Then“undo” the removedvertex v, and
add it backto the graph. Removeone of the sharedvertices
which coversboth cycles,cycle, andcycle,. Note the fact that
sinceR(v,) = 1, all previouslyeliminatedcycleswill still remain
covered. This algorithm could potentially be extendedo undo-
ing verticeswith greatercycle countsto resemblea hill-climbing
algorithm.

For comparisompurposesa branchand boundalgorithmwas
implementedo obtainan exactsolutionfor the problem.

3 Other Considerations

This sectionlooks at someenhancenerts and modifications
to the basicformulation so asto handlevariouscircuit details.

In certain situationssysteminputs or outputs might be re-
quiredto bein positiveor negativelogic. The polarity graphcan
be modifiedto reflectthis. Introducea specialvertex calledthe
universal-positive-phas@/*). Introducea positive (negative)
edge betweenthe T vertex and all the vertices that require
positive (negative)phase. Figure 5 shows a feasible coloring
andthe resultantgaterepresentatiofor the AND/OR constraints
for the examplenetworkin figure 3, underthe conditionsthat (i)
all inputs(n1, n2, n3, n4) arespecifiedto be in positivelogic (ii)
The netng is an outputrequiredto be in positivelogic and (iii)
the outputn1 is requiredto be in negativelogic.

A flip-flop offers someinterestinginsightsinto the flexibility
of our approach.Dependinguponthe design,a flip-flop can of-
fer threedistinct possibilities. (i) If the the outputpin is always
in positiveor negativelogic, thenintroducethe appropriateedge
betweenthe /T vertexandthe outputvertex. (i) If the output
phases relatedto the input phasethenintroducethe appropriate
edgebetweenthe input and output vertex. (i) If the outputis
availablein both true and complementedorms, then the vertex
correspondingo the outputterminal, can be removedfrom the
polarity graph. Furthermore,;sucha flip flop doesnot specify
any constrainton the input pin, since a negativephaseassign-
menton the input vertexcanbe handledby flipping the true and
complementedignalson the output.



\ ISCAS Two AND map+ Color heuristics/ Optimal MIS AND/OR/NAND/NOR map
85 input Map || QuickColor || GoodColor Optimal Map | QuickPhase|| GoodPhase
Circuit || Gates Inv || Inv | time || Inv | time || Inv | time Inv || Inv | time || Inv | time
C1908 617 430 || 15 06 13| 06| 13 0.6 47 47 0.8 43 7.8
C2670 876 626 || 62 09 62| 09| 62 252.7 122 || 122 16| 119 | 17.7
C3540 || 1265 817 || 20 12| 20| 13| 20 1.3 101 || 100 2.0 97 | 32.0
C5315 || 2077 ||| 1379 | 59 21| 58| 22| 58| 4523 233 || 230 | 4.3 197 | 1123
C6288 || 2352 ||| 2306 0 2.7 0 2.7 0 2.8 33 32 34 32 | 102.7
C7552 || 2628 ||| 2038 | 88 28| 88| 28| 88 3.1 365 || 352 8.3 || 331 | 343.9

Table1: ExperimentaResultsfor AND/OR/NAND/NOR logic

ISCAS Two AND map+ Color heuristics/ Lower Bound MIS AND/OR map

85 input Map || QuickColor || GoodColor || Optimal ||| Map || QuickPhase|| GoodPhas
Circuit || Gates Inv || Inv | time || Inv | time Inv Inv || Inv | time || Inv time
C1908 617 430 || 146 | 1.2 123 | 4.0 >106 147 || 145 | 0.9 125 19.9
C2670 876 626 || 180 | 1.7 | 170| 6.1 >120 221 || 201 19| 176 27.3
C3540 || 1265 817 || 173 | 2.8 | 169 | 12.0 >113 239 || 232 23| 195| 104.7
C5315 || 2077 || 1379 338| 7.2| 289 | 28.4 >217 370 || 336 6.2 || 298 | 367.8
C6288 || 2352 ||| 2306 | 503 | 15.4| 480 | 15.4 >463 556 || 554 3.7 | 514 | 427.6
C7552 || 2628 ||| 2038 | 535 | 12.6 || 460 | 59.8 >345 651 | 555 | 14.7 || 471 | 1092.5

Table2: ExperimentalResultsfor AND/OR logic

Anotherinterestingcaseis a multiplexor. A 1-2 MUX spec-
ifies a 3-way constraintbetweenthe dataand output pins. The
MUX does not specify any constrainton the control pin. A
negativephaseassingmenbn the control pin canbe handledby
flipping the dataterminals.

Unfortunately thereare certainfamilies of patternsthat can-
not be handledby our approach.One prime exampleis the set
of 4 patternsthat constitutethe XOR family.

4 Experimental Results

Tables1 and2 showa limited setof experimentalesultsob-
tained on the ISCAS 85 benchmarks. A more comprehensive
setof resultscan be found in [6]. All CPU timesarein sec-
ondsand were obtainedon a DECstation5000. The ISCAS 85
benchmarkswerefirst mappedinto a setof two-input AND and
INVERT gatesby the MIS technologymapper The Quick, Good
andOptimal coloring heuristicswere usedfor inverterminimiza-
tion on this AND-logic network.

The 2-way phase-consaint graph was used to specify
AND/OR/NAND/NOR cellsin the library for table 1. The first
andsecondcolumnsis the numberof two-input AND gatesand
inversionsin the AND-logic network. The next 6 columnsde-
note the final inverter countsand the associatedCPU time for
the Quick, Good and Optimal Coloring algorithms. It can be
seenthat the inverter countis significantly reduced.In fact for
the C6288, startingfrom a descriptionwith 2306 inverters,we
wereableto find an inverterfree representationFurthermoreit
can be seenthat QuickColor takesalmostan insignificantCPU
time to give nearly optimal results. The rest of the columns
in table 1 compareour coloring heuristicswith phaseassign-
mentheuristicsin MIS. To getthe MIS numbersthe MIS tech-
nology map was usedto map the ISCAS 85 benchmarksnto
AND/OR/NAND/NOR and INVERT cells. This step decom-
posel the DAG network into a forest of treesand optimized
inverter counts at the tree level. QuickPhaseand GoodPhase
werethenusedto reducethe invertercountat the DAG network

level. It canbe seenthatQuickColorbeatsGoodPhaséy awide
mamgin bothin termsof invertercountsandCPUtimes. However
this is not a very fair comparison.Thoughthe MIS technology
mapperdid resultin a networkwith an optimizedinvertercount
at the forest of treeslevel, QuickPhaseand GoodPhasevere
limited to global phaseassignment.

Table 2 shows experimentalresults obtainedfor the global
phaseassignmenproblem. The 3-way constraintwas usedto
specify AND/OR cellsin thelibrary. The optimal algorithmwas
unableto run to completionin any reasonableamountof time
on any benchmark.The reasonis that 3-way constraintdeadto
large, densepolarity graphs. The optimal column givesa lower
boundon the inverter counts. The lower boundis the number
of vertexdisjoint odd cyclesin the graphthatwerefound by the
firstiterationof the branchandboundalgorithm. Comparingour
resultswith MIS, it canbe seenthat QuickColorandQuickPhase
give comparableesults. GoodColorwas able to beator match
the invertercountsin all benchmarksvith a 5-20x speedp over
GoodPhas.
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