
Extraction of Gate Level Models from Transistor Circuits
by Four-Valued Symbolic Analysis

Randal E. Bryant
�

Fujitsu Laboratories, Ltd.
Kawasaki, JAPAN

Abstract

The program TRANALYZE generates a gate-level representation of an MOS transistor circuit. The resulting
model contains only four-valued unit and zero delay logic primitives, suitable for evaluation by conventional
gate-level simulators and hardware simulation accelerators. TRANALYZE has the same generality and
accuracy as switch-level simulation, generating models for a wide range of technologies and design styles,
while expressing the detailed effects of bidirectional transistors, stored charge, and multiple signal strengths.
It produces models with size comparable to ones generated by hand.

1 Introduction

Switch-level simulation has proved an effective means for verifying digital circuits implemented in MOS
technology. By directly working from a transistor representation, a switch-level simulator can handle a
large range of circuit designs and capture such subtle effects as bidirectional signal flow, dynamically stored
charge, and multiple signal sources with different driving impedances. Traditionally, switch-level simulation
requires evaluation mechanisms that are not found in conventional gate-level simulators. To utilize the
features and modeling libraries of existing simulators, and for execution on gate-level hardware simulation
accelerators, we would like to overcome this incompatibility.

By automatically generating gate-level models from transistor circuits, we can provide a simulation
methodology that combines switch-level generality and accuracy with gate-level compatibility and perfor-
mance. In taking this approach, we should take care to satisfy several design constraints. First, we must
not give up the generality and accuracy of switch-level simulation. Second, the generated models should
be suitable for evaluation by any gate-level simulator. Third, the generated models should be as compact as
possible.

1.1 Previous Work

A variety of programs have been developed that fall into the general category of gate-level model extractors.
On close examination, however, we see that all of them fall short in at least one of the design goals listed
above.

�

This paper appeared in the 1991 International Conference on Computer-Aided Design (ICCAD ’91). On leave from School of
Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.



Most model extractors operate by repeatedly applying transformation rules that eliminate or reduce
some of the transistor logic and replace it by logic gates [3, 4]. These rules typically include transforma-
tions such as: series/parallel reduction of pullup and pulldown networks; recognition of static logic gates;
identification of complementary control signals; merging transistor pairs in transmission gates; elimination
of “uninteresting” nodes [1]; transistor direction assignment [2]; and recognition of special structures such
as multiplexors and busses. Often, these programs encounter cases where none of the transformation rules
apply, but transistors remain in the circuit model. The user must then either supply hand-generated models
or add new transformation rules to the model extractor.

An alternative to rule-based approaches is to generate models using methods derived from switch-level
simulation. This has the advantage of starting from a firm foundation in terms of generality and accuracy.
The challenge becomes to satisfy the remaining goals of compatibility and conciseness. Symbolic switch-
level analysis, as exemplified by the ANAMOS program [7] (the preprocessor for the COSMOS simulator
[5]), can extract a logic description from the transistor network. ANAMOS generates models consisting of
Boolean DAGs: networks of 2-valued operations describing the computation for one unit time step of the
simulator. These DAGs operate on encoded signal values—each 3-valued node state is encoded as a pair of
binary values.

In earlier work at CMU, we developed a program HLGCC to convert the Boolean DAGs generated by
ANAMOS into logic gates [9]. HLGCC reduces the model size by mapping the two-valued operations of the
Boolean DAGs into 3-valued logic primitives, and merging multiple operations into three-input logic gates.
These optimizations, however, had only limited success. As an example, for a CMOS transmission gate
multiplexor, ANAMOS generates a DAG containing 17 Boolean operations, which HLGCC maps into 10
three-input gates. Ideally, we should be able to generate a single gate model for this circuit. Several reasons
can be identified for this shortcoming. First, by operating on encoded signal values, ANAMOS loses much
of the original context about the node state values. Second, by analyzing each channel-connected component
independently, ANAMOS cannot exploit correlations between signals, e.g., complementary signal pairs.
Finally, ANAMOS generates a very conservative model, assuming that all transistors have unit delay, and
that the effects of X signals should be modeled very strictly. Thus, the generated models must include many
terms for evaluating sneak paths and unit delay glitches.

1.2 New approach

As with ANAMOS, TRANALYZE performs a symbolic, switch-level analysis to extract a logic represen-
tation of the circuit behavior. Instead of using a binary encoding of signal values, however, it performs the
analysis in an algebra with values 0, 1, X, and Z. The fourth value Z is similar to the “high impedance”
value used by many gate-level simulators for simulating tri-state drivers and busses. The analysis algorithm
has the same general form as that used in ANAMOS [7]—each channel-connected component is analyzed
by setting up systems of equations, which are solved by a symbolic form of Gaussian elimination [6] to
yield the logic representation. TRANALYZE differs from its predecessor in the following key respects: it
represents and manipulates its logic description as a 4-valued gate-level network rather than as a Boolean
DAG; it analyzes the channel-connected components in rank order, so that it can exploit the correlations
between the input signals of each component; and the optimizer can optionally generate models with less
conservative, and hence simpler handling of X signals.

During the analysis, TRANALYZE applies extensive optimizations of the gate-level model to reduce its
size. The combination of symbolic analysis plus logic optimization effectively performs many of the circuit
optimizations implemented explicitly by rule-based systems.

2



2 Generated gate-level models

In a switch-level network, each node may have state 0, 1, or X, where X indicates either an unknown value or
a potentially nondigital voltage. To represent intermediate terms in the analysis, we introduce a fourth value
Z indicating the absence of a signal. In the gate-level model produced, we can guarantee that no circuit node
will ever have state Z—at the very least an isolated node will retain its stored charge.

An MOS transistor can serve in two different capacities. First, as in relay contact networks, series-
parallel (and other) configurations can be formed that conditionally connect two terminals according to some
logic function of the transistor gate nodes. We will refer to this as “And/Or” logic. Second, a transistor can
propagate a data value from its source to its drain (or vice-versa) under the control of its gate node. We will
refer to this as “Steering” logic. Typical MOS circuits contains both forms of logic. Logic gates are created
using And/Or logic as pullup and pulldown networks. Transmission gates, multiplexors, and carry chains
are created using steering logic. Our signal algebra includes operators to express both forms of logic.

2.1 Primitive gates

We express And/Or logic using gate types AND and INVERT. The OR operation is expressed in terms of
these two gate types according to DeMorgan’s Laws, aiding the detection of identical and complementary
terms. We can guarantee that the Z state will never arise in And/Or logic.

We express Steering logic using gate types ENABLE and MERGE. These operations are defined as
follows, where entry ‘–’ indicates a condition that will never arise in the generated gate-level network:

Z

0

1

X

Z

�

�

�

�

0

Z

Z

Z

Z

1

Z

0

1

X

X

Z

0

1

X

e

a

Enable

a

e

Z

0

1

X

Z

�

�

�

�

0

Z

Z

Z

Z

1

Z

0

1

X

X

Z

0

1

X

e

a

Enable

Z

0

1

X

Z

�

�

�

�

0

Z

Z

Z

Z

1

Z

0

1

X

X

Z

0

1

X

e

a

Enable

a

e

a

e

Z

0

1

X

Z

Z

0

1

X

0

0

0

X

X

1

1

X

1

X

X

X

X

X

X

a

b

Merge

a

b

Z

0

1

X

Z

Z

0

1

X

0

0

0

X

X

1

1

X

1

X

X

X

X

X

X

a

b

Merge

Z

0

1

X

Z

Z

0

1

X

0

0

0

X

X

1

1

X

1

X

X

X

X

X

X

a

b

Merge

a

b

a

b

The ENABLE gate conditionally propagates the data on input a according to the control signal on input e.
As the table indicates, the control input can never equal Z—its value is generated by And/Or logic. This
gate has functionality similar to that of a tri-state buffer, except that it treats control signal value X the same
as a 1. TRANALYZE resolves the effects of unknown control signals on tri-state buffers by including ad-
ditional gates in the model. The MERGE gate combines two 4-valued signals. Its functionality is identical
to a “wired-logic” function in tri-state logic. As a final gate type, the DELAY gate implements a unit delay.
All other gates have zero delay.

2.2 Gate-level logic example

Figure 1 shows a CMOS circuit and the generated gate network. As can be seen, the program successfully
recognizes that the pullup and pulldown networks form a NOR gate driving node S. The logic generated
for node T selects either the output of the NOR gate, or the stored value on node T (delayed by 1 time
unit), depending on control signal C. After technology mapping, TRANALYZE generates a 2 gate model,
consisting of a NOR and a multiplexor. In contrast, HLGCC generates a 7 gate model.

3 Analysis method

Following the parsing of a transistor netlist file, the analysis proceeds by a series of steps.

3



T

E

BA

S

C
Vdd

Gnd

delay

C

B

A

T

S MUX

NOR

Figure 1: Example Circuit and Generated Model

4



3.1 Partitioning and ordering

The transistor circuit is first partitioned into “channel-connected components,” each consisting of a set of
storage nodes connected by the source-drain terminals of transistors. Each such region is analyzed sepa-
rately.

TRANALYZE exploits the logical dependencies implied by zero delay transistor logic in its logic opti-
mization. It does this by analyzing the circuit components in rank order, so that as a component is analyzed,
the gate-level models for the signals controlling zero delay transistors are available to the optimizer. TR-
ANALYZE automatically inserts unit delays on some of the transistors to enable a rank ordering and to
avoid generating a gate network with zero delay cycles. It does this by a simple greedy method during the
topological sorting of the components.

3.2 Symbolic analysis

During the analysis of a channel-connected component, gates are added to the generated network describ-
ing the functionality of the component nodes. Each component node is temporarily treated as a primary
input fed through a unit delay to represent the initial node charge. Working from the maximum strength
level downward, two systems of equations are set up and solved symbolically at each strength level. The
gate outputs representing the final steady state solution are then connected to the primary inputs that were
temporarily introduced for the storage nodes.

For strength level � , the first system of equations, termed the “clear” equations, expresses the conditions
under which each node is not the destination of a definite path of strength � . These equations are expressed
in terms of And/Or logic. The second system, termed the “state” equations, expresses the combined effect
of all unblocked paths of strength greater than or equal to � to each node. These equations are expressed
in terms of Steering logic, with ENABLE expressing conditional signal propagation and MERGE expressing
the effect of multiple signals to a single destination.

3.3 Symbolic manipulation

During the setting up and the solving of equations, each signal corresponds to either a primary input or the
output of a logic gate. To “compute” the result of applying some operation (AND, MERGE, etc.) to a set of
argument signals, the symbolic manipulator either finds an existing gate with the appropriate functionality,
or it adds a new gate to the network having the argument signals as inputs. The symbolic manipulator
also applies extensive optimizations as it proceeds. Most of the optimizations are similar to those found
in ANAMOS, as well as in many optimizing compilers, e.g., constant evaluation, common subexpression
detection, etc., except that it performs these optimizations in the 4-valued signal algebra. Although most
of these optimizations require only constant time, others involve attempting a simple form of proof by
contradiction to show that a candidate gate would always produce an output value equal to one of its inputs.

Unlike ANAMOS where the effects of X signal values are modeled very conservatively, TRANALYZE
can generate models with “Boolean” optimization, ignoring the effects of X values in And/Or logic. For
most applications, designers are willing to give up detailed modeling of X values in favor of simpler gate-
level models. Indeed, they would find the gate model generated by Boolean optimization less prone to false
X value propagation.

Additional transformations are implemented by the symbolic manipulator to convert Steering logic into
And/Or logic. The first two illustrated in Figure 2 effectively perform series-parallel reduction of the tran-
sistor network. The first takes a chain of ENABLE gates, such as arises from the analysis of a series transistor
chain, and collapses it into a single ENABLE controlled by an AND. The second takes the MERGE of a set

5



a

b c

a

b c

a

b

c

a

b

c

a

0

1

a

Series

Parallel

Pullup/Pulldown

Figure 2: Example Transformation Rules

6



Circuit Trans. ANAMOS HLGCC TRANALYZE (Unit/Ternary) TRANALYZE (Zero/Binary)
2 inp. 2 inp. 3 inp. 2 inp. 3 inp. 4 inp. 2 inp. 3 inp. 4 inp.

74181 ALU 240 265 193 131 194 120 98 185 122 89
Figure of Merit 1.10 0.80 0.55 0.81 0.50 0.41 0.77 0.51 0.37

Shift64 658 1669 773 454 326 515 323 195
Figure of Merit 2.54 1.17 0.69 0.50 0.78 0.49 0.30

DRAM256 1140 8346 8562 4888 5430 3172 2361 5296 3087 2310
Figure of Merit 7.32 7.51 4.29 4.76 2.78 2.07 4.65 2.71 2.03

SLAP 20167 80057 74498 45085 67035 42861
Figure of Merit 3.97 3.69 2.24 3.32 2.13

Figure of Merit: (Gate Count) / (Transistor Count)

of ENABLE gates having a common data input, such as arises from the analysis of a set of parallel paths,
and collapses it into a single ENABLE gate controlled by the OR of the parallel control signals. This OR
is implemented as a combination of INVERT and AND to exploit the equivalences implied by DeMorgan’s
Laws. The third rule of Figure 2 illustrates the final transformation required to extract static logic gates. The
reduction of the pullup and pulldown networks by series-parallel transformations yields a pair of comple-
mentary signals. These signals control ENABLE gates to constants 1 and 0, representing power and ground.
This final configuration of ENABLE and MERGE gates can then be eliminated.

3.4 Network pruning

During the analysis, TRANALYZE generates gate level logic describing the functionality of every storage
node in the circuit, including such nodes as the intermediate points in series transistor chains. TRANALYZE
prunes the network by a form of mark-sweep garbage collection. Starting with the gates representing the
circuit nodes that the user wishes to observe during simulation, the program traces backward, marking all
reachable gates. Any unmarked gate can then be eliminated; its output value can have no bearing on the
simulation results. In this manner, the program prunes a large fraction of the nodes from the transistor
circuit, eliminating the need for heuristic methods to identify these nodes initially [1]. As an example,
connection node E in the pullup chain of the NOR gate of Figure 1 is successfully eliminated by the pruning.

3.5 Technology mapping

As the final stage, the primitive gates are merged into a smaller number of more complex gate types. The
initial target simulator for TRANALYZE is the hardware simulation machine SP [8]. This machine can
model arbitrary 4-valued gates with up to four inputs. Our technology mapper merges trees of gates, using
a simple tree matching algorithm [10].

4 Experimental results

The table above indicates the results of the different analysis methods for several switch-level benchmarks.
Results are given for 4 different representations: the Boolean DAG model generated by ANAMOS, the
ternary gate model generated by HLGCC, and the 4-valued models generated by TRANALYZE for two
extremes of network optimization. Unit/ternary indicates that all transistors have unit delay, and X values
are modeled conservatively. The resulting model is functionally equivalent to that produced by ANAMOS.
Zero/binary indicates that transistors are assigned unit delay only to break feedback loops, and with Boolean
optimization.

7



As a figure of merit, ratios are given of the number of gates (or DAG nodes) to the number of transistors
in the circuit. Low (less than 1.0) values indicate that the program is able to abstract the circuit behavior.
High numbers indicate cases where a complex gate-level model is required to capture the subtleties of
switch-level behavior. As this table indicates, TRANALYZE consistently outperforms both ANAMOS and
HLGCC, even when forced to generate models with exactly the same functionality.

The 74181 ALU is a direct mapping of a gate-level ALU into static CMOS gates. Both HLGCC and
TRANALYZE successfully recognize all of the gates, except for the XORs. The Shift64 circuit is a 64-bit
transmission gate shift register that can either shift or hold its data on each clock cycle. TRANALYZE can
reduce each stage to just 3 four-input gates—comparable to a hand generated model. The DRAM circuit
is an nMOS 3-transistor dynamic RAM. This represents a difficult case for gate-level model generation,
since any gate-level implementation of a RAM is far more complex than what can be implemented using
custom transistor logic. The SLAP circuit is a 16-bit CMOS processor designed at CMU. It contains many
difficult structures for gate-level model extraction, including a register file implemented as a static RAM, a
Manchester carry chain ALU, and a transmission gate shifter network. Even for these more difficult circuits,
TRANALYZE is able to generate reasonably concise models.

Thus far, we have successfully simulated all of the benchmark circuits except for SLAP on SP. For the
largest circuit simulated (DRAM256), SP operates 80 times faster than COSMOS executing on a SUN-
4/110. Even greater speedups can be expected for larger circuits.

Acknowledgements

Both S. Shimogori and M. Shoji of Fujitsu Laboratories have been instrumental in mapping the output of
TRANALYZE onto SP, and in executing the benchmark simulations.

References

[1] D. T. Blaauw, P. Banerjee, and J. A. Abraham, “Automatic classification of node types in switch-level
descriptions,” ICCAD, 1990.

[2] D. T. Blaauw, D. G. Saab, J. Long, and J. A. Abraham, “Derivation of signal flow for switch-Level
simulation,” EDAC, 1990, 301-305

[3] D. T. Blaauw, D. G. Saab, P. Banerjee, and J. A. Abraham, “Functional abstraction of logic gates for
switch-level simulation,” EDAC, 1991.

[4] M. Boehner, “LOGEX—An automatic logic extractor from transistor to gate level for CMOS technol-
ogy,” 25th DAC, 1988, 517–522.

[5] R. E. Bryant, et al, “COSMOS: a compiled simulator for MOS circuits,” 24th DAC, 1987, 9–16.
[6] R. E. Bryant, “Algorithmic aspects of symbolic switch network analysis,” IEEE Trans. CAD/IC, 1987,

618–633.
[7] R. E. Bryant, “Boolean analysis of MOS circuits,” IEEE Trans. CAD/IC, 1987, 634–649.
[8] F. Hirose, K. Takayama, and J. Niitsuma, “An event-driven logic simulation machine of computer sys-

tems,” Proc. 1990 European Simulation Multiconference, Nuremburg, Germany, June, 1990.
[9] A. Jain, and R. E. Bryant, “Mapping switch-level simulation onto gate-level hardware accelerators,”

28th DAC, 1991.
[10] K. Keutzer, “DAGON: Technology binding and local optimization by DAG matching,” 24th DAC,

1987, 341–347.

8


