Data Parallel Switch-Level Simulation

*

Randal E. Bryant
Computer Science Department
Carnegie Mellon University

Abstract

Data parallel simulation involves simulating the be-
havior of a circuit over a number of test sequences si-
multaneously. Compared to other parallel simulation
techniques, data parallel simulation requires less over-
head for synchronization and communication, and it
permits higher degrees of parallelism.

We have implemented two data parallel versions of
the switch-level simulator COSMOS. The first runs
on conventional machines,; exploiting the bit paral-
lelism of machine-level logic operations. This version
runs 20-30 times faster than sequential simulation on
the same machine. The second runs on a a massively-
parallel SIMD machine, with each processor simulat-
ing the circuit behavior for a single test sequence. The
simulator running on a 32,768 processor machine runs
up to 33,000 times faster than sequential simulation
on a workstation computer.

1 Introduction

Most attempts to exploit parallelism in simulation
utilize circuit parallelism. In this mode, the simulator
extracts parallelism from the circuit evaluation while
modeling the behavior for a single test sequence. Such
an approach has the advantage that it accelerates the
existing way in which simulators are used. However,
its performance is limited by the need to control the
simulation, as well as by the degree of parallelism
found within the circuit. The overhead of keeping
the simulation synchronized and communicating val-
ues between processing units can overwhelm the sav-
ings gained through parallel evaluation. Moreover,
there is an upper limit on how much parallelism can
be extracted from digital circuit simulation. Various

*This research was supported in part by the Defense Ad-
vanced Research Projects Agency, ARPA Order Number 4976,
and in part by the Semiconductor Research Corporation under
contract 83-DC-068.

Bryant—Data Parallel Simulation

studies [1, 8] indicate very low average parallelism
(~ 10-fold) for event-driven simulation kept in tight
synchronization. More clever synchronization tech-
niques and larger circuits might permit higher degrees
of parallelism, but it seems unlikely that truly “mas-
sive” (e.g., 10,000-fold) parallelism can be achieved.

As an alternative, we have explored a different form
of parallel simulation, in which the simulator models
the behavior of the circuit over a number of test se-
quences simultaneously. By exploiting this data par-
allelism, high degrees of parallelism can be achieved
even though the behavior of the circuit for a given test
sequence is performed sequentially. This approach
imposes special requirements on the simulation algo-
rithm, the target machine, and the simulator input
patterns. Of these requirements, the first two can be
satisfied by the implementor. The final one, however,
has a fundamental impact on how the simulator is
used. The simulation patterns must be formulated as
a large number of short test sequences that can be
generated and checked algorithmically.

We have implemented two data-parallel versions of
the switch-level simulator COSMOS [4]. The first op-
erates on conventional machines, exploiting the bit-
level parallelism of the machine operations to sim-
ulate 32 test cases simultaneously. The second im-
plementation operates on a Connection Machine [6],
with each processing element simulating the behavior
of the circuit for a single test sequence.

This paper describes the general requirements for
exploiting data parallel simulation, as well as the
method by which we have met these requirements
with COSMOS. Experimental results are given to
indicate the potential performance.

2 Related Work

The concept of data parallel simulation is not new.
Most implementations exploit the bit-level paral-
lelism inherent in conventional machine operations.

Page 1



The HSS program [2] developed at IBM simulates
a single good or faulty circuit on up to 32 patterns
simultaneously. This contrasts with more traditional
“parallel fault simulation” in which bit-level paral-
lelism is exploited to simulate a set (e.g., 1 good and
31 faulty) of circuits over a single test sequence. Al-
though the original version of HSS performed only
2-valued, rank-ordered modeling of combinational cir-
cuits, the authors mention such extensions as 3-
valued modeling, event scheduling, and support for
sequential circuits.

The FSS program developed at GEC Research [7]
is designed to compute the expected signatures for
circuits containing linear feedback shift register signa-
ture analyzers. By exploiting the superposition prin-
ciple of linear systems, this program can divide the
test sequence into 32 sections, simulate the sections
simultaneously, and then combine the results to de-
termine the signature that would result if the sections
were simulated in sequence. Unfortunately, this tech-
nique does not extend to general circuits.

The research described here is unique in several re-
spects. It is the first to exploit data parallelism while
providing a detailed, switch-level model of the cir-
cuit. It is the first reported mapping of data parallel
logic simulation onto a massively-parallel processor.
Finally, our work on simulation methodology is the
first to address the issue of generating patterns for
general sequential circuits suitable for data parallel
simulation.

3 Simulation Algorithm

For a single control sequence to direct a number of
simultaneous simulations, the simulation algorithm
must be “oblivious”, or at least nearly so. With obliv-
ious computation, the flow of control does not depend
on the data being evaluated. Many techniques tradi-
tionally used by logic simulators are not oblivious,
including:

e Fuvent scheduling. The set of logic elements eval-
uated at each time point depends on the simu-
lated data.

e Table lookup. The memory locations referenced
depend on the simulated data.

e Data dependent delays. The time points at which
elements are evaluated depend on the simulated
data.

e Functional models. Most modeling languages in-
clude data-dependent control operations, such as
conditional and iteration statements.

Bryant—Data Parallel Simulation

Although the above techniques lead to non-
oblivious behavior, some can still be utilized in con-
junction with data parallel simulation. For example,
the simulator can utilize event scheduling by following
the convention that a logic element must be scheduled
if one of its inputs changes for any of the cases be-
ing simulated. This requires the simulator to sched-
ule more events than it would when simulating just
a single case. The effectiveness of event-scheduling
therefore decreases as the number of parallel cases
increases. Our measurements indicate, however, that
event scheduling can yield a savings even when as
many as 1 million cases are simulated in parallel.

COSMOS utilizes a unique approach to switch-
level simulation that makes it suitable for data paral-
lelism. Most switch-level simulators maintain data
structures representing the transistor network and
apply (nonoblivious) graph algorithms to evaluate
the circuit behavior [3]. COSMOS, on the other
hand, preprocesses the transistor network to produce
a Boolean representation. This representation, pro-
duced by the symbolic analyzer ANAMOS, captures
such aspects of switch-level networks as: bidirectional
transistors, stored charge, charge sharing, different
signal strengths, and indeterminate (X) logic values.
The 3-valued behavior of the circuit is represented
by encoding each node state as a pair of Boolean
values. The symbolic representation of the circuit
describes how to compute Boolean values encoding
the new states of the circuit nodes as a function of
the Boolean values encoding the current node states.
Hence, only simple 2-valued logic operations are re-
quired to compute the circuit behavior.

The methods used by ANAMOS are indicative of
the ways in which a complex simulation model can be
implemented in a manner suitable for data parallel
simulation. Signal encoding allows the circuit behav-
ior to be expressed in terms of Boolean operations.
The symbolic analysis captures the subtle details of
the switch-level model. This eliminates the need to
model strength effects by encoding strengths in the
signal algebra or by introducing data-dependent con-
trol flow. Similar techniques could be applied to other
simulation models to allow data parallel implementa-
tions.

4 Implementation Details

COSMOS utilizes a hybrid of compiled-code and
event-driven simulation. The preprocessor gener-
ates and compiles an update procedure for each DC-
connected subnetwork of the circuit based on its
Boolean description. The simulator schedules events

Page 2



at the subnetwork level with a mixed zero/unit delay
timing model. On each unit step, the simulator se-
quences through the subnetworks on the current event
list, invoking the subnetwork procedure to compute
new states for the nodes and determining which nodes
change state. For each node that changes state, it
puts the fanout subnetworks onto the new event list
and sets the node state to the newly computed value.

Within the innermost loops of the simulation code,
each operation either manipulates data or implements
the control flow. The primary data operations are:
logic operations to compute the new states of the
nodes, equality testing to determine which nodes have
changed state, and data movement to update the
states of the nodes. These are precisely the oper-
ations that can exploit data parallelism. The con-
trol operations maintain the event lists and trace the
fanout connections. These operations must still be
performed sequentially, but their cost is amortized
over the number of cases being simulated in parallel.

For execution on a conventional machine, the ma-
chine performs both the data manipulation and the
control flow operations. Two pairs of 32-bit words en-
code the current and new state of each node for the
32 cases being simulated in parallel. The machine’s
logic, copy, and comparison operations directly pro-
vide the data parallelism. In fact, simulating a circuit
sequentially simply wastes 97% of the machine’s data
processing power.

For execution on a Connection Machine, the par-
allel processors perform the data manipulation while
the host performs the control flow operations. Each
processor holds the state of the circuit for one of the
test cases being simulated. Two pairs of bits on each
processor encode the current and new state of each
node. The simulation proceeds much as in the con-
ventional implementation, except for the data ma-
nipulations. To perform a logic or data movement
operation, the host commands all of the processors
to perform the operation on their own copies of the
circuit state. To test whether a node has changed
state, the host commands each processor to set a flag
if its values for the current and new node state differ
and then OR’s the flag values together.

Three reasons can be found for the high efficiency
of our mapping of COSMOS onto the Connection
Machine. First, the bit-serial operations of Connec-
tion Machine correspond closely to what is required
to evaluate the Boolean representation of a circuit.
Second, the SIMD parallelism of the Connection Ma-
chine closely matches our division between sequential
control flow and parallel data manipulation. Finally,
all data movement occurs either within the individ-
ual processors or between the host and one or more

Bryant—Data Parallel Simulation

processors. Hence, we avoid using the relatively slow
interprocessor communication network altogether.

5 Methodology

Except for the special case of linear signature analyz-
ers, data parallel simulation requires the simulation
patterns to be formulated as a number of indepen-
dent test sequences. For combinational circuits, this
restriction imposes no difficulty, because the circuit
outputs do not depend on past inputs anyhow. For
sequential circuits, on the other hand, this restriction
is more severe.

We have developed a simulation methodology for
which the resulting patterns naturally partition into
a number of independent tests. This methodology
arose from using logic simulation to formally verify
sequential circuits [5]. In this methodology, each sim-
ulation sequence checks a class of state transitions by
the underlying sequential system. Each sequence fo-
cuses on a small portion of the circuit, showing that
for a specific set of values on a small number of in-
put and internal nodes, correct values will result on
a small number of output and internal nodes. Dur-
ing simulation, those nodes that should not affect an
operation remain set to the unknown value X. If the
simulation produces a 0 or 1 on some output or state
node, then we can be assured that this value would
result for any assignment of 0’s and 1’s to the nodes
set to X.

As an extreme case, we have shown that an N-
bit static RAM can be fully verified by evaluating
O(N log N) independent test cases, where each test
case involves simulating one cycle of circuit opera-
tion. For example, verifying the memory read op-
eration involves evaluating 2 test cases per memory
location. Evaluating a test case for memory location
¢ and bit value b involves simulating the circuit with
the two nodes in memory cell 7 initialized to b and b,
with the address input set to the bit representation
of i, and with the read/write control line set for a
read operation. All other nodes are initialized to X.
At the end of the cycle, the verifier checks that the
two nodes in memory cell i still equal b and b (non-
destructive read) and that the data output equals b.
Because all other memory locations are initialized to
X, this single test effectively checks the circuit for
2V=1 different initial memory states. The remaining
test cases verify that a write operation causes the in-
put data be stored into the appropriate memory cell
and that any operation on one memory location does
not affect the value stored in another location.

Many of the ideas from this methodology can be

Page 3



applied to informal verification as well. That is, sim-
ulation tests can be designed with the following char-
acteristics:

e They focus on the operation of only small regions
of the circuit.

e They assume a minimal initialization of the cir-
cuit. There is no attempt to force all nodes out

of X.

e They directly manipulate and examine the states
of internal nodes, rather than just observing the
input—output behavior of the circuit.

e They simulate only short sequences of circuit op-
eration.

e They can be generated and checked algorithmi-
cally.

The resulting patterns provide a more rigorous test of
the design, because they are more likely to detect un-
expected sequential dependencies. Furthermore, they
can be used by a data parallel simulator.

6 Test Generation and Analy-
sis

When using a data parallel simulator, it becomes very
tedious to describe the input data and evaluate the
simulation outputs by hand. Instead, we have found
it preferable to write procedures to generate test pat-
terns and to check that the resulting outputs match
the expected values. COSMOS includes a set of li-
brary routines to assist in this programming.

For execution on a conventional machine, the rou-
tines allow the user to generate test patterns by loop-
ing through an indexed set of test cases. Within the
loop, the code repeatedly packs together 32 sets of
inputs, simulates the block, fetches and unpacks the
results, and then checks the results. Typically, infor-
mation is printed on the terminal only if an incorrect
result occurs, or after all tests have been applied.

For execution on a Connection Machine, the in-
put patterns should be generated and the results
checked using the parallelism of the processing ele-
ments. Otherwise the time spent downloading pat-
terns and uploading results can dominate the simula-
tion time. Fortunately, the general-purpose nature of
the Connection Machine makes it possible to do all of
the input preparation and result analysis on the ma-
chine. For example, the input stimuli can be created
in parallel by generating random bit patterns, or by
generating patterns based on the processor number.

Bryant—Data Parallel Simulation

Machine Parallel Time | Rel. Speed
MicroVax-I1 1] 81da* 1
MicroVax-I1 32 | 103 hr.* 19
CM-2 32,678 | 212 sec. 33,000
10 Mhz. Circuit 1| 3.2 sec. 2,200,000

* — Estimated by extrapolation

Table 1: Times to evaluate 32M patterns for 16-bit
nMOS ALU

The results can be checked by computing the desired
responses based on the input patterns and comparing
these to the circuit outputs.

7 Experimental Results

Table 1 indicates the time required to evaluate a
688 transistor, 16-bit nMOS ALU set to perform ad-
dition for 33,554,432 (32M) different input data pat-
terns. In each case, the resulting output was checked
to make sure it equaled the sum of the inputs. This
circuit utilizes a precharged, Manchester carry chain,
but functionally behaves as a combinational circuit.

Two machines were used for this experiment:
a Digital Equip. Corp. MicroVax-II, and a 32K-
processor Thinking Machines Corp. CM-2 with a
Digital Equp. Corp. VAX/8800 as host. The times
marked with an asterisk (*) were estimated by simu-
lating the circuit for a smaller number of input pat-
terns and extrapolating. They should be accurate
to within 10%. Even in sequential mode, COSMOS
outperforms its predecessor, MOSSIM II, by over a
factor of 10. MOSSIM II would require an estimated
2.5 years on a MicroVax-II to perform the same simu-
lation! Simulating 32 cases in parallel yields another
factor of 19 in speed. This speed up falls short of the
ideal value of 32 due to the cost of packing and un-
packing the blocks of patterns, and due to the larger
number of events that must be simulated.

The circuit was simulated on the CM-2 configured
as 32 virtual processors per physical processor. The
total simulation run involved simulating 32 batches
of 1M test cases each. As can be seen, the resulting
speed up approaches the maximum realizable, con-
sidering that the cycle time of a CM-2 is only slightly
less than that of a MicroVax-II. Our measurements
show that simulating 1M inputs in parallel only re-
quires 2.1 times more events than does simulating a
single input. Thus, the overhead incurred by data
parallel simulation is quite small. Observe that the
effective speed of the simulation is within 2 orders of
magnitude of the actual circuit speed, assuming the

Page 4



Machine Parallel Time | Rel. Speed
MicroVax-II 1 47.9 hr. 1
MicroVax-II 32 93 min. 31
CM-2 24,577 1 min. 2,900
10 MHz. Circuit 1] 0.0025 sec. 7 % 107

Table 2: Times to Evaluate 24,577 patterns for 1K
CMOS SRAM

circuit operates with a 10 MHz clock.

Table 2 indicates the times required to create, sim-
ulate, and analyze a set of 24,577 patterns giving a
rigorous verification of a 1K-bit CMOS static RAM.
In this case, the parallel implementation on a conven-
tional machine yields a nearly ideal speed up of 31.
The regions of activity in this circuit are less sensitive
to the data being simulated, and the time required to
pack and unpack the data is small compared to the
time required for simulation.

Mapping this simulation onto a 32K processor Con-
nection Machine yields another factor of 90 in speed.
Although this is a significant speed up, it is not as
large as for the ALU benchmark. Several reasons
can be found for this performance. First, there were
not enough patterns to utilize the full capacity of the
machine. Using virtual processors, the machine has
enough memory to simulate 128K patterns in paral-
lel for this circuit, but less than 1/5 this number is
required for full verification. Second, the program to
set up the patterns and to analyze the results can
only partially exploit the parallelism of the Connec-
tion Machine. As a result, less than 50% of the CPU
time was spent running the actual simulation.

8 Conclusions

The data presented clearly indicate the performance
potential of data parallel simulation. Without chang-
ing hardware or modeling level, the simulator oper-
ates 20-30 times faster than before. Moving to a
general purpose parallel processor yields another 2-
3 orders of magnitude improvement. This degree of
improvement makes possible simulations that would
otherwise be totally impractical.

References
[1] M. L. Bailey, L. Snyder, “An Empirical Study of

On-Chip Parallelism,” 25th Design Automation
Conference, 1988.

Bryant—Data Parallel Simulation

[2] Z. Barzilai, et al, “HSS—A High Speed Simu-
lator”, IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, Vol. CAD-6,
No. 4 (July, 1987), pp. 601-617.

[3] R. E. Bryant, “A Switch-Level Model and Simu-
lator for MOS Digital Systems,” IEEE Trans. on
Computers, Vol. C-33, No. 2 (February, 1984),
pp. 160-177.

[4] R. E. Bryant, et al, “COSMOS: a Compiled Sim-
ulator for MOS Circuits,” 24th Design Automa-
tion Conference, 1987, pp. 9-16.

[5] R. E. Bryant, “Verifying a Static RAM Design
by Logic Simulation,” Fifth MIT Conference on
Advanced Research in VLSI, 1988, pp. 335-349.

[6] W. D. Hillis, The Connection Machine, MIT
Press, 1985.

[7] S. B. Tan, et al, “A Fast Signature Simulation
Tool for Built-In Self-Testing Circuits”, 24th De-
sign Automation Conference, 1987, pp. 17-25.

[8] K. F. Wong, et al, “Statistics on Logic Sim-
ulation”, 23rd Design Automation Conference,

1986, pp. 13-19.

Page 5



