Formal Verification by Symbolic Evaluation of Partially-Ordered
Trajectories”

Carl-Johan H. Seger Randal E. Bryant
Department of Computer Science School of Computer Science
University of British Columbia Carnegie Mellon University
Vancouver, B.C. V6T 174 Canada Pittsburgh, PA 15213 USA

July 1, 1999

Abstract

Symbolic trajectory evaluation provides a means to formally verify properties of a sequential
system by a modified form of symbolic simulation. The desired system properties are expressed
in a notation combining Boolean expressions and the temporal logic “next-time” operator. In
its simplest form, each property is expressed as an assertion [A = C], where the antecedent
A expresses some assumed conditions on the system state over a bounded time period, and the
consequent C' expresses conditions that should result. A generalization allows simple invariants
to be established and proven automatically.

The verifier operates on system models in which the state space is ordered by “information
content”. By suitable restrictions to the specification notation, we guarantee that for every
trajectory formula, there is a unique weakest state trajectory that satisfies it. Therefore, we
can verify an assertion [A = C] by simulating the system over the weakest trajectory for A
and testing adherence to C'. Also, establishing invariants correspond to simple fixed point
calculations.

This paper presents the general theory underlying symbolic trajectory evaluation. It also
illustrates the application of the theory to the task of verifying switch-level circuits as well as
more abstract implementations.

1 Introduction

Verifying a digital system by conventional simulation is feasible only for very small systems, since
the large number of possible initial states and input sequences would require massive amounts of
case analysis. By exploiting a combination of abstraction and symbolic manipulation, on the other
hand, symbolic trajectory evaluation can verify the behavior of complex systems by a modified form
of simulation. This method exploits abstraction by extending the system state space to include
elements representing sets of actual states, yielding a partially-ordered system model. A single
simulation sequence can then verify that the system would produce a unique result for a set of

*This research was supported by the Defense Advanced Research Projects Agency, ARPA Order Number 4976,
by the National Science Foundation, under grant number MIP-8913667, by operating grant OGPO 109688 from the
Natural Sciences and Engineering Research Council of Canada, and by a fellowship from the B. C. Advanced Systems
Institute.

initial states or input sequences. It exploits symbolic manipulation by a modified form of symbolic
simulation. The Boolean expressions appearing in the system specification are converted into
symbolic patterns for the simulator. Like a conventional simulation, a single run of the trajectory
evaluator models the system behavior over a single state sequence, although this sequence is both
symbolic and partially-ordered.

1.1 Partially-Ordered System Modeling

In earlier work, we demonstrated the utility of ternary modeling for verifying a variety of circuits
[11, 12]. Our methodology was based on ternary simulation of VLSI circuits, where a third value
X is added to the set {0, 1} of possible signal values, indicating an unknown or indeterminate logic
value. Assuming a monotonicity property of the simulation algorithm, one can ensure that any
binary (i.e., 0 or 1) values resulting when simulating patterns containing X’s would also result when
the X’s are replaced by any combination of 0’s and 1’s. Thus, the number of patterns that must
be simulated to verify a circuit can often be reduced dramatically by representing many different
operating conditions by patterns containing X’s. For example, we can verify that a particular
sequence of actions will yield a 1 (or 0) on some node regardless of the initial state by verifying
that this value results when starting from an initial state where all nodes are set to X. This requires
far less effort than analyzing the effect of the action on all possible initial binary states.

Ternary modeling is a special case of a more general abstraction technique based on partially-
ordered system models. That is, the actual state space of the circuit (in this case all possible
combinations of binary values) is extended with values representing sets of circuit states, such that
the resulting state set is partially ordered. With ternary simulation, a state with some nodes set
to X covers those circuit states obtained by replacing the X values with all combinations of 0 and
1. The state with all nodes set to X thus covers all possible actual circuit states. By extending the
next-state function of the circuit to one over the expanded state set, we can verify circuit behavior
for a set of different operating conditions with a single simulation run. By suitable restrictions of
the specification syntax and the extended next-state function, we can guarantee that any property
verified on this more abstract form of simulation must also hold for the original circuit.

In this paper we generalize our previous results on ternary simulation to a wider class of
partially-ordered system models. This generalization simplifies the presentation by allowing us
to focus on the essential properties of the abstraction technique while eliminating artifacts specific
to ternary modeling. It also allows us to apply our methods to higher level data domains than
simple binary-valued signals.

1.2 Symbolic Simulation

Although ternary modeling, or its generalization, allows us to cover many conditions with a sin-
gle simulation sequence, it lacks the analytic power required for complete verification, except for
restricted classes of circuits such as memories [11]. We have shown that by combining ternary mod-
eling with symbolic simulation [1], we can model even more complex sets of behaviors with a single
simulation run. With ternary symbolic simulation, the simulation algorithm designed to operate on
scalar values 0, 1, and X, is extended to operate on a set of symbolic values. Each symbolic value
indicates the value of a signal for many different operating conditions, parameterized in terms of
a set of symbolic Boolean variables. In essence, ternary symbolic simulation allows us to combine
multiple ternary simulation sequences into a single symbolic sequence.

Simulators that support ternary modeling intentionally err on the side of pessimism for the sake
of efficiency. That is, they will sometimes produce a value X even where exhaustive case analysis
would indicate that the value should be binary (i.e., 0 or 1). For example, most ternary simulators

evaluate logic functions in a ternary algebra created by extending the standard Boolean operators.
This algebra does not obey the law of excluded middle, because X + X = X, where 4+ and ~ are
ternary extensions of Boolean sum and complement, respectively. On the other hand, symbolic
simulation avoids this pessimism, because it can resolve the interdependencies among signal values,
and compute a + @ =1 (the Boolean function that always yields 1). By combining the expressive
power of symbolic values with the computational efficiency of ternary values, we can trade off
precision for ease of computation.

1.3 Symbolic Trajectory Evaluation

Symbolic trajectory evaluation takes the notion of ternary symbolic simulation one step further by
providing a concrete means of specifying and verifying the desired behavior of the system operating
over time. In earlier papers [9, 13], we introduced the notion of symbolic trajectory evaluation for
ternary system models and demonstrated its utility on several actual circuits. In this paper we
generalize the technique to a wider class of system models and specifications. We also make our
previous, informal claims more precise and rigorous.

Our specifications take the form of symbolic trajectory formulas mixing Boolean expressions and
the temporal nezxt-time operator. The Boolean expressions provide a convenient means of describing
many different operating conditions in a compact form. By allowing only the most elementary of
temporal operators, the class of properties we can express is relatively restricted, as compared to
other temporal logics [16, 32]. Nonetheless, we have found that we can readily express many aspects
of synchronous digital systems at various levels of abstraction. It is quite adequate for expressing
many of the subtleties of system operation, including clocking conventions and pipelining.

Our decision algorithm is based on a generalized symbolic simulation. In its simplest form
it tests the validity of an assertion of the form [A = (], where both A and C' are trajectory
formulas. That is, it determines whether or not every state sequence satisfying A (the “antecedent”)
must also satisfy C' (the “consequent”). It does this by generating a symbolic simulation sequence
corresponding to the antecedent, and testing whether the resulting symbolic state sequence satisfies
the consequent.

A more complex condition of the form [A = C]"; G can also be verified, where A and C are
trajectory formulas and G is an assertion. Intuitively, the formula is deemed to hold if and only if
for every sequence of states the system may go through, if the state sequence satisfies some number
of iterations of A, then it must also satisfy the same number of iterations of C' and furthermore
the remaining sequence must satisfy G. Assertions of this form are useful for verifying circuits
that may remain in an idle state for an unbounded amount of time, e.g., for a processor held in
a “wait-state” by the memory subsystem. Our verification method proves invariants of this form
by using symbolic simulation to compute a fixed-point which intuitively serves as a “summary” of
what states the system can be in after it has gone though any number of iterations of A.

An important property of our algorithm is that it requires a comparatively small amount of
simulation and symbolic manipulation to verify an assertion. The restrictions we impose on the for-
mula syntax guarantee that there is a unique weakest symbolic sequence satisfying the antecedent.
Furthermore, the symbolic manipulations involve only variables explicitly mentioned in the asser-
tion. Unlike other symbolic circuit verifiers [5], we do not need to introduce extra variables denoting
the initial circuit state or possible primary inputs. Finally, the length of the simulation sequence
depends only on the depth of nesting of temporal next-time operators in the assertion and the
speed of convergence of the fixed-point calculations.

Symbolic? Model | Patterns Variables
No Binary 27 0
Yes Binary 1 n
No Ternary n-+1 0
Yes Ternary 1 [log(n+1)]

Table 1: Requirements for Verifying n-input AND gate.

Scalar Cases Symbolic
Signal |O 1 2 3 4 5 6 7| High Low
in0O 0 X X X X X X 1|01 19 11 10
int1 | X 0 X X X X X 1|22t 1911 1o
in2 X X 0 X X X X 1 ’ig ’L'1 io 52 ’L'1 ZO
in3 X X X 0 X X X 1 i2 il io ZQ ’L'1 ’io
in4 X X X X 0 X X 1 ig il io ?:2 21 70
inb X X X X X 0 X 1 ’ig ’L'1 io ’ig zl ’io
in6 X X X X X X 0 1 ig il io 7:2 il 70
out 0 0 0 0 0 0 0 1 iQ il io ZQ + zl + 70

Table 2: Verification of 7-input AND Gate by Ternary Modeling

1.4 Illustrative Example

To illustrate the combined use of partially-ordered system modeling and symbolic simulation,
consider the task of using a simulator to verify that a given circuit has the functionality of an
n-input AND gate. Four approaches are tabulated in Table 1, according to whether the simulation
is conventional or symbolic, and whether it uses a binary or a ternary system model. With binary
modeling, we would need to simulate either 2" conventional patterns, or a single symbolic pattern
of n variables—one per input. In either case, we must, in effect, exhaustively evaluate the circuit
functionality.

With ternary modeling, we can exploit the property that if at least one of the inputs to the gate
is 0, the output should be 0 regardless of the other inputs. Even with a conventional simulator,
we can verify the circuit with just n 4+ 1 patterns. These are illustrated for the case of n = 7 in
Table 2. First, there are n patterns that set one input to 0, the remaining to X, and checks that
the output is 0. The remaining pattern sets all inputs to 1 and checks that the output is 1.

By the method of symbolic indexing, our ternary symbolic simulator can encode all of these
cases with a single symbolic pattern [1]. That is, we think of the patterns as being indexed from
0 to n. These index values are then encoded in binary and represented symbolically by a set of
[log(n + 1)] index variables. In our example with n = 7, we require three index variables: i, i1,
and 7g. The signal values are then functions over these index variables mapping to the set {0, 1, X}.
We can in turn represent each of these functions as a pair of Boolean functions, indicating the cases
where the signal is 1 (“High”) or 0 (“Low”), with the signal otherwise being X. Table 2 shows the
encoding of the eight ternary patterns by symbolic indexing. The High function is satisfied only
when all index variables are assigned value 1, corresponding to the binary representation of 7. The
Low function for each signal is satisfied when the index value matches the input number. Thus,
each decoding of the index variables corresponds to one of the scalar ternary patterns.

This simple example illustrates how multi-valued modeling can be combined with symbolic
simulation. By this method, we can efficiently cover a wide range of circuit operating conditions
with a single symbolic simulation pattern involving far fewer variables than would be required for
a complete binary symbolic simulation. In the case of an AND gate, we have reduced the number
of variables to be logarithmic in the circuit size. For large systems involving many state variables,
such reductions can lead to a dramatic improvement in symbolic manipulation efficiency.

Note also that even though we model circuit operation over multiple-valued signals, we utilize
binary encodings of these signals so that they can be represented symbolically with OBDDs. This
avoids the need to implement special data structures and manipulation algorithms for multi-valued
functions. In general, we think of the Boolean variables of the symbolic simulator as providing a set
of index variables. Each decoding of the variables covers one of the cases required for verification.

1.5 Related Work

Our approach to verification relates most closely to the symbolic model checking algorithms devised
by a number of researchers [5, 15, 19]. Like our program, these algorithms verify that a finite state
system, modeled symbolically, obeys a property expressed in temporal logic. Despite these general
similarities, however, there are significant differences in the capabilities and complexities of the
algorithms. In particular, our method is the most restricted in terms of the class of systems that
can be modeled and in the properties that can be verified. For example, other symbolic model
checkers [15] can model an arbitrary, nondeterministic system, since the system is described by
a transition relation. The symbolic verifier for LUSTRE programs [25] is based on a next-state
function representation of system behavior, but allows the inputs on each time step to be chosen
nondeterministically. In computing circuit behavior by a form of simulation, our method effectively
models system behavior in terms of the next-state functions for the circuit state elements. Further-
more, we do not choose inputs nondeterminstically, but rather constrain the inputs according to
the antecedents of the assertion formulas. We can model some forms of nondeterministic behavior
by encoding a set of possible states with the value corresponding to the greatest lower bound in the
partial ordering. This form of modeling would yield overly pessimistic results for highly divergent
system behaviors.

Although our method does not compare favorably to symbolic model checking for verifying
highly nondeterministic systems, we can efficiently model circuit behavior with more detailed circuit
and timing models. In particular, we can handle most of the techniques found in (discrete) circuit
simulators, including switch-level models, arbitrary clocking schemes, and various delay models for
the circuit elements. Our verifier is thus one of the few that can model system behavior at a level
of timing granularity finer than complete clock cycles.

In its most general form, verification by symbolic model checking can decide a class of formulas
consisting of a complete branching time, propositional temporal logic. Our method can only be used
to verily properties of bounded state sequences, intermixed with periods of invariant behavior. Our
restrictions on the formulas to be checked allow us to verify system behavior by simulating circuit
behavior over a single, symbolic state sequence. There are other precedents for restricting the class
of formulas that can be checked in order to improve the efficiency of the verifier. For example,
Clarke, Grumberg, and Long [17] have shown that by restricting the use of negation and existential
operators, they can reliably replace a detailed system model by a more simplified abstraction. Any
property proved of the abstract model is guaranteed to hold for the more detailed one. Similarly, we
prohibit negation and even disjunction in our logic to make it possible to conservatively approximate
the circuit behavior by a single, symbolic state sequence.

One can view the combined effect of these research projects as providing a spectrum of checking-

based verifiers that trade off between expressiveness and performance.

Most other automated approaches to sequential circuit verification are based on testing state
machine equivalence [18, 21]. Such methods are useful for comparing two different (but hopefully
equivalent) representations of the system, such as one at a register-transfer level and one at a
gate level. However, they do not work well for verifying the correctness of incompletely specified
systems, nor for reasoning about systems that employ methods, such as pipelining, that shift the
sequencing of activities in time. Furthermore, most of these methods assume that the system starts
in some known initial state. In actual circuits, the initial state usually cannot be predicted.

Symbolic simulation has been proposed by others as a hardware verification technique. Bose
and Fisher have shown that these methods can be applied to complex circuits, including ones with
pipelining [4]. Their method, however, requires a complete characterization of the system by binary
symbolic simulation. That is, the user identifies each place state is stored in the circuit, either as
charge on a node, or as a pair of complementary values within a static memory element. They
then symbolically simulate a single clock cycle, where each state variable and each input signal is
represented by a distinct Boolean variable, yielding a complete characterization of the next-state
functions for every state variable. This process of extracting the explicit next-state function can be
quite costly. In contrast, our method represents the next-state function implicitly as a combination
of circuit structure and simulation algorithm. We only compute the next-state behavior for the
particular patterns required to verify a given assertion. These patterns involve far fewer variables
than is required by Bose and Fisher’s functional extraction.

Other researchers have suggested symbolic simulation as a means of circuit verification [20, 33].
None of this work has presented a clear methodology for sequential circuit verification, however.

1.6 Outline of Paper

This paper presents the theoretical basis for symbolic trajectory evaluation. Following a summary of
the mathematical foundations, we describe the concept of partially-ordered system models and how
a system can be represented by the language consisting of all possible compatible state sequences,
referred to as trajectories. Next we introduce a “scalar” version of the specification notation,
where only constant expressions are permitted. We show that any assertion in this notation can
be verified by simulating the (unique) weakest state sequence satisfying the antecedent and testing
adherence to the consequent. We then show that the concepts generalize to the symbolic case,
where the specifications may contain expressions over a set of Boolean variables. One can view a
symbolic assertion as simply encoding a number of scalar assertions that can then be evaluated
simultaneously through symbolic simulation. Finally, we discuss some of the practical issues of
implementing and applying our theory to real-life digital circuits.

2 Mathematical Background

In this section we give concise definitions of many concepts used throughout the paper. Readers
unfamiliar with the notation of lattice theory may wish to refer an introductory text for additional
information.

In general, we use calligraphic letters A, B, ..., to denote sets and lower case letters, a,b, ..., to
denote individual elements of sets. Unless otherwise stated, all sets are assumed to be finite.

The cartesian product A x B of two sets A and B is the set of all ordered pairs (a,b), where
a € Aand b e B. A binary relation on a set B is any subset of B x B. Let R be a binary relation on
B, i.e., R C B x B. We say that R is reflexive iflf aRa for all « € B. Similarly, R is antisymmelric
iff aRb and bRa implies @ = b for all a,b € B. Finally, R is transitive iflf aRb and bRc implies aRc

for all a,b,c € B. A binary relation on B which is reflexive, antisymmetric, and transitive is called
a partial order on B.

A poset (partially ordered set) is an ordered pair (S, C), where § is a set and C is a partial
order on §. Intuitively, we will view a partial order as ordering the values by their “information
content.” That is, elements less than others “contain less information”.

If (§,C)is aposet, A CS,and b €S, then bis a lower bound of Aiff bC a for all a € A. A
lower bound a of A is called greatest lower bound of A, written ¢lb(.A), if and only if b C a for every
lower bound b of A. The concept of upper bound and least upper bound of A, written lub(A), are
defined dually. If A = {a,b}, we will write glb(a,b) ({ub(a,b)) rather than ¢glb({a,b}) (lub({a,b})).
Clearly, if glb(.A) exists, it is unique, and the same holds for lub(A).

A poset (S, C) is said to have a universal lower bound L€ S iff L C a for every element a € S.
A poset is said to have a universal upper bound T € S iff a C T for every element a € S.

A poset (S, C) is a complete lattice if lub(A) and glb(A) exist for every subset A C S. Given
that S is a finite set, one can show [37] that if lub(a,b) and glb(a,b) exist for every a,b € S, then
(S, C) is a complete lattice. Note that, by definition, every complete lattice has a universal upper
bound T € § and a universal lower bound 1€ §.

If (S§1, C1),...,(Sn, £,) are n complete lattices let S =81 X ... x S, and for any a,b € S let
aCbiff a; C;b; for 1 <7< n. It is easy to verify that (S, C) forms a complete lattice.

A mapping f: A — B consists of a function f assigning an element b from the codomain B to
each element a of its domain A, written as b= f(a).

Given a poset (S, C) and a mapping f:S — S, we say that f is monotone iff

aCb = f(a)C f(b)

This monotonicity definition is consistent with our use of information content. If a mapping is
monotone, we cannot “gain” any information by reducing the information content of the arguments
to the function.

A predicale over § is a special type of mapping S to the complete lattice with elements false and
true, with false as the universal lower bound and true as the universal upper bound. A predicate
p is said to be simple iff p is monotone and there is a unique element p € S, called the defining
value, such that p(t) = true ff pC ¢ for all t € S. Another way of stating this property is that p is
a simple predicate iff p is monotone and p(glb({s € S|p(s) = true})) = true.

A fixed-point of a mapping f:S — § is a value a such that a« = f(a). Furthermore, if (S, C)
is a complete lattice and f is monotone, then the mapping has a unique greatest fized-point, i.e., a
fixed-point @ such that ¢’ C « for any other fixed-point @’. This fixed-point is denoted Gfp a. f(a).
Furthermore, for the case where § is finite, this fixed-point can be derived by iteratively computing
a® =T, and @' = f(a'"!) for i > 0. Eventually some iteration step will yield @' = a*~'; this value
is the greatest fixed-point [37].

To express the behavior of a system working over time, we will reason about sequences of
elements from some set §. Conceptually, we will consider the sequences to be infinite, although
the properties we will express can always be determined from some bounded length prefix of the
sequence. Given a poset (S, C), we extend the relation T to sequences pointwise. That is, if

o =0%"'...and 7 = 7071 ... are two infinite sequences of elements from S, then o C 7 iff 0* C 7°
for ¢ > 0. Similarly, the definitions of lub and glb are extended pointwise. Finally, for notational
convenience, if 0 = 6% 'o? ... we will often write o as 05, where 6 = olo?. ...

3 Model Structure

The model we use of a system is simple and general. A model structure is a tuple M = [(S, C),Y],
where (S, C) is a complete lattice and Y is a monotone successor function Y:S§ — §. Intuitively,
the successor function is used to express constraints on the permissible sequences. In other words,
given that the system is in state s € S, we view Y (s) as denoting the least specified state the
system can be in one time unit later. Here, “least specified” is defined in terms of the partial order
C.

3.1 Structure Example

In order to make the theory easier to follow but also to provide a concrete application for the
general theory, we will use switch-level circuit verification as a running example throughout the
paper. There are several reasons for this. First, there is a historical reason since this work grew
out of switch-level simulation and verification. Secondly, there is a very close connection between
our notion of a model structure and the type of models that are used in switch-level simulation.
Nonetheless, the underlying concepts apply to more general classes of systems, examples of which
will be given later.

In switch-level models it is useful to allow each circuit node to take on one of three distinct
values. Let 7 = {0, 1, X} denote such a set of values. There are several advantages in extending the
domain from {0, 1} to 7. As a first advantage, this extension makes it possible to model an increased
range of circuit phenomena. For example, we can deal with circuits in which nondigital voltages are
generated in the course of normal circuit operation. This occurs frequently when modeling circuits
at the switch-level [8], due to (generally transient) short circuits or charge sharing. We can also
deal with circuits in which indeterminate behavior occurs due either to timing hazards or to circuit
oscillation. In all of these cases, the modeling algorithm expresses this uncertainty by assigning a
value X to the offending circuit nodes, indicating that the actual digital value cannot be determined
[14, 28]. Thus the value X is introduced to denote an “unknown” and possibly indeterminate value.

0 1
X
Figure 1: The < partial order.

In order to formalize this concept of an “unknown” value, define the partial order < on 7 as
follows: ¢ < aforalla € T, X <0,and X < 1. In Fig. 1 we show the Hasse diagram for the partial
order. We can view this partial ordering as ordering values by their “information content.” That
is, X indicates an absence of information while 0 and 1 represent specific, fully-defined values.

Let 7™, m > 1, denote the set of all possible vectors of ternary values of length m, i.e.,
{({a1,...,am)|a; € T,1 < i < m}. The partial order < is extended to 7" pointwise: @ < b iff
a; < b; for 1 < ¢ < m. Unfortunately, (7™, <) is not a complete lattice, since the least upper
bound does not exist for every pair of elements in 7. We solve this by introducing a new top
element. In other words, let C = 7™ U {T}. Intuitively, one can view T as representing an
“overconstrained” state, i.e., a state vector in which some node is both 0 and 1 at the same time.
Let T be the partial order on C defined as follows: s C T for every s € C and if 5,7 € 7™ then

FC T iff § <. Clearly, (C, C) forms a complete lattice in which L = X, ..., X. Thus we now have
the first half of a model structure.

The underlying model of a switch-level circuit we use is quite simple, as well as general. A
circuit is a tuple (N,), where A is a set of nodes and 7 is a vector of excitation, or next-state,
functions. In the mathematical presentation we will refer to the nodes as ny, ng, ..., n,,, whereas
in our examples we often will use more descriptive names.

Since X is meant to denote an unknown value, a gate with an X on its input must treat this
value in a conservative way. Consequently, the excitation functions are required to be monotone
with respect to the partial order <. This monotonicity requirement is consistent with our use of
information content. If a function is monotone, we cannot “gain” any information by reducing the
information content of the arguments to the function. In other words, changing some signals from
binary values to X will either have no effect on the next-state values, or it will change some binary
values to X.

The excitation functions are defined in a non-traditional way. We view them as expressing
“constraints” on the values the nodes can take on one time unit later given the current values on
the nodes. By constraint we mean specific binary values, whereas the value X indicates that no
constraint is imposed. Since the value of an input is controlled by the external environment, the
circuit itself does not impose any constraint on the value; hence the excitation of an “input node”
is X. More formally, if node n; corresponds to an input to the circuit then y,, (@) = X for every
@ € T™. Nodes that do not correspond to inputs are called function nodes. For a function node
n; the excitation function is a monotone ternary function y,;: 7™ — T determined by the circuit

topology and functionality.

out

[4

Figure 2: CMOS inverter.

To illustrate our notion of excitation function, consider the CMOS circuit shown in Fig. 2. In
Fig. 3 we give a graphical representation of the next-state function assuming the circuit behavior
is analyzed using a unit-delay model. Note that no matter what the current state is, the next-state
function for the input is X. Also, if the current input is binary, it is easy to see that the output
one time unit later will be the complement of this value.

It should be pointed out that the “time unit” referred to above is the smallest period of time
that is distinguishable in the circuit model. The minimum delay in any individual component of
the circuit can be significantly larger. Thus we are not limited to unit delay circuit models. For
example, by using the transformation technique described in [34], both nominal delay and bounded
delay circuit models can be used. However, to make our example as simple as possible, we will use

N\ /

0o X — > Xel—>Xe X «—Xe0<«— 1X

/ "\

00 1.0

Figure 3: Excitation function of unit delay inverter (in - out).

a unit delay model unless otherwise stated.
In order to obtain a model structure, we only need to define a monotone next time function
mapping C to C. We do this by extending y from 7™ — 7™ to C — C in the obvious way. Thus

define:
Y(a)_{ jla) ifaeTm™

T otherwise

Clearly, Y is monotone and thus M¢ = [(C, C),Y] forms a model structure.

3.2 Trajectories

Let us now return to the more general theory in which [(S, C), Y] is any model structure. Let &
denote the set of all infinite sequences of elements from §. In general, sequences are useful when
reasoning about model behaviors. However, not all sequences represent possible behaviors of a
model. The successor function generally restricts the possible sequences significantly. We formalize
this property by introducing the concept of a trajectory. Given a model M and an arbitrary

sequence o = 0’0l ... € 8 we say that the sequence is a trajectory if and only if

Y (¢') E o't for i > 0.

This rule for trajectories is consistent with our view of the successor function, i.e., a function
computing a constraint on the possible value of the successor state. Another way of describing the
next-state function is to view it as computing the most general state the system can evolve into
during the next time step given its current state.

The set of all trajectories of model M is denoted L(M). Occasionally it is convenient to restrict
the set of trajectories by requiring the first state in the trajectory to be greater than or equal to
some element in §. Consequently, define

L(M,z) = {c% | %0 € L(M) and z C ¢°}.

Note that L(M, L) = L(M).

The following proposition follows trivially from the definition of trajectories:

Proposition 1 If 0 = 0%lo?... € L(M) then olo?... € L(M). In other words, the set L(M)
is suffiz-closed, i.e. every suffiz of every trajectory in L(M) is also in L(M).

10

Figure 4: L(M°C) for a unit delay inverter.

Another way of stating Proposition 1 is to say that we assume that every state in § is a possible
initial state of the system.

In Fig. 4 we illustrate the set of all trajectories (L(MC)) for the unit delay inverter described
earlier. In this figure, the set of labels encountered while traversing any infinite path in the graph
denotes a trajectory. Before discussing this graph further, recall that the T state is used to represent
overconstrained states. In a matter of speaking, we consider that in is both 0 and 1 at the same
time in the state T. A similar remark holds for out. In view of this interpretation, we can draw
several conclusions from the graph. For example, we can see that for every trajectory c%c! ... such
that in is 1 in 0" we have that out is 0 in o'. The same statement holds with 0 replaced by 1 and
1 replaced by 0. At its core, our verification methodology establishes properties such as these for a
given model structure. More specifically, in the next section we define a small logic that allows us to
state properties like the ones above in a concise and unambiguous way. We then define an efficient
way of determining whether the formulas in the logic are valid for a particular model structure.
One main contribution of the paper is the development of a checking algorithm that only needs to
explore a tiny fraction of the complete state graph as opposed to how it is shown in Fig. 4.

4 Specification Language

The basic specification language we use is very simple. In fact, at a first glance it might appear
as if it can only be used to specify rather trivial behaviors. However, this is a bit of an illusion.
In particular, we will later in the paper extend the model structure to a symbolic domain and give
several examples of how non-trivial behaviors can be specified in this language. By keeping the
language simple, we gain some very important properties. The most important is that there is a
unique weakest trajectory that satisfies a formula. By focusing initially on the scalar version, we
avoid the added complexity of the symbolic case while building a foundation upon which this more
general formulation can be based.

11

Assume (S, C) is a lattice with universal lower bound L. Let P denote a set of simple predicates
over §. A trajectory formula is defined recursively as:

1. Simple predicates: p is a trajectory formula if p € P.
2. Conjunction: (F; A F3) is a trajectory formula if F} and F; are trajectory formulas.

3. Domain restriction: (e — F') is a trajectory formula if F' is a trajectory formula and e is
either 0 or 1.

4. Next time: (NF) is a trajectory formula if F' is a trajectory formula.

A trajectory formula is said to be instantaneous if it contains no next-time operators. Such a
formula expresses system properties at only a single point in time. For convenience, we often
drop parentheses when the intended precedence is clear. The domain restriction appears at first
somewhat strange. Its usefulness will not become apparent until later when we extend the trajectory
formulas to a symbolic domain. Observe also that our language does not include either disjunction
or negation operations. The motivation and implications of this restriction will be discussed later.

The set of simple predicates is arbitrary. However, for convenience, we will always assume that
the predicate pg(s) = true is in P. Observe that pg is indeed a simple predicate with defining value
1.

In switch-level verification the natural simple predicates are of the following form:

1. (n;is 0) where n; € N, and
2. (n; is 1) where n; € V.

In other words, our simple predicates ask whether a node in the circuit is known to be 0 or 1. It
is easy to see that (n; is 0) and (n; is 1) are indeed simple with defining values

(X,...,X,0,X,...,X

and

(X,..., X, 1,X,...,X),

where the 0 (1) is in position 7. The only somewhat strange property of these predicates is that
they are both true in the (artificially introduced) T state. We ask the reader to simply accept this
for the time being. We will discuss the ramifications of this later. For our example circuit of Fig. 2
we will use the five simple predicates: frue, in is 0, in is 1, out is 0, and out is 1 with defining
values (XX), (0X), (1X), (X0), and (X1) respectively.

A trajectory formula describes constraints on some prefix of a trajectory. In order to refer to
the length of this prefix, we introduce the concept of “depth” for trajectory formulas. The depth
of a formula F', written d(F), is defined recursively.

1. d(p) = 1if p € P is a simple predicate.
2. d(Fy A Fy) = max(d(Fy), d(Fy)).

3. d(e —» F) = d(F).

4. d(NF) = 1+ d(F).

12

The depth of a formula is simply the maximum number of nested next time operators plus one.
As a notational convenience, we define for any trajectory formula F

| FA Nd(F)(F[i_l]) otherwise,

where N*F denotes (N(N(...(F)...))) with k next-time operators. This notation allows us to
express a condition that repeats over time. For example, the formula (in is 0)[3] states that node
in stays at 0 for 3 consecutive time units. This is more concise than writing out the formula as

(inis 0) AN(inis 0) AN(N(inis 0)).

For our example circuit of Fig. 2 we can thus write trajectory formulas like:
(inis 0) A N(out is 1)

and
(0— ((inis 0) AN(out is 1))) A (1 — ((inis 1) A N(out is 0))).

The truth semantics of a trajectory formula is defined relative to a model structure and a
trajectory. In particular, given a model structure M and a trajectory o, the truth of a trajectory
formula F, written o |=,, F, is defined recursively. In the following, assume that both ¢ and o%
are members of L(M).

1. 6% k=, p iff p(c?) = true.

2.0, (FiANE)iff o=, Fi and 0 |5, F)

w

(a) o=, 1= F)iff o=, F
(b) o =, (0 — F) holds for every o.

4. 0% |, NFiff 6 =, F.

For example, given the trajectory o = (00)(01)(XX)(XX) ... for the circuit shown in Fig. 2, it
is easy to verify that o }=,, (inis 0) A N(inis 0), but that

o, (0= ((inis 0) A N(out is 1))) A (1 = ((inis 1) A N(out is 0))).

5 Properties of Trajectory Formulas

We can extend the definition of simplicity from predicates to formulas in the obvious way, i.e., given
a model structure M, a formula F is said to be simple iff there is a defining trajectory @ € L(M)
such that ¢ =, F' iff 3C 0. In this section we first show that trajectory formulas are simple.
We then show how the defining sequence can be constructed. The construction is direct and very
efficient. As a result, if the main verification task can be phrased in terms of “for every trajectory
o that satisfies the trajectory formula A, verify that the trajectory also satisfies the formula C”, it
becomes obvious how the verification can be carried out: compute the defining trajectory for the
formula A and check that the formula C' holds for this trajectory.

Before we can continue, we need a monotonicity result for trajectory formulas. The following
lemma states that if a trajectory formula holds for some trajectory o, then it also holds for every
trajectory 7 such that o C 7.

13

Lemma 1 Ifo,7 € L(M) and 0 C 7 then
o F = 1t F

Proof: We prove the claim by induction on the formula structure. For the basis case, if ¥ = p, for
some simple predicate p € P with defining value P, then if 0 = 6% and o |=,, F it follows from the
truth semantics of F that p(c®) = true. By the definition of a simple predicate it thus follows that
pC ol If 7 = 797 it follows from the fact that o C 7 that pC o° C 7°. Hence, we can conclude
that 7°7 |=,, F.

If ¥ = (Fy AFy) then o |=,, F implies that ¢ |=,, Fi and ¢ |=,, F5. Assuming inductively
that the claim holds for the formulas Fy and Fy, it follows that 7 |=,, Fy and that 7 |=,, F,. This,
together with the truth semantics for F, imply that 7 |=,, F.

If F=(1— Fy) and o |5, F then, by the truth semantics, it follows that o |=,, F;. Assuming
inductively that the claim holds for Fi, i.e., that 7 |=,, F, it follows directly that 7 |=,, . On
the other hand, if /' = (0 — F}) then the claim follows trivially since (0 — F;) holds for every
trajectory in L(M).

Finally, if # = NF; then, by the truth semantics, 0% |=,, F implies that ¢ |=,, F1. Assuming
inductively that the claim holds for F}, i.e., that 7 |=,, Fy, it follows immediately that 77 =, F. O

Before stating our next result, it is convenient to introduce an infix “choice” function mapping

{0,1} x 8§¥ to §¥ and which is defined as:

) ife=1
78 =
€70 { 11 ... otherwise

We now show that given a trajectory formula F' we can construct its defining sequence dr. This
sequence is the weakest possible in the sense that o |=,, F iff § C 0. Note that dz is not necessarily
a trajectory. We define §p recursively as follows:

1. 6, =pLL...if p€ P is asimple predicate with defining value p.
2. dp ap, = lub(bp,, 0r,).

3. by = €70p.

4. dnNp =Lop.

For the particular case of switch-level verification and the model structure M, consider the
trajectory formula: F' = (inis 0) A N(inis 0). It is straightforward to see that

diniso = (0X) (XX) (XX) ...
5N(in is 0) = (XX) (0X) (XX) (XX) ...
5(in is0)aN(iniso) — (0X) (0X) (XX) (XX) ...

Note that dz is not a trajectory as can be seen from Fig. 4. However, it is clearly smaller than several
trajectories. For example, ép C (0X) (01) (X1) (XX) ...and ép C (0X) (01) (01) (X1) (XX)...
Our prohibition of disjunction and negation is partially justified by our desire to have a unique
weakest sequence for each formula. For example, we can find a sequence weaker than any other
sequence satisfying the formula /' = (inis 0) V N(in is 0) by taking the greatest lower bound of
the sequences for (in is 0) and N(in is 0). This would yield the sequence (XX) (XX) (XX) ...

Unfortunately, this sequence does not itself satisfy F, and hence the verifier would yield overly

14

pessimistic results. One can also see that there is no unique weakest sequence satisfying the
formula —(in is 0). More typically, the user really wants to use the formula (inis 1), in any case,
and hence this restriction is not as serious as it may initially seem.

In general, we have the following result.

Lemma 2 For any trajectory formula F let §p be constructed as above. Then for every o € L(M)
okl < érCo

Proof: Assume that ¢ € L(M), o |=,, F, and that ¢ = 0%5. We first prove that 6z C o by
induction on the formula structure.

For the basis, if I/ = p, for some simple predicate p € P with defining value p, then, by
definition, 0% k=, , F implies that p C o°. Since 6p =p LL ... C 0% = o, the basis holds. Thus
assume inductively that the claim holds for formulas F; and F5.

If ¥ = (Fi AFy) then 0 =, F implies that o |=,, I} and ¢ |=,, F5. By the induction hypothesis
it thus follows that 6z, C o and that ép, C 0. Hence, o is an upper bound on both ér and éf,.
Consequently, o is also an upper bound on lub(ép,,df,), i.e., §p = lub(dp,,0r,) C o, and the claim
follows.

If ¥ = (1 = F) then o |=,, F implies that ¢ |=,, F1, and thus, by the inductive assumption,
that éF, C 0. However, by definition, ép = dp, and the result follows. On the other hand, if
F =(0— F) then §p =L ... and the result follows trivially.

Finally, if # = NF; then 0°5 |,, F implies that & =,, F1. By Proposition 1 it follows that
& € L(M). Therefore, by the induction hypothesis, it follows that §p, C &. Since dp =1 6p, C 06
the result follows, and the induction step goes through.

Conversely, we now show that if ¢ = ¢% is a trajectory in L(M) and dp C o, then o |, F.
Again, we show this by induction on the structure of F.

For the basis, if ¥ = p, for some simple predicate p € P with defining value p, then, by

definition, g = p LL Since, by assumption, §p C 0% it follows that pC ¢° and thus that
o =, I’ and the basis holds. Hence, assume inductively that d, C o and dp, C o implies o |=,, F}
and o =, F.

If F = (Fy A F3) then ép = lub(ép,,0F,). This together with the assumption §x C ¢ and the
definition of lub imply that 6z, C o and that dg, C o. Hence, by the induction hypothesis, o |=,, F}
and o |=,, F,. By the truth semantics it thus follows that o |=,, F.

If ¥ =(1— F) then 6p = 0p,. Since, by assumption, ér C o it follows that dz C 0. Hence,
by the induction hypothesis, it follows that ¢ |=,, F1. Together with the truth semantics we can
conclude that o |=,, F. On the other hand, if # = (0 — F) then then the result holds trivially
since ¢ |=,, F holds for every o € L(M).

Finally, if F = NF; then g =1 dp,. Since, by assumption, §p C o = ¢% it thus follows
that 7 C & and thus, by the induction hypothesis, that & |=,, . Consequently, by the truth
semantics, we can conclude that o =,, ' and the induction goes through and the claim follows. O

From the above lemma we know that any trajectory satisfying F must be greater than or equal
to its defining sequence dp. Thus computing dz and then determining if a trajectory is greater than
or equal to ér allows us to quickly test whether the trajectory satisfies the formula . However, ép
is not necessarily itself a trajectory. In the following we will show how to combine the constraints
on a state sequence implied by §F with those imposed by the system’s excitation function to give
a trajectory. In fact, we will show that the obtained trajectory is the weakest possible trajectory
satisfying F.

15

It turns out that a slightly more general concept than a defining trajectory is often useful.
Thus, assume §p = 6%6% . .. is the defining sequence for a formula F. Define 75 (2) = 73(2)74(2) . . .
inductively as follows:

i(2) = lub(8y, 2) ifi=0
TF\® lub(8%, Y (1571 (2))) otherwise

To illustrate the above construction, let us return to the trajectory formula
F = (inis 0) AN(inis 0)

with defining sequence dp = (0X) (0X) (XX) (XX) Assume we would like to compute 7p(L) =
7r(XX). From the construction above, it follows immediately that

0

Th(L) = b(sk,Y(0X)) = lub(0X, X1) = 01

TH(L) = lb(6%,Y(01)) = lub(XX, X1) = X1

(L) = b(63, Y (X1)) = lub(XX, XX) = XX
Th(l) = XX fori>4

and thus that (L) = (0X) (01) (X1) (XX) (XX) Note that from Fig. 4 we can immediately
see that (L) is a trajectory. It is more difficult to verify, but from Fig. 4 and the truth semantics
of F, it can be seen that 77(L) is the weakest trajectory that satisfies F' and that every other
trajectory that satisfies /' is greater than 7x(L). This is in fact no coincidence as we now show.

Before we establish the main properties of 7 (z), the following monotonicity property will be
needed.

Lemma 3 If sCt then 7p(s) C 7r(t), for any trajectory formula F.
Proof: We prove that 7i.(s) C 7i.(#) by induction on i. For the base case we have that
7o (s) = lub(s, 6%) T lub(t, 6%) = 7(s)

by the monotonicity of lub. Assume now inductively that 7 (s) C 74 (t) for some i > 0. It follows

from the definition of T}"H(z), the induction hypothesis, and the monotonicity of lub and Y that
T (s) = Wwb(84 Y (15(s))) C lub(8F, Y (7h())) = 7 (1) and the claim follows. O

The second key lemma of this section states that there is a defining trajectory for every trajec-
tory formula F' and start condition z. More formally:

Lemma 4 Assume 7p(z) is defined as above, then:
1. 1p(2) € L(M, 2),
2. r(2) By F, and

3. for every o € L(M, z)
o=, F < 1r(2)Co

Proof: In order to prove that 77(z) € L(M,2) it is sufficient to show that 2 C 7(2) and that
Y (1571 (2)) € 74 (2) for i > 1. Since 79(2) = lub(z, §%), we can immediately conclude that z C 72(z).
On the other hand, by the definition of [ub it follows that for ¢ > 1,

Y (757 (2)) C lub(8j, Y (75 ().

16

However 74(z) = lub(8%, Y (15 1(2))), and thus Y (75 1(2)) C 76 (2) for i > 1. Altogether, 7x(z) €
L(M, z).
By the definition of lub it also follows that

8 T lub(85, Y (157 1(2))) = mh(2) for i > 1.

Hence, 8p C 7p(z). This, together with the fact that 7p(2) € L(M,z) C L(M), means that
Lemma 2 apply. Thus, 7¢(2) =, F.

Now assume o € L(M, z). Since 7¢(z2) is a trajectory and 7p(z) |=,, /' we can apply Lemma 1.
Hence, if 77(2) C o then o |=,, F.

Finally, we establish the converse by showing that for any ¢ € L(M,z), 7#(z) Co. Thus,
assume o = 0%l ... is a trajectory, z C ¢", and that o |=,, . We prove by induction on i that
Th(2) C o',

Since o = 0% is a trajectory, Lemma 2 applies. Consequently, 0’6 |=,, F’ implies that dp =
§%.61.... C 0% = o. Furthermore, since ¢ = 0% € L(M, z) it follows that z C ¢°. In other words,
0 is an upper bound for both z and 6% and thus lub(z, %) C ¢°. However, since 7(z) = lub(z, 6%)
it follows directly that 72(z) C o and the basis case holds.

Now assume inductively that Tfp(z) C o' for some i > 0. Since o is a trajectory, it follows
that Y (o!) C o't!. Also, by Lemma 2 we know that 6 C o and thus that 5}'5"1 C ottt To-
gether, these facts imply that ¢t is an upper bound to both YY(Ui) and 5?1. Consequently,
lub((S?l,Y(Ui)) C o't!. However, by the induction hypothesis, 7&(z) C of. Hence, by the mono-
tonicity of Y and lub, it follows that

0

T%—I_I(Z) = lub((s%‘"l, Y(T};(z))) C lub(csjp‘"l, Y(cri)) Co't!

and the induction step goes through and the lemma follows. H
Another way of stating this lemma is that every trajectory formula F is simple with defining
trajectory 7p(L).

The above lemmas give a simple method for computing the defining trajectory and the defining
sequence for a trajectory formula. Unfortunately, there is a practical difficulty, since both the
defining trajectory and the defining sequence are theoretically infinite sequences. The following
technical lemma will be useful later to show that only a finite prefix of the defining trajectories and
sequences are needed.

Lemma 5 Let F be a trajectory formula and let 5p = 6%}, ... be the defining sequence for formula
F. Then & = L fori> d(F).

Proof: We prove the claim by induction on the formula structure. For the basis, if F' = p, for some
simple predicate p with defining value p, then 6y =P LL Since, d(p) = 1, it follows directly
that 6% =1 for i > d(F) and the basis holds.

Assume inductively that 5}'71 =1 fori > d(F}y) and that 5}'72 =1 for i > d(F}) for some trajectory
formulas Fy and Fy. If F = Fy A F, then d(F) = max(d(F),d(F,)). Consider any 7 > d(F'). Since
d(F) > d(F1) and d(F) > d(F3) it follows from the induction hypothesis that 8; =1 and that
8j, =L. Furthermore, since ép = lub(dp,, dp,) we can conclude that & =1.

If ¥ = e — I7 then there are two cases to consider. If e = 0 then dp =1L ... and the claim
follows trivially. On the other hand, if e = 1 then dF = 65,. By the induction hypothesis, 5}51 =1
for every ¢ > d(Fy). Since, d(F) = d(F}), we can conclude that 6, =L for every ¢ > d(F).

Finally, if F = NF; then ép =L 8§, . By the induction hypothesis, 5}';1 =1 for every ¢ > d(Fy).
Consequently, 8%, =L for every ¢ > d(Fy)+ 1. However, d(F) = 1+d(F}) and thus 6}, =L for every

17

i > d(F). 0

From this result we immediately get the following corollary.

Corollary 1 Assume A and C are two trajectory formulas. Let T4 = 797} ... be the defining
tragectory for formula A and let 6c = 626L ... be the defining sequence for formula C. Then

bc Cta iff 5égrilfor0§i<d(C)

6 Verification Methodology

Our specification language describes a property of the system M as a “trajectory assertion”. Again,
we have chosen a quite limited language in order to gain efficiency. We have three types of con-
structs: simple assertions, sequences, and iterations. Simple assertions are of the form “if the
system ever goes through a sequence of states satisfying trajectory formula A, then the sequence
of states better also satisfy the trajectory formula C”. Sequences of assertions allow representing
system behaviors that shift from one “mode” to another. For example, it is convenient to use in
describing the desired behavior during each clock cycle for a microprocessor during the execution
of a multi-cycle instruction. Finally, a simple assertion can also be iterated an arbitrary number of
times. This construct is primarily useful for, automatically, establishing and proving invariants of
the system. For example, a typical use of the iteration construct is when specifying the possibility
of an arbitrary number of wait-states in a microprocessor. More specifically, we may want to verify
that the processor works correctly no matter how many wait-states the external memory interface
imposes. This could be accomplished by describing the constraints on the inputs during “wait
cycles” and iterate this simple assertion an arbitrary number of times.
More formally, a trajectory assertion is defined recursively as:

1. Simple assertions: [A = ('], where A and C are trajectory formulas and d(A) = d(C').

2. Sequences: [A = (;G4, where A and C are trajectory formulas, d(A) = d(C), and G is
a trajectory assertion.

3. Iterations: [A = C|";G}, where A and C are trajectory formulas, d(A) = d(C), and G
is a trajectory assertion.

A trajectory assertion that does not contain any iteration, is said to be iteration-free.

The definition of a trajectory assertion is somewhat restrictive. For example, it does not allow
a trajectory assertion to end with an iteration. The reason for this restriction is to simplify the
definition of the truth semantics of trajectory assertions. In practice, it turns out not to be a serious
restriction since one can always append [true = true] to an assertion that otherwise would end
with an iteration.

To illustrate trajectory assertions, consider first our inverter circuit of Fig. 2. The following
two assertions can constitute our specification of a unit-delay inverter:

[inis 0 A Nirue = Nout is 1]

and
[in is 1 A Ntrue = Nout is 0].

Note that the Nirue parts in the antecedents are simply there in order to make the depth of
the antecedent equal the depth of the consequent. In a practical system, these “filler” functions

18

would be added automatically by the verification system and thus would not have to be expressed
explicitly. However, in order to simplify the presentation of the general theory we have opted to
require the depth of the antecedent to be equal to the depth of the consequent.

Figure 5: Switch-level latch.

Our next example shows the use of the sequence construct. Consider the switch-level circuit
shown in Fig. 5. Intuitively, n; is the input to a latch, ng is the clock signal, ny is the electrical
node that stores the state when the clock is low, and ns is the output of the output buffer. If the
state of the circuit currently is ¢ € 77, a typical switch-level analysis of the circuit would derive
the excitation functions:

n() =X)=t yst) =X ya(t) =titsa+t3ly +1lsts ys(t) =14

where all operators are assumed to be ternary. That is, nodes ny and ns, being input nodes, have
excitation X. Nodes ny and ns are the outputs of simple inverters. Depending on the control signal
on nz, node ny will either retain its stored charge (t3 = 0), or get the value from the first inverter
(ts = 1). If t3 = X, node n4 will have a binary excitation only if the inverter output matches
the value already on the node, and value X otherwise. Such excitation functions can be derived
automatically from the transistor representation of the circuit by symbolic circuit analysis [8].

Since the latch is a sequential circuit and the clock signal changes the behavior quite drastically,
it is natural to specify the desired behavior as a sequence of sub-behaviors—one for each clock phase.
For example, the following assertion expresses the desired behavior of the circuit when each clock
phase has a duration of two time units:

Gi = {((nl is 1) A (ng is 1))[2] — truem} : {(ng is O)[z] = (ns is 1)[2]} .

Recall that FI?l = F A NF for an instantaneous trajectory formula F.

The above assertion only verifies the circuit behavior for one particular clock timing. In general,
the desired behavior of a latch can be expressed informally as: “given that the clock cycle is longer
than some minimum time, the circuit can load an input when the clock is high and retain it when
the clock goes low”. The iteration construct can be used to formulate such a specification, yielding
the assertion:

Gy = [((nl is 1) A (ng is 1))[2] == true[Q]} i[(nyis 1) A (ng is 1) = true]”;
[(n3 is 0) = (n5 is 1)]"; [true = true].

19

Intuitively, we are here stating that if the clock is high and the input is 1 for at least two time units
and then the clock goes low, the output will remain 1. Note that any circuit passing G5 will pass
G'1, but the opposite does not necessarily hold.

The example above illustrates our motivation for introducing the iteration construct. It allows
the verification of systems that are characterized by periods of activity interspersed by periods in
which the circuit is waiting for some external event before continuing. With a single trajectory
evaluation we can verify correct circuit behavior for all possible durations of these idle periods.
In the above example, the external events correspond to transitions of the clock, with the circuit
remaining in a stable state until the clock changes. The antecedent of the iteration construct is an
instantaneous formula specifying inputs that will be held fixed for the remainder of the clock phase,
while the consequent specifies state values that should remain stable as long as the clock and inputs
are held fixed. In other cases the iteration construct includes temporal operators indicating some
periodic behavior of the system, such the cycling of clocks while a processor is in a wait state. Note
that this construct should not be confused with the operators of temporal logic denoting “eventual”
behavior, such as the F or U operators of CTL [16]. We require the consequent of the iteration
construct to hold for any number of repetitions (including 0) as long as the antecendent is satisfied.

Before we define the truth semantics of a trajectory assertion we need to introduce a function
that removes some of the first elements in a sequence. Let the suffiz of a sequence ¢ be defined
recursively as follows:

o9 ifn=20

R AN
suffiz(n,0°6) = { suffiz(n — 1,6) otherwise.

Intuitively, the suffix function applied to some sequence removes the first n elements in the sequence.

The truth semantics of a trajectory assertion is defined relative to a model structure and a set
of trajectories in this model structure. In particular, given a model structure M and a set L of
trajectories, the truth of a trajectory assertion &, written L |=,, G, is defined recursively as follows:

1. L=, [A= C] holds iff 6 |=,, A implies ¢ |=,,C for all o € L.
2. L=, [A= C];Gy holds iff L |=,,[A = C] and L |=,, Gy, where

L ={6|6 = suffix(d(A),0), 0 € L and ¢ |=,, A}.

3. L, [A= C]";G; holds iff L |=,, G and Vi > 1. L |=,, [AM = C[ﬂ (G,

Since we often require a trajectory assertion to hold for all possible trajectories, we use the
shorthand |=,, G to denote L(M) |=,, G.

Returning to our examples of trajectory assertions above, we can easily see from Fig. 4 that
L(ME) £, [inis 0 A Nirue = Nout is 1],

and that
L(ME) £, [inis 1 A Nirue = Nout is 0].

What we will show in this section is how to determine the validity of a trajectory assertion without
having to compute the complete state space as was done in Fig. 4.
The following, rather technical, lemma will be useful later.

Lemma 6 Given a model siructure M, an initial slale z € S, and a trajectory formula F with
defining trajectory T2(2)7(2) ..., let L = {¢ | 6 = suffiz(d(F),0), 0 € L(M,2) and o =,, F}.
Then L = L(M, Tgv(F)(Z)).

20

Proof: Assume first that & € L. This implies that there is a ¢ € L(M, 2) such that o =, F and
6 = suffiz(d(F),o). Since ¢ = suffiz(d(F),o) and 0 € L(M,z) C L(M) we can conclude from

Proposition 1 that 6 € L(M). Hence, in order to prove that 6 € L(M,Tg(F)(Z)) it suffices to

show that T]i(F)(z) C¢Y. By Lemma 4 we know that 7p(2) Co iff 0 |5, F for all 0 € L(M, z). In

particular, T;lv(F)(Z) C o) = 59 and the claim follows.

Conversely, assume & € L(M, Tgv(F)(Z)). Define 0 = 0% ... as follows:

ai:{ Th(z) if i< d(F)

7=4F) otherwise

Clearly suffiz(d(F), o) = ¢. If we now can show that ¢ € L(M, z) and that o |=,, F' it would follow
that & € L and the claim of the lemma would be established.

In order to prove that ¢ € L(M,z) we must establish that z C ¢° and that Y (¢') C o'*? for
i > 0. To show the former, note that, by definition, d(F) > 0 and thus 0® = 72(2) = lub(z, %)
and therefore 2 C ¢%. In order to prove the latter we need to consider three cases. If 0 < ¢ <
d(F) — 2, then o't! = 7i¥1(2) = wb(3:F',Y (0%)) and thus Y (o) Co'*'. On the other hand,
if i > d(F) then o't! = 5+1=4F) and ¢° = 4. Since ¢ € L(M,Tgv(F)(Z)) C L(M) it
follows that Y (o%) = Y (6°4F) C git1-4F) = i+, Finally, since & € L(M,Tg(F)(Z)) it follows
that T;E(F)(Z) C 6% = ¢¥¥). This, together with the fact that T;E(F)(Z) = lub((;;(F), Y(Tg(F)_l(z))),
implies that Y (%)) = Y(T;i(F)_l(z)) C Tg(F)(z) C o). Altogether, Y (o/) C o**! for i > 0
and thus o € L(M, z).

By Lemma 4 we know that 77(z) ,, F. If we can prove that 7#(z) C o then, by Lemma 1,
it would follow that ¢ |=,, F. We prove that 7i.(2) C o* for ¢ > 0 by induction on i. For the
basis, 0® = 79(z) and the claim holds trivially. Now assume inductively that the claim holds for
some ¢ — 1 > 0 and consider 7. There are three cases to consider. If 0 < ¢ < d(F) — 1 then
o' = 15(2) and the claim follows trivially. On the other hand, if i = d(F) then o?) = &°.
Since ¢ € L(M, T;i(F)(z)) it follows that Tg(F)(Z) C 6% and the claim follows. Finally, if ¢ > d(F)
then 7h.(z) = lub(8,, Y (ri!)). However, by Lemma 5, §% = L for i > d(F). Consequently,
Th(2) = Y(ri7!). Since we already has established that ¢ € L(M,z) C L(M) it follows that
Y(Ui_l) C o'. This, together with the induction hypothesis and the monotonicity of Y, implies
that 75(2) = Y (157) CY (0°"1) C o®. In all cases the induction step goes through and the claim
follows. a

From the above lemma and the definition of L(M, z) the following proposition follows directly.

Proposition 2 Given a model structure M, an initial state z, and a trajectory assertion G, the
validity of L(M, z) =,,G can be computed recursively as follows:

1. LM, z) £,,[A = C] holds iff 0 =,, A implies 0 =,,C for all 0 € L(M, z).
2. L(M, 2) |5, [A = C];Gy holds iff L(M, z) =, [A = C] and LM, Y (2)) k=, G
3. LM, 2) B, [A = C1" ;G4 holds iff L(M, z) E,,G1 and for all i > 1:

LM, 2) |, [A =]Gy
In view of the properties of defining sequences and trajectories derived in the previous section,

our main verification method is captured in the following “satisfaction” predicate for trajectory
assertions. The predicate is defined recursively as:

21

1. SAT(z, [A = C]) iff 6¢ T 74(2).
2. SAT(z, [A => C];Gy) iff SAT(z, [A = C]) and SAT(r1Y)(z), G).
3. SAT(z, [A = C]";Gy) iff SAT(z, G1) and SAT(z, [A = (1), where

5= Gfp €. glb(z, 74 (€)).

The greatest fixed-point above is well defined and can be computed iteratively since the domain §
is a finite lattice and glb(z, Ti(A) (€)) is monotone in &.
Again returning to our inverter example, we will illustrate the computation of

SAT(L, [(inis 0) A Ntrue = N(out is 1)]).
First, from Section 5 we get that

5N(out is 1) = (XX) (X1) (XX) (XX) .
and that
T(inis O)ANtrue(J-) = (0X) (X1) (XX)
Consequently, we have 5N(out is 1) C Tlinis O)ANtrue(J‘) and, from the definition of C and SAT,
that SAT(L, [(inis 0) A Ntrue = N(out is 1)]) holds.
To illustrate the computation of SAT for a more complex trajectory assertion, consider again
the circuit shown in Fig. 5 and the assertion

Gi = {((nl is 1) A (ng is 1))[2] — truem} : {(ng is O)[z] = (ns is 1)[2]} .

For convenience, let A; = ((ny is 1) A (ng is 1))8, C; = trueld, Ay = (ng is 0)12, and C, =
(ns is 1)[2]. Note that d(A41) = d(Cy) = 2 and d(A3) = d(C3) = 2. In order to compute SAT(L, Gy),
we first compute 74, (L) = 74, ((XXXXX)). From the definition of defining sequence, we get that

54, = (1X1XX)(1X1XX)(XXXXX)(XXXXX) ...

and thus
4, ((XXXXX)) = lub(5, ,(XXXXX>) (1X1XX)
74, (XXXXX)) = lub(@1 Y ((1X1XX))) = lub((1X1XX), (X0X0X)) = (1010X)
rjl(<XXXXX>):lub(5§1, "((1010X))) = lub({XXXXX), (X0X01)) = (X0X01)
75, (XXXXX)) = lub(6 , Y ((X0X01))) = lub((XXXXX), (XXXX1)) = (XXXXI)
74, (XXXXX)) = lub(&} , Y ((XXXX1))) = lub((XXXXX), (XXXXX)) = (XXXXX)
74, (XXXXX)) = (XXXXX) fori> 5.

In particular, TA(A)(1) = (X0X01). Also, since C = truel?l, and thus 6o, = L1 ..., it follows that
dc, E 74,(L) and therefore that SAT(L, [A; = C4]) holds. Similarly, we get

84, = (XXOXX)(XXOXX)(XXXXX)(XXXXX) ...

Since, le(lAl)(J_) = (X0X01), we get that 74, (Ti(lAl)(J_)) = T4, ((X0X01)) equals
T4, ((X0X01)) = lub(8), ,<XOX01>) (X0001)
71, ((X0X01)) = lub(8} , Y ((X0001))) = lub({XX0XX), (XXX01)) = (XX001)
74, (X0X01)) = lu b((SZlQ,Y(<XX001>)) lub({XXXXX), (XXX01)) = (XXX01)
73, ((X0X01)) = lub(85,, Y ((XXX01))) = lub((XXXXX), (XXXX1)) = (XXXX1)
74, ((X0X01)) = lub(d%, Y ((XXXX1))) = lub((XXXXX), (XXXXX)) = (XXXXX)
7, ((X0X01)) = <XXXXX> for i > 5.

22

Since

60, = (XXXX1)(XXXX1)(XXXXX)(XXXXX)...
it follows immediately that SAT((X0X01), [A; = C]) holds. Altogether, we have that

SAT(L, [A1 = C1];[As = C3)).

Finally, we illustrate the computation of SAT for an assertion containing an iteration by com-

puting SAT(L, G3), where

Gy = [((nl is 1) A (ng is 1))[2] = true[Q]} i[(n1is 1) A (ng is 1) = true]”;
[(n3 is 0) = (n5 is 1)]"; [true = true].

Again for convenience, let A; = ((nyis 1) A (ng is 1)), C} = truel; Ay = ((ny is 1) A (ng is 1)),
Cy = true, A3 = (n31s0), and C3 = (ns is 1). As above, we get that SAT(L, [A; = C4]) holds
and that TA(IAl)() = (X0X01). We now must compute the greatest fixed point value to represent

the set of all reachable states after some iterations matching As, i.e., we need to compute

Gfp €. glb((X0X01), 734 (€)).

We do this by iterating starting from T. Note that Y (T) = T and thus 7% (T) = T for all trajectory
formulas A and ¢ > 1. Thus:

€ =T
€ = gIb({X0X01), 75" (€9)) = glb((X0X01), 742 (T)) = (X0X01)
€2 = glb((XOXOD,TiEA)(fl))

= glb((X0X01), 73" ((X0X01)))

= glb({X0X01), (X0X01)) = (X0X01)

and thus 2 = Gfp &. glb((X0X01), T (AQ)(f)) = (X0X01). Since Cy = true, and thus §¢c, = L 1.
follows immediately that SAT(z, [Ag — (]). These computations indicate that the Clrcult was
already in the stable state (X0X01) after the first 2 unit steps and will remain in this state as long
as ny and ns are held at 1.

In a similar fashion, we now compute the fixed point for the set of reachable states after some
iterations of Az. In other words, we compute

Gfp €. glb({X0X01), 7§49 (€)).

Here we get:

X' =T

X' o= glb((X0X01), 754 (x0)) = gib((X0X01), 754 (T))
— glb((X0X01), T) = (X0X01)

X2 = glb((X0X01), 744 (x1)) = glb((X0X01), 744 ((X0X01)))
= glb({X0X01), (XX 01>) (XXX01)

X2 = glb((X0X01), 744) (y2)) = glb((X0X01), TA 49 ((XXX01)))
= glb({X0X01), (XXX01>) (XXX01)

and thus @ = Gfp £. ¢lb((X0X01), legA“o’)(f)) = (XXX01). This computation shows that as long as
clock signal nz is held low, node n4 will retain its stored value of 0, and ns will remain at 1.

23

It is easy to verify that
Ta, (W) = (XX001)(XXX01)(XXXX1)(XXXXX)(XXXXX)...

Since d¢, = (XXXX1) L1 ... it thus follows that SAT(w, [A3 = C}]). Finally, it follows trivially
that SAT(w, [true => true]). Altogether, we can conclude that SAT(L, G3) holds.

We now return to the general theory by characterizing the satisfaction function. First we
establish the following monotonicity property.

Proposition 3 Given a trajectory assertion G, if sC t and SAT(s, G) then SAT(t, G).

Proof: We prove the claim by induction on the structure of G. For the basis, G = [A = (],
we have that SAT(s, [A = C]) implies that ¢ C 74(s). However, by Lemma 3, it follows that
74(s) C 74(t) and thus §¢c C 74(t), which implies that SAT(t, [A = (). Now assume inductively
that the claim holds for s, ¢ and trajectory assertions [A = C and Gy. If G = [A = C]; G then
SAT(s, G) implies that SAT(s, [A = C1]) and SAT(Ti(A)(S), G1). By the induction hypothesis it
follows that SAT(t, [A = (). Furthermore, by Lemma 3 it follows that le(A)(s) C Ti(A) (¢). This,

together with the induction hypothesis, implies that SAT(Ti(A)(t), (1) and the claim follows. Fi-
nally, if G = [A = C["; G} then SAT(s, G) implies that SAT(s, [A = C]) and SAT(s, G;) for
5 = Gfp €. glb(s,Ti(A)(g)). It follows directly from the definition of greatest fixed point that
Gfp €. glb(s, Ti(A) (&) C Gfp €. glb(t, le(A) (€)) = {. Hence, by the induction hypothesis it follows
that SAT(t, [A = () and SAT(t, G;) and therefore that SAT(t, 7) and the induction step goes
through and the claim follows. l

The following theorem constitutes one of the corner-stones in our verification methodology.

Theorem 1 If G is an ileration-free trajectory assertion then for every z € S we have
LM, 2) =G iff SAT(z, G).

Proof: We prove the claim by induction over the structure of G. For the basis case, G = [A = (],
we first show that if ¢ |=,, A implies that o |=,, C for every 0 € L(M,z) then §c C 74(2). To
establish this, let ¢ = 74(2). By Lemma 4 we know that 74(z) € L(M,z), and that 74(2) =,,
A. Hence, by assumption, 74(2) |=,, C. However, by Lemma 2 it follows that 74(2) =, C iff
dc C 74(2). Together, 6c C 14(2).

To prove the converse, assume 6 C 74(2). Consider an arbitrary o € L(M, z). There are two
cases to consider: If 74(z) Z o then by Lemma 4 it follows that o £ A, and the claim follows.
Hence, assume 74(z) C o. This, together with our assumption that d¢ C 74(z), implies that éc C o.
Since o0 € L(M, z), Lemma 2 applies, and thus o |=,, C.

Now assume inductively that for any z € S we have L(M, z) |=,, Gy iff SAT(z, G;) and that
LM, z) E,, [A= C]iff SAT(z, [A = (). If G = [A = (]; G} then, by the truth semantics of
G and Proposition 2, we have L(M, z) =, G iff L(M, 2) =,,[A = C] and L(M, le(A)(z)) Eu G-
Together with the induction hypothesis we get that L(M,z2) |=,, G iff SAT(z, [A = C]) and
SAT(T/dl(A)(z), G1). However, the latter holds iff SAT(z,). Consequently the induction step goes
through and the claim follows. H

Our next theorem is the second major result of this section and provides the basis for our
verification methodology. It shows that one direction of the claim made in Theorem 1 for iteration-
free formulas also holds for general formulas. However, our fixed-point method for verifying formulas
with iteration can cause overly pessimistic results, and therefore the other direction may not hold.

24

Theorem 2 Lel G be a trajectory assertion and let z € S. If SAT(z, G) then L(M, z) =, G

Proof: We prove the result by induction on the structure of G. For the basis, if G = {A[i] = C[i]},
for some ¢ > 1, the claim follows immediately from Theorem 1. Now assume inductively that for
any ¢z € §, SAT(z, {A[i] = C[i]}) implies that L(M,z) =, {A[i] = C[i]} for ¢ > 1 and that
SAT(z, Gy) implies that L(M, z) |=,,G1.

If G = [A = C];Gy then SAT(z, G) implies that SAT(z, [A = C]) and SAT(r2¥(z), G).
By the induction hypothesis this implies that L(M, z) =, [A = C] and L(M, Tj(A)() Eu G,
which together with Proposition 2 implies that L(M, z) =,, G

If G = [A = C]";G then, by Proposition 2, it follows that L(M,z2) E,, [A= CI";G; iff
L(M,z) =, Gy and for i > 1, L(M, 2) |, [A[i] = C[i]} and L(M, Aﬁl[])(z)) E. G1. Thus, in
order to establish the induction step and show that SAT(z, [A = C]";G) implies L(M,2) E,,
[A = C]"; G, it suffices to prove that:

1. SAT(z, [A = C1";Gy) implies L(M, 2) |=,, G1,

2. SAT(z, [A = C]";G,) implies L(M, z) E,, { = C[]} fori>1, and

3. SAT(z, [A = C]";G) implies L(M, Aﬁl[‘])(z)) =, G for o> 1.

Before we prove the three cases, the following observations are useful. First, note that, by the defini-
tion of SAT, we have that SAT(z, [A = C]"; Gy) implies that SAT(Z, G1) and SAT(z, [A = (),
where z = Gfp €. glb(z, Tj(A) (€)). Also, it is easy to verify that, by the definition of glb and the

[
definition of the fixed point equation, we have ZC z and 2 C TAE?)() for i > 1.

By Proposition 3 and the fact that z C z it follows that if SAT(2, G) then SAT(z, G;). This,
together with the induction hypothesis implies that L(M, z) =,, G and the first claim is estab-
lished.

To prove that L(M,2) =, { = C[]} for any 7 > 1, we first note that, by definition,
SAT(Z, [A = (1) holds iff ¢ C 74(2). We will now prove, by induction on i, that if §c C 74(2)
then 8.1 C 74(2). Given this result the second claim follows trivially from the definition of
SAT and the induction hypothesis. For the basis, ¢ = 1, note that Al = 4 and C = C.
Furthermore, since z2C z and thus, by Lemma 3, we can infer that if SAT(z, [A = (1) then
SAT(z, [A = C]). Altogether, we can conclude that é-nj C 74n1(2). Now assume inductively that
SAT(z, [A = C1]) implies dqp E 7411 (2) for some ¢ > 1 and consider ¢ 4+ 1. By the definition of
Scti+1) and Typi411(2) and the assumption that d(A) = d(C') we have 5C[Z+1] =06l and 7 A[e+1](z) =

A[]() for 0 < j < d(Al). Thus in order to show that Sty T 7441 (2) we only need to show
that suffiz(d(AY), §orn) T suffie(d(AY), 740410(2)). However, from the definition of d,p41 and

[2]
Tai+11(2) it follows that suffiz(d(Al), §op4n) = ¢ and suffie(d(A), 741411 (2)) = TA(TjEf]l)(z)).

As above z C TAE?M)(Z) and thus, by Lemma 3, it follows that:

SAT(Z, [A=> C)) implies SAT(r%1) (2), [4 = €)).

ne)(2)) and therefore dir1) C 741411 (2). Altogether, if SAT(Z, [A = ()
then §qpiy1) C 7441 (2) and the induction s[‘pep goes through and the claim follows.
Finally, since SAT(Z, G1) and 2 C Td(A)(2) for ¢ > 1, it follows directly from Lemma 3, that

‘ Al
SAT(A"

[]
In other words, é¢ C 74 (Td(A

T, (2), G1). This, together with the induction hypothesis implies that L (M, A[?H (2)) En

25

(1 and the third claim follows. a

The way we are representing sets of states during the fixed point calculation by the greatest
lower bound of the states in the set has some undesirable properties. In particular, if the lattice is
“too sparse”, so that a very general state must be used to represent a set of states, it is quite likely
that we will lose too much information and thus may find that SAT does not hold even though a
more accurate calculation would show that the trajectory assertion is valid. Of course, from the
above theorems we know that this can only happen if we have iterations in the trajectory assertion.

To illustrate the problem of too sparse lattices, assume we have a circuit that contains a “sticky”
2-bit wait-state counter that sequences through the states (00), (01), and (10), but no further, no
matter how many input pulses it receives. Suppose we want to check this counter by using an
iteration construct. If we first use the standard switch-level lattice introduced in Section 3, it is
easy to see that the fixed point calculation will be forced to set both nodes of the counter to X
since (XX) = ¢lb{(00), (01), (10)}. Unfortunately, we have now lost information and thus we may
erroneously report a circuit failure that only could be triggered if the counter ended up in the state
(11). On the other hand, if we used a more complete lattice the problem would disappear. For
example, if we use the power-set of {(00), (01), (10), (11)} ordered by set inclusion as the domain
of the counter, we can distinguish between the set {(00), (01), (10)} and any set that contains the
state (11). As an alternative to increasing the computational complexity through more detailed
lattice structures, we can work around the limited power of our iteration construct by specifying
the explicit circuit behavior until it stabilizes. For example, we would explicitly check that the
counter goes through states (00) and (01), and then use an iteration construct to check that the
counter remains in state (10) beyond this point.

The above theorem suggests a simple method for verifying a trajectory assertion G': compute
SAT(L, G). If G is iteration-free then we will obtain an exact answer in the sense that SAT(L, G)
holds if and only if |=,, G holds. On the other hand, if there are iterations in G, then we can
only guarantee that if SAT(L, &) then |=,, G. Unfortunately, there is a practical difficulty with
this approach since all the defining trajectories and the defining sequences are, as defined in the
previous section, infinite. Note, however, that the fixed point calculation does not require us to
compute an infinite defining trajectory since we only need to compute 74(§) for various £ up to
d(A). Also, by Corollary 1, in order to compare a defining sequence with a defining trajectory in
computing the satisfaction function, it is suflicient to compute a bounded prefix of the defining
trajectories and the defining sequences. Hence, we only need to compute a bounded prefix of any
trajectory. Furthermore, it is easy to see that we never need to store more than three system states:
the current state, the next state, and the fixed point state if the assertion contains an iteration. In
summary, we can verify trajectory assertions very efficiently.

J_—— Out

B — =

Figure 6: Pseudo XOR circuit.

Finally, there is one more, quite subtle, aspect of the verification methodology we need to deal

26

with. The problem is that in order to make a non-lattice domain into a complete lattice, we often
add “artificial” top elements. Since every element is less than the top element, we are in a somewhat
dangerous situation if, during the computation of the defining trajectory, we end up in such a top
state. To illustrate a typical instance of this problem, consider trying to show that a circuit with in-
puts A and B and output Out implements the exclusive-or function. Intuitively, it seems that it would
be sufficient to prove that circuit satisfies the assertion [(A is a) A (B is b)) = N(Out is a & b)], for
all a,b € {0,1}. Unfortunately, this is not the case. For example, this assertion is satisfied by the
rather useless circuit of Fig. 6, where the two inputs are tied together, and the output is always 0.
Whenever a # b the antecedent trajectory will end up in T, because inputs A and B are electrically
equivalent. The only values for which the trajectory does not end up in T are ones for which the
output should be 0, in which case the consequent is also satisfied.

Any checking based purely on testing implications is prone to this sort of “false implies every-
thing” error. Problems of this sort have been encountered by researchers using other systems for
hardware verification such as HOL [24] and EMC [16]. A solution to this problem in our context,
and in fact the solution we have adapted for our prototype tools, is a two-pronged approach. First,
the user can only add new top elements in forming a complete lattice. Thus we do not allow the
user to add artificial bottom or internal states. Secondly, our verification system ensures that every
state in the defining trajectory does not contain any artificially introduced top elements. These
two constraints ensure that the defining trajectory is a genuine circuit trajectory, and thus there is
at least one circuit trajectory satisfying the antecedent.

7 Symbolic Formulation

In the previous section we proved that to determine the validity of a trajectory assertion G it
suffices to compute SAT(L, G). Unfortunately, when verifying all but a limited class of systems
(including many memory designs [11]) we would need to write down and verify an exponentially
large number of assertions. The coverage of multiple cases by the partially-ordered system model
lacks sufficient precision to reliably verify the many distinct operating conditions.

In this section we first extend the trajectory formulas by introducing symbolic trajectory formu-
las. Each symbolic trajectory formula can express a large number of assertions that the behavior
of the system must obey. We then introduce a method of verifying such a collection of assertions
via symbolic simulation. The key idea is to preserve the symbolic structure of the formulas in the
verification algorithm. By doing so, we can replace the need for large amounts of case analysis
with algebraic manipulation. In essence, we will perform the case analysis implicitly rather than
explicitly.

7.1 Symbolic Expressions

Let V be a set of symbolic Boolean variables. For convenience, let B denote the set {0,1}. An
assignment, ¢, is a mapping ¢:V — B assigning a binary value to each variable. Let ® be the
set of all possible assignments, i.e., ® = {¢:V — B}. A domain constraint, D C ®, defines a
restriction on the values assigned to the variables. We will denote such domain constraints by
Boolean expressions. That is, let £/ be a Boolean expression over elements of V!. This expression
defines a Boolean mapping e: ® — B and thus denotes the domain constraint D = {¢ | e(¢) = 1}.
The set of all assignments ® is denoted by the constant function 1, defined as yielding 1 for all
assignments. Expressing domain constraints by Boolean expressions allows us to compactly specify
many different circuit operating conditions with a single formula.

'For the sake of brevity, we omit a formal syntax of Boolean expressions. Any standard expression syntax suffices.

27

In general, if D is a scalar domain set we extend it to a symbolic domain set, written D(V), by
defining
DV)={f:®— D}.

In other words, D(V) denotes the set of functions mapping an assignment in ® to D.

For any element a of D, we let a denote the constant function, yielding a(¢) = a for any
assignment ¢.

We extend all operations from scalar to symbolic domains in a uniform way. Consider an
operation op: D1 X Dy — D3, defined over scalar domains Dy, Dy, and Ds. Its symbolic counterpart
op:D1(V) x D2(V) — D3(V) is defined such that for all @ € Dy(V) and b € Dy(V), we have
(@ op b)(¢) = a(9) op b(¢).

When extending a relation R symbolically, we define the result to be a function specifying
the assignments under which its arguments are related. In other words, we actually extend the
characteristic function of the relation. That is, given a binary relation R C D; X D,, define

R:Dy(V) x Dy(V) = B(V) as (a R b)(¢) =1 if and only if a(¢) R b(¢).

7.2 Symbolic Trajectory Formulas and Assertions

A (scalar) trajectory formula expresses a constraint on a trajectory. We now extend this idea
by introducing symbolic trajectory formulas. A symbolic trajectory formula expresses a set of
constraints on a trajectory by representing a set of (scalar) trajectory formulas. More specifically,
a symbolic trajectory formula will be a function mapping an assignment ¢ € ® to a trajectory
formula.

Trajectory formulas can be extended to symbolic trajectory formulas in several ways. We
will present one particular definition here that is intuitively simple, yet powerful enough to make
specifications of desirable system properties fairly natural.

Assume (S, C) is a lattice, V is a set of symbolic Boolean variables, and P is a set of simple
predicates over §. A symbolic trajectory formula is defined recursively as:

1. Simple predicates: p is a symbolic trajectory formula if p € P.

2. Conjunction: (Fl/\FQ) is a symbolic trajectory formula if Fy and F; are symbolic trajectory
formulas.

3. Domain restriction: (£ — F) is a symbolic trajectory formula if F is a symbolic trajectory
formula and F is a Boolean expression over V

4. Next time: (NF) is a symbolic trajectory formula if F is a symbolic trajectory formula.

Note that the only change from the definition of trajectory formulas is that the domain constraint
can now be a Boolean expression rather than only 1 or 0.

For the case of switch-level circuits, we introduce the notation (n; is £) as a shorthand for the
formula (E — (n; is 1)) A (E — (n; is 0)). That is, we constrain node n; to have the particular
symbolic Boolean value denoted by the expression F.

The concept of depth is extended to the symbolic domain in the natural way, i.e., the depth of
a symbolic trajectory formula is one greater than the number of nested next time operators.

A symbolic trajectory assertion is defined recursively as:

1. Simple assertions: {A = C’}, where A and C' are symbolic trajectory formulas and d(A) =
d(C).

28

2. Sequences: [A = C} : G4, where A and C are symbolic trajectory formulas, d(A) = d(C’),

and Gy is a symbolic trajectory assertion.

. . *
3. Tterations: [A = C} ;G'1, where A and C' are symbolic trajectory formulas, d(A) = d(C),
and (G is a symbolic trajectory assertion.
With the above development, including our shorthand notation, we can now combine our two
trajectory assertions that constitute our specification of the unit-delay inverter circuit of Fig. 2 into
one symbolic trajectory assertion as follows. Assume V = {z}, then

[(inis z) A Ntrue = N(out is 7)].

As a more complex example, consider the following symbolic trajectory assertion for the latch
circuit of Fig. 5. Here, assume that V = {c,a}. We have the symbolic assertion

Gs = [(ng is) A (¢ = (nyis @) A (2= (ngis @) = N?(ny is a)} .

Informally, the antecedent states that depending on the ¢ (“clock”) variable we either load value a
into the latch (by setting ng to 1 and n; to a) or we assume that a is already stored in the latch
(with ng3 set to 0 and n4 to @). The consequent states that value « is stored in the latch on the
third time unit.

Given a symbolic trajectory formula F and an assignment ¢ € ®, the corresponding trajectory
formula, written F(qb), is defined recursively as:

def .
1. p(¢) = pif peP.
def , ;2

2. (F1 A F2)(9) = (Fi(9) A F2(9)).
3. (E— F)(¢) def (e(¢) — F(¢)), where e is the Boolean function denoted by E.

4. (NF)(¢) & (N(F(9))).

Similarly, given a symbolic trajectory assertion G and an assignment ¢ € ®, the corresponding
trajectory assertion, written G(¢), is defined recursively as:

def

L [A= ¢ (9) € [A(g) = C(9)].

def

2. ([A= C|;G1)(6) ¥ [A(¢) = C(9)] 5 (Ca(9)).

def * .
)

3. ([d=C]:G)(0) € [A(9) = C(9)] 1 (Ga(9)).

Given the above, we can now extend the =4 relation to the symbolic domain in the standard
way, i.e., if I’ is a symbolic trajectory formula then for every ¢ € L(M) we have

(o) (@) =1 iff oy, (F(9)).
Similarly, if Gisa symbolic trajectory assertion then for any set L of trajectories we have
(LE,G) (@) =1 il L, (G(9)).

Now, given a model structure M and a symbolic assertion G, the task of our checking algorithm
is to compute the Boolean function expressing the set of assignments under which the assertion
is true. For most verification problems, this should simply be the constant function 1, i.e., the
assertion should hold under all variable assignments.

29

7.3 Checking Symbolic Trajectory Assertions

In Section 5, we showed how scalar trajectory assertions can be verified very efficiently by computing
the satisfaction predicate. By extending the functions and relations used in this process to the
symbolic domain, we can perform the same algebraic manipulations. Rather than a true/false
answer, we obtain a Boolean function denoting those assignments ¢ for which the assertion holds.

Define the symbolic domains B(V), S(V), and $¥(V) as denoting the set of functions mapping
an assignment in ® to B, §, and S respectively. Let Y, ldb, ga, G’fp7 and ? denote the symbolic
extensions of the successor function Y, the lub operation, the glb operation, the Gfp operation,
and the infix ? operation respectively. Let T be the extension of the ordering relation T to the
symbolic domain. Recall that a relation over a scalar domain extends symbolically to a function
specifying the assignments under which its arguments are related. The normal Boolean product
operation - serves as the symbolic extension of the logical “and” connective. That is, for any
assignment ¢ (a-b)(¢) = 1iff a(¢) = 1 and b(¢) = 1. Recall that for a state value a € S, @ denotes
the constant function, yielding @ for all assignments. In particular, 1 denotes the function that
always yields L.

Given a symbolic trajectory formula F, we define its defining symbolic sequence SF recursively
as follows:

1. 5p = ﬁJ_J_ ...if p € P is a simple predicate with defining value P.
2. Op p, = lub(0p, 0).

3. 5E—>F = e?SF, where e is the Boolean function denoted by F.

4. dnp = Lop.

Proposition 4 Let F be a symbolic trajectory formula and let 5F be its defining symbolic sequence.

Then, (5F)(¢) = 5F(¢), for every ¢ € .

Proof: Follows directly from the definition of symbolic trajectory formulas and the definitions of

8%, lub and 7. |

Given a symbolic starting state 2 € S(V) and symbolic trajectory formula F with defining

symbolic sequence SF = 42 5;? ..., the defining symbolic trajectory 71x(2) = 72 (2)7’}(2) ...is defined

F ¥
inductively as follows: o
lub(é%, z) ifi=0
ldb(é%, Y(i’?l (2))) otherwise
Proposition 5 If F is a symbolic trajectory formula and 3 € S(V) let 7(2) be the defining symbolic
trajectory for F. Then (7;(2))(¢) = TF(¢)(2(¢)) for every ¢ € ®.

Proof: Follows directly from the definition of symbolic trajectory formulas, Proposition 4, and the
definitions of Y, and [ub. 0

Now, given a symbolic trajectory assertion G define its symbolic satisfaction predicate SAT as
follows:

L SAT(, [A = C) = (bp E74(2)).

30

2. SAT(:, [A = C]56n) = (SAT(:, [A= €)) - SATED (), G)).

3. SAT(:, [A = C|5Gh) = (SAT(E, Gy) - SAT(E, [A= C])), where

—

< & e -d(A) g
E=dpp . gib(z, 757 (€).
In view of the above results and Theorems 1 and 2 the following theorem follows immediately.

Theorem 3 Assume G is a symbolic trajectory assertion. Then for every ¢ € ®:
SAT(L, G)(¢) =1 implies (=, G)(¢) =1,
Furthermore, if G is iteration-free, then
SAT(L,)@ =1 iff (5,00 = 1.

To illustrate the practical application of Theorem 3 consider the symbolic trajectory assertion

(3 defined as
Gy = [(nsis)P A (¢ = (n is)P A (€= (ng is 7)) = N (nyis 7)) .

Assume we want to check this formula for the model structure corresponding to the circuit of
Fig. 5. We will show the computation of the symbolic defining sequence and the symbolic defining
trajectory. In order to do so, however, we must introduce an expression syntax for symbolic
ternary values, i.e., functions mapping Boolean assignments to ternary values. Following our earlier
convention, we will let X denote the constant function for value X. We will use Boolean expressions
to denote cases where all assignments yield binary node values. Finally, for Boolean expression Fy,
and symbolic ternary expressions Fy, and Ey we will use the notation F;—FE) | Fy to denote the
function

(er=>eq1 | e0)(¢) = { 2;22; i)ft}ite(r@isze,l

where €;, €1, and ey are the functions denoted by the expressions Fy, Ey, and FEjy, respectively.
First, for the antecedent A = (nz is ¢)lI A (¢ = (n; is @) A (€ = (n4 is @)), we obtain the
following elements for the defining sequence and trajectory:

i 0 Y(# (1) 7a(L)

n ng 13 N4 5| N2 n3 14 N5 m n2 n3 N4 N5
0 jlca|X X ¢ce3X|a XX X XX X |c5a|lX X c c>X|a X
1 |csa| X X ¢ X X|Xe3a|X X @ c3X|aesa|Xesa| X ¢ @ c5X|a
2 X XX X X Xesa|lXXa o« X csalXX @ a
3] X XX X XX X XX o« X X X X a
>4 X XX X XX X XX X X X X X X

Similarly, it is easy to see that

and thus that 5(; C g = i, i.e., the assertion holds for all variable assignments.

31

8 Extensions to the Logic

The base logic, as described above, is convenient for deriving the underlying theory. Unfortunately,
expressing “interesting” assertions about real systems using only the constructs given in Section 4
is very tedious. Two shortcomings make using the logic cumbersome: the fine granularity of the
timing, and the lack of more powerful logical constructs. We have already introduced several
shorthand notations that take partial steps in remedying these limitations. In general, one can
increase the expressive power of the logic greatly by introducing further shorthands. The semantics
of each such extension is defined by a syntactic translation into the base logic, and hence has a
well-defined semantics and implementation.

In order to define a language for writing specifications we need to define three entities: the syntax
of the language, the semantics of the language, and a compilation algorithm that can translate the
high-level constructs to the core logic. Furthermore, in order not to get astray in the process, a
properly defined compiler function should also be proven correct in the sense that the semantics of
the higher-level constructs are preserved by the compilation process. Although we will describe the
extensions we have made in fairly informal terms, Joyce and Seger [27, 35] has in fact formalized
a very similar language in higher-order logic and there proven that the compilation algorithm is
correct. Also, as a side effect of properly formalizing the semantics of the added constructs, we
open up the possibility of reasoning about the specifications themselves [35].

8.1 Timing Extensions

We have already introduced the notation FI*! to denote that property F should hold for k successive
time intervals, where each interval has duration given by the depth d(F’). This concept can be
generalized to other sequencing constructs such as during, from—to, then, and for. With these we
can, for example, write ((py for 100) A (pz for 100)) then (ps for 10) rather than having to write

(p1 A pz) A N(p1 /\pg) N NQ(pl /\pz) AN A N99(p1 /\pg) A N100p3 VAN .N109p3.

Each of these constructs has a straightforward definition in terms of our existing notation. As an
illustration, the duration construct, written during (s, e, F'), has as arguments a start time s, an
end time e and an instantaneous trajectory formula F that is to hold over this interval. This can
be translated simply as true for e < s, or N*Fle=s+1 for ¢ > s.

We have also seen that for most sequential circuits, reasoning at the unit step level is far too
tedious. Instead, we would like to write and verify specifications at a more abstract timing level.
For example, with phase-level timing, we view each period when the clocks are held at fixed values
to be a phase, and assume that each phase has some minimum length &k [7]. For simplicity, we will
first assume that all phases have the same duration. A naive approach to phase-level timing would
be to translate an instantaneous phase formula F into FI¥!| and introduce A “next phase” operator
N, defined simply as N*. That is, any property F should hold throughout the phase, and each
successive phase starts exactly & time units from its predecessor.

Although the above attempt at phase-level timing frees us from describing the desired behaviors
for every basic time unit, it has a serious drawback. The problem lies in the fact we must specify
the precise length of the phase. As a result, we overspecify the desired behavior. In fact, we only
show that the system works when all phases are exactly k£ basic time units long. Instead, we would
like to verify that the system works correctly as long as each phase is at least k time units long.
As was shown in Section 6 this can be accomplished by using the iteration construct of trajectory
assertions.

To illustrate the problem with fixed length phases and how it can be remedied, consider the
switch-level circuit of Fig. 7. Intuitively, ny is the (inverted) input to a latch, ns is the clock signal,

32

Figure 7: Circuit illustrating the use of iteration.

ny is the electrical node that stores the state when the clock is low, and ng is the output of the
output buffer. Suppose we are trying to determine whether a 0 stored in the latch will remain to
the end of the phase even if the clock goes high. Clearly, this is a property that a latch should
not satisfy, but if we assume that each phase is exactly 2 time units long, we could arrive at this
false conclusion. In order to check the validity of the statement by our naive model, the following
assertion would be used:

{(n4 is 0) A (ng is 0)[2] = true[Z]} : [(ng is 1)[2] — (ng is 0)[2]} .

The circuit in Fig. 7 satisfies this assertion, because there is a 2 unit propagation delay from storage
node ny4 to output ng. If we assume the phases to be 3 time units, and thus we try to check the

assertion
{('714 is 0) A (ng is 0)[2] — true[?’]} : [(’TL3 is 1)[3] = (ng 1s 0)[3]})

it is easy to see that the circuit in Fig. 7 does not satisfy the assertion. In order to avoid this
apparently “non-monotonic” behavior, it is preferable to check an assertion like:

(n4is 0) A (g is 0)12 = true[Q]} i [ns is 0 = true]™;
(nzis 1) = (ng is 0)[2]} i[(n3 is 1) = (ng is 0)]" [true = true].

where we have used the iteration construct to make sure the property we are checking holds no
matter how long the phases are. It is easy to see that this assertion will fail for the circuit shown
in Fig. 7. In particular, the last iteration assertion will fail.

We can generalize the above approach by defining a “stable phase assert” command. Assume
we would like to check some assertion [A = C], where A and C are instantaneous formulas, during
a phase. Assume furthermore that phases are at least £ time units long. The “stable phase” assert
command would be a shorthand for {A[k] = C[k]} ;[A = C]". In essence, we allow the circuit

to take k£ time units to reach a stable state. We then prove that [A = (] is an invariant of the
system beyond these k units. The set of invariant conditions beyond the k time units is captured
by a state which is less than or equal to every possible state of the system as long as A continues
to hold. We would continue the verification of further properties from this state.

Interestingly, this phase-level timing implements a form of “oscillation control” that was in-
cluded in the original cosMos simulator [7]. In the simulator, the user specifies a limit on the

33

phase length k. When simulating a phase, the simulator computes new states for nodes until it
reaches a stable state. Once the limit £ on unit steps is taken, however, any node changing state is
set to X rather than to its excitation. This procedure matches exactly the fixed-point implementa-
tion of the iteration construct for the ternary domain. In fact, our symbolic simulator implements
the fixed-point approach in its full generality.

8.2 Data Handling Extensions

There are several extensions that simplify the task of writing specifications. One powerful approach
is to use symbolic indexring, where a vector of Boolean functions is interpreted as the symbolic
representation of a bounded integer. This symbolic integer is then used to index into an array of
nodes [1, 9]. This notation provides a powerful technique for specifying and verifying the addressing
operations of a memory where the symbolic integer represents an address, and the vector of nodes
represents the different memory elements.

For example, the effect of a write operation for a random-access memory can be specified by an

assertion:
|(Kdis A) A (urite s 1) A (data is d) A Nirue = N(M[A] is d)]

In this assertion, Ad is a vector of the p nodes forming the address inputs to the memory, while Alis
a vector of p Boolean variables. M is a vector of 2P nodes forming the memory elements. Informally,
the assertion states: “given address and data values A and d on the inputs, a write operation will
cause data d to be stored in memory location A. Note that we have interpreted the “next-time”
operator as denoting a complete cycling of the memory. In practice we actually operate the memory
at a phase-level, and use the phase-level timing model described above.

Memory verification illustrates the efficiencies our method gains by partially-ordered system
modeling. To verify the above assertion, the verifier would execute a simulation with all memory
locations initialized to X, and with the address and data inputs set to Boolean variables, requir-
ing a total of p+ 1 Boolean variables to verify the behavior of a 2P-bit memory. To check the
consequent, it would compare the resulting state of each memory location ¢ with the function
[(tp—1 B Ap_1) -+ - (10D ao)] ?d, where ¢; is the jth bit in the binary representation of i, A; is the
7th element of the vector of variables ff, and @ represents the EXcLUSIVE-NOR operation, i.e.,
the complement of EXcLUSIVE-OR. For example, for a 4-bit memory (p = 2), the verification
conditions for each memory location would be:

uo] iy LI LB
6160—')(1 | X Elao—}d | X (1160—'>d | X (Ilao—}d | X

Full verification of a memory also requires verifying the read operation, as well as verifying that
neither operation affects the data in any location other than the one being addressed. All of the
operations can be verified by 3 symbolic simulations, none involving more than 2p + 1 variables.
We can exploit the large number of “don’t care” conditions that arise in the operation of a memory.
In verifying memory behavior for a given location, we don’t generally care what values were stored
in other memory locations. Similar methods can be used to efficiently verify more complex systems
containing embedded memories and register arrays, such as microprocessors and data paths.

8.3 User Defined Constructs

With the above extensions, it is more convenient to write specifications. However, any non-trivial
specification would still be much too large and obscure to be practical. What is needed is some
way of structuring the specification. In the prototype tools we have developed [13, 36] this is

34

accomplished by using a meta-language [23]. In other words, we use a general purpose language to
build up the various constructs that our specification language contain.

In our original prototype system [13] we used a dialect of Lisp as meta-language. When the
Lisp program was run, it wrote to a file the verification conditions expressed in a slightly enriched
version of the core logic that resulted in the translation of the higher level constructs. This text
file was then fed to a modified version of the cosmos symbolic simulator.

In a more recent system, called Voss[36], developed at the University of British Columbia,
the meta language is a dialect of ML[31]. Here, the modified version of the symbolic simulator
is incorporated directly in the language and thus the user interacts directly with the evaluator
through the ML language. For more details of this system, the reader is referred to [36].

Given that the verification system is embedded in a general purpose language, and the user
actually writes code in this language, it is easy to define new extensions. In fact, by writing
new functions and procedures it becomes very natural to express the trajectory assertions in a
hierarchical way, improving the readability of—and consequently the confidence in—the assertions.

9 Vertification Over Other Domains

So far, all our examples have been related to switch-level (and gate-level) verification. On the other
hand, the theory was developed using a very general model of systems. The question arises whether
there are other domains for which trajectory evaluation is useful. In this section we will discuss
one such domain and an application that can beneficially be modeled in the domain.

Input
Commands
(srcAsrcB dest)
Register
File

<. Control

Adder

>

Figure 8: Simple addressable register file with ALU.

Consider verifying the circuit shown in Fig. 8. Intuitively, there are two properties we would
like to check:

35

1. If register A holds some value u and register B holds some value v and we request the circuit
to add registers A and B and put the result in register D, then u + v should be stored in
register D after the next cycle.

2. If register L stores some value u and we request the circuit to add registers A and B and put
the result in register D, where D # L, then register L should still contain the value u at the
end of the next cycle.

The circuit of Fig. 8 can clearly be modeled at a switch-level and be verified using the switch-
level model we have used throughout the paper. However, for very wide data path, this could
be quite expensive. Also, if the circuit contained a multiplier, rather than an adder, we would
very quickly encounter difficulties in carrying out the symbolic evaluation since we would most
likely represent the values on the nodes as some kind of ordered binary decision diagram which has
difficulties in representing multiplication [10].

What makes the above dependency on the word size unfortunate is that, in some sense, the
width of the data path is unrelated to the functionality of the circuit. In particular, the control
logic is likely to be independent of the width of the data path. The question arises how to verify
the control part for an arbitrary width of the data path. The natural way of verifying the controller
by writing a specification in terms of internal control lines is both cumbersome and error prone.
What we would like to do is to replace the detailed implementation of the data path with a more
abstract, and computationally cheaper, version. If we do so, we split up the verification task into
verifying that the abstract version of the data path correspond to the actual data path and that
the controller together with the abstract data path works as intended. The first task is quite
straightforward since the structure of the abstract data path will likely correspond very closely
with the structure of the actual data path. Thus we will focus on the second task. This approach
is conceptually similar to the abstraction techniques used in temporal logic model checking [17, 38].

U\T/E
B
Figure 9: Value domain for data path.

In order to illustrate the idea of using a more abstract domain and corresponding abstract
version of the data path, consider the flat domain whose Hasse diagram is shown in Fig. 9. Intu-
itively, u and v are used to represent arbitrary values and s is used to represent the sum of « and
v. The value B is used to denote an unknown value. A possible next-state function for the adder
and a possible next-state function (R;) for one of the of the register words when the write enable
signal (W) is 0, 1, and X respectively, are shown in Fig. 10. It is easy to convince oneself that the
next-state function is monotone.

The complete lattice for the circuit can now be formed in the same way as for the switch-level
model discussed in Section 3, i.e., we form the cross product of all the subcomponents’ domains
and then add an artificial top element. Also, the next-state function can be derived by extending
the individual excitation functions to this extended domain. It is easy to verify that the obtained
lattice and next-state function indeed satisfies our requirements for being a model structure. The
only remaining missing piece is now some simple predicates for this domain. We will use the obvious
ones: n; is u, n; is v, and n; is s, where n; is a node name in the circuit. Note that “node” in this

36

3
iy
=
I\
=
)

OB U V s i Ry in R R
B|B B B B B|B B|B B|B
ulB B s B ulu ulu u|B
viB B B B vV|v vV |v v |B
s| B B B B s|s s|s s|B

Figure 10: Monotone next-state functions.

context does not correspond to any single electrical node of the circuit but to collections of signals
forming data words.

In order to write trajectory assertions that can check the two properties mentioned above, the
following shorthands are useful. Let f, f, I{:, and I each denote vectors of p Boolean variables indi-
cating possible address values, where p is the number of bits in an address. Define Opemte(f, f, Ig)
to denote the formula (sh is I) A (sB is J) A (D is K), where node vectors sh, sB, and D denote the
address inputs fgr the control logic. Similarly, let Stored(f_f7 «), for a equal to u, v, and s, denote

the formula (R[/V] is «), where R denotes the set of “nodes” comprising the register file.
With this notation we can express the two desired properties as follows:

{Opemte(f, J, K) A Stored(I,u) A Stored(.J, v) = N Stored(K s)}

and

[Opemte(f, J,K) A Stored(L,u) => N((K # L) — Stored(L, u))} .

Here we have actually assumed a unit-delay for the complete cycle. An obvious generalization would
adapt the verification conditions to more realistic timing. Note that the complete verification only
requires 3 * log(n) Boolean variables for a register file with n words. Also, the verification is
independent of the actual width of the data path.

In many ways, the idea of using a flat domain in carrying out the verification is similar to the
idea of “generic” specifications [26]. In generic specifications, which relies on using higher-order
logic, the actual computation performed by the ALU and the other components in the data path,
are simply provided as functions that are not instantiated during the proof of the control logic.
In fact, the high-level correctness proof for the circuit of Fig. 8 would be of the form “for every
possible function f of proper type, the circuit will read the contents of registers A and B, apply f
to these two values, and write the result into register D. Our approach of using a flat domain and
using a conservative next-state function can be viewed as Skolemizing the universal quantification
in the generic specification and incorporating the computation in the value domain. Thus, the
value s we added to the domain, corresponds to f(u,v).

In general, this use of a flat domain for parts of the circuit works well for circuits in which there
is a clear distinction between data path and control. The difficult task of verifying the control
logic can thus be carried out independently of the width of the data path. Of course, in using
higher-level models such as this, one must generate more abstract system models than does our
current switch-level circuit analyzer. We leave this task as future research.

37

10 Conclusions

In terms of mathematical sophistication, the problem solved by our verification algorithm is far
less ambitious than what is attempted by full-fledged temporal logic model checkers. However, we
believe that our language is rich enough to be able to describe many important properties of a
system and to provide a direct path by which such properties may be automatically verified. By
keeping the goals of our verifier simple, we obtain an algorithm that is capable of dealing with
much larger circuits.

Despite the limitations of our program, it is suitable for verifying highly complex systems. Re-
cently Beatty has developed a methodology for specifying and verifying systems that uses symbolic
trajectory evaluation to carry out the actual verification [2, 3]. In his approach the user specifies the
desired system behavior by assertions of the form [A = NC'], where each timing step represents
the completion of a high level operation, such as the execution of an instruction by a microprocessor.
The user gives an “implementation mapping” describing how the state values in the specification
(e.g., the values of progrmmer-visible registers) are realized within the circuit, including the exact
signal timing. The verifier combines these high level assertions with the implementation mapping
to generate symbolic assertions that are then evaluated on the circuit model. His method can
handle pipelined implementations in which operations that are viewed as occuring sequentially in
the specification actually execute concurrently in the circuit. He has demonstrated the power of
his approach by verifying a representative sample of instructions for an actual microprocessor.

One interesting property of our algorithm, in fact, is that its computational complexity is
relatively insensitive to the system size. That is, the complexity is determined largely by the
complexity of the assertion to be verified, measured in terms of the number of symbolic variables,
and the depth of nesting of next time operators. We have found that in many circuits, properties
can be expressed in terms of a surprisingly small number of variables. For example, our formulas
providing a complete specification of of a k-bit random access memory involve only 2 + 2logk
variables. Thus, we can perform the verification in polynomial time irrespective of the heuristic
efficiency of the Boolean manipulator.

An interesting question that still is unanswered is whether this type of combination of abstrac-
tion and symbolic manipulation can be used in more traditional model checking algorithms. For
example, is there some suitable domain for which we can approximate the powerset of the real sys-
tem by a much smaller complete lattice in such a way that the validity of some temporal formula
in the approximate lattice implies the validity of the formula in the real system.

Another open question is how to develop a practical verification methodology using the type of
abstract domain verification as was discussed in Section 9. In fact, the general question of what
kinds of methodologies can be used for this type of formal verification is largely unanswered.

Acknowledgements

The first author would like to acknowledge the very productive research environment provided by
the Integrated Systems Design Laboratory at the University of British Columbia.
References

[1] D. L. Beatty, R. E. Bryant, and C.-J. H. Seger, “Synchronous Circuit Verification by Symbolic
Simulation: An Ilustration,” Swzth MIT Conference on Advanced Research in VLSI, 1990,
pp- 98-112.

38

[2]

3]

[4]

[5]

[12]

[13]

[14]

[15]

D. L. Beatty, “A Methodology for Formal Hardware Verification, with Application to Micro-
processors,” Technical Report CMU-CS-;93-190, Carnegie Mellon University, 1993.

D. L. Beatty, and R. E. Bryant, “Formally Verifying a Microprocessor using a Simulation
Methodology,” 81st Design Automation Conference, June, 1994, pp. 596-602.

S. Bose, and A. L. Fisher, “Verifying Pipelined Hardware Using Symbolic Logic Simulation,”
International Conference on Computer Design, IEEE, 1989, pp. 217-221.

S. Bose, and A. L. Fisher, “Automatic Verification of Synchronous Circuits using Symbolic
Logic Simulation and Temporal Logic,” IMEC-IFIP International Workshop on Applied For-
mal Methods for Correct VLSI Design, 1989, pp. 759-764.

R. E. Bryant, “Graph-Based Algorithms for Boolean Function Manipulation”, IFEFE Transac-
tions on Computers, Vol. C-35, No. 8 (August, 1986), pp. 677-691.

R. E. Bryant, D. Beatty, K. Brace, K. Cho, and T. Sheffler, “COSMOS: a Compiled Simulator
for MOS Circuits,” 24th Design Automation Conference, 1987, 9-16.

R. E. Bryant, “Boolean Analysis of MOS Circuits,” IEFFE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, Vol. CAD-6, No. 4 (July, 1987), 634-649.

R. E. Bryant, and C.-J. H. Seger, “Formal Verification of Digital Circuits Using Symbolic
Ternary System Models,” Computer-Aided Verification °90, E. M. Clarke, and R. P. Kurshan,
eds. American Mathematical Society, 1991, pp. 121-146.

R. E. Bryant, “On the Complexity of VLSI Implementations and Graph Representations of
Boolean Functions with Application to Integer Multiplication,” IFEFE Transactions on Com-
puters, Vol. 40, No. 2 (February, 1991), pp. 205-213.

R. E. Bryant, “Formal Verification of Memory Circuits by Switch-Level Simulation,” IFEF
Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 10, No. 1
(January, 1991), pp. 94-102.

R. E. Bryant, “A Methodology for Hardware Verification Based on Logic Simulation,” J.ACM,
Vol. 38, No. 2 (April, 1991), pp. 299-328.

R. E. Bryant, D. E. Beatty, and C.-J. H. Seger, “Formal Hardware Verification by Symbolic
Ternary Trajectory Evaluation,” 28th Design Automation Conference, June, 1991, pp. 297—
402.

J. A. Brzozowski, and M. Yoeli. “On a Ternary Model of Gate Networks.” IFEFE Transactions
on Computers C-28, 3 (March 1979), pp. 178-183.

J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill, “Sequential Circuit Verification
Using Symbolic Model Checking,” 27th Design Automation Conference, 1990, pp. 46-51.

E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic Verification of Finite-State Con-
current Systems Using Temporal Logic Specifications,” ACM Transactions on Programming
Languages, Vol. 8, No. 2 (April, 1986), pp. 244-263.

E. M. Clarke, O. Grumberg, and D. E. Long, “Model Checking and Abstraction,” Proc. 19th
Annual ACM Symposium on Principles of Programming Languages, Jan., 1992.

39

[18] O. Coudert, C. Berthet, and J. C. Madre, “Verification of Sequential Machines using Boolean
Functional Vectors,” IMFEC-IFIP International Workshop on Applied Formal Methods for Cor-
rect VLSI Design, 1989, pp. 111-128.

[19] O. Coudert, J.-C. Madre, and C. Berthet, “Verifying temporal properties of sequential ma-
chines without building their state diagrams,” Computer-Aided Verification ‘90, E. M. Clarke,
and R. P. Kurshan, eds. American Mathematical Society, pp. 75-84.

[20] J. A. Darringer, “The Application of Program Verification Techniques to Hardware Verifica-
tion,” 16th Design Automation Conference, 1979, pp. 375-381.

[21] S. Devadas, H.-K. T. Ma, and A. R. Newton, “On the Verification of Sequential Machines at
Differing Levels of Abstraction,” 24th Design Automation Conference, 1987, pp. 271-276.

[22] T. Kam, and P. A. Subramanyam, “Comparing Layouts with HDL Models: A Formal Verifi-
cation Technique,” International Conference on Computer Design, IEEE, 1992, pp. 588-591.

[23] M. Gordon, R. Milner, and C. Wadsworth, “Edinburgh LCF”, Lecture Notes in Computer
Science, No. 78, Springer Verlag, 1979.

[24] M. Gordon, “Why higher-order logic is a good formalism for specifying and verifying hard-
ware,” Formal Aspects of VLSI Design, G. Milne and P. A. Subrahmanyam, eds., North-
Holland, 1986, pp. 153-177.

[25] N. Halbwachs, F. Lagnier, and C. Ratel, “Programming and Verifying Real-Time Systems by
Means of the Synchronous Data-Flow Language LUSTRE,” IFEFE Transactions on Software
Engineering, Vol. 18, No. 9 (September, 1992), pp. 785-793.

[26] J. Joyce, “Generic Structures in the Formal Specification and Verification of Digital Circuits”,
The Fusion of Hardware Design and Verification, G. Milne, ed., North Holland, 1988, pp. 50—
74.

[27] J. Joyce and C. Seger, “Linking BDD-Based Symbolic Evaluation to Interactive Theorem-
Proving”, 30th Design Automation Conference, 1993, pp. 469-474.

[28] J. S. Jephson, R. P. McQuarrie, and R. E. Vogelsberg, “A Three-Level Design Verification
System,” IBM Systems Journal Vol. 8, No. 3 (1969), pp. 178-188.

[29] R. P. Kurshan, and K. L. McMillan, “Analysis of Digital Circuits Through Symbolic Re-
duction,” IEFE Transactions on Compuler-Aided Design of Integrated Circuils and Systems,
Vol. 10, No. 11 (November, 1991), pp. 1356-1371.

[30] C. A. Mead, and L. Conway, Introduction to VLSI Systems, Addison-Wesley, 1980.

[31] R. Milner, “A Proposal for Standard ML”, Proceedings of ACM Conference on LISP and
Functional Programming, Austin, TX, Aug. 1984, pp. 184-197

[32] A. Pnueli, “The Temporal Logic of Programs,” 18th Symposium on the Foundations of Com-
puter Science, IEEE, 1977, pp. 46-56.

[33] D. S. Reeves, and M. J. Irwin, “Fast Methods for Switch-Level Verification of MOS Circuits”,
IEEFE Transactions on CAD/IC, Vol. CAD-6, No. 5 (Sept., 1987), pp. 766-779.

40

[34] C-J. Seger, and R. E. Bryant, “Modeling of Circuit Delays in Symbolic Simulation”, IMEC-
IFIP International Workshop on Applied Formal Methods for Correct VLSI Design, 1989,
pp. 625-639.

[35] C. Seger and J. Joyce, “A Mathematically Precise Two-Level Formal Hardware Verification
Methodology”, Technical Report 92-34, Department of Computer Science, University of British
Columbia, December 1992.

[36] C. Seger, “Voss—A formal hardware verification system: User’s guide,” Technical Report

93-45, Department of Computer Science, University of British Columbia, December, 1993.

[37] J. Stoy, Denotational Semantics: The Scoti-Strachey Approach to Programming Language
Theory, MIT Press, 1977.

[38] P. Wolper, “Expressing Interesting Properties of Programs in Propositional Temporal Logic,”
Proc. 13th Annual ACM Symposium on Principles of Programming Languages, Jan., 1986,
pp- 184-193.

41

