
Verifying Nondeterministic Implementations of
Deterministic Systems1

Alok Jain Kyle Nelson Randal E. Bryant
Department of ECE IBM Corporation School of Computer Science
Carnegie Mellon University AS/400 Division Carnegie Mellon University
Pittsburgh, PA 15213 Rochester, MN 55901 Pittsburgh, PA 15213
email: alok.jain@ece.cmu.edu email:kln@vnet.ibm.com email:randy.brant@cs.cmu.edu

Abstract. Some modern systems with a simple deterministic high-level specification have
implementations that exhibit highly nondeterministic behavior. Such systems maintain a simple
operation semantics at the high-level. However their underlying implementations exploit paral-
lelism to enhance performance leading to interaction among operations and contention for
resources. The deviation from the sequential execution model not only leads to nondeterminism
in the implementation but creates the potential for serious design errors. This paper presents a
methodology for formal verification of such systems. An abstract specification describes the
high-level behavior as a set of operations. A mapping relates the sequential semantics of these
operations to the underlying nondeterminism in the implementation. Symbolic Trajectory Evalu-
ation, a modified form of symbolic simulation, is used to perform the actual verification. The
methodology is currently being used to verify portions of a superscalar processor which imple-
ments the PowerPC architecture. Our initial work on the fixed point unit indicates that this is a
promising approach for verification of processors.

1. Introduction

Some modern circuit designs with a simple deterministic high-level specification have
implementations that exhibit highly nondeterministic behaviors. Systems that operate
on an externally visible stored state such as memories, data paths and processors often
exhibit these behaviors. The implementation of these systems frequently overlap the
execution of tasks in an effort to enhance performance while maintaining the appear-
ance of sequential execution.

A large class of systems that exhibit such behavior are processors. At the high-level,
the sequencing model inherent in processors is the sequential execution model. How-
ever, the underlying implementation of processors use pipelines, multiple instruction
issue, and nondeterministic protocols to interact with other subsystems. The resulting
interaction among instructions and contention for resources leads to nondeterminism
in the implementation. Such implementations contain many subtle features with the
potential for serious design errors. The methodology outlined in this paper is able to
bridge the wide gap between the abstract specification and the implementation’s often
radical deviation from the sequential execution model.

A methodology for formal verification must ensure that such a system functions cor-
rectly under all possible execution sequences. Since there is an infinite number of exe-
cution sequences, we verify each operation individually and then reason about
stitching arbitrary operations together to form execution sequences.

The goal is to develop a methodology with which a designer can show that an imple-

1. This work partially funded by Semiconductor Research Corporation # 95-DC-068.

mentation correctly fulfills an abstract specification of the desired system behavior.
The abstract specification describes the high-level behavior of the system independent
of any timing or implementation details. As an example, the natural specification of a
processor is the instruction set architecture. The specification is a set of abstract asser-
tions defining the effect of each operation on the user-visible state. The verification
process must bridge a wide gap between the detailed circuit and the abstract specifica-
tion. In spanning this gap, the verifier must account for issues such as system clocking,
pipelines and interfaces with other subsystems. To bridge this gap between the abstract
behavior and the circuit, the verification process requires some additional mapping
information. The mapping defines how state visible at the abstract level is realized in
the detailed circuit. The mapping has both spatial and temporal information. Designers
are typically aware of the mapping but do not have a rigorous way of recording or doc-
umenting the information.

Our specification is thus divided into two components: the abstract specification and
the mapping information. The distinction serves several purposes. Several feasible cir-
cuit designs can be verified against a single abstract specification. An abstract specifi-
cation can be used to verify both an unpipelined and a pipelined version of a processor.
The abstract specification describes the instruction set of the processor independent of
any pipeline details. The task of the mapping is to relate the abstract specification to
the complex temporal behavior and nondeterministic interactions of the pipelined pro-
cessor. As an example, an instruction might stall in a pipeline stage waiting to obtain
the necessary resources. The order and timing in which these resources are obtained
often varies leading to nondeterministic behavior. Our verification methodology will
verify the circuit under all possible orders and timing.

The distinction between the abstract specification and mapping enables hierarchical
verification. This paper concentrates on a single level of mapping that maps the
abstract specification into a specific implementation. In the future, one can envision an
entire series of implementation mappings. Each level in the mapping serves to make
the assertion more concrete. A verification task could be performed at each level. A
series of mappings could also be used to perform modular simulation. Simulation
models could be developed at each abstraction level and models at different levels of
abstractions could be intermixed using the mapping information.

Once the abstract assertions have been individually verified, the methodology must be
able to stitch operations together in order to reason about execution sequences. The
mapping has information about how to stitch instructions together. Since the abstract
assertions use a sequential execution model, stitching operations at the abstract specifi-
cation level requires a simple sequencing of the instructions. However, the underlying
nondeterministic implementation requires operations to interact and overlap in time.
The mapping ensures that the operations can interact and overlap to create arbitrary
execution sequences.

The abstract specification and the mapping are used to generate the trajectory specifi-
cation. The trajectory specification consists of a set of trajectory assertions. Each
abstract assertion gets mapped into a trajectory assertion. The verification task is to
verify the set of trajectory assertions on the circuit. A modified form of symbolic sim-

ulation called Symbolic Trajectory Evaluation[1] is used to perform the verification
task. We use the term trajectory specification and trajectory assertions partly for histor-
ical reasons. Our trajectory assertions are a generalization of the trajectory assertions
introduced by Seger[4]. The justification is that the assertions define a set of trajecto-
ries in the simulator.

The formal verification methodology presented in this paper is currently being used to
verify a superscalar processor which implements the PowerPC architecture[12]. The
processor has several complex features such as pipeline interlocks, multiple instruction
issue, and branch prediction to advance the state of the art in verification.

1.1. Related Work

Beatty[2][3] laid down the foundation for our methodology for formal verification of
processors. The instruction set was specified as a set of declarative abstract assertions.
A downward implementation mapping was used to map discrete transitions in the
abstract specification into overlapping intervals for the circuit. The overlapping was
specified by a nextmarker which defined the nominal end of the current instruction and
the start of the next instruction. However this work had one basic limitation. The veri-
fication methodology could handle only bounded single behavior sequences. The map-
ping language was formulated in terms of a formalism called marked strings[2].
Marked strings could not express divergent or unbounded behavior.

We have extended the verification methodology so as to handle a greater level of non-
deterministic behavior. As a motivating example, consider a fixed point unit of a pro-
cessor performing a bitwise-or operation that fetches two source operands (A and B)
from a dual-ported memory subsystem. Assume that the operands might not be imme-
diately available. The fixed point unit might have to wait for an arbitrary number of
cycles before either of the operands are available. Furthermore the operands might be
received in different orders: Operand A might arrive before B, operand B might arrive
before A, or both might arrive simultaneously. The verification methodology should be
able to verify the correctness of the circuit under any number of wait cycles and all
possible arrival orders. Marked strings cannot express such an operation. Our formula-
tion is in terms of state diagrams. State diagrams allow users to define unbounded and
divergent behavior.

Symbolic Trajectory Evaluation (STE) has been used earlier to verify trajectory asser-
tions. Beatty[3] mapped each abstract assertion into a set of symbolic patterns. STE
was used to verify the set of symbolic patterns on the circuit. The set of symbolic pat-
terns corresponded to a single sequence of states in a state diagram. Seger[4] extended
STE to perform fixed point computations to verify a single sequence of states aug-
mented with a limited set of loops. In our work, trajectory assertions are general state
diagrams. We have extended STE to deal with generalized trajectory assertions.

Our work has some resemblance to the capabilities provided by the Symbolic Model
Verifier (SMV)[5][6]. SMV requires a closed system. The environment is modeled as a
set of machines. In some sense the state diagrams in our mapping correspond to creat-
ing an environment around the system. The state diagrams corresponding to the inputs
can be viewed as generators that generate low-level signals required for the operation

of the processor. State diagrams corresponding to outputs can be viewed as acceptors
that recognize low-level signals on the outputs of the processor. However, there is one
essential difference. Though SMV does provide the capability of describing the envi-
ronment, it does not provide a methodology for rigorously defining these machines and
stitching them together to reason about infinite execution sequences. The other differ-
ence is that the model-checking algorithm in SMV requires the complete next-state
relation. It would be impossible to obtain the entire next-state relation for a complex
processor. On the other hand, we use STE to evaluate the next-state function on-the-fly
and only for that part of the processor that is required by the specification.

Kurshan[7][8] has used the concept of mappings to perform hierarchical verification.
The specification (called atask) is represented by a deterministic automaton. The
implementation is modeled as a state machine. Verification is cast in terms of testing
whether the formal language of the implementation is contained in the formal language
of the task. The user can provide reduction transformations as a basis of complexity
management and hierarchical verification. Reductions are homomorphic transforma-
tions which correspond to abstraction mappings. Inverse reductions (calledrefine-
ments) correspond to our implementation mappings. However, Kurshan does not have
the concept of stitching tasks together to verify an infinite sequence of tasks. Also,
Kurshan uses language containment as opposed to Symbolic Trajectory Evaluation as
the verification task.

Burch[13] has proposed a verification methodology that avoids the need to explicitly
define the mapping. Instead, an abstraction mapping is implicitly defined by flushing
the pipeline and then using a projection function to hide some of the internal state. The
methodology has been used to verify a pipelined version of the DLX architecture.
However, the abstraction mappings are limited to internal states in the processor. In
addition to mapping internal states, our implementation mappings allow users to define
nondeterministic input/output protocols.

In the area of processor verification theorem proving has been used in the past to verify
processors[9][11]. However, in these cases either the processor was very simple or a
large amount of manual intervention was required. STE was used to verify the Hector
processor[3]. However, Hector is a very simple processor similar to the PDP-11[10].
We are using the verification methodology to verify the PowerPC architecture.
Recently, we verified the pipeline interlocks in the decode stage of the fixed point unit.

Details of how to specify the system behavior in our methodology are discussed in
Section2. The system behavior is specified in terms of a set of abstract assertions and
the implementation mapping. An abstract assertion and the corresponding mapping for
a small example are shown in Section3. The abstract assertions are mapped into a set
of trajectory assertions. Details of how to verify the set of trajectory assertions on a cir-
cuit are discussed in Section4. Some of the ongoing work on using the formal verifica-
tion methodology to verify a superscalar processor is presented in Section5.

2. Specification

The specification consists of the abstract specification and the mapping. The mapping
is a nondeterministic mapping formulated in terms of a variation of state diagrams

calledcontrol graphs.

2.1. Abstract Specification

Hardware Description Languages seem to be the obvious choice for expressing
abstract specifications. However, Hardware Description Languages tend to overspecify
systems since they tend to describe a particular implementation rather than an abstract
specification. It seems that these languages are appropriately named. They “describe”
rather than “specify” hardware. We have defined aHardware Specification Language
to specify hardware. Here we are presenting the basic form of the Hardware Specifica-
tion Language. We will later in this section extend the language to the symbolic and
vector domains. The specification is an abstract machine. The abstract machine is asso-
ciated with a set of single bitabstract state elements (). Transitions in the machine
are described as a set ofabstract assertions. Each abstract assertion is an implication
of the form: , where is the precondition and is the postcondition. and

 are abstract formulas of the form:

• Simple abstract formula: () and () are abstract formulas if .
• Conjunction: () is an abstract formula if and are abstract for-

mulas.
• Domain restriction: () and () are abstract formulas if is an

abstract formula.
Mathematically an abstract assertion can be defined as follows: Assume is the set of
assignments to the abstract state elements. Therefore , where .
Define a satisfying set for an abstract formula as the set of abstract state assignments
that satisfy the abstract formula. The satisfying set of an abstract formula, written

, is defined recursively:

• is a subset of with abstract state assignments with theth

position in each assignment being 0. Similarly is a subset of with
 abstract state assignments with theth position in each assignment being 1.

• .
• , and .

Each assertion defines a set of transitions in an abstract Moore machine. For an
abstract assertion , the sets and are the sets of abstract
state assignments that satisfy the precondition and postcondition respectively. The
transitions associated with the assertion can now be defined as:

. If the abstract machine
starts in a set of states that satisfy the precondition, then the machine should transition
into a set of states that satisfy the postcondition. The set represents
the set of transitions when the precondition is satisfied. If the machine starts in a set of
states that do not satisfy the precondition, then the assertion does not place any restric-
tions on the set of transitions. The set represents the set of transi-
tions when the precondition is not satisfied.

Let index the set of abstract assertions. The intersection defines a non-
deterministic Moore machine corresponding to the abstract specification.

Sv

P Q➡ P Q P
Q

si 0is si 1is si Sv∈
F1 F2and F1 F2

0 F➞ 1 F➞ F

S
S 0 1,{ } n

= n Sv=

F
Sat F()

Sat si 0is() S 2
n 1–

i
Sat si 1is() S

2
n 1–

i
Sat F1 F2and() Sat F1() Sat F2()∩=
Sat 0 F➞() S= Sat 1 F➞() Sat F()=

A P Q➡= Sat P() Sat Q()

Trans A() Sat P() Sat Q()×() S Sat P()–() S×()∪=

Sat P() Sat Q()×

S Sat P()–() S×

i Trans Ai()
i

∩

Consider the example of a bitwise-complement operation. A bitwise-complement
operation requires two abstract state elements,SA andST, whereSA is the source
operand andST is the target operand. AssumingSA andST are single bit operands, the
bitwise-complement operation can be specified by using 2 abstract assertions.

// Assertion A1

// Assertion A2

For this example, and the set has 4 state assignments,
, where the left bit is the logic value associated withSA and the

right bit is the logic value associated withST. The transitions corresponding to these
assertions are shown in Figure1. Let us consider assertion A1. Now

 and . The solid edges repre-
sent transitions when the precondition is satisfied, i.e. the set . The
shaded edges represent the transitions when the precondition is not satisfied i.e. the set

. A similar case can be made for assertion A2. The intersection of
the transitions associated with both assertions gives the Moore model for the specifica-
tion. In this particular model, nondeterminism is used only to represent the choice of
the next input. In other cases, nondeterminism can be used to represent unspecified or
don’t care behavior such as the output of the multiplier while performing an add oper-
ation in a processor.

We have presented the basic form of the abstract assertions. They can be extended to
the symbolic and vector domain. In the symbolic domain, the domain restriction in
abstract formulas is extended to be of the form: () where is a Boolean expres-
sion over a set of symbolic variables. We introduce the notation () as a shorthand
for . In the vector domain, the abstract state ele-
ments are extended to represent different word sizes. A symbolic abstract assertion
defines a set of scalar abstract assertions. A bitwise-complement operation for k-bit
word size can be specified with a single symbolic abstract assertion. Assume thata is a
symbolic k-bit variable that denotes the current value of the source operand. The sym-
bolic abstract assertion for the bitwise-complement operation is:

The ~ operator is the bitwise-complement operator. The symbolic abstract assertion
represents 2k scalar assertions corresponding to all possible assignments to the variable
a.

SA 0is() ST 1is()➡

SA 1is() ST 0is()➡

n 2= S
S 00 01 10 11, , ,{ }=

Sat SA 0is() 00 01,{ }= Sat ST 1is() 01 11,{ }=
Sat P() Sat Q()×

S Sat P()–() S×

Figure 1. Nondeterministic Moore machine model for assertions.

00

01

10

11

00

01

10

11

00

01

10

11

Trans A1() Trans A2() Trans A1() Trans A2()∩

e F➞ e
si eis

e si 0is()➞() e si 1is()➞()and

SA ais() ST ãis()➡

2.2. Control Graphs

Control graphs are state diagrams with the capability of synchronization at specific
time points. Mathematically a control graph can be represented as a tuple:

, where

• is the set of state vertices.
• is the set of event vertices.
• is the set of directed edges.
• is the source, .
• is the sink, .

There are two types of vertices in a control graph: 1) Event vertices representing
instantaneous time points and 2) State vertices representing some non-zero duration of
time. Event vertices are used for synchronization. A control graph has a unique event
vertex with no incoming edges called the source vertex. Also the graph has a unique
event vertex with no outgoing edges called the sink vertex. Nondeterminism is mod-
elled as multiple outgoing edges from a vertex.

2.3. Implementation Mapping

The implementation mapping provides a spatial and temporal mapping for the abstract
machine. The mapping has three main components:

• Set of node elements.
• Single main machine.
• Set of map machines.

The mapping defines a set of node elements () that represent inputs, outputs and
internal states in the circuit.

The main machine defines the flow of control for individual system operation. How-
ever we need to reason about sequence of operations. Therefore, the main machine
also defines how individual operations can be stitched together to create valid execu-
tion sequences. The main machine is a tuple of the form:

, where

• is a control graph.
• is a vertex cut of the control graph, .

The source denotes the start of an operation and the sink denotes the end of the
operation. The vertex cut denotes the nominal end of the operation. The nominal
end of an operation is defined to be the timepoint where the next operation can be
started. The vertex cut divides the set of vertices into 3 sets, , and where

. The set represents the set of vertices to the left of
the vertex cut and the set represents the set of vertices to the right of the vertex cut.
The vertex cut places certain restrictions on the set of edges in the graph. All paths
from vertices in to vertices in have to pass through an event vertex in . In
addition there cannot be any paths from vertices in to vertices in . The restric-
tion ensures that the pipeline is committed to an instruction once it has started.

For an unpipelined circuit, , since the current operation must end before

G V U E s t, , , ,〈 〉=

V
U
E
s s U∈
t t U∈

Nv

M Vm Um Em sm tm Ym, , , , ,〈 〉=

Vm Um Em sm tm, , , ,〈 〉
Ym Ym Um⊆

sm tm
Ym

Xm Ym Zm
Xm Ym Zm∪ ∪ Vm Um∪= Xm

Zm

Xm Zm Ym
Zm Xm

Ym tm{ }=

the next operation can start. However, for pipelined circuits, is a cutset of event
vertices between the source and sink. The cutset defines the time point when the next
operation can be started, thus overlapping the current and next operations. As an exam-
ple, consider the main machine for a simple pipelined processor shown in Figure 2.
The vertices F, D, and E are state vertices representing the fetch, decode and execute
stages respectively. The vertices s, p, q, and t are event vertices. Note that the nomi-
nal end cutset indicates that the next operation can be fetched when the current opera-
tion has entered the decode stage.

Individual instructions can be stitched together to create execution sequences as shown
in Figure 3. The machines M1, M2, M3 are multiple copies of the main machine with the
superscripts indexing successive instructions. The machine M* corresponds to the infi-
nite execution sequence obtained from stitching all instructions. Stitching is performed
by aligning the source vertex of an instance of the main machine with the nominal end
cutset of the previous main machine and taking the cross-product of all the aligned
machines.

In addition to the main machine, each simple abstract formula in the abstract specifica-
tion is mapped into a map machine. The map machine provides a spatial and temporal
mapping for the simple abstract formula. A control graph defines the temporal compo-
nent of the mapping. Each state vertex in the control graph is associated with a node
formula. The node formulas define the spatial component of the mapping. Here we will
present the basic form of the node formulas. Later in the section we will extend them
to the symbolic and vector domain. Node formulas are of the form:

• Simple node formula: () and () are node formulas if .
• Conjunction: () is a node formula if and are node formulas.
• Domain restriction: () and () are node formulas if is a node for-

mula.

The map machines are not completely independent. A synchronization function maps
event vertices in the map control graph to event vertices in the main control graph. The
synchronization function relates a simple abstract formula with the flow of control of

Ym

● ● ●●F D Es t
p q

Figure 2. Main machine for a simple pipelined processor.
Nominal End Cutset

● ● ●●F1 D1 E1s1 t1

● ● ●●F2 D2 E2s2 t2

● ● ●●F3 D3 E3s3 t3

● ● ●

● ●●

F1

s1 ● ● ●

D1F2 E1D2F3

M1

M2

M3

M*

Figure 3. Stitching main machines together to form execution sequences.

ni 0is ni 1is ni Nv∈
F1 F2and F1 F2

0 F➞ 1 F➞ F

the entire operation. Mathematically a map machine for a simple abstract formula
can be represented as a tuple of the form: ,
where

• is a control graph.
• is a labelling function that labels state vertices with node formulas.
• is the synchronization function, .

We have presented the basic form of the node formulas and map machines. The node
formulas can be extended to the symbolic and vector domain. In the symbolic domain,
the domain restriction is extended to be of the form: () where e is a Boolean
expression over a set of symbolic variables. We introduce the notation () as a
shorthand for . In the vector domain, node ele-
ments are extended to represent a vector of nets in the circuit. Similarly, map machines
can be extended to the symbolic and vector domains. A symbolic map machine defines
a set of scalar map machines. The mapping for a k-bit operand (ST) can be specified by
a single symbolic machine, , where v is a k-bit symbolic variable. The
symbolic machine captures 2k scalar map machines corresponding to all possible
assignments to the variable v.

The trajectory formula corresponding to an abstract formula is the set of trajectories
defined by the abstract formula for a particular implementation. The user needs to
define the map machine for simple abstract formulas. Given the map machines, the tra-
jectory formula for an abstract formula , written , can be automatically
computed as follows:

• and .
• , where is the parallel com-

position operator. Parallel composition amounts to taking the cross product of the
two control graphs under restrictions specified by the synchronization function.
Assume that and are state vertices in the trajectory formulas for and

 respectively. Further assume that and are the node formulas asso-
ciated with vertices and respectively. Then the node formula associated
with the cross-produce vertex is .

• is essentially the same as , except that the node formu-
las are modified. Assume that is a vertex in the trajectory formula for with
node formula . The node formula associated with the vertex for the trajec-
tory formula is .

Note that we can verify each operation individual and then reason about stitching oper-
ations together since captures the effect of any preceding or following
operations.

For an abstract assertion , and are the trajectory for-
mulas associated with the precondition and postcondition respectively. The trajectory
assertion corresponding to A can be automatically computed as ,
where is the shift-and-compose operator. The shift-and-compose operator shifts the
start of the machine to the nominal end cutset in the main machine and then
performs the composition. The node formulas in are treated as antecedent

s
Map s() Vs Us Es ss ts σs ϒs, , , , , ,〈 〉=

Vs Us Es ss ts, , , ,〈 〉
σs
ϒs ϒs Us Um→:

e F➞
ni eis

e ni 0is()➞() e ni 1is()➞()and

Map ST vis()

AF Traj AF()

Traj si 0is() Map si 0is()= Traj si 1is() Map si 1is()=
Traj AF1 AF2and() Traj AF1() Traj AF2()||= ||

v1 v2 AF1
AF2 NF1 NF2

v1 v2
v1 v2×() NF1 NF2and()

Traj e AF➞() Traj AF()
v AF

NF v
e AF➞() e NF➞()

Traj AF()

A P Q➡= Traj P() Traj Q()

Traj P() Traj Q()//
//

Traj Q()
Traj P()

node formulas. The antecedent node formulas define the stimuli and current state for
the circuit. The trajectory formula corresponding to the precondition is being used as a
generator since it generates low-level signals for the circuit. On the other hand, node
formulas in are treated asconsequent node formulas. The consequent node
formulas define the desired response and state transitions. The trajectory formula cor-
responding to the postcondition is being used as an acceptor since it defines the set of
acceptable responses for the circuit.

Incidentally the shift and compose operator was also used to stitch operations together
to form execution sequences in Figure3, with the slight variation that the main
machines were not associated with any node formulas.

3. Example

Assume that we want to verify the bitwise-or operation in an ALU. The abstract speci-
fication would define abstract state elements,SA, SB andST. SA andSB serve as the
source operands andST serves as the target operand for the bitwise-or operation.
Assume thata andb are symbolic variables that denote the current values ofSA and
SB. The abstract assertion for the bitwise-or operation is:

The | operator is the bitwise-or operator. Note that for a k-bit word size, this symbolic
abstract assertion represents 4k scalar assertions corresponding to all possible combi-
nations of assignments to variablesa andb.

The specification is kept abstract. It does not specify any timing or implementation
specific details. Now let’s assume a specific implementation of the ALU where the
source operands have to be fetched from a register file and may not be immediately
available. Assume that both source operands are associated with a valid signal which
specifies when the operand is available. The valid signals have a default value of logic
0 and are asserted by the register file subsystem to a logic 1 when the operand is avail-
able. The ALU computes the bitwise-or and makes it available for storage back into
the register file one cycle after both operands have been received. The block diagram
for such an ALU is shown in Figure4. This is a simple example that serves to illustrate
some of the issues that we have encountered in our effort to verify the PowerPC archi-
tecture.

There are a few interesting points to note about this implementation. First, the ALU
might have to wait for an arbitrary number of cycles before either of the source oper-
ands is available. Secondly, the source operands might arrive in different orders.
Figure5 shows part of an execution sequence for the implementation. The sequence is
divided into various segments each of which represents a bitwise-or operation. A seg-
ment is associated with a nominal end marker. The execution sequence can be obtained

Traj Q()

SA ais() SB bis()and ST a bis()➡

validA
InA

Figure 4. An implementation with a valid signal for each operand.

validB
InB

outCALU

Register File Subsystem

by overlapping the start of the successive segment with the nominal end marker of the
current segment. Note that segments can be of different widths. Segment 1 exhibits a
case where the A operand arrived before the B operand. Segments 2 and 3 exhibit cases
where both operands arrived simultaneously. Segment 3 represents the maximally
pipelined case where the operands were immediately available. And segment 4 exhib-
its a case where the B operand arrived before the A operand. The goal of verification is
to ensure that the circuit correctly performs a bitwise-or operation under any number
of wait cycles and under all possible arrival orders.

The main machine for such an implementation is shown in Figure 6. Each state vertex
represents a clock cycle. One or more cycles might be required to fetch the operands.
This is represented by the state vertex fetch. Multiple cycles are required when the
operands are not immediately available. After obtaining the operands, the result of the
bitwise-or operation is available in the next cycle represented by state vertex exe-
cute. The control graph is modeling nondeterministic behavior. The machine can
remain in the fetch state for an arbitrary number of cycles and then transition into
the execute state. The main machine captures all possible segments in the execution
sequence. The event vertex fetched represents the nominal end of the segment.

The map machine for the abstract formula () is a nondeterministic machine
shown in Figure 7. The symbolic variable v is serving as a formal argument. Later on
the formal arguments will get replaced by the actual arguments. The labelling inside
the state vertices represents the value of the valid signal for the A operand. The actual
node formulas associated with the state vertices are shown in shadowed boxes in the
figure. Since the operand might not be immediately available, the implementation
might have to wait for an arbitrary number of cycles. This is represented by state ver-
tex wait. The operand is received in state vertex fetch. After obtaining the A oper-
and, the implementation might have to wait again for an arbitrary number of cycles for
the B operand. This is represented by state vertex fill. The vertices M.start and
M.fetched represent the event vertices start and fetched in the main machine.
So the start of the map machine is synchronized to the start of the main machine. The

outC

Figure 5. Part of an execution sequence for the bitwise-or operation.

validA

validB

1
2

3
4

Segment

Nominal End

InA

InB

start done
fetched

fetch

execute

Figure 6. Main machine for the bitwise-or operation.

● ●●

SA vis

end of this machine is synchronized to the event vertex fetched in the main machine
where M.fetched represents the time point where both operands have been fetched.

The map machine for the abstract formula () is the same as for state element
SA except that the node formulas refer to the B operand.

Finally the map machine for () is shown in Figure 8. The start of this machine
is synchronized with the start of the main machine. This indicates that the result of the
computation for the previous operation should be available at the start of the current
operation.

The map machines get aligned with the main machine as shown in Figure 9. The
abstract formulas () and () appear in the precondition of the abstract
assertion. The formal argument in the corresponding map machine gets replaced by the
actual arguments a and b. The node formulas in the map machines are treated as ante-
cedent node formulas. Antecedent node formulas are shown in the upper half of the
state vertex. The event vertices are synchronized as specified by the synchronization
function. The abstract formula () appears in the postcondition. The formal
argument v is replaced by the expression . The node formulas are treated as con-
sequent node formulas. Consequent node formulas are shown in the lower half of the
state vertex. The synchronization point is shifted to the nominal end cutset in the main
machine.

Figure 7. Map Machine for (SA is v).

start done

fetch
fetched

wait fill

M.start M.fetched
(validA is 0)

(validA is 1) and (InA is v)

● ●● ●0 1 0

SB vis

Figure 8. Map machine for (ST is v).

start done

M.start (outC is v)

● ●

ST vis

● ● ●
M.start M.doneM.fetchedMain

(SA is a)

(SB is b)

(ST is a|b)

Figure 9. Alignment of machines for the bitwise-or operation.

A.fill

● ●● ●0 01

B.fill

● ●● ●0 01

● ●

SA ais SB bis

ST a bis
a b

The trajectory assertion for the bitwise-or operation corresponds to the composition of
these machines. For this example, composition amounts to performing the cross prod-
uct construction of the main, SA and SB machines between event vertices M.start
and M.fetched, followed by the cross-product construction of the main and ST
machines between event vertices M.fetched and M.done. However, the implemen-
tation mapping requires one additional piece of information. Notice that the state verti-
ces A.fill and B.fill represent the fact that one of the operands has been
received and the implementation is waiting for the other. When both operands have
been received, the implementation will go ahead and compute the bitwise-or. So in the
cross-product construction, we want to invalidate the cross product of vertices
A.fill and B.fill. With this additional information, the composition results in the
control graph shown in Figure 10. The resultant control graph captures all possible
orderings and arbitrary number of wait cycles. In the top path, the A operand was
received before the B operand. In the bottom path, the B operand was received before
the A operand. In the middle path, both source operands were received simultaneously.
The result of the bitwise-or operation is available in the final state vertex.

The resultant control graph serves as the trajectory assertion. In general the trajectory
specification consists of a set of trajectory assertions. Each trajectory assertion can be
represented as a tuple: , where

• is a control graph.
• labels state vertices with antecedent node formulas.
• labels state vertices with consequent node formulas.

The trajectory assertions express the system behavior relative to a path in a control
graph. The antecedent labelling along a path places restrictions on the inputs and inter-
nal states of the circuit. The consequent labelling specifies the set of allowed circuit
responses along the path.

Trajectory assertions can be classified into three categories in increasing order of gen-
eralization: 1) Single Sequence 2) Acyclic 3) Generalized. The control graph associ-
ated with a single sequence trajectory assertion has a linear sequence of vertices. An
acyclic trajectory assertion has a directed acyclic control graph. And the generalized

(validA is 0) and (validB is 0)

(validA is 0) and (validB is 1) and (InB is b)

(validA is 1) and (validB is 1) and (InA is a) and (InB is b)

(validA is 1) and (validB is 0) and (InA is a)

Figure 10. Trajectory Assertion for bitwise-or operation.

 (outC is a|b)

00

1100

00

01

10

●●●

●

●●

●
10

●

●

●

M.start

M.fetched cutset01

● M.done●

T V U E s t σa σc, , , , , ,〈 〉=

V U E s t, , , ,〈 〉
σa
σc

trajectory assertion has any arbitrary control graph.

4. Verification

The main concern in the verification task is that representing the next-state function or
relation for large systems is not computationally feasible. Therefore, we use Symbolic
Trajectory Evaluation (STE) which evaluates the next-state function on-the-fly and
only for that part of the circuit required by the trajectory assertion. STE uses a partially
ordered system model. In the past, STE has been used to verify only single sequence
trajectory assertions or single sequences augmented with simple loops. We extended
STE to deal with acyclic and generalized trajectory assertions.

4.1. Partially Ordered System Model

The logic set is extended to . The logic valueX denotes an unknown and
possibly indeterminate logic value. The logic values are assumed to have a partial
order with logicX lower in the partial order than both logic 0 and 1 as shown in
Figure11.

Assume that is the set of node assignments in the partially ordered system. There-
fore where . The elements of the set define a com-
plete lattice with as the bottom element and as an artificial top
element. The partial order in the lattice is a pointwise extension of the partial order
shown in Figure11. The symbols and denote the least upper bound and greatest
lower bound operations respectively.

In the partial order system, node formulas are represented by an element of the lattice.
The restricted form of the node formula ensures that it can be represented by a lattice
element. The lattice element corresponding to a node formula, written , is
defined recursively:

• is an element of the lattice withith position in the element being 0
and the rest of the positions beingX’s. is an element of the lattice
with theith position being 1 and the rest of the positions beingX’s.

• .
• and .

4.2. Extensions for acyclic trajectory assertions.

An acyclic trajectory assertion can be verified by enumerating all the paths from
source to sink and using STE separately on each path. However, there can be an expo-
nential number of paths in a graph. We use path variables to encode the graph and ver-
ify all paths in one single run of the simulator. STE has been extended with a
conditional simulation capability. Conditional simulation allows STE to advance to the
next-time instant under some specified Boolean condition. Under the condition, the
simulator advances to the next-time instant. Under the complement of the condition,
the simulator maintains the previous state of the circuit. The trajectory assertions are

0 1 X, ,{ }

0

X

1

Figure 11. Partial Order for logic values 0,1,X.

Ñ
Ñ 0 1 X, ,{ } m

T∪= m Nv= Ñ
Ñ |__

_
,[] X

m
T

|_| |
_
|

F Lat F()

Lat ni 0is()
Lat ni 1is()

Lat F1 F2and() Lat F1() Lat F2()|_|=
Lat 0 F➞() X

m
= Lat 1 F➞() Lat F()=

symbolically encoded and STE conditionally evaluates the next-state function for each
vertex in topological order. As an example, assume an acyclic trajectory assertion of
the form shown in Figure 12. The path variables shown in the figure are introduced to
encode the graph. For every vertex w with an outdegree of ,
number of variables are introduced to encode the edges. The conditions are accumu-
lated at the vertices as shown. An expression at a vertex specifies all possible condi-
tions under which the vertex can be reached from the source. The simulator can now
compute the vertices in topological order with the vertex expressions being used as
constraints for computing the excitation function. The number of additional path vari-
ables introduced is , where .

4.3. Extensions for generalized trajectory assertions.

Cycles in trajectory assertions can be dealt by performing a greatest fixed point com-
putation[4]. Therefore, we can deal with generalized trajectory assertions. We identify
the strongly connected components, obtain the corresponding acyclic component
graph, and encode the acyclic component graph. The strongly connected components
require a fixed point computation and are dealt with in a recursive manner. As an
example, the graph in Figure 12 is the acyclic component graph of the trajectory asser-
tion in Figure 10. Note that an exact greatest fixed point computation in a cycle
requires introducing new variables for each iteration of the cycle until a fixed point is
reached. The number of path variables introduced is no longer defined solely by the
trajectory assertion. Therefore, for each iteration of the cycle we quantify out the path
variables introduced for the cycle and reuse them in the next iteration. Quantification
requires a greatest lower bound operation on the lattice. The greatest lower bound
computation can lead to a pessimistic verification. A pessimistic verification can gen-
erate false negatives (correct circuit is reported to be incorrect) but will never generate
a false positive (incorrect circuit is reported to be correct). In effect STE computes a
conservative approximation of the reachability set.

5. Verification of a Superscalar Processor

We are testing our methodology on a superscalar processor. The processor is an imple-
mentation of the PowerPC architecture. The particular design is a fully functional pro-
totype of the processor found in IBM’s AS/400 Advanced 36 computer[12].

Presently, work has concentrated on verifying arithmetic and logical instructions with
two source register operands and one target register operand in the fixed point unit

d w() d w()()log

d w()()log
w W∈

∑ W V U∪=

Figure 12. Symbolic encoding of acyclic trajectory assertions.

●●●

●

●●

●

●

●

●p0

p1p2

p1

p1p2

p1p2p3

p1p4

p1p2

p1

1
p0

p3

p1p2

p1

p1p2

p4

p3

p4

p0

(F
X

U
).

 T
he

 F
X

U
 h

as
 th

re
e

pi
pe

lin
e

st
ag

es
, d

is
pa

tc
h,

 d
ec

od
e

an
d

ex
ec

ut
e.

 M
os

t o
f

ou
r

at
te

nt
io

n
ha

s
fo

cu
ss

ed
 o

n
ve

ri
fy

in
g

th
e

de
co

de
 s

ta
ge

 b
ec

au
se

 t
hi

s
is

 w
he

re
 t

he
 b

ul
k

of
th

e
co

nt
ro

l l
og

ic
 r

es
id

es
. T

he
 d

ec
od

e
st

ag
e

is
 r

es
po

ns
ib

le
 f

or
 o

bt
ai

ni
ng

 th
e

so
ur

ce
 o

pe
r-

an
ds

 f
ro

m
 t

he
 r

eg
is

te
r

fil
e

an
d

re
se

rv
in

g
th

e
ta

rg
et

 o
pe

ra
nd

 r
eg

is
te

r.
A

n
in

st
ru

ct
io

n
m

ig
ht

 s
ta

ll
in

 t
he

 d
ec

od
e

st
ag

e
be

ca
us

e
th

e
op

er
an

ds
 a

re
 n

ot
 i

m
m

ed
ia

te
ly

 a
va

ila
bl

e
or

be
ca

us
e

th
e

ex
ec

ut
e

st
ag

e
is

 b
us

y
pr

oc
es

si
ng

 a
no

th
er

 i
ns

tr
uc

tio
n.

 I
f

th
e

ex
ec

ut
e

st
ag

e
ha

s
a

va
lid

 in
st

ru
ct

io
n,

 th
en

 th
e

FX
U

 c
an

 b
yp

as
s

th
e

re
gi

st
er

 fi
le

 a
nd

 f
or

w
ar

d
th

e
ta

rg
et

op
er

an
d

da
ta

 in
 th

e
ex

ec
ut

e
st

ag
e

to
 th

e
de

co
de

 s
ta

ge
. T

hi
s

oc
cu

rs
 w

he
n

th
e

so
ur

ce
 r

eg
-

is
te

r
ad

dr
es

s
of

 t
he

 i
ns

tr
uc

tio
n

in
 t

he
 d

ec
od

e
st

ag
e

is
 t

he
 s

am
e

as
 t

he
 t

ar
ge

t
re

gi
st

er
ad

dr
es

s
of

 th
e

in
st

ru
ct

io
n

in
 th

e
ex

ec
ut

e
st

ag
e.

W
e

sp
ec

ifi
ed

 t
he

 m
ap

pi
ng

 t
o

ca
pt

ur
e

th
es

e
im

pl
em

en
ta

tio
n

de
ta

ils
. T

he
 m

ai
n

m
ac

hi
ne

de
fin

ed
 th

e
di

sp
at

ch
, d

ec
od

e
an

d
ex

ec
ut

e
st

ag
es

. A
 to

ta
l o

f
14

 m
ap

 m
ac

hi
ne

s
de

sc
ri

be
d

th
e

m
ap

pi
ng

 f
or

 s
im

pl
e

ab
st

ra
ct

 f
or

m
ul

as
. O

ur
 t

oo
l

to
ok

 t
he

 a
bs

tr
ac

t
sp

ec
ifi

ca
tio

n
an

d
m

ap
pi

ng
 a

nd
 g

en
er

at
ed

 t
he

 r
es

ul
ta

nt
 t

ra
je

ct
or

y
as

se
rt

io
n

sh
ow

n
in

 F
ig

ur
e

13
. T

he
 t

ra
-

je
ct

or
y

as
se

rt
io

n
co

rr
es

po
nd

s
to

 a
ll

po
ss

ib
le

 c
as

es
 t

ha
t

ca
n

ar
is

e
du

e
to

 i
nt

er
ac

tio
ns

be
tw

ee
n

th
e

m
ap

 m
ac

hi
ne

s.
 T

he
 c

on
tr

ol
 g

ra
ph

 c
an

 b
e

di
vi

de
d

in
to

 4
 v

er
tic

al
 s

lic
es

 a
s

sh
ow

n
by

 th
e

th
ic

k,
 d

ot
te

d
lin

es
 in

 th
e

fig
ur

e.
 W

e
w

ill
 n

um
be

r
th

es
e

sl
ic

es
 1

 to
 4

 f
ro

m
le

ft
 to

 r
ig

ht
. S

lic
e

1
is

 th
e

m
os

t c
om

pl
ex

 o
f

al
l s

lic
es

 a
nd

 c
or

re
sp

on
ds

 to
 th

e
ca

se
 w

he
re

ne
ith

er
 o

f
th

e
so

ur
ce

 o
pe

ra
nd

s
ar

e
by

pa
ss

ed
.

T
hi

s
sl

ic
e

ha
s

to
 d

ea
l

w
ith

 a
ll

po
ss

ib
le

ar
ri

va
l o

rd
er

s
of

 th
e

so
ur

ce
 o

pe
ra

nd
s

fr
om

 th
e

re
gi

st
er

 fi
le

. S
lic

es
 2

 a
nd

 3
 c

or
re

sp
on

d
to

th
e

ca
se

 w
he

re
 o

ne
 o

f
th

e
so

ur
ce

 o
pe

ra
nd

s
is

 b
ei

ng
 b

yp
as

se
d.

 S
lic

e
4

is
 th

e
si

m
pl

es
t o

f
al

l s
lic

es
 a

nd
 c

or
re

sp
on

ds
 to

 th
e

ca
se

 w
he

re
 b

ot
h

so
ur

ce
 o

pe
ra

nd
s

ar
e

by
pa

ss
ed

.

T
he

 tr
aj

ec
to

ry
 a

ss
er

tio
n

ha
s

26
1

st
at

e
ve

rt
ic

es
, 5

7
cy

cl
es

 th
at

 r
eq

ui
re

 a
 fi

xe
d

po
in

t c
om

-

F
ig

ur
e

13
. T

ra
je

ct
or

y
A

ss
er

ti
on

 f
or

 a
 c

la
ss

 o
f

in
st

ru
ct

io
ns

 in
 t

he
 F

X
U

.

5

4

1918

41

40

44

56

55

57

39

62

17

16

21

20

24

25

27

26

28

23

22

3433

32

36

3538

37

8

10

9

7

6

1514

13

43

42

45

47

46

51

61

63

82

81

65

64

84
83

67

66

85

73

88

87

90

89

59

58

60
91

92

86

7675

7069

68

30

29
31

72

71

78

77

5049

48

53

52
54

79

80

74

3

21

97

105

104

96

107

98

10099

106

108

122121

103102

101

110

109

124
123

115114

113

119

118

120

117

116

112111

95

9493

152

128

157

156

201

160

194

193

200

195

202

155

151

129

150

147

207

206

251

210

244

243

250

245

252

205

330

255

154

153

159

158

178

161

163

162

177

164

180

179

182

181

190189

188

192

191

204

203

138

130

137131

140

139

146145

144

209

208

228

211

213

212

227

214

230

229

232

231

240239

238

242

241
254

253

287

256

315

314

258

257

317

316

260

259

319

318

262

261

322

321

197

196

199

198

324

323

149
148

247

246

249

248

326

325

328

327

329

320

265

264

166
165

168

167

171170

169

173

172
267

266

133132

136135

134

216
215

218

217

221220

219

223

222

269

268

271

270

274273

272

276
275

278

277

280

279

286

263

289

288

291

290

293

292

296

183

184

186

185

187

297

141

143

142

233

234

236

235

237

298

299

301

300

302

303

304

295

294

307306

305

309

308

311

310

282

281

175

174
176

283

225

224
226

284

285

313

312

331

127

333

338339

341

340

342337

334

336

335

347

348
350

349

351
346

355

357

356

358

359

362

361

344

343

345

363

353

352

354

364
365

360

332

126

125

369

381

383

398

397

400

399

380

370

378

377

403

405

420

419

422

421

402

424

379
382

384

386

385

388

387

401

371

373

372

404

406

408

407

410409

423

425

449

448

376375

374

427
426

451

450

391

390
389

393

392

429

428

453

452

413

412

411

415

414

431

430

455

454

436

435

434

438

437

440439

444

443

395
394

396

445

1211

417

416
418

446

447
442

441

433

432

368

367366

0

putation and 4210 paths in the corresponding acyclic component graph. It would be
computationally infeasible to enumerate all paths and use STE separately on each path.
Instead our tool encoded the paths using 410 path variables. STE verified the entire tra-
jectory assertion in a single verification run. We took the OR instruction as a represen-
tative of this class of instructions. The verification of the OR instruction took 3 hours
of CPU time and 70 Meg of memory on an IBM Power Series 850, 133MHz 604.

6. Conclusions

We have presented a methodology for verification of systems that have a simple high-
level specification but have implementations that exhibit nondeterministic behavior.
The verification task verifies each individual operation. The theoretical foundation
behind the methodology ensures that the operations can be stitched together to create
arbitrary execution sequences. STE has been enhanced to deal with greater amounts of
nondeterminism. Our work on the fixed point unit in the PowerPC architecture indi-
cates that this is a promising approach for the verification of processors.

References
[1] R. E. Bryant, D. L. Beatty and C. J. H. Seger, “Formal Hardware Verification by Sym-

bolic Ternary Trajectory Evaluation,” 28th Design Automation Conference, pp. 397-402,
June 1991.

[2] D. L. Beatty, “A Methodology for Formal Hardware Verification with Application to
Microprocessors,” PhD Thesis, published as technical report CMU-CS-93-190, School
of Computer Science, Carnegie Mellon University, August 1993.

[3] D. L. Beatty and R. E. Bryant, “Formally Verifying a Microprocessor Using a Simula-
tion Methodology,” 31st Design Automation Conference, pp. 596-602, June 1994.

[4] C. J. H. Seger and R. E. Bryant, “Formal Verification by Symbolic Evaluation of Par-
tially-Ordered Trajectories,” Formal Methods in System Design 6, pp. 147-189, 1995.

[5] J. R. Burch, E. M. Clarke, K. L. McMillan and D. L. Dill, “Sequential Circuit Verifica-
tion Using Symbolic Model Checking,” 27th Design Automation Conference, pp. 46-51,
June 1990.

[6] K. L. McMillan, “Symbolic Model Checking,” Kluwer Academic Publishers, 1993.
[7] R. P. Kurshan, “Analysis of Discrete Event Coordination,” Lecture Notes in Computer

Science 430, pp. 414-453, 1990.
[8] R. P. Kurshan, “Computer-Aided Verification of Coordinating Processes: The Autom-

ata-Theoretic Approach,” Princeton University Press, 1994.
[9] W. A. Hunt, “FM8501: A Verified Microprocessor,” Lecture Notes in Artificial Intelli-

gence 795, 1994.
[10] T. K. Miller III, B. L. Bhuva, R. L. Barnes, J.-C. Duh, H.-B. Lin and D. E. Van den Bout,

“The Hector Microprocessor,” International Conference on Computer Design, pp. 406-
411, 1986.

[11] M. Srivas and M. Bickford, “Formal Verification of a Pipelined Microprocessor,” IEEE
software 7(5), pp. 52-64, September 1990.

[12] C. May, E. Silha, R. Simpson and H. Warren, “The PowerPC Architecture: A Specifica-
tion for a New Family of RISC Processors,” Morgan Kaufmann Publishers, 1994.

[13] J. R. Burch and D. L. Dill, “Automatic Verification of Pipelined Microprocessor Con-
trol,” Lecture Notes in Computer Science, Computer Aided Verification, 6th Interna-
tional Conference, CAV 94, pp. 68-80, 1994.

