Modeling and Verification of Out-of-Order
Microprocessors in UCLID

Shuvendu K. Lahiri2, Sanjit A. Seshia!, and Randal E. Bryant!-2

! School of Computer Science, Carnegie Mellon University, Pittsburgh, PA
{Randy.Bryant, Sanjit.Seshia}@cs.cmu.edu
? Electrical and Computer Engineering Department, Carnegie Mellon University,
Pittsburgh, PA

shuvendu@ece. cmu.edu

Abstract. In this paper, we describe the modeling and verification
of out-of-order microprocessors with unbounded resources using an ex-
pressive, yet efficiently decidable, quantifier-free fragment of first order
logic. This logic includes uninterpreted functions, equality, ordering, con-
strained lambda expressions, and counter arithmetic. UCLID is a tool
for specifying and verifying systems expressed in this logic. The paper
makes two main contributions. First, we show that the logic is expres-
sive enough to model components found in most modern microprocessors,
independent of their actual sizes. Second, we demonstrate UCLID’s ver-
ification capabilities, ranging from full automation for bounded property
checking to a high degree of automation in proving restricted classes of
invariants. These techniques, coupled with a counterexample generation
facility, are useful in establishing correctness of processor designs. We
demonstrate UCLID’s methods using a case study of a synthetic model
of an out-of-order processor where all the invariants were proved auto-
matically.

1 Introduction

Present-day microprocessors are complex systems, incorporating features such
as pipelining, speculative, out-of-order execution, register-renaming, exceptions,
and multi-level caching. Several formal verification techniques, including sym-
bolic model checking [4,12], theorem proving [17,2,11], and approaches based
on decision procedures for the logic of equality with uninterpreted functions [8,
6, 20] have been used to verify such microarchitectures.

In previous work, Bryant et al.[5, 6] presented PEUF, a logic of positive equality
with uninterpreted functions. PEUF has been shown to be expressive enough to
model pipelined processors and also has a very efficient decision procedure based
on Boolean techniques. Lahiri et al. [13] demonstrate the use of this technique
for the verification of the superscalar, deeply pipelined MCORE! processor, by

! MCORE is a registered trademark of Motorola Inc.

finding bugs in the real design. However, this approach cannot handle models
with unbounded queues and reorder buffers, which limits its applicability to pro-
cessors with bounded resources. To overcome this problem, we have generalized
PEUF to yield a more expressive logic called CLU [7], which is a logic of Counter
Arithmetic with Lambda Expressions and Uninterpreted Functions. UCLID is
a system for modeling and verifying systems modeled in CLU. It can be used
to model a large class of infinite-state systems, including those with unbounded
resources, while retaining the advantage of having an efficient decision procedure.

In this paper, we explore the application of UCLID to out-of-order processor
designs. First, we illustrate the fact that CLU is expressive enough to model
different processor components with unbounded resources. This includes com-
ponents with infinite resources (e.g. infinite memory) or resources with finite
but arbitrary size (e.g. a circular queue of arbitrary length). Next, we show that
UCLID has useful verification capabilities that build upon the efficient decision
procedure and a counterexample generator. We demonstrate the successful use
of bounded property checking, i.e., checking an invariant on all the states of the
system which are reachable within a fixed (bounded) number of steps from the
reset state. The efficiency of UCLID’s decision procedure enables a completely
automatic exploration of a much larger state space than is possible with other
techniques which can model infinite state systems. UCLID can also be used
for inductive invariant checking, for a restricted class of invariants of the form
Vay...VepP(x,... o), where U(z1,...,2) is a CLU formula. In our experi-
ence, this class of invariant is expressive enough to specify most invariants about
out-of-order processors with unbounded size. These are also the most frequently
occurring invariants that we have encountered in our experience with UCLID.

As a case study, we present the modeling and verification of a synthetic out-of-
order processor, OO0, with ALU instructions, infinite memory, arbitrary large
data words and an unbounded-size reorder buffer (first with an infinite size
queue, and then with a finite but arbitrary size circular buffer). Bounded prop-
erty checking was used initially to debug the design. The processor model was
then formally verified by inductive invariant checking, by showing that it refines
an instruction set architecture (ISA) model. The highlight of the verification
was that all the invariants were proved fully automatically. Moreover, very little
manual effort was needed in coming up with auxiliary invariants, which were
inferred fairly easily from counterexample traces.

Related Work. Jhala and McMillan [12] use compositional model checking to
verify a microarchitecture with speculative, out-of-order execution, load-store
buffers and branch prediction. Apart from requiring the user to write down the
refinement maps and case-splits to prove lemmas, the rest of the verification
is automatically performed using Cadence SMV. The out-of-order processor we
verify is similar in complexity to the model of Tomasulo algorithm McMillan
verified using compositional reasoning [14]. The author acknowledges that the
proof is not automatic and substantial human effort is required to decompose
the proof into lemmas about small components of states. The main advantage

of using model checking is in automatically computing the strongest invariants
for the most general state of the system; in our case, once the invariants have
been figured out by the user, the rest of the proof is fully automatic and no
manual decomposition is required. Berezin et al. [4] use special data-structures
called reference files, along with other symmetry reduction techniques, to manu-
ally decompose a generic out-of-order execution model to a finite model, which is
verified using a model checker. The manual guidance involved in decomposing the
model limits the applicability of this approach to small, simple designs. Sawada
and Hunt [17] use theorem proving methodology to verify the correctness of
microarchitectures with out-of-order execution, load-store instruction and spec-
ulation. They use a trace-table based intermediate representation called MAETT
to record both committed and in-flight instructions. This method requires exten-
sive user guidance during the verification process, first in discovering invariants,
and then in proving them using the ACL2 theorem prover. The authors claim
that automating the proof of the lemmas would make the verification easier. Au-
tomating proof is central to our work and we illustrate it with the verification of
an out-of-order unit. Hosabettu et al. [10, 11] use a completion function approach
to verify advanced microarchitectures which includes reorder buffers, using the
PVS [16] theorem prover. The method requires user ingenuity to construct a
completion function for the different instruction types and then composing the
different completion functions to obtain the abstraction function. The approach
further requires extensive user guidance in discharging the proofs. Although
the out-of-order unit we verify is of similar complexity as that in their original
work [10], we shall show that the invariants required in our verification are few
and simple, and they are discharged in a completely automatic manner. Arons
et al. [1,2] also verify out-of-order processors using refinement within PVS the-
orem prover. Qur verification scheme is very similar to their approach as it also
uses prediction to establish the correspondence with a sequential ISA. The model
verified in [1] is similar in complexity to ours but once again substantial manual
assistance is required to prove the invariants using PVS. Skakkebaek et al. [19]
manually transform an out-of-order model of a processor to an intermediate in-
order model, and use incremental flushing to show the correspondence of the
intermediate model with the ISA model. The manual component in the entire
process is significant in both constructing the intermediate model and proving
correctness. Velev [20] has verified an out-of-order execution unit exploiting pos-
itive equality and rewrite rules. The model does not have register-renaming and
still considers bounded (although very large) resources.

The rest of the paper is organized as follows. We begin by describing the UCLID
system in Section 2. This section outlines the underlying logic CLU in Sec-
tion 2.1 and the verification techniques supported in the UCLID framework in
Section 2.2. Modeling primitives for various processor components are described
in Section 3. Section 4 describes the case study of the verification of an out-of-
order processor unit (O0OO) in detail. The section contains a description of the
processor, all the invariants required, and the use of bounded property check-
ing and inductive invariant checking for the verification of the OOO unit. We
conclude in Section 5.

2 The UCLID system
2.1 The CLU Logic

The logic of Counter Arithmetic with Lambda Expressions and Uninterpreted
Functions (CLU) is a generalization of Logic of Equality with Uninterpreted
Functions (EUF) [8] with constrained lambda expressions, ordering, interpreted
functions for successor (succ) and predecessor (pred) operations, that we will
refer to as counter arithmetic.

bool-expr ::= true | false | ~bool-ezpr | (bool-expr A bool-expr)
| (int-ezpr=int-expr) | (int-expr< int-ezpr)
| predicate-expr(int-ezpr, . .. | int-expr)
int-expr = int-var | ITE(bool-expr, int-expr, int-ezpr)

| succ(int-ezpr) | pred(int-ezpr)

| function-ezpr(int-ezpr, . .. , int-ezpr)
predicate-expr ::= predicate-symbol | X int-var, . .. , int-var. bool-expr
function-expr ::= function-symbol | X int-var, ... ,int-var. int-expr

Fig.1l. CLU Syntax.

Expressions in CLU describe means of computing four different types of values.
Boolean expressions, also termed formulas, yield true or false. Integer expres-
sions, also referred to as terms, yield integer values. Predicate expressions denote
functions from integers to Boolean values. Function expressions, denote functions
from integers to integers. Figure 1 summarizes the expression syntax. The sim-
plest Boolean expressions are true and false. Boolean expressions can also be
formed by comparing two integer expressions for equality or for ordering, or by
applying a predicate expression to a list of integer expressions, or by combining
Boolean expressions using Boolean connectives. Integer expressions can be in-
teger variables?, or can be formed by applying a function expression (including
interpreted functions succ and pred) to a list of integer expressions, or by apply-
ing the ITFE (for “if-then-else”) operator. The ITE operator chooses between two
values based on a Boolean control value, i.e., ITE(true, x;, x2) yields z; while
ITE(false, 1, x2) yields z5. Function (predicate) expressions can be either func-
tion (predicate) symbols, representing uninterpreted functions (predicates), or
lambda expressions, defining the value of the function (predicate) as an integer
(Boolean) expression containing references to a set of argument variables. We
will omit parentheses for function and predicate symbols with zero arguments,
writing a instead of a().

An integer variable z is said to be bound in expression E when it occurs inside a
lambda expression for which z is one of the argument variables. We say that an

2 Integer variables are used only as the formal arguments of lambda expressions

expression is well-formed when it contains no unbound variables. The value of a
well-formed expression in CLU is defined relative to an interpretation I of the
function and predicate symbols. Let Z denote the set of integers. Interpretation
I assigns to each function symbol of arity k, a function from Z* to Z, and to
each predicate symbol of arity k a function from Z* to {true, false}. The value
of a well-formed expression E in CLU relative to an interpretation I, [E]; is
defined inductively over the expression structure. We shall omit the details in
this paper. A well-formed formula F is true under interpretation I if [F|; is
true. It is walid when it is true under all possible interpretations.

It can be easily shown that CLU has a small-model property, i.e. a CLU formula
Fy, is valid iff Fyy, is valid over all interpretations whose domain size equals
the number of distinct terms in Fy,. The decision procedure for CLU checks the
validity of a well-formed formula F' by translating it to an equivalent proposi-
tional formula. The structure of the formula is exploited for positive equality [5)]
to dramatically reduce the number of interpretations to consider, yielding a very
efficient decision procedure for CLU [7]. For brevity, we will not discuss the
decision procedure in this paper.

2.2 Verification with UCLID

The UCLID specification language can be used to specify a state machine,
where the state variables either have primitive types — Boolean, enumerated,
or (unbounded) integer — or are functions of integer arguments that evaluate
to these primitive types. The concept of using functions or predicates as state
variables has previously been used in Cadence SMV, and in theorem provers as
well. A system is specified in UCLID by describing initial-state and next-state
expressions for each state variable.

The UCLID verification engine comprises of a symbolic simulator that can be
“configured” for different kinds of verification tasks, and a decision procedure for
CLU. We shall illustrate the use of two particular techniques for the verification
of out-of-order processors. The reader is referred to [7] for more details.

1. Bounded property checking: The system is symbolically simulated for a fixed
number of steps starting from the reset state. At each step, the decision
procedure is invoked to check the validity of some safety property. If the
property fails, then we can generate a counterexample trace from the reset
state.

2. Inductive invariant checking: The system is started from the most general
state which satisfies the invariants and then simulated for one step. The
invariants are checked at the next step to ensure that the state transition
preserves the invariant. If the invariants hold for the reset state, and the in-
variants are preserved by the transition function, then the invariants hold for
any reachable state of the model. As we shall see in the next section, we can
express an interesting class of invariants with universal quantifiers and can
automatically decide that the transition function preserves the invariants.

Counterexample Generation. One of the useful features of UCLID is its
ability to generate counterexample traces, much like a model checker. A coun-
terexample to a CLU formula F,y,, is a partial interpretation I to the various
function and predicate symbols in the formula. If the system has been symbol-
ically simulated for k steps, then the interpretation I generated above can be
applied to the expressions at each step, thereby resulting in a complete coun-
terexample trace for k steps. The counterexample generation is useful in both
bounded property checking to discover bugs in the design and in inductive in-
variant checking for adding more auxiliary invariants.

Invariant Checking and Quantifiers. The logic of CLU has been restricted
to be quantifier-free. Hence a well-formed formula in this logic can be decided for
validity using the small-model property of CLU. Although this restriction is not
severe in the modeling of the out-of-order processors we consider, the need for
quantifiers become apparent when UCLID is used for invariant checking. The
invariants we encounter are frequently of the form VziVxs ... Vo ®(xq,. .., k),
where 1, . .. ,x}, are integer variables which are free in the CLU formula &(z1, . . .
To prove that such an invariant is actually preserved by the state transition func-
tion, we need to decide the validity of formulas of the form

Vor .. Ve P(x1,... ,om) = Yy1...Vyr®Y1,--. ,Yk) (1)

where ¥ (z1,... ,Zm), P(Y1,--- ,yr) are CLU formulas, z;1 ...z, and y1 ...y
are freein ¥(x1,... ,Zm) and é(y1, ... ,yx) respectively. In general, the problem
of checking validity of first-order formulas of the form (1), with uninterpreted
functions is undecidable [9]. Note that this class of formulas cannot be expressed
in CLU, since CLU is a quantifier-free logic. However, UCLID has a preprocessor
for formulas of the form (1), which are translated to a CLU formula, which is a
more conservative form of the original formula, i.e. if the CLU formula is valid
then the original formula is valid. As we shall demonstrate, this has proved very
effective for automatically checking the class of invariants encountered in our
verification with out-of-order processors.

We employ a very simple heuristic to convert formulas of the form (1) to a CLU
formula. First, the universal quantifiers to the right of the implication in (1) are
removed by skolemization to yield the following formula, which is equivalent to
the formula in (1)

Vor1.. Ve (z1,... ,2m) = P(U1,... ,Uk) (2)

where 71, ... ,7 are fresh function symbols of arity 0. Second, as in deductive
verification, we instantiate x1 . .. x,, with concrete terms and the universal quan-
tifiers to the left of the implication are replaced by a finite conjunction over these
concrete terms. The resulting formula is a CLU formula, whose validity implies
the validity of (1). The set of terms over which to instantiate the antecedent is
chosen as follows.

Let T (Feu) be the set of all terms (integer expressions) which occur in a CLU
expression Fy,. For each bound variable z; in Vi ...V2,,¥(z1,... ,Zm), we

denote Fi = { f| fis an function or predicate symbol and z; occurs as j*"
argument to fin ¥(z1,... ,zy)}. Further, for each function or predicate symbol
f which occurs in ¥(zy,...,Z,), denote g’; ={T|Te T(P), and appears
as the k'™ argument to f in ®(§i,...,9k) }- The set of arguments that each
bound variable z; takes is given by A,;, =J; { T | T € g} for some f € FJ }.
Finally, ¥(z1,... ,2.,) is instantiated over all the terms in Cartesian product,

Agy X Agy oo X Ag..

For example, consider the following quantified formula

Vz1Voo. f(21,22) = g(x2,71) = Vy.f(h2(y), h1(y)) = 9(h1(y), h2(y))

where ¥ = f(x1,22) = g(22,21) and & = f(ha(y),h1(y)) = 9(h1(y), ha(y))-
In this case,Fy, = {f}, F2, = {9} and F,, = {g}, F2, = {f}. Similarly,
Gt = {ha@®}, GF = {m (@)} and Gy = {m (@)}, G; = {h2(9)}. Finally, A, =
{h2(¥)} and A,, = {h1(¥)}. Hence the bound variables z1,z, are instantiated
over {hz(y)} and {hy(y)} respectively. Hence the CLU formula becomes :

F(ha (), 1 (y)) = g(ha(9), ha(y)) = f(ha(y), b1 (9)) = 9(m1(y), h2(1))

which is valid.

It is easy to see that this method would cause a blowup which is exponential
in the number of bound variables in Vz;...Ve,P(x1,...,Z,). However our
experience shows that the form of invariants we normally consider have very
few bound variables which the decision procedure for UCLID can handle. More
importantly, we will demonstrate in Section 4.2 that this simple translation to
CLU formula helps us decide many equations of the form (1).

3 Modeling Components of Microprocessors

This section presents techniques to model commonly found structures of modern
superscalar processor designs. Primitive constructs have been drawn from a wide
spectrum of industrial processor designs, including those of the MIPS R10000,
PowerPC 620, and Pentium Pro [18].

3.1 Terms, Uninterpreted Functions and Data Abstraction

Microprocessors are described using the standard term-level modeling primitives
[17,12,21], where data-words and bit-vectors are abstracted with terms, and
functional units abstracted with uninterpreted functions.

3.2 Memories

In this section, we look at a few different formulations of memories found in
processors and show how the lambda notations offer a very natural modeling
capability for memories.

Indexed Memories. Data memory and register file are examples of indezed
memories. The set of operations supported by this form of memory are read,
write. At any point in system operation, an indered memory is represented by
a function expression M denoting a mapping from addresses to data values.
The initial state of the memory is given by an uninterpreted function symbol
mg which denotes an arbitrary memory state. The effect of a write operation
with integer expressions A and D denoting the address and data values yields a
function expression M':

M' = Xaddr . ITE(addr=A, D, M (addr))

where M (addr) denotes a read from the memory at an address addr.

Content Addressable Memories. Register Rename units and Translation
Lookaside Buffers (TLBs) are examples of Content Addressable Memory (CAM),
that store associations between key and data. We represent a CAM as a pair
C = (C.data,C.present), where C.present is a predicate expression such that
C.present(k) is true for any key k that is stored in the CAM, and C.data is a
function expression such that C.data(k) yields the data associated with key k,
assuming the key is present. The next state components of a CAM for different
operations are shown in Figure 2.

Operation C’.present C'.data
Insert(C, K,D)| Akey . (key=K) V C.present(key) |Akey . ITE(key=K, D, C.data(key))
Delete(C,K) |Akey . ~(key=K) A C.present(key) C.data

Fig.2. CAM operations

Simultaneous-update arrays. Many structures such as reorder buffers, reser-
vation stations in processors, snoop on the result bus to update an arbitrary
number of entries in the array at a single instant. At any point in time, the
entry at index 4 in M can be updated with a data D (%) if the predicate P(i) is
satisfied. The next state of the array is denoted as:

M' = Xi.ITE(P(3), D(i), M (7))

Note that an arbitrary subset of entries in the array can get updated at any
time.

3.3 Queues and FIFO Buffers

Processors which employ out-of-order execution mechanisms or aggressive prefetch-
ing use a variety of queues in the microarchitecture. Instruction buffers, reorder
buffers, queues for deferring store instructions to memory, load queues to hold
the load instructions which suffer a cache miss are found in most modern pro-
Cessors.

Queues. A finite circular queue of arbitrary length can be modeled by augment-
ing a CAM with two pointers to point to the head and the tail of the queue.
Insertion (push) of data takes place only at the tail of the queue, and deletion
(pop) takes place only at the head. Thus a circular queue can be modeled as
a record @ = (Q.data, Q.present, Q.head, Q.tail). Q.data and Q.present are
defined exactly as in Section 3.2. @).head is the index of the head of the queue,
Q.tail is the index of the tail (next insertion point) of the queue. Let the sym-
bolic constants s and e represent the start and end points of the array over which
the circular queue is implemented. The queue is empty when Q.head = Q.tail
and Q.present(Q.head) = false. The queue is full when @.head = @Q.tail and
Q.present(Q.head) = true.

To model the effect of succ and pred modulo certain integer, we define the the
modulo increment and decrement functions succ,] and predy; . as follows:
succyy o) ;= Ai. ITE(i=e, s, succ(i))
pred|, . := \i. ITE(i=s, e, pred(i))

Popping data item from @) returns a new queue)’ whose components have the
value:

Q' .head = succs)(Q.head)| Q" .present = Xi . =(i=Q.head) A Q.present(s)
Q' .tail = Q.tail Q’.data = Q.data

Pushing a data item X into @ returns a new queue Q' where

Q" .head = Q.head Q' .present = Xi. (1= Q.tail) V C.present(4)
Q' .tail = succy, 1(Q.tail)| Q' data = Xi. ITE(i= Q.tail, X, Q.data(i))

This formulation of queue is used when the the index to the queue is used as a key
in the system. The reorder buffers in processors follow this formulation, because
the index in the reorder buffer uniquely identifies the instruction at the index.
It is easy to see that for the case when succ,) = succ and predy,) = pred,
we obtain an unbounded infinite queue. @.present would be redundant in that
situation.

FIFO Buffers. Alternate formulation of queues where the index in the queue is
not used as a key (normally referred as FIFO Buffers) are also found in proces-
sors. Instruction buffers and load buffers are some examples of this form of queue.
Every time an entry is dequeued, the entire content of the queue is shifted by
one place towards the head of the queue. If the symbolic constant maz denotes
the maximum length of the queue, then the queue is full when (Q.tail = maz)
and is empty when (Q.tail = @Q.head). The other operations of the queue are
given below.

Operation |Q'.head| Q'.tail Q' .data
Push(Q, X)| Q.head |suce(Q.tail) |(Ni . ITE(i= Q.tail, X, Q.data(7))
Pop(Q) | Q-head |pred(Q.tasil) Ai. @.data(succ(z))

4 0O0O: A Synthetic Out-of-Order Processor

00O is a simple, unspeculative, out-of-order execution unit with unbounded
resources, depicted in Figure 3. The only instructions permitted are arithmetic
and logical (ALU) instructions with two source operands and one destination
operand. As shown in Figure 3, an instruction is read from program memory,

SRC1 VAL
REGISTER SRCL TAG
FILE
srcl zg xxl D?
src2 >
E—— SRC2 TAG
dest N SRC2 VALI D?
DEST
REG I D

RESULT

PROGRAM
MEMORY

mooOmo

RESULT BUS retire, VALI D?
opcode A

PC
dispatch
e o o &
% REORDER
ALU BUFFER

Hi ‘IAI L
execute

Fig. 3. O00: An Out-of-order execution unit.

decoded, and dispatched to the end of the reorder buffer, which is modeled as
an infinite queue. Instructions with ready operands can execute out-of-order. Fi-
nally, an instruction is retired (the program state updated), once it is at the head
of the reorder buffer. On each step, the system nondeterministically chooses to
either dispatch a new instruction, execute an instruction, or retire an instruction.

The register file is modeled as an infinite memory indexed by register ID. Each
entry of the register file has a bit, reg.valid, a value reg.val and a tag reg. tag.
If reg.valid bit is true, the reg.val contains a valid value, else, reg.tag would
hold the tag of the most recent instruction that will write to this register.

The reorder buffer has two pointers, rob.head, which points to the oldest instruc-
tion in the reorder buffer, and rob.tail, where a newly dispatched instruction
would be added. The index of an entry in the reorder buffer serves as its tag.
Each entry in the reorder buffer has a valid bit rob.valid indicating if the in-
struction has finished execution. It has fields for the two operands rob.srcival,
rob.src2val. The bit rob.srcivalid indicates if the first operand is ready. If
the first operand does not have valid data, rob.srcltag holds the tag for the
instruction which would produce the operand data. There is a similar bit for
the second operand. Each entry also contains the destination register identifier
rob.dest and the result of the instruction rob.value to be written back. Fur-
ther, each entry also stores the program counter (PC) for each entry in rob.PC.

When an instruction is dispatched, if a source register is marked valid in the reg-
ister file, the contents of that register are filled into the corresponding operand

field for the instruction in the reorder buffer and it is marked valid. If the in-
struction which would write to the source register has finished execution, then
the corresponding operand field copies the result of that instruction and the
operand is marked valid. Otherwise, the operand copies the the tag present with
the source register into its tag field and the operand is marked invalid. When
an instruction executes, it updates its result, and broadcasts the result on the
result bus so that all other instructions in the reorder buffer that are waiting on
it can update their operand fields. Finally, when a completed instruction reaches
the head of the reorder buffer, it is retired. If the tag of the retiring instruction
matches the reg.tag for the destination register, the result of the instruction
is written back into the destination register, and that register is marked valid.
Otherwise, the register file remains unchanged.

4.1 Bounded Property Checking of OO0

The verification of the OOO model was carried out in two phases. In the first
phase, we applied bounded property checking to eliminate most of the bugs
present in the original model of OOQ. For instance, in the original model, a
dispatched instruction only looked at the register file for its source operands. If
the source was invalid, it was enqueued into the reorder buffer with its operand
invalid. The counterexample trace demonstrated that an instruction in the ROB
can hold the tag of an already retired instruction.

The purpose of bounded property checking is not only to discover bugs, but can
also serve as a very useful semi-formal verification tool. We can argue that for
a model with a circular ROB of size k, all the states of the OO0 where (i) the
length of the ROB is anywhere between 0,... ,k, (ii) the value of the control
bits rob.srclvalid, rob.src2valid, rob.valid are arbitrary for each entry
in the ROB and (iii) the control bit of each register reg.valid is arbitrary, can
be reached within 2k steps from the reset state. 2k steps are needed to reach
the state when the ROB is full and all the instructions in the ROB have finished
execution. Thus a property verified upto 2k steps gives a reasonable guarantee
that it would always hold for a implementation of OOO where the number of
ROB entries is bound by k. This also means that if there is a bug for a particular
implementation of OOO where the size of the ROB is bound by k, then there is
a high likelihood of the bug being detected within 2k steps of bounded-property
checking. In Fig 4, we demonstrate that the efficiency of the decision procedure
enables UCLID to perform bounded property checking for a reasonable number
of steps (upto 20), thus providing guarantee for OOO models with upto 10 ROB
entries. Figure 4 shows the result for checking the following two properties:

1. tag-consistency:

VriVra[((r1 # re)A—reg.valid(ri)A—reg.valid(r:)) = (reg.tag(ri) # reg.tag(rz))]
2. rf-rob:

Vr[-reg.valid(r) => rob.dest(reg.tag(r)) = r]

The experiments were performed on a 1400MHz Pentium with 256 MB memory
running Linux. zChaff [15] was used as the SAT solver within UCLID. To com-

pare the performance of UCLID’s decision procedure, we also used SVC [3] to
decide the CLU formulas. Although SVC’s logic is more expressive than CLU
(includes bit-vectors and linear arithmetic in addition to CLU constructs), the
decision procedure for CLU outperforms SVC for checking the properties of in-
terest in bounded property checking. The key point to note is that UCLID
(coupled with powerful SAT solvers like zChaff) enables automatic exploration
of much larger state spaces than was previously possible with other techniques.

|| Property |#steps|qu size|Fz,ool size|UCLID time|SVC time||

tag-consistency| 6 346 1203 0.87 0.22
10 2566 15290 10.80 233.18
14 7480 62504 76.55 > bhrs

18 15098 | 173612 542.30 > 1 day
20 19921 | 263413 1679.12 > 1 day
rf-rob 10 2308 14666 10.31 160.84
14 7392 61196 71.29 > 8hr
18 14982 | 171364 485.09 > lday
20 19791 | 260599 777.12 > lday

Fig. 4. Experimental results for Bounded Property Checking with OO0O.
Here “steps” indicates the number of steps of symbolic simulation, “F.;,,” denotes the
CLU formula obtained after the symbolic simulation, “Fj,.;” denotes boolean formula
obtained after translating a CLU formula to a propositional formula by the decision
procedure, the “size” of a formula denotes the number of distinct nodes in the Directed
Acyclic Graph (DAG) representing the formula. “UCLID time” is the time taken by
UCLID decision procedure and “SVC time” is the time taken by SVC 1.1 to decide
the CLU formula. “tag-consistency” and “rf-rob” denote the properties to be verified.

4.2 Verification of the OOO Unit by Invariant Checking

We verify the OO0 processor by proving a refinement map between QOO and
a sequential Instruction Set Architecture (ISA) model. The ISA contains a pro-
gram counter Isa.PC, and a register file Isa.rf. The program counter Isa.PC is
synchronized with the program counter for OOQ. Isa.rf maintains the state of
the register file when all the instructions in the reorder buffer (ROB) have retired
and the ROB is empty. Every time an instruction I = (r1,r2,d,op) is decoded
and put into the ROB, the result of the instruction is computed and written to
the destination register d in the ISA register file as follows:

Isa.rf[d] + Alu(op,Isa.rf[ri], Isa.rf[r2))
where, Alu is an uninterpreted function to abstract the actual computation of

the execution unit.

To state the invariants for the OOO processor, we maintain some auxiliary state
elements in addition to the state variables of the OOOQO unit. These structures are
very similar to the auxiliary structures used by McMillan [14] and Arons [1] for

verifying the correctness of out-of-order processors. We maintain the following
structures to reason about the correctness.

1. A shadow reorder buffer, Shadow.rob, where each entry contains the cor-
rect values of the operands and the result. This structure is used to reason
about the correctness of values in the ROB entries. Shadow.rob is a triple
(Shadow.value, Shadow.srclval, Shadow.src2val), where Shadow.value(t)
contains the correct value of rob.value(t) in the ROB. Similarly, the other
fields in the Shadow.rob contain the correct values for the two data operands.
When an instruction I = (r1,r2,d,op) is decoded, the Shadow.rob struc-
ture at rob.tail is updated as follows:

Shadow.value(rob.tail) «+ Alu(op, Isa.rf(rl), Isa.rf(r2))
Shadow.srclval(rob.tail) + Isa.rf(rl)
Shadow.src2val(rob.tail) + Isa.rf(r2)

2. A shadow program counter Shadow.PC, which points to the next instruction
to be retired. It is incremented every time an instruction retires in OOO.
The Shadow.PCis used to prove that OOO retires instruction in a sequential
order.

Correctness criteria. The correctness is established by proving the following
refinement map between the register file of the OOO unit and the ISA register
file.

Vr.reg.valid(r) = (Isa.rf(r) = reg.val(r))] (Tra)

The lemma states that if a register is not the destination of any of the instruc-
tions in the ROB, then the values in the OOO model and the ISA model are the
same.

Inorder Retirement. We also prove that the OOO retires instruction in se-
quential order with the following lemma.

Shadow.PC = ITE(rob.head # rob.tail, rob.PC(rob.head), PC) (Tpe)

Note that this lemma is not required for establishing the correctness of OQO.

4.3 Invariants for the OOO unit

We needed to come up with 12 additional invariants to establish the correctness
of the OO0 model, and we describe all of them in this section. The invariants
broadly fall under three categories. The first four invariants, ¥4, ¥g1, ¢, ¥p
are concerned with maintaining a consistent state within the OOO model. These
invariants are required mainly due to the redundancy present in the OO0 model.
The invariants ¥, Pg, establish the correctness of data in the register file and
ROB. Lastly, invariants Ygp, YHe, Pk1 are the auziliary invariants, which were
required to prove some of the invariants above. The invariant names have no
special bearing, except ¥p1, Y1 and ¥k denote that there are similar invariants

for the second operand. For the sake of readability, we define g’t,qﬁ(t) to be an
abbreviation for V¢.((rob.head < t < rob.tail)) = &(t).

Consistency Invariants. Invariant ¥4 asserts that an instruction in the ROB
can execute only when both the operands are ready.

Vt.[rob.valid(t) = (rob.srclvalid(t) A rob.src2valid(t))] (Wa4)

For any ROB entry t, if any operand is not valid, then the operand should hold
the tag of an older entry which produces the data but has not yet completed
execution. There is a similar invariant for the second operand.

Vt.[-rob.srclvalid(t) = (—rob.valid(rob.srcltag(t)) A
(rob.head < rob.srcltag(t) < t)] (ZB1)
Invariant ¥¢ claims that if the instruction at index ¢ writes to a register r :

rob.dest(t), then r can’t have valid data and the tag carried by r would be
either ¢ or a newer entry.

Vt.[(t < reg.tag(rob.dest(t)) < rob.tail)) A (~reg.valid(rob.dest(t))] (c)

Invariant ¥, asserts that a register r can only be modified by an active instruc-
tion in the ROB which has r as the destination register.

Vr.[-reg.valid(r) = ((rob.dest(reg.tag(r)) =r) A
(rob.head < reg.tag(r) < rob.tail))] (¥p)

All the above invariants restrict the state of the OOO model to be a reachable
state. Note that there is no reference to any shadow structure, because the shadow
structures only provide correctness of values in the OOO model.

Correctness Invariants. Invariant ¥g; establishes the constraint between the
Shadow.srclval and rob.srclval. It states that if any ROB entry has a valid

operand, then it should be correct (equals the value in the Shadow structure for
that entry). There is a similar invariant for the second operand.

Vt.[rob.srclvalid(t) = (Shadow.srclval(t) = rob.srclval(t))] (Pe1)

The following invariant asserts that if an ROB entry has completed execution,
then the result matches with the value in the shadow ROB.

gt.[rob.valid(t) = (Shadow.value(t) = rob.value(t))] (ga)

A uxiliary Invariants. We needed the following auxiliary invariants for the
Shadow.srclval, Shadow.value and Isa.rf respectively to prove the previous
invariants inductive.

Vt.[-rob.srclvalid(t) = Shadow.srclval(t) = Shadow.value(rob.srcltag(t))]
(¥x1)

The above invariant asserts that the correct value of a data operand which is
not ready is the result of the instruction which would produce the data.

Vt. [(Shadow.value(t) =
Alu(rob.opcode(t), Shadow.srclval(t), Shadow.src2val(t)))] (Tap)

The above invariant relates the result of execution to the correct value for any
entry.

Vr.[-reg.valid(r) = Isa.rf(r) = Shadow.value(reg.tag(r))] (Zrc)

The invariant Py, relates the value of a register r in the shadow register file
with the result of the instruction which would write back to the register.

Finally, we conjoin all the invariants to make the monolithic invariant ¥,;;. Since
Y distributes over A, we pull the quantifiers out in the formula given here:

Wall = V?"vt[WA (t) A WBI (t) A WBQ (t) A WC (t) A WD (’I") A WEl(t) N WEQ(t) A
Wre1 () A Wrca(t) A Waa(t) AW (t) A Waa(r) A Wae(r)]

Proof of the invariants. Some of the invariants were manually deduced from
a failure trace from the counterexample generator. The most complicated among
them were the invariants for the shadow register file and shadow ROB entries.
We spent two man-days to come up with all the invariants. The invariants were
proved in a completely automatic way by automatically translating the invariants
to a formula in CLU by the method described in Section 2.2, and using the
decision procedure for CLU to decide the formula. As we claimed earlier, the
translation of quantified formulas to a CLU formula does not blow up the formula
in a huge way, since most of the formulas have at most two bound variables.
For instance, consider the proof for the invariant ¥y, as given in the UCLID
framework:

decide(Inv_all => Inv_Ha_next(rl));

Here the invariant Yy, (written above as Inv_Ha) is checked in the next state
if W,y (written as Inv_all) holds in the current state for all registers r and all
tags t. There are only two bound variables r,t in the antecedent. Since all our
invariants are of the form Vr.®(r) or Vt.¥(t), we had to consider at most two
bound variables in the antecedent.

The final proof script had 13 such formulas (one for each invariant) to be decided,
and they were discharged automatically by UCLID in 76.44 sec. on a 1400 MHz
Pentium IV Linux machine with 256 MB of memory. The memory requirement
was less than 20 MB for the entire run. There is still a lot of scope of improvement,
in the decision procedure. The proof script consisted of the shadow structures,
definition of the invariants mentioned in the Section 4.3, and 13 lines of proof
to prove all the invariants in the next state.

To prove the lemma ¥pe for the in-order retirement, we required two more
auxiliary lemmas. nPC'is an uninterpreted function to obtain the next sequential
value of a program counter.

Vt.[(t > rob.head) => rob.PC(t) = nPC(rob.PC(t — 1))] (@pct)
[(rob.head # rob.tail) => PC = nPC(rob.PC(rob.tail — 1))] (Zpc2)

4.4 Using a circular reorder buffer

The model verified in this section is somewhat unrealistic because of the infinite
reorder buffer, since it never wraps around. Most reorder buffer implementations
use a finite circular queue to model the reorder buffer. Thus tags are reused unlike
the above model. Hence we re-did the verification using a model with a circular
buffer of arbitrary size. We needed very little change to our original proof. First,
the reorder buffer was modeled as a circular buffer with modulo successor and
predecessor functions as defined in Section 3.3. Second, each ROB entry had an
additional entry rob.present to indicate if the entry has a valid instruction,
and to disambiguate between checking the ROB for full or empty. Third, the “<”
operation was modified to take into account the wrap around for circular queues.
Finally, we had to establish an invariant between rob.present, rob.head and
rob.tail to ensure that an entry is present if and only if it lies between the
rob.head and rob.tail. None of the invariants had to be modified except as
mentioned above. Hence the proof of the processor with circular reorder buffer
went, through without any major changes to the model or invariants.

4.5 Liveness Proof

We give a high level proof sketch of liveness for the OOO processor similar to
Hosabettu’s proof [10] in PVS. Although this proof is not mechanical, it uses a
high level induction which utilizes various invariants that have been proved in
the previous section using UCLID.

Proposition 1. Every dispatched instruction eventually gets executed and re-
tired, assuming fair scheduling of instructions.

— Since each instruction eventually reaches the head of the ROB, it is sufficient
to show that the instruction at the head is eventually retired. Our proof
proceeds by induction on the size of the ROB.

— The base case, when the ROB is empty is trivial.

— Let us assume that the proposition holds when the ROB has less than k&
entries in it. Now, consider the case when there are k entries in the reorder
buffer. Observe that rob.head is incremented only when the instruction at
the head is retired.

e A fair scheduler will attempt to retire the instruction at the head of ROB
infinitely often, therefore the instruction at the rob.head is eventually
retired if it gets executed. This is because the instruction at the head is
retired if the rob.valid bit is set for the entry at the head.

e Again, observe that a fair scheduler attempts to execute any instruc-
tion in the ROB infinitely often, thus an instruction at index t, exe-
cutes if it has both the operands ready (i.e. rob.srcilvalid(t) and
rob.src2valid(t) are true). But, invariant ¥p, and Ppo assert that
both rob.srcivalid(rob.head) and rob.src2valid(rob.head) are true.
Thus the instruction at the head of the ROB eventually gets executed and
thus, retired.

Thus for any finite sequence of instructions, the ROB eventually becomes empty.
With an empty ROB, invariant ¥p ensures that all the registers have reg.valid
bit as true. Hence, by invariant ¥g,, we know that the state of the register files
in both OO0 and the ISA model would eventually match.

5 Conclusions and Future Work

We have demonstrated the use of UCLID in modeling and verifying out-of-order
processor designs. We showed the use of two different verification techniques that
provide varying correctness guarantees and degrees of automation, ranging from
bounded property checking, which provides full automation and debugging facil-
ities, to invariant checking, which allows for full correctness checking at the cost
of a manual assistance in deriving the invariants. Our hope is that the automa-
tion provided by bounded property checking and the proof of invariants would
be of great help in analyzing large designs. We are currently trying to extend
the verification to an out-of-order unit with exceptions, load-store instructions
and branch-prediction. We have also started the verification of the MIPS R10000
processor as an industrial case study.

Acknowledgments

This research was supported in part by the Semiconductor Research Corporation,
Contract RID 684, and by the Gigascale Research Center, Contract 98DT-660.
The second author was supported in part by a National Defense Science and
Engineering Graduate Fellowship.

References

1. T. Arons and A. Pnueli. Verifying Tomasulo’s algorithm by Refinement. In Proc.
VLSI Design Conference (VLSI ’99), 1999.

2. T. Arons and A. Pnueli. A comparison of two verification methods for speculative
instruction execution. In Proc. Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2000), March 2000.

3. C. Barrett, D. Dill, and J. Levitt. Validity checking for combinations of theories
with equality. In M. Srivas and A. Camilleri, editors, Formal Methods in Computer-
Aided Design (FMCAD ’96), LNCS 1166, pages 187-201. Springer-Verlag, Novem-
ber 1996.

4. S. Berezin, A. Biere, E. M. Clarke, and Y. Zhu. Combining symbolic model checking
with uninterpreted functions for out of order microprocessor verification. In Formal
Methods in Computer-Aided Design(FMCAD ’98), LNCS 1522. Springer-Verlag,
November 1998.

5. R. E. Bryant, S. German, and M. N. Velev. Exploiting positive equality in a logic
of equality with uninterpreted functions. In N. Halbwachs and D. Peled, editors,
Computer-Aided Verification (CAV ’99), LNCS 1633, pages 470-482. Springer-
Verlag, July 1999.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

R. E. Bryant, S. German, and M. N. Velev. Processor verification using efficient
reductions of the logic of uninterpreted functions to propositional logic. ACM
Transactions on Computational Logic, 2(1):1-41, January 2001.

R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Modeling and verifying systems using
a logic of counter arithmetic with lambda expressions and uninterpreted functions.
In Proc. Computer-Aided Verification (CAV’02) (to appear), July 2002.

J. R. Burch and D. L. Dill. Automated verification of pipelined microprocessor
control. In D. L. Dill, editor, Computer-Aided Verification (CAV ’94), LNCS 818,
pages 68-80. Springer-Verlag, June 1994.

Y. Gurevich. The decision problem for standard classes. The Journal of Symbolic
Logic, 41(2):460-464, June 1976.

R. Hosabettu, G. Gopalakrishnan, and M. Srivas. Proof of correctness of a proces-
sor with reorder buffer using the completion function approach. In N. Halbwachs
and D. Peled, editors, Computer-Aided Verification (CAV 1999), volume 1633 of
Lecture Notes in Computer Science. Springer-Verlag, July 1999.

R. Hosabettu, G. Gopalakrishnan, and M. Srivas. Verifying advanced microarchi-
tectures that support speculation and exceptions. In A. Emerson and P. Sistla,
editors, Computer-Aided Verification (CAV 2000), LNCS 1855. Springer-Verlag,
July 2000.

R. Jhala and K. McMillan. Microarchitecture verification by compositional model
checking. In G. Berry, H. Comon, and A. Finkel, editors, Computer-Aided Verifica-
tion, volume 2102 of Lecture Notes in Computer Science, pages 396-410. Springer-
Verlag, July 2001.

S. Lahiri, C. Pixley, and K. Albin. Experience with term level modeling and
verification of the MCORE microprocessor core. In Proc. IEEE High Level Design
Validation and Test (HLDVT 2001), November 2001.

K. McMillan. Verification of an implementation of Tomasulo’s algorithm by com-
positional model checking. In A. J. Hu and M. Y. Vardi, editors, Computer-
Aided Verification (CAV 1998), volume 1427 of Lecture Notes in Computer Science.
Springer-Verlag, June 1998.

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an efficient SAT solver. In 38th Design Automation Conference (DAC ’01), June
2001.

S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system.
In Deepak Kapur, editor, 11th International Conference on Automated Deduction
(CADE), volume 607 of Lecture Notes in Artificial Intelligence, pages 748-752.
Springer-Verlag, June 1992.

J. Sawada and W. Hunt. Processor verification with precise exceptions and specu-
lative execution. In A. J. Hu and M. Y. Vardi, editors, Computer-Aided Verification
(CAV ’98), LNCS 1427. Springer-Verlag, June 1998.

J. P. Shen and M. Lipasti. Fundamentals of Superscalar Processor Design. In
Press, 2001.

J. U. Skakkaebaek, R. B. Jones, and D. L. Dill. Formal verification of out-of-
order execution using incremental flushing. In A. J. Hu and M. Y. Vardi, editors,
Computer-Aided Verification (CAV ’98), LNCS 1427. Springer-Verlag, June 1998.
M. N. Velev. Using rewriting rules and positive equality to formally verify wide-
issue out-of-order microprocessors with a reorder buffer. In Design, Automation
and Test in Europe (DATE ’02), pages 28-35, March 2002.

M. N. Velev and R. E. Bryant. Formal Verification of Superscalar Microprocessors
with Multicycle Functional Units, Exceptions and Branch Predication. In 37th
Design Automation Conference (DAC ’00), June 2000.

