To appear in the proceedings of 8&th Design Automation Conference (DACQ®)ne 1999.

Exploiting Positive Equality and Partial Non-Consistency
in the Formal Verification of Pipelined Microprocessor$

Miroslav N. Velev" Randal E. Bryarit *
mvel ev@ce. cnu. edu randy. bryant @s. cru. edu
http://ww. ece. cnu. edu/ ~nvel ev http://ww. cs. cnu. edu/ ~br yant

“Department of Electrical and Computer Engineering
*school of Computer Science
Carngjie Mellon Unversity, Pittsturgh, FA 15213, U.S.A.

Abstract By imposing some restrictions in the syntax of EBEUF
allows the use of a distinct constant for each data operand or

We study the applicability of thedi of Positive Equality instruction gdgress used. iq the symbokipression for the cor-
with Uninterpeted Functions (PEUF) [2][3] to the verification rectness criterion. By a dlstl_nct constant we mean aterm wh|_ch is
of pipelined miaoprocesscs with very lage Instruction Set n_ot (_equal to an other term in the_ same domain. The result is a
Architectules (ISAs). Absiction of memory aays and func- significantly increased computationafieeng/ of PEUE com-

tional units is employed, while the canitiogic of the pocessas pared to EUF

is kept intact fom the original gate-leel designs. PEUF is an The focus of this paper is Wwalo male PEUF scale easily
extension of the Igic of Equality with Uninterpeted Functions, for verification of realistic pipelined microprocessors witlgéar

introduced by Buh and Dill [4], that allows us to use distinct ISAs. We propose the use of initial state which is non-consistent
constants for the data omerds and instruction adesses across instructions,ub consistent for the same instructione W
needed in the symbolixgession for the coactness criterion. also propose an fedient way of generating distinct constants.

We present seeral teciniques that mak PEUF scale very &f _The result is aery hi_g_h cgmputatior_]al atiency for PEUE'and
ciently for the verification of pipelined maprocessos with invariance of the erification CPU time and memory with the
large 1SAs. These teniques ae based on allowing a limited ~ Number of instructions implemented in the processor

form of non-consistency in the unintested functions, epre- In modeling of microprocessors, we use abstraction of
senting initial memory state and ALU behasioOur tool memory arrays and functional unitseVichige the abstraction

required less than 30 seconds of CPU time and 5 MB of memory by means of the Etient Memory Model (EMM) [13][14] and

to verify a 5-stge MIPS-lile pipelined pocessor that imple- its capability to dynamically introduce weinitial state (as

ments 191 instructions of various classes. The verification was "¢duired by a simulation sequence) which is consistent with pre-
done by corspondenceheding - a formal method, whera viously introduced initial state. Observing thaegy combina-

pipelined micoprocessor is compad aainst a non-pipelined tiqnal block c_)f logic can be imple_mented as a read-only memory
specification. with the Ioglc_ block |_nputs serving as memory addresse_s, we
abstract functional units at the bivé by replacing them with
read-only EMMs. The definition of the EMM automatically
1. Intr oduction enforces consistepoof the output &lues for the present input
pattern with outputalues returned for pvéus input patterns.
When using the EMM to replace memories and functional
units, we assume that their actual implementationg teeen
verified separatelyror example, the formal method of symbolic
trajectory @aluation has been combined with symmetry reduc-
tions to enable theevification of \ery lage memory arrays at the
transistor lgel [11]. An eficient representation of avd-level
functions has enabled thenfication of comple functional units
like floating-point multipliers [6].
We also use an fégient encoding technique [15], ¢gted
1. This research &s supported in part by the SRC under contract to EUF and PEUFor representing termaviables by means of
98-DC-068. BDD variables [1]. This technique alle such term-ariables to
be used while symbolically simulating the processaontrol
logic, kept intact from the actualate-level design. Thus, we
avoid the need to create a separate abstract model, as is done in
previous methods based on uninterpreted functions [4][7][8].
Our previous results [15] shwed that the encoding technique
cannot break the circular dependencies between functional units,

The logic of Positie Equality with Uninterpreted Func-
tions (PEUF) [2][3] vas proposed as awtension of the logic of
Equality with Uninterpreted Functions (EUF), introduced by
Burch and Dill [4]. Uninterpreted functions alNothe abstract
modeling of functional units and memories by replacing their
actual implementations when formallyenfying microproces-
sors. That leads to a considerable reduction of the computational
compleity when \erifying pipelined microprocessors.

which result from the feedback loops of the farding logic,
and hence cannot scale foerification of realistic pipelined
microprocessors.

When \erifying pipelined microprocessors, we use the for-
mal method oforrespondence checking - comparison to a non-
pipelined specification, as pioneered by Burch and Dill [4][5].

2 Logic of Positive Equality with Uninter-

preted Functions

Burch and Dill illustrated that EUF fiteewy eficiently the
problem of representing ane@nfying a pipelined microproces-
sor [4] by comparing it ajnst a non-pipelined specification.
Particularly, functional units and memories can be abstracted as
uninterpreted functions or predicates thatetals inputs data
operands, represented abstractly as terms. Thefdivg logic
can be described as nestdd operators that select one out of
several terms, based on a formula, produced by the control logic.

We can obserrthat there are 3 classes of terms needed in
the \erification of pipelined processors by correspondence
checking: instruction addresseggister identifiers, and data. Of
these only the gister identifiers are compared for equality by
the cate-level control logic, in order to form control decisions,
e.g., for forvarding or stalling. This is based on the assumption

The logic of Positie Equality with Uninterpreted Func-
tions (PEUF) gtends EUF [4] by adding an additional class of
terms called “p-terms” (for “posite terms”) with its wn set of
variables and function symbols such that these terms are used in
a highly restricteddshion. In particulawe allav equality tests
to be performed among p-termsitbve only allev the results of
these tests to be used in monotonically pesiBoolean formu-
las. These formulas cannot be used to comfitbloperators. The
benefit of leeping this restricted class of terms is thay tten be
handled in a simpler and morefieient way by the alidity
checler. Fig. 1 shas the syntax of PEUF

P-terms include general terms, in addition to a special class
of variables called “p-termariables, the ITE operator applied
to p-terms, and the application of a special class of function sym-
bols knavn as “p-function” symbols.Wo p-terms may be com-
pared for equalitybut the result is a restricted form of formula
called a p-formula. A p-formula may only contain the monotoni-
cally positve Boolean conneetes1and(l. It cannot contain an
negations and it cannot be used as the control foTBroperator
outside of uninterpreted functions and predicates.

2.2 Deciding P-Formulas

We say that an interpretatianis maximally dverse with

that equality comparisons of data terms are made only by meansrespect to a set of p-termiswhen for ag two termssandt in T,

of uninterpreted predicates, e.g., the decision te talcondi-

I(s) = I(t) only when either 1% andt are identical, or 2% andt

tional branch when the terms are equal. Hence, the interpreted@re both applications of the same p-function-synfilowl lists of

equality predicate wuld never be applied on such terms.
The same is true for instruction address terms. Thiwslies to
impose some restrictions to EUF in order &ngcomputational
efficiencgy.
2.1 Syntax
formula ::= propositional-variable O true O false
O-formula O (formula Oformula)
O(term = term)
O predicate-symbol (p-term, . . .

p-formula ::= formula

,p-term)

O (p-formula O p-formul a)
O (p-formula O p-formula)
O(p-term = p-term)
term ::=term-variable
OITE(formula, term, term)
O function-symbol (p-term, . . . ,p-term)
p-term :=term
Op-term-variable
OITE(formula, p-term, p-term)
O p-function-symbol (p-term, . . . ,p-term)

Fig. 1: Syntax rules for the logic of Positive Equality with
Uninterpreted Functions

argument terms with equal interpretations, ise=, (s, . . . ,S0)
andt = f(ty, . . . ,t), where I(5) = I(t;), 1<i <k Also, itis
assumed that a p-ternanable or a p-function-symbol applica-
tion is not equal to gnterm-variable or function-symbol applica-
tion.

For a p-formulaF, an interpretatiorr is maximally dverse
when I is maximally dverse with respect to the set of terms
{tinF Otis a p-term-ariable or a p-function application result}.

Theorem. A p-formulais valid iff it is true for a maximally
diverse interpretation.

The intuitve explanation of the theorem is that a maximally
diverse interpretation of a p-formula creates thlesivcase sce-
nario for the p-term equality comparisons in it. If the p-formula is
true under a maximally @érse interpretation, then thelidity of
the formula will be preseed for ary other interpretation, due to
the monotonicity of the Boolean connget [1and[], which are
allowed in p-formulas. The complete proof is presented in [3].
The result alls us to use a distinct constant for each p-term-
variable and p-function-symbol application, i.e., for each instruc-
tion address or data operand, when computing the correctness
criterion. By a distinct constant we mean a term which is not
equal to ap other term in the same domain.

3 Encoding Term Valueswith Symbolic Bit

Vectors

We will consider tw kinds of term ®mlues - constants,
which represent p-termaviables and p-function-symbol applica-
tion results, and ariables, which represent terrariables and
function-symbol application results. eMntroduce a separate
domain for constants and a separate domainddables, such

that terms are compared for equality with only terms from the
same domain. Constantsvieaa fixed interpretation and are
encoded with distinct bitectors with a Boolean constant (i.e.,
eithertrue or false) in each position. &fiables hee an interpre-
tation that may map them toyamalue in the domain. Our tech-
nigue to dynamically generate bieators that encode term
variables from the same domain can be summarized asv$ollo
(see [14] for details). When generating i@ vector it could
potentially hae n possible alues - to be equal to wof the pre-
vious n-1 vectors, or to be distinct from all of them. Therefore,
we usellog(n)dnev Boolean wariables in the M order bits of
thenth vector and the binary constant 0 in the remaining bit posi-
tions. If the \ectors hae a width ofk bits, as determined by the
circuit, then the number ofaviables generated for ameector
saturates &.

4 Abstracting Memories and Functional

Units

We will use the types addresgpeession AExpr, and data
expressionDEXxpr, for denoting the kind of information that can
be applied at the inputs or produced by the outputs of an abstract
memory Let my : AExpr — DExpr, defined as a mapping from
address xpressions to dataxpressions, be the initial state of
such a memoryThen,my(a), wherea is an addressxpression,
will return the initial data of the memory at addras3he write
operation for an abstract memory will be defined as
Write(m;, a;, d) - my4 [10], i.e., taking as guments the
present statey of a memoryand addresskpressiora, designat-
ing the location which is updated to contain dataressiond,,
and producing the subsequent memory statg such that:

Mi1(ap) - ITE(ay = ap, dy, m(ay)). @

Based on the obsetion that ay functional block can be
represented as a read-only-memonOiR, with the blocks
inputs serving as memory addresses, we will represent abstract
functional units as abstracCR1s. According to the semantics of
an abstract memanan abstract @M will always satisfy the
property a; =a, O f(a;) =f(ap), wheref() denotes the output
function of the ®M-modeled abstract functional unit.

Motivated by application to actual circuits, we will repre-
sent address and datgpeessions by ectors of Booleanxpres-
sions haing width n andw, respectiely, for a memory wittN =
2" locations, each holding aond ofw bits. The typeBExpr will
denote Booleanxpressions.

Address comparison is implemented as:

n
- _vl AL OA2, @)

while address selectiohl — ITE(b, A2, A3 is implemented
by selecting the corresponding bits:

Al — ITE(b, A2, A3), i=1,.. ?3)
The definition of data operations is simjlaut over vectors of
width w.
We use the Hicient Memory Model (EMM), a beléral
memory model for symbolic simulation, in order to represent

register files, memories, and latches in the circuits thatame
ine. During symbolic simulation, the sequence of writes to each

Al=A2

n.

EMM is represented as a listyite_list, that contains entries of
the form[¢, a, d)) wherec is a Boolean xpression denoting the
set of contets (conditions) for which the entry is defineds an
address xpression denoting a memory location, ahid a data
expression denoting the contents of this location. The gbnte
information is included for modeling memory systems where the
Write operations may be performed conditionatigpending on
the \alue of a control signal, i.e., a write port enable signal. Ini-
tially write_list is empty for each EMM. ®@en an update
Write(m;, [84, &, h[J of the current memory stats, the subse-
guent memory statey, 4 is defined as:

My(a) — ITE((a =ap) Uey, dy, my(ay)- (4)

5 Exploiting Non-Consistency of a Mem-
ory’s Initial State

In this paper we relax the constraint for consistency of all
the initial state that is introduced on-the-fly. First, we use the
value of the Sequential Program Counter (pointing to the instruc-
tion that follows sequentially the presently executed instruction,
so that it will be equal to PC + 4 in many architectures), already
available in the Execution Stage for computing the Target Pro-
gram Counter of jump and branch instructions, as an additional
input to the ALU. The effect is to make functibmitState) of the
EMM, that models the ALU, be non-consistent across instruc-
tions but consistent for the same instruction (as identified by the
instruction address), thus turning the ALU into a different unin-
terpreted function for each instruction executed. The ALU in the
specification non-pipelined processor is defined identically, with
the Sequential Program Counter serving as an input.

This idea is based on the observation that we need to pre-
serve the consistency between the implementation and the speci-
fication simulation sequences, while the consistency within the
same simulation sequence is not important when evaluating the
correctness criterion. It should be pointed out that non-consis-
tency is a conservative approximation. If the processor is correct
when its functional units’ outputs are non-consistent across
instructions (from the same simulation sequence), it will also be
correct when the constraint for consistency is imposed. The same
idea can be applied to the initial state of all functional units and
memory arrays.

Second, when modeling a Register File, which has one
write-port and two read-ports (one for each of two source register
identifiers), we represent it with two register files. Each of them
provides the data for one of the source registers, while both get
updated in the way that the original register file is. In this way,
the initial states for the source registers read will not be consis-
tent across the two register files. Note that this representation of a
Register File is more conservative than the original one - if the
pipelined processor is correct without the consistency con-
strained for the initial states of the two source registers for each
instruction, it will be correct when we impose that constraint as
well.

6 Experimental Results
In previous work, we attempted toerify a pipelined MIPS
processor with a memory stage [15]. The control logs ept
intact at the gte-level. Term-variables, encoded with BDDavi-
ables as opposed to constants, were used for the data operands

and instruction addresses. However, for optimal BDD sizes, the
BDD variables that encode the address term-variables of an
EMM should precede in the variable ordering those BDD vari-
ables that encode the EMM’s data term-variables. The problem
was that the Data Memory gets addressed with data term-vari-
ables, produced by the ALU in the Execution stage. At the same
time the Data Memory produces term-variables which are fed
back into the ALU, by means of the forwarding logic and the
Register File. Asinputs to the ALU, these term-variables will be
compared for equality against former input term-variables in
order to select an output term-variable from among both the
former output term-variables and a newly generated one. Hence,
there is a circular dependency between the term-variables pro-
duced by the ALU and the Data Memory, due to the feedback
loops in the data path. The result is an exponential complexity of
the BDDs, when computing the correctness criterion, and insuffi-
cient memory, given alimit of 256 MB. Isles et al. [8], who were
trying to verify an abstractly-defined design of a pipelined DLX
processor with a memory stage, have also run out of memory,
given alimit of 1 GB.

In this paper, we examine three versions of a 5-stage pipe-
lined MIPS processor [12] with a 32-hit data path - see Table 1.
Each is compared to its non-pipelined specification processor.
The functiona units, register file, and pipeline latches are
replaced by EMMs. The control logic is described at the gate
level. The instruction-decoding PLA is defined to produce a
unique pattern of ALU control bitsfor each instruction, while the
other control bits are determined according to the class of the
instruction.

ISA Composition
Processor ISA register- register-
= count . . . loads/ | branches/
register immediate qores —
instructions | instructions Jjump
MIPS15 | 15 6 4 2 3
MIPS42 | 42 16 8 10 8
MIPS-191| 191 129 26 2 34

Table 1: Processors used in the experiments

MIPS-15 and MIPS-42 are based on the origina MIPS
instruction encodings [9] for the implemented instructions, while
MIPS-191 is based on the same instruction formats, but has dif-
ferent operation-code and function-code encodings, in order to
use all possibleinstruction-encoding patterns and to define avery
large ISA. This processor has the same functional units and the
same pipeline structure as the previous two, except that it has
more control signals going from the instruction-decoding PLA
into the ALU in order to identify a different computation to be
performed for each instruction.

When symbolically simulating the circuits and computing
the correctness criterion, we used p-terms (represented as con-
stants) for the data operands, immediate values, and instruction
addresses. The register identifiers were represented as term-vari-
ables, and were encoded with BDD variables, as explained in
Sect. 3. For away to encode the initia state of pipeline latches,
the reader is referred to [15].

We also exploited the idea of a non-consistent initial state
(Sect. 5) by using a split Register File and a non-consistent ALU
behavior, based on the Sequential Program Counter. The latter
was achieved by letting the user specify nets that will be used as
“imaginary” additional addressinputs when generating the initial
state of an EMM. We call such imaginary address inputs a tag.

We compared two encoding schemes for the distinct con-
stants that are used for p-terms - consecutive constants, i.e., bit-
vectors encoding consecutive binary numbers, and 1-hot con-
stants which have a 1 in a single bit position and Os in the other
bit positions - see Tables 2 and 3, respectively. The experiments
were performed on an IBM RS/6000 43P-140 with a 233MHz
PowerPC 604e microprocessor, having 256 MB of physica
memory, and running AIX 4.1.5.

. uential || CPU Max.

Processor Reg”s;er secqusedas Time M[(T\rﬂng;y BDD
tag for [g] Nodes
MIPS-15 | Unified 96 13.6 524,366
ALU 37 7.6 262,181
Split 89 7.6 262,226
ALU 34 4.6 131,147
MIPS-42 | Unified 325 25.6 1,048,666
ALU 50 7,6 262,216
Split 265 25.6 1,048,647
ALU 37 7.6 262,211

MIPS-191 | Unified >881 >256
ALU 49 7.9 262,199

Split >878 >256
ALU a2 7.9 262,224

Table 2: Results when using consecutive constants for the p-
terms

) uential || CPU Max.
Processor Re'g;:Is;er Ifgqused as|| Time M[e'\;lné)]ry BDD
tag for [s] Nodes
MIPS-15 | Unified 50 7.6 262,235
ALU 24 4.6 131,079
Split 46 4.6 131,165
ALU 21 3.1 65,589
MIPS-42 | Unified --- 177 25.4 1,048,651
ALU 36 4.6 131,141
Split --- 145 13.6 524,363
ALU 27 4.6 131,165
MIPS-191 | Unified >935 >256
ALU 32 4.9 131,137
Split --- >1,710 >256 ---
ALU 27 4.9 131,147

Table 3: Results when using 1-hot constants for the p-terms

Tagging the ALU with the Sequential PC made the differ-
ence between impossible and possible when verifying the MIPS-
like processor with 191 instructions, as shown in Table 4. The

use of constants for the values of instruction addresses (i.e., the
values of the Sequential Program Counter) made the selection of
the distinct uninterpreted function, to be performed by the ALU
for each instruction, very efficient. Asaresult, the ALU was pre-
vented from accumulating a single complex output term that is
consistent across all instructions, which broke the effect of the
forwarding logic feedback loops.

Using 1-hot constants, as opposed to consecutive constants,
reduced the CPU time and memory with 1/3 and the maximum
BDD node count by half. The reason is that the 1-hot constants
lead to spreading the Boolean expressions, which result from
deep nesting of ITE operators, across al bit positions of a bit-
vector, thus avoiding the building of asingle big BDD.

Splitting the Register File resulted in only anegligible CPU
time reduction, when the above two ideas were employed. Addi-
tionally tagging the initial state of the Register File and the Data
Memory with the Sequential PC did not lead to a significant per-
formnce improvement. However, processing the ALU tag (i.e,
the Sequential PC) first, immediately followed by the other input
p-terms, when performing the address comparisons for comput-
ing the EMM'’sinitial state, resulted in reducing the CPU time by
half but did not change the memory consumption.

When generating the initial state for the pipeline latches,
we obtained the best performance from the following BDD vari-
able order: 1) Execution/Memory, 2) Memory/Write-Back,
3) Instruction-Decode/Execution, 4) Instruction-Fetch/Instruc-
tion-Decode, 5) Instruction Memory, where a “/” separates the
two pipeline stages divided by the pipeline latch. The reason is
that the Execution/Memory latch contains symbolic information
for taken branches or jumps that will result in symbolic condi-
tions for squashing the instructions in the preceding stages, i.e.,
this information will affect many instructions in flight. Hence,
the BDD variables used for encoding theinitial state of that pipe-
line latch have to precede the BDD variables that encode the ini-
tial state of the other latches in order to get smaller BDD sizes
when computing the expression for the correctness criterion.
Then, the Memory/Write-Back latch will affect the expressions
for the data operands of all the subsequent instructions by means
of the forwarding logic, so that thislatch is ranked second. Simi-
lar reasoning explains the order of the other pipeline latches.

7 Conclusions

We showed that the logic of Positive Equality with Uninter-
preted Functions scales very efficiently for verification of pipe-
lined microprocessors with very large I1SAs. Critical to that was
the idea of functional units behavior that is non-consistent
across instructions, but consistent for the same instruction, based
on the value of the Sequential PC. This idea made the difference
between impossible and possible when verifying a 5-stage
MIPS-like pipelined processor that implements 191 instructions
and resulted in verification time and memory which are invariant
with the size of theimplemented I SA, when extending it from 42
to 191 instructions.

References

[1] R.E. Bryant, “Symbolic Boolean Manipulation with Ordered
Binary-Decision Diagrams,” ACM Computing Serys Vol. 24, No.
3 (September 1992), pp. 293-318.

[2] R.E. Bryant, S. German, and M.N. Velev, “Exploiting Positive
Equality in a Logic of Equality with Uninterpreted Functions,”2
ComputerAided Vérification LNCS, Springer-Verlag, June 1999.

[3] R.E. Bryant, S. German, and M.N. Velev, “Processor Verification
Using Efficient Reductions of the Logic of Uninterpreted Functions
to Propositional Logic."? Technical Report CMU-CS-99-115, Carn-
egie Mellon University, 1999.

[4] JR. Burch, and D.L. Dill, “Automated Verification of Pipelined
Microprocessor Control,” CAV'94, D.L. Dill, ed.,, LNCS 818,
Springer-Verlag, June 1994, pp. 68-80.

[5] JR. Burch, “Techniques for Verifying Superscalar Microproces-
sors,” 33rd Design Aitomation Confance (IAC'96), June 1996,
pp. 552-557.

[6] Y.-A. Chen, “Arithmetic Circuit Verification Based on Word-Level
Decision Diagrams,” Ph.D. thesis, School of Computer Science,
Carnegie Mellon University, May 1998.

[71 A.God, K. Sgjid, H. Zhou, A. Aziz, and V. Singhal, “BDD Based
Procedures for a Theory of Equality with Uninterpreted Functions,”
CAV'98, Springer-Verlag, June 1998.

[8] A.J.ldes, R. Hojati, and R.K. Brayton, “ Computing Reachable Con-
trol States of Systems Modeled with Uninterpreted Functions and
Infinite Memory,” CAV/'98, Springer-Verlag, June 1998.

[9] G. Kane, and J. Heinrich, MIPS RISC Achitectue, Prentice Hall,
Englewood Cliffs, NJ, 1992.

[10] G. Nelson, and D.C. Oppen, “Simplification by Cooperating Deci-
sion Procedures,” ACM Transactions on FRgramming Languges
and System#/ol. 1, No. 2, October 1979, pp. 245-257.

[11] M. Pandey, “Formal Verification of Memory Arrays,” Ph.D. thesis,
School of Computer Science, Carnegie Mellon University, May
1997.

[12] D.A. Patterson, and J.L. Hennessy, Computer Oganization and
Design: The Hadware/Softwae Interface 2nd edition, Morgan
Kaufmann Publishers, San Francisco, CA, 1998.

[13] M.N. Velev, R.E. Bryant, and A. Jain, “Efficient Modeling of Mem-
ory Arrays in Symbolic Simulation”? CA/'97, O. Grumberg, ed,
LNCS 1254, Springer-Verlag, June 1997, pp. 388-399.

[14] M.N. Velev, and R.E. Bryant, “Efficient Modeling of Memory
Arrays in Symbolic Ternary Simulation,”? TACAS'98 B. Steffen,
ed, LNCS 1384, Springer-Verlag, March-April 1998, pp. 136-150.

[15] M.N. Velev, and R.E. Bryant, “Bit-Level Abstraction in the Verifica-
tion of Pipelined Microprocessors by Correspondence Checking,"2
FMCAD'98, G. Gopalakrishnan and P. Windley, eds, LNCS 1522,
Springer-Verlag, November 1998, pp. 18-35.

2. Availablefrom: htt p: / / www. ece. cnu. edu/ ~nmvel ev

