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Abstract

We study the applicability of the logic of Positive Equality
with Uninterpreted Functions (PEUF) [2][3] to the verification
of pipelined microprocessors with very large Instruction Set
Architectures (ISAs). Abstraction of memory arrays and func-
tional units is employed, while the control logic of the processors
is kept intact from the original gate-level designs. PEUF is an
extension of the logic of Equality with Uninterpreted Functions,
introduced by Burch and Dill [4], that allows us to use distinct
constants for the data operands and instruction addresses
needed in the symbolic expression for the correctness criterion.
We present several techniques that make PEUF scale very effi-
ciently for the verification of pipelined microprocessors with
large ISAs. These techniques are based on allowing a limited
form of non-consistency in the uninterpreted functions, repre-
senting initial memory state and ALU behaviors. Our tool
required less than 30 seconds of CPU time and 5 MB of memory
to verify a 5-stage MIPS-like pipelined processor that imple-
ments 191 instructions of various classes. The verification was
done by correspondence checking - a formal method, where a
pipelined microprocessor is compared against a non-pipelined
specification.

1. Intr oduction
The logic of Positive Equality with Uninterpreted Func-

tions (PEUF) [2][3] was proposed as an extension of the logic of
Equality with Uninterpreted Functions (EUF), introduced by
Burch and Dill [4]. Uninterpreted functions allow the abstract
modeling of functional units and memories by replacing their
actual implementations when formally verifying microproces-
sors. That leads to a considerable reduction of the computational
complexity when verifying pipelined microprocessors.
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By imposing some restrictions in the syntax of EUF, PEUF
allows the use of a distinct constant for each data operand or
instruction address used in the symbolic expression for the cor-
rectness criterion. By a distinct constant we mean a term which is
not equal to any other term in the same domain. The result is a
significantly increased computational efficiency of PEUF, com-
pared to EUF.

The focus of this paper is how to make PEUF scale easily
for verification of realistic pipelined microprocessors with large
ISAs. We propose the use of initial state which is non-consistent
across instructions, but consistent for the same instruction. We
also propose an efficient way of generating distinct constants.
The result is a very high computational efficiency for PEUF, and
invariance of the verification CPU time and memory with the
number of instructions implemented in the processor.

In modeling of microprocessors, we use abstraction of
memory arrays and functional units. We achieve the abstraction
by means of the Efficient Memory Model (EMM) [13][14] and
its capability to dynamically introduce new initial state (as
required by a simulation sequence) which is consistent with pre-
viously introduced initial state. Observing that every combina-
tional block of logic can be implemented as a read-only memory
with the logic block inputs serving as memory addresses, we
abstract functional units at the bit level by replacing them with
read-only EMMs. The definition of the EMM automatically
enforces consistency of the output values for the present input
pattern with output values returned for previous input patterns.

When using the EMM to replace memories and functional
units, we assume that their actual implementations have been
verified separately. For example, the formal method of symbolic
trajectory evaluation has been combined with symmetry reduc-
tions to enable the verification of very large memory arrays at the
transistor level [11]. An efficient representation of word-level
functions has enabled the verification of complex functional units
like floating-point multipliers [6].

We also use an efficient encoding technique [15], targeted
to EUF and PEUF, for representing term-variables by means of
BDD variables [1]. This technique allows such term-variables to
be used while symbolically simulating the processor’s control
logic, kept intact from the actual gate-level design. Thus, we
avoid the need to create a separate abstract model, as is done in
previous methods based on uninterpreted functions [4][7][8].
Our previous results [15] showed that the encoding technique
cannot break the circular dependencies between functional units,
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which result from the feedback loops of the forwarding logic,
and hence cannot scale for verification of realistic pipelined
microprocessors.

When verifying pipelined microprocessors, we use the for-
mal method ofcorrespondence checking - comparison to a non-
pipelined specification, as pioneered by Burch and Dill [4][5].

2 Logic of Positive Equality with Uninter-
preted Functions
Burch and Dill illustrated that EUF fits very efficiently the

problem of representing and verifying a pipelined microproces-
sor [4] by comparing it against a non-pipelined specification.
Particularly, functional units and memories can be abstracted as
uninterpreted functions or predicates that take as inputs data
operands, represented abstractly as terms. The forwarding logic
can be described as nestedITE operators that select one out of
several terms, based on a formula, produced by the control logic.

We can observe that there are 3 classes of terms needed in
the verification of pipelined processors by correspondence
checking: instruction addresses, register identifiers, and data. Of
these only the register identifiers are compared for equality by
the gate-level control logic, in order to form control decisions,
e.g., for forwarding or stalling. This is based on the assumption
that equality comparisons of data terms are made only by means
of uninterpreted predicates, e.g., the decision to take a condi-
tional branch when the terms are equal. Hence, the interpreted
equality predicate “=” would never be applied on such terms.
The same is true for instruction address terms. This allows us to
impose some restrictions to EUF in order to gain computational
efficiency.

2.1 Syntax

formula ::= propositional-variable  true  false

 ¬formula   (formula ∧ formula)

 (term  = term)

 predicate-symbol(p-term, . . . ,p-term)

p-formula ::= formula

 (p-formula ∨ p-formula)

 (p-formula ∧ p-formula)

 (p-term  = p-term)

term ::= term-variable

 ITE(formula, term, term)

 function-symbol(p-term, . . . ,p-term)

p-term ::= term

 p-term-variable

 ITE(formula, p-term, p-term)

 p-function-symbol(p-term, . . . ,p-term)

Fig. 1:  Syntax rules for the logic of Positive Equality with
Uninterpreted Functions

The logic of Positive Equality with Uninterpreted Func-
tions (PEUF) extends EUF [4] by adding an additional class of
terms called “p-terms” (for “positive terms”) with its own set of
variables and function symbols such that these terms are used in
a highly restricted fashion. In particular, we allow equality tests
to be performed among p-terms, but we only allow the results of
these tests to be used in monotonically positive Boolean formu-
las. These formulas cannot be used to controlITE operators. The
benefit of keeping this restricted class of terms is that they can be
handled in a simpler and more efficient way by the validity
checker. Fig. 1 shows the syntax of PEUF.

P-terms include general terms, in addition to a special class
of variables called  “p-term-variables,” the ITE operator applied
to p-terms, and the application of a special class of function sym-
bols known as “p-function” symbols. Two p-terms may be com-
pared for equality, but the result is a restricted form of formula
called a p-formula. A p-formula may only contain the monotoni-
cally positive Boolean connectives∧ and∨. It cannot contain any
negations and it cannot be used as the control for anITE operator
outside of uninterpreted functions and predicates.

2.2 Deciding P-Formulas

We say that an interpretationI is maximally diverse with
respect to a set of p-termsT, when for any two termss andt in T,
I(s) = I(t) only when either 1)s andt are identical, or 2)s andt
are both applications of the same p-function-symbolf on lists of
argument terms with equal interpretations, i.e.,s = f(s1, . . . ,sk)
and t = f(t1, . . . , tk), where I(si) = I(ti),  1 ≤ i ≤ k. Also, it is
assumed that a p-term-variable or a p-function-symbol applica-
tion is not equal to any term-variable or function-symbol applica-
tion.

For a p-formulaF, an interpretationI is maximally diverse
when I is maximally diverse with respect to the set of terms
{ t in F  t is a p-term-variable or a p-function application result}.

Theorem. A p-formula is valid iff it is true for a maximally
diverse interpretation.

The intuitive explanation of the theorem is that a maximally
diverse interpretation of a p-formula creates the worst case sce-
nario for the p-term equality comparisons in it. If the p-formula is
true under a maximally diverse interpretation, then the validity of
the formula will be preserved for any other interpretation, due to
the monotonicity of the Boolean connectives ∧ and∨, which are
allowed in p-formulas. The complete proof is presented in [3].
The result allows us to use a distinct constant for each p-term-
variable and p-function-symbol application, i.e., for each instruc-
tion address or data operand, when computing the correctness
criterion. By a distinct constant we mean a term which is not
equal to any other term in the same domain.

3  Encoding Term Values with Symbolic Bit
Vectors
We will consider two kinds of term values - constants,

which represent p-term-variables and p-function-symbol applica-
tion results, and variables, which represent term-variables and
function-symbol application results. We introduce a separate
domain for constants and a separate domain for variables, such



3

that terms are compared for equality with only terms from the
same domain. Constants have a fixed interpretation and are
encoded with distinct bit vectors with a Boolean constant (i.e.,
eithertrue or false) in each position. Variables have an interpre-
tation that may map them to any value in the domain. Our tech-
nique to dynamically generate bit vectors that encode term
variables from the same domain can be summarized as follows
(see [14] for details). When generating thenth vector, it could
potentially have n possible values - to be equal to any of the pre-
vious n-1 vectors, or to be distinct from all of them. Therefore,
we uselog(n) new Boolean variables in the low order bits of
thenth vector and the binary constant 0 in the remaining bit posi-
tions. If the vectors have a width ofk bits, as determined by the
circuit, then the number of variables generated for a new vector
saturates atk.

4 Abstracting Memories and Functional
Units
We will use the types address expression,AExpr, and data

expression,DExpr, for denoting the kind of information that can
be applied at the inputs or produced by the outputs of an abstract
memory. Let m0 : AExpr → DExpr, defined as a mapping from
address expressions to data expressions, be the initial state of
such a memory. Then,m0(a), wherea is an address expression,
will return the initial data of the memory at addressa. The write
operation for an abstract memory will be defined as
Write(mi, a1, d1) → mi+1 [10], i.e., taking as arguments the
present statemi of a memory, and address expressiona1 designat-
ing the location which is updated to contain data expressiond1,
and producing the subsequent memory statemi+1, such that:

mi+1(a2) → ITE(a1 = a2, d1, mi(a2)). (1)

Based on the observation that any functional block can be
represented as a read-only-memory (ROM), with the block’s
inputs serving as memory addresses, we will represent abstract
functional units as abstract ROMs. According to the semantics of
an abstract memory, an abstract ROM will always satisfy the
property a1 = a2 ⇒ f(a1) = f(a2),  wheref() denotes the output
function of the ROM-modeled abstract functional unit.

Motivated by application to actual circuits, we will repre-
sent address and data expressions by vectors of Boolean expres-
sions having widthn andw, respectively, for a memory withN =
2n locations, each holding a word ofw bits. The typeBExpr  will
denote Boolean expressions.

Address comparison is implemented as:

A1 = A2  =̇ ¬ A1i ⊕ A2i , (2)

while address selectionA1 ← ITE(b,  A2,  A3)  is implemented
by selecting the corresponding bits:

 A1i ← ITE(b, A2i, A3i) , i = 1, ... ,n . (3)

The definition of data operations is similar, but over vectors of
width w.

We use the Efficient Memory Model (EMM), a behavioral
memory model for symbolic simulation, in order to represent
register files, memories, and latches in the circuits that we exam-
ine. During symbolic simulation, the sequence of writes to each

n

i = 1

EMM is represented as a list,write_list, that contains entries of
the form〈c, a, d〉, wherec is a Boolean expression denoting the
set of contexts (conditions) for which the entry is defined,a is an
address expression denoting a memory location, andd is a data
expression denoting the contents of this location. The context
information is included for modeling memory systems where the
Write operations may be performed conditionally, depending on
the value of a control signal, i.e., a write port enable signal. Ini-
tially write_list is empty for each EMM. Given an update
Write(mi, 〈c1, a1, d1〉) of the current memory statemi, the subse-
quent memory statemi+1 is defined as:

mi+1(a2) → ITE((a1 = a2) ∧ c1, d1, mi(a2)). (4)

5 Exploiting Non-Consistency of a Mem-
ory’ s Initial State
In this paper we relax the constraint for consistency of all

the initial state that is introduced on-the-fly. First, we use the
value of the Sequential Program Counter (pointing to the instruc-
tion that follows sequentially the presently executed instruction,
so that it will be equal to PC + 4 in many architectures), already
available in the Execution Stage for computing the Target Pro-
gram Counter of jump and branch instructions, as an additional
input to the ALU. The effect is to make functionInitState() of the
EMM, that models the ALU, be non-consistent across instruc-
tions but consistent for the same instruction (as identified by the
instruction address), thus turning the ALU into a different unin-
terpreted function for each instruction executed. The ALU in the
specification non-pipelined processor is defined identically, with
the Sequential Program Counter serving as an input.

This idea is based on the observation that we need to pre-
serve the consistency between the implementation and the speci-
fication simulation sequences, while the consistency within the
same simulation sequence is not important when evaluating the
correctness criterion. It should be pointed out that non-consis-
tency is a conservative approximation. If the processor is correct
when its functional units’ outputs are non-consistent across
instructions (from the same simulation sequence), it will also be
correct when the constraint for consistency is imposed. The same
idea can be applied to the initial state of all functional units and
memory arrays.

Second, when modeling a Register File, which has one
write-port and two read-ports (one for each of two source register
identifiers), we represent it with two register files. Each of them
provides the data for one of the source registers, while both get
updated in the way that the original register file is. In this way,
the initial states for the source registers read will not be consis-
tent across the two register files. Note that this representation of a
Register File is more conservative than the original  one - if the
pipelined processor is correct without the consistency con-
strained for the initial states of the two source registers for each
instruction, it will be correct when we impose that constraint as
well.

6 Experimental Results
In previous work, we attempted to verify a pipelined MIPS

processor with a memory stage [15]. The control logic was kept
intact at the gate-level. Term-variables, encoded with BDD vari-
ables as opposed to constants, were used for the data operands
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and instruction addresses. However, for optimal BDD sizes, the
BDD variables that encode the address term-variables of an
EMM should precede in the variable ordering those BDD vari-
ables that encode the EMM’s data term-variables. The problem
was that the Data Memory gets addressed with data term-vari-
ables, produced by the ALU in the Execution stage. At the same
time the Data Memory produces term-variables which are fed
back into the ALU, by means of the forwarding logic and the
Register File. As inputs to the ALU, these term-variables will be
compared for equality against former input term-variables in
order to select an output term-variable from among both the
former output term-variables and a newly generated one. Hence,
there is a circular dependency between the term-variables pro-
duced by the ALU and the Data Memory, due to the feedback
loops in the data path. The result is an exponential complexity of
the BDDs, when computing the correctness criterion, and insuffi-
cient memory, given a limit of 256 MB. Isles et al. [8], who were
trying to verify an abstractly-defined design of a pipelined DLX
processor with a memory stage, have also run out of memory,
given a limit of 1 GB.

In this paper, we examine three versions of a 5-stage pipe-
lined MIPS processor [12] with a 32-bit data path - see Table 1.
Each is compared to its non-pipelined specification processor.
The functional units, register file, and pipeline latches are
replaced by EMMs. The control logic is described at the gate
level. The instruction-decoding PLA is defined to produce a
unique pattern of ALU control bits for each instruction, while the
other control bits are determined according to the class of the
instruction.

MIPS-15 and MIPS-42 are based on the original MIPS
instruction encodings [9] for the implemented instructions, while
MIPS-191 is based on the same instruction formats, but has dif-
ferent operation-code and function-code encodings, in order to
use all possible instruction-encoding patterns and to define a very
large ISA. This processor has the same functional units and the
same pipeline structure as the previous two, except that it has
more control signals going from the instruction-decoding PLA
into the ALU in order to identify a different computation to be
performed for each instruction.

When symbolically simulating the circuits and computing
the correctness criterion, we used p-terms (represented as con-
stants) for the data operands, immediate values, and instruction
addresses. The register identifiers were represented as term-vari-
ables, and were encoded with BDD variables, as explained in
Sect. 3. For a way to encode the initial state of pipeline latches,
the reader is referred to [15].

Processor
ISA

count

ISA Composition

register-
register

instructions

register-
immediate

instructions

loads/
stores

branches/
jumps

MIPS-15 15 6 4 2 3

MIPS-42 42 16 8 10 8

MIPS-191 191 129 26 2 34

Table 1:  Processors used in the experiments

We also exploited the idea of a non-consistent initial state
(Sect. 5) by using a split Register File and a non-consistent ALU
behavior, based on the Sequential Program Counter. The latter
was achieved by letting the user specify nets that will be used as
“imaginary” additional address inputs when generating the initial
state of an EMM. We call such imaginary address inputs a tag.

We compared two encoding schemes for the distinct con-
stants that are used for p-terms - consecutive constants, i.e., bit-
vectors encoding consecutive binary numbers, and 1-hot con-
stants which have a 1 in a single bit position and 0s in the other
bit positions - see Tables 2 and 3, respectively. The experiments
were performed on an IBM RS/6000 43P-140 with a 233MHz
PowerPC 604e microprocessor, having 256 MB of physical
memory, and running AIX 4.1.5.

Tagging the ALU with the Sequential PC made the differ-
ence between impossible and possible when verifying the MIPS-
like processor with 191 instructions, as shown in Table 4. The

Processor
Register

 File

Sequential
PC used as

tag for

CPU
Time

[s]

Memory
 [MB]

Max.
BDD
Nodes

MIPS-15 Unified --- 96 13.6 524,366

ALU 37 7.6 262,181

Split --- 89 7.6 262,226

ALU 34 4.6 131,147

MIPS-42 Unified --- 325 25.6 1,048,666

ALU 50 7,6 262,216

Split --- 265 25.6 1,048,647

ALU 37 7.6 262,211

MIPS-191 Unified --- >881 >256 ---

ALU 49 7.9 262,199

Split --- >878 >256 ---

ALU 42 7.9 262,224

Table 2:  Results when using consecutive constants for the p-
terms

Processor
Register

 File

Sequential
PC used as

tag for

CPU
Time

[s]

Memory
[MB]

Max.
BDD
Nodes

MIPS-15 Unified --- 50 7.6 262,235

ALU 24 4.6 131,079

Split --- 46 4.6 131,165

ALU 21 3.1 65,589

MIPS-42 Unified --- 177 25.4 1,048,651

ALU 36 4.6 131,141

Split --- 145 13.6 524,363

ALU 27 4.6 131,165

MIPS-191 Unified --- >935 >256 ---

ALU 32 4.9 131,137

Split --- >1,710 >256 ---

ALU 27 4.9 131,147

Table 3:  Results when using 1-hot constants for the p-terms



5

use of constants for the values of instruction addresses (i.e., the
values of the Sequential Program Counter) made the selection of
the distinct uninterpreted function, to be performed by the ALU
for each instruction, very efficient. As a result, the ALU was pre-
vented from accumulating a single complex output term that is
consistent across all instructions, which broke the effect of the
forwarding logic feedback loops.

Using 1-hot constants, as opposed to consecutive constants,
reduced the CPU time and memory with 1/3 and the maximum
BDD node count by half. The reason is that the 1-hot constants
lead to spreading the Boolean expressions, which result from
deep nesting of ITE operators, across all bit positions of a bit-
vector, thus avoiding the building of a single big BDD.

Splitting the Register File resulted in only a negligible CPU
time reduction, when the above two ideas were employed. Addi-
tionally tagging the initial state of the Register File and the Data
Memory with the Sequential PC did not lead to a significant per-
formnce improvement. However, processing the ALU tag (i.e.,
the Sequential PC) first, immediately followed by the other input
p-terms, when performing the address comparisons for comput-
ing the EMM’s initial state, resulted in reducing the CPU time by
half  but did not change the memory consumption.

When generating the initial state for the pipeline latches,
we obtained the best performance from the following BDD vari-
able order: 1) Execution/Memory, 2) Memory/Write-Back,
3) Instruction-Decode/Execution, 4) Instruction-Fetch/Instruc-
tion-Decode, 5) Instruction Memory, where a “/” separates the
two pipeline stages divided by the pipeline latch. The reason is
that the Execution/Memory latch contains symbolic information
for taken branches or jumps that will result in symbolic condi-
tions for squashing the instructions in the preceding stages, i.e.,
this information will affect many instructions in flight. Hence,
the BDD variables used for encoding the initial state of that pipe-
line latch have to precede the BDD variables that encode the ini-
tial state of the other latches in order to get smaller BDD sizes
when computing the expression for the correctness criterion.
Then, the Memory/Write-Back latch will affect the expressions
for the data operands of all the subsequent instructions by means
of the forwarding logic, so that this latch is ranked second. Simi-
lar reasoning explains the order of the other pipeline latches.

7 Conclusions
We showed that the logic of Positive Equality with Uninter-

preted Functions scales very efficiently for verification of pipe-
lined microprocessors with very large ISAs. Critical to that was
the idea of functional units’ behavior that is non-consistent
across instructions, but consistent for the same instruction, based
on the value of the Sequential PC. This idea made the difference
between impossible and possible when verifying a 5-stage
MIPS-like pipelined processor that implements 191 instructions
and resulted in verification time and memory which are invariant
with the size of the implemented ISA, when extending it from 42
to 191 instructions.
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