Formal Verification of a Superscalar Execution Unit

Kyle L. Nelson Alok Jain Randal E. Bryant

IBM Corporation Department of ECE School of Computer Science
AS/400 Dvision Carngyie Mellon Unversity Carngyie Mellon Unversity
RochesterMN 55901 Pittskurgh, A 15213 Pittskurgh, A 15213

email: kin@vnet.ibm.com email: alok.jain@ece.cmu.edu email: randybryant@cs.cmu.edu

Abstract. Marny modern systems are designed as a set of intercorsystems’ often radical di@tion from the sequentialxecution
nected reacte subsystems. The subsystearification task is to model. This paper focuses on applying our methodologetifyv
verify an implementation of the subsystenaiagt the simple deter- the fixed point unit of a ReerPC processoiThe fixed point unit
ministic high-level specification of the entire system. Oerifica- represents a subsystem with a compieerface and seral of the
tion methodologybased on Symbolicrdjectory Ewaluation, is able performance enhancing features found in modern day processors.
to bridge the wide &p between the abstract specification and theA

impl ; ific details of th b Thi high level overview of our methodology for subsystererifica-
Implementation specific detalls of the subsystem. This paper preg,, “ang some of the relatedork is presented in Secti@h

sents a detailed description of an industrial application of this methg g tion3 discusses the implementation details of thedfipoint
odology to the fird point &ecution unit of the ReerPC processor unit. The steps required by our methodology émify the fixed

We were able toerify a representaté instruction under all possi- it njt are detailed in Sectidn The results of theevification
ble stall, bypass, pipeline conditions and under all possible timings, . presented in Sectién
for interface to other functional units in the processor)

2. Owerview of Verification Methodology

The goal is to deslop a methodology with which a designer can
shav that an implementation of the subsystem correctly fulfills an

. b X abstract specification of the desired system WiehaThe abstract
behaiors. A lage class of systems thathabit such beheor are oo ification describes the highk behaior of the system inde-

rocessors. At the highdel the sequencing model inherent in pro- L : ; .
Eessors is the se u%ntiateeutior:q modelg Haever, at the pr pendent of an timing or |mp|ementat|on.deta|ls.. As agample, .
q ; : P e he natural specification of a processor is the instruction set archi-
Ievel,_these processors are implemented as a set of interconnec ‘égture. The specification is a setatktiact assertionslefining the
reactve subsystems. The subsystermnesheompla interiaces and effect of each operation on usésible state elements. Thenfica-

use nondeterministic protocols to interact with each otheaddi- process must bridge a widepg between the detailed sub-
L . ‘ 2EE ;) Ps'ilstem implementation and the abstract specification. In spanning
such as plp_ellnes and dispatching multl_ple Instruction mie_cm this gap, the werifier must account for issues such as system clock-
an efort to increase performance. The interaction among |nstruc|—ng pipelines and inteates with other subsystems Bridge this
tions results in increased interlock and resource conflict problen%p', the erification process requires some additional mapping
which leads to nondeterminism in the subsystem. Such subsystei ormation. Theémplementation mappingelates the abstract state

contain ma subtle features with the potential for serious designgjements in the assertions to signals in the subsystem. The imple-

error mentation mapping is a nondeterministic mapping defined in terms
A methodology for formal erification of such subsystems presentsof state diagrams. State diagramswallgsers to create an\éron-

a unique set of challenges. The goal isanfy the implementation ment around the subsystem and define camptadeterministic

of the subsystem a@st the more natural highviel specification interface protocols. The state diagrams corresponding to the inputs
of the entire system. Theexification methodology has to incorpo- can be vieved as generators that generate-level signals required

rate the ability of defining the @inonment around the subsystem. for the operation of the subsystem. State diagrams corresponding to
The ewironment defines the set of restrictions and requirementsutputs can be weed as acceptors that recognize-level signals
placed on the subsystem by the rest of the system. The restrictioos the outputs of the subsystem. In addition to defining tieoen

and requirements are usually in the form of a set of nondeterminisaent, the mapping also has information abouwt twstitch instruc-

tic protocols defined on the intade signals. In addition to defining tions together to create infinitgezution sequences.

these intedces, the methodology has to account for comnf#a- e apgtract specification and the implementation mapping are
tures such as instruction pipelines, pipeline interlocks, multiplg,seq 1o generate tierjectory specificationThe trajectory specifi-
Instruction Issue, multlpl_eyc!e instructions and spepu_la&le(ecu- cation consists of a set whjectory assertions€Each abstract asser-
tion. Though formal erification tools hee started gining accep- oy gets mapped into a trajectory assertion. The trajectory assertion
tance in the industry[8][9][10][11], tiyedo not preide a rigorous .04 res all possible sequences of circuit state that arise due to non-
methodology for subsysteresification. deterministic interactions of the signals in theiemment around
Our \erification methodology is able to bridge the widapg the subsystem. A modified form of symbolic simulation called
between the abstract specification of the entire system and the suymbolic Tajectory Ewaluation (STE)[1] is used tcevify the tra-
jectory assertions on the subsystem.

1. Intr oduction

Some modern systems with a simple deterministic higél-Epeci-
fication hae implementations thakkibit highly nondeterministic

MThis work partially funded by Semiconductor Research Corporation #96-DC- The reader is referred to [4] for a more detailed description of our
068 verification methodology

Permission to makdigital/hard cop of all or part of this wrk for personal or 2.1. Related Wrk
classroom use is granted without feevided that copies are not made or distté#ul
for profit or commercial aantage, the copight notice, the title of the publication and ~ Beatty[2] laid devn the foundation for our methodology for formal
its date appeaand notice is gen that coping is by permission of 8M, Inc. Tocoy — yeerification of systems. Hever his vork had one basic limitation.
gtf':f ;ﬁ'fg;;;gﬁp;nﬂ'ﬁgr’ gofsgft on SEE/Or {0 redistrie to lists, requires prior spe- o - mathodology could handle only bounded single \ieha
sequences. Whae etended the methodology to handle a greater

DAC 97, Anaheim, California level of nondeterministic bekier required for subsystenesifica-
(c) 1997 ACM 0-89791-920-3/97/06..$3.50

1

tion.

i . . i WHEN (r a !=rb) || dat aA ==dat aB) 1)
STE has been used earlier @iy trajectory assertions. Beatty [2] (op isOR) and (RAisr a) and (RBisr b) and (RTisrt)and (2)
mapped each abstract assertion into a set of symbolic patterns. (Reg[ra] isdat aA)and (Reg[rb] isdat aB) (©)
STE was used toerify the set of symbolic patterns on the circuit. LEADSTO @
The set of symbolic patterns corresponded to a single sequence of (Reglrt] isdataA| dataB) ®

states in a state diagram.g8g3] extended STE to perform fixi
point computations toerify a single sequence of states augmented
with a limited set of loops. Whae etended STE to deal with
arbitrary state diagrams.

Figure 1. Abstract assertion for the ORinstruction

ered ®ailable when either it does not currently containasidv

Our vork has some resemblance to the capabilitiegiged by the jnstruction or the instruction in thexecute stage is going to be
Symbolic Model érifier (SMV)[5][6]. SMV requires a closed sys- completed in the currenycle.

tem. The ewironment is modeled as a set of machines. The state
diagrams in our mapping correspond to creating atr@mment
around the system. M@ver, there is one essential féifence.
Though SMV does prade the capability of describing thewen
ronment, it does not pviale a methodology for rigorously defining
these machines and stitching them together to reason about infinit
execution sequences. The othefeti€énce is that the model-check-
ing algorithm in SMV requires the completextistate relation. It

When the recute stage lgins, all required operands anadable,

and the current instruction is latched into tkeaaite stage instruc-

tion reggister Most instructions will complete thexecute stage in a

single gcle. Multiply and dvide instructions are thexeeptions.
esult data is praded to the LSU to be stored in the GPR file, and
e instruction is complete when the LSU acklemiges the store.

This acknavledgment may be delayed, causing the instruction to

would be impossible to obtain the entirecstate relation for a stall, if there are préous instructions in the instruction stream that

complex subsystem. On the other hand, we use STEalniate the Still have the possibility of causing an interrupt.

next-state function on-the-fly and only for that part of the sub- The compl&ity resulting from both the interlock logic that
system that is required by the specification. enforces pipeline stalls and the non-deterministic iated
between the FXU and the other functional units are common in
modern processors. These features are a significant source of
errors and increase thefiifilty of the \erification task.

Kurshan[7][8] has used the concept of mappings to perform hierar-
chical \erification. Kurshan uses reduction transformations as a
basis of compbdty management and hierarchicatrification.
Reductions are homomorphic transformations which correspond to ; ; ; e ;

abstraction mappings.\arse reductions (called refinements) cor- 4. Fixed Point Unit Verification

respond to our implementation mappingsweeer Kurshan does 4,1, Specification

not have the concept of stitching tasks together to create an infinite o o))
sequence of tasks. Alsoukshan uses language containment as The initial step in erifying the FXU is to formally document its

opposed to STE as thenification task. specification. The specification can be directlyetakom the por-
) . .) tion of the PaerPC5 instruction set architecture that it imple-
3. Overview of the Fixed Point Unit ments. Each instruction that the FXkkeutes can bexpressed as

) . . . L . an abstract assertion. In our methodo)agyy abstract assertion is
The fixed point unit being erified is part of a superscalar imple- 5 the form:P LEADSTO Q, whereP senes as the precondition
mentation of the ReerPC architecture[12] used in IBMAS/400 andQ as the postcondition. The conditidd@ndQ are a conjunc-
Advanced 36 computer[13]. The FXU intces with the branch o of clauses where each clause is an assignment to an abstract
processing unit (BPU) and the load store unit (LSU). The FXU is gtate element. The preconditiorpeesses some assumed condi-
responsible for xecuting all fixed point instructions other than tions arer the system state and the postconditimpresses the

loads and stores. Instructions are reegifrom the BPU. The BPU ¢qngition that should result. The set of all the assertions form the
can dispatch a maximum of ewnstructions perycle depending functional units specification.

on the number ofalid prefetched instructions and the interlock . T . .
conditions set by préously dispatched instructions. All instruc- The abstract systemMel assertion of a specific instruction, the bit-

tions are pre-decoded and steered to and adkdged by the cor- wise OR instruction, is shan in Figurel. This instruction com-

rect functional unit. If the unit isusy and can not resa the putes the bitwis©R of two source rgisters and stores the result in
instruction, then no ackmdedgment will be gien to the BPU. a taget register The assertion is completely implementation inde-
The instruction will stall in the dispatch stage, and the BPU will try Pendent. Lines 2-3 contain the precondition of the assertion. First
to dispatch it agin in the follaving gycle. it specifies that the opcode must be that for @Reinstruction.

. . i Next, by using symbolic ariables, it specifies that thedvgource
The FXU processes instructions inctgtages, the decode stage operandsRA andRB, and the taget operandRT, can be apregis-

and the gecute stage. In the decode stage, the latched instructioner address. It also specifies the contents of thesbwrce rgisters
is decoded into the instruction fields. In this stage, requests for ally, pe the symbolic aluesdat aA and dat aB. The assertios’
required source operands are made, and gettavperand, if postcondition is specified in line 5. It is simply that the contents of
required, is reseed. The required gester source operands will the taget register will contain the bitwiseR of the data in the ta
come from one of tw places. If the source'rgister address is goyrce rgisters. Line 1 of the assertion is a condition that filters

equialent to the tayets register address of thexecute stage’ out illegal input patterns. An iligal pattern wuld be when the tov
instruction, then the source data will be farded to the decode qyrce operands refer to the samgister address and the data
stage, bypassing thegister file. Otherwise, if there is nogister contained in the tesource rgisters is difierent.

match or if there is some special circumstance in which the hard-))
ware does not supportgister bypassing, a request for the data is 4.2. Implementation M apping

sent to the LSU, where the general purpoggster (GPR) file 1 jmhiementation mapping consists afan machine and a set
resides. Brt of the LSUS function is to manage all the interlocks of map machines. The main machine defines theflof control for
involved in the allocation of gister resources. Instructions will individual system operations. The map machines define a mapping

stall in the decode stage until all of the source operands/aite & ¢, tha state elements in the assertion. Each state element is associ-
able and thexecute stage isvailable. The gecute stage is consid- ated with a single map machine. The main machine and the map

Start dsp /to_dcd

dcd_to_exe done

Figure 2. Main machine

machines are nondeterministic machines that are modeled as con-
trol graphs. Control graphs are state diagrams with the capability
of synchronization at specific time points. A control graph has two
sets of vertices: 1) State vertices that represent some non-zero
duration of time and 2) Event vertices that represent instantaneous
time points. A control graph has a source, an event vertex with no
incoming edges, and a sink, an event vertex with no outgoing
edges. Nondeterminism is modeled as multiple outgoing edges
from avertex.

The main machine is a control graph with a cutset of event vertices
that denotes the nominal end of the current operation and start of
the successive operation. The main machine for the FXU is shown
in Figure 2. The vertices labelled dsp, dcd and exe are state ver-
tices that represent the three pipeline stages in the FXU. The self
loops on each state vertex represent that an instruction can stall in
each pipe stage for a nondeterministic period of time. The rest of
the vertices in the figure are event vertices. The cutset
dsp_t o_dcd represents the fact that the successive instruction
can be started at this point thus overlapping the decode stage of the
current instruction with the dispatch stage of the successive
instruction.

Once the main machine is defined, then a map machine for each
state element is defined. The map machine is a control graph with
node formulas and synchronization points. Node formulas are on
the state vertices and refer to assignments to actual nodes or sig-
nals in the circuit. Node formulas can either be antecedent node
formulas or consequent node formulas. Antecedent node formulas
define the stimuli and current state for the circuit. Consequent node
formulas define the desired response and state transitions. Both
types of node formulas can be associated with a single state vertex.
Synchronization is on the event vertices and synchronizes event
vertices in the map and main machines.

The map machine can be used to define the protocols on the inter-
face signals of the FXU. A single clause in the assertion is often
expanded to protocols involving the interface signals of the inter-
acting functiona units. In the case of the FXU and the OR asser-
tion, the (op is OR) clause is mapped into a protocol involving
interface signals between the BPU and the FXU. This protocol is
carried out during the instruction dispatch stage. Similarly, the
clause (Reg[ra] is dat aA) is mapped into a protocol between
the LSU and the FXU. Here the FXU must request the register data
from the LSU since the L SU manages the allocation of registers.

The implementation mapping must also consider the flow of the
instruction through the particular functional unit. This often
exposes some of the functional unit's internal states. Figure 3
shows the high level flow of an instruction through the three pipe-
line stages. First, the BPU must successfully dispatch the instruc-
tion to the FXU. In the dispatch stage, the instruction is pre-
decoded and it is determined whether the source operand data will
bypass the register file. This determination is based on the dispatch
stage’'s pre-decode, the current decode stage instruction, and
instruction dispatch information from the LSU. In the decode
stage, data for the source operands is obtained. If bypassing was
determined to occur, this data comes from the execute stage; other-
wise it comes from the LSU. Also, the target register is reserved
during the decode stage. Additionally, the instruction will stall in
the decode stage until the execute stage is available. In the execute

FXU

Dispatch Stage
successful instruction dispatch

determine if bypassing is allowed ﬁ—
Decode Stage

obtain the source operand data |~ I~

BPU

reserve the target register LSU

execute stage available :|

Execute Stage
store the target data

Figure 3. Instruction flow and interactions through the FXU

stage, the target data is calculated and stored in the register file.
The execute stage completes when the LSU acknowledges this
store.

The implementation mapping for each clause in the abstract asser-
tion will take into account one of more of these details. The focus
of the discussion here will be on the mappings for the OR asser-
tion's clauses (Reg[ra] is dataA) and (Reg[rt] s
dat aA| dat aB).

The A operand data is received during the decode stage and will
originate from one of two sources: either from the LSU, where the
register fileislocated, or from the FXU’s execute stage instruction.
The signals that are involved in this transaction are shown in
Figure 4. If the data originates from the LSU, the FXU will assert
fx _a reqandsetfx_a_sel tora,theregister address. When
the register data is available, the LSU will assert | s_a_val i d
and | s_a_dat a. If instead, the data originates from the FXU’s
execute stage, the data will be received when the execute stage
completes its computation. The execute stage will assert
ex_trgt_valid andthetarget datathat is to be forwarded will
be in ex_t rgt _dat a. After the decode stage is complete, the
instruction moves into the execute stage. When the target data is
computed, it will attempt to store the data into the target register.
The execute stage will assert ex_trgt_valid,
ex_trgt_data, and ex_trgt_sel until the LSU completes
the handshake with | s_t r gt _ack.

This transaction is captured in the map machine for the clause
(Reg[ra] isdat aA), shown at the top of Figure 5. The proto-
col is defined by associating antecedent and consequent node for-
mulas with each state in the control graph. The antecedent node

FXU
Dispatch Stagd

fx_a reqg, fx_a sel

Decode Stag

Is a valid, Is a data
ex_trgt_valid, ex_trgt_data

Is_trgt_ack LSU

Execute Stagq

ex_trgt_sel

Figure 4. A operand data and taget data interface signals

formulas are shown in the upper half of the shadowed boxes and
consequent node formulas are shown in the lower half. The control
graph for Reg[r a] is synchronized with the decode stage of the
main machine as indicated by the dashed lines at the control
graph’s source and sink.The control graph has two legs, the top leg
maps the case where the data comes from the L SU, and the bottom
leg maps the bypass case. The consequent node formulas of the
first two states, sl and 2, of the top leg indicate that the FXU is
reguesting the data from register r a. Potentially theinstruction can
wait an indefinite period of time in the state sl before
I's_a valid is asserted in the state s2. The register data is
received from the LSU in state s2. Once the data is received, the
FXU latches it up for use in the execute stage. After receiving the
data, the instruction may remain in the decode stage while other
resources are being attained. Thisisrepresented in state s5. During
this period, the FXU drops its request to the LSU since the data is
being internally stored.

The bottom leg, the bypass case, of the graph has exactly the same
flow, only the node expressions are different. On this path,
fXx_a_req is never asserted because the data is not originating
from the LSU. Instead, the data will be supplied by the signal
ex_trgt_datainsaes4.

The implementation mapping needs to expose some of the internal
signals in the FXU. The mapping for the bypass case of the A
operand data clause is dependent upon two execute stage related
signals, ex_val i d and ex_t rgt _val i d. Their map machines
areshown in Figure 5. The signal ex_val i d is asserted when the
execute stage contains a valid instruction, and ex_trgt _val i d
is asserted when the execute stage has completed the computation
of the target data. These signals represent the state of the preceding
instruction and can be considered inputs into the decode stage. As
aresult, their node formulas are antecedent node formulas, and the
control graph is synchronized to the decode stage. Later in the dis-
cussion of the mapping for the target data clause, these signals will
be considered as outputs of the execute stage, in which case their
control graphs will be synchronized to the execute stage of the
main machine and the antecedent node formulas will become con-
sequent node formulas. In general, state elements that are con-
tained in both the precondition and the postcondition are aways
mapped by the same control graph, only the role of the antecedent
node formulas and the consequent node formul as are reversed.

As shown in Figure5, the top leg of the control graph for
ex_val i d is the case where the execute stage does not have a
valid instruction. In state s2 on the bottom leg, the execute stage is
valid. It is possible that the execute stage instruction completes
while the current instruction is till stalling in the decode stage.
This explains the path from state s2 to state s1. A key point of this
graph is the synchronization line between itself and the Reg[r a]
graph. Synchronizing the bottom legs of these two machines guar-
antee that if the A operand datais being forwarded by the execute
stage, then the execute stage must contain avalid instruction.

Similarly, the mapping for (Reg[ra] is dat aA) is dependent
upon ex_t rgt _val i d. The top leg of this control graph is the
case where the execute stage does not contain avalid instruction as
indicated by the antecedent node formula. On the bottom leg, the
antecedent node formulafor state 2 indicates that the target datais
not yet valid. In state s3 the execute stage has completed its com-
putation, and the data is valid. This signal will remain asserted
until the LSU acknowledges receiving the target data for the exe-
cute instruction by asserting | s_t r gt _ack. Once the acknowl-
edgment is received, then the execute stage completes. As shown
in the mapping for | s_t r gt _ack, this acknowledgment from
the LSU isreceived in the last occurrence of ex_trgt _val i d’s
state s3. The first two synchronization lines ensure that the top leg
is taken only when the execute stage does not have a valid instruc-

tion and that the bottom leg is only taken when the execute stage
does have a valid instruction. The next synchronization line guar-
antees that the A operand data is received on the first cycle that
ex_trgt_valid is asserted. The final synchronization line
ensures that when ex_trgt_val i d is de-asserted, ex_val i d
is also de-asserted because the execute stage instruction has com-
pleted.

The last graph of Figure 5 is the mapping for the target data clause
(Reg[rt] isdataA| dat aB). This control graph is synchro-
nized to the execute stage of the main machine. Its node formulas
relate to FXU output signals, therefore they are consequent node
formulas. Two other output signals of the execute stage must also
be mapped during the execute stage. These signalsareex_val i d
and ex_trgt_valid. These signals have been discussed with
respect to the decode stage where they were considered as inputs.
The execute stage mapping of these signals was automatically
derived from its decode stage map machines. Additionally, ante-
cedent node formulas have become consequent node formulas. In
effect, the execute stage control graph for ex_val i d becomes
just the bottom leg of its decode stage mapping. Thisis because the
instruction being verified isin the execute stage, so clearly the exe-
cute stage contains avalid instruction.

The execute stage mapping of ex_trgt _val i d isin effect just
state s3. This is because the OR instruction being considered here
requires a single cycle to compute its target. As a result,
ex_trgt_validwill beasserted in the first cycle of the execute
stage.

Thesignal | s_t r gt _ack isaninput to both the decode and exe-
cute stages. Its execute stage mapping is automatically derived
from the decode stage map machine. The control graph in the exe-
cute stage is the leg of the decode stage’s mapping in which the
execute stage has avalid instruction. Because this signal isan input
from the LSU in both the decode and the execute stages, its node
formulas are antecedent node formulas.

5. Results

The implementation mapping was specified for the FXU. It defines
24 control graphs representing inputs, outputs and internal states of
the FXU. Only five of these control graphs have been shown here.
The remaining control graphs map the other interactions outlined
in Figure 3. The abstract assertion for the OR instruction and the
implementation mapping were used to automatically generate the
trajectory assertion. STE was used to verify the OR tragjectory
assertion on a gate-level model of the FXU. The gate-level repre-
sentation of the FXU contains approximately 28000 multi-input
gates and over 1000 latches.

5.1. Trajectory Generation

The tragjectory assertion corresponds to the composition of the 24
map machines defined in the implementation mapping for the bit-
wise OR assertion. Composition amounts to taking the cross-prod-
uct of these aligned map machines under restrictions placed by the
synchronization function. Figure 6 shows the tragjectory assertion
that was generated for the OR assertion. The trajectory assertion
corresponds to all possible cases that can arise due to interactions
between the map machines. The trajectory assertion has 488 verti-
ces, 34 loops and 28,602 paths. Each path represents a unique
ordering of events for a particular set of inputs and current states.

Whileit is not feasible to go into details about the composition of
each state in the trajectory assertion, we are able to make some
intuitive sense out of it. First notice the two horizontal cutsets in
the graph. These correspond to the nodes dsp_t o_dcd and
dcd_t o_exe shown in the main machine, Figure 2. The differ-
ence is that the state vertices dsp, and dcd have been expanded,

dsp_to_dcd

?)

dcd_to_exe

(Is a vaidis0) .

(fx_a reqis0) I

T

Main Machine e p
\ bj
|
| (2)
| =
. L2 (Is_a datais dataA)
(Reg[rd] isdataA) | '®) (s a vaidis1)
(Is a vaidis0) (fx_a reqis1)
(fx_a regis1) (fx_a_sel isra)
‘ (fx_a sel isra)
\
\

|
(Is_a vaidis0)

(ex_trgt_datais dataA)

|
|
\
(Is_a vaidis0) ‘
|
\
\

|
|
|
(fx_a reqis0) | (fx_a reqis0)
I I |
| R I /31\ (ex_validis 1)
B T]
| ‘ : (ex_validis1) ‘ - | ‘ |
! ! (ex_validis0)
(ex_valid) o [: . :) N
| !
| | i | \ \ |
\ 2 I T \ \ \
| : : ; : | (e _rgLvalidis0) ‘ | |
| N | | - | | |
[‘ | = —
‘ } # : : @ ‘ ‘ (®<_trgti\‘/al idis1) ‘
| : I (ex_trgt_validis0) . : \t)/ ‘ ‘ ; ‘
|
(e trgt valid) e ! ik ‘ | e '—@—y
| |
| : I ‘ ‘ | \ \
|
| ‘ R | \ |
‘ : [1 (ex_trgt_validis 1) ‘ ‘ ‘
‘ | | (Is_trgt_ack is0) : ‘
| e | |
| - -
| ! l : 7/\ ‘ (Is_trgt_ack is0)
T~ ‘ sl ‘ ‘
| | (Is_trgt_ack is0) I | | ’ |
[I ,
(Is_trgt_ack) o— : I *ﬂ—@*
! ¥
| ! | .
| : I ‘ (Is trgt_ack is 1) I
@ T 33 4
] u AN
(Is trgt_ackis 1) (Reg[rt] is dataA|dataB) |
(ex_trgt_sel isrt) ‘

(Reg[rt] is dataA|dataB)

Figure 5. A source operand data mapping and tar get data mapping

showing all possible interactions that can occur. Also, the decode
stage of the graph is significantly more complex than the other two
pipeline stages. The dispatch and execute stages require only an
acknowledgment in order to complete the pipeline stage. The
decode stage must attain multiple resources to advance. The set of
states in which the circuit can enter the dispatch stage and the many
orderings in which resources can be obtained account for the com-
plexity of the decode stage portion of the graph.

Also, in the dispatch stage the graph fans out into four paths. Path 1
and path 4 correspond to the case where one of the source operands
is being bypassed. Path 2, the path where neither operand is being
bypassed, is the most complex path. This is because al the
resources that need to be obtained in the decode stage are com-

pletely independent. Path 3, the path where both operands are being
bypassed, is the simplest path. On this path the arrival of the A and
B operands coincide with thesignal ex_t r gt _val i d.

Another observation that can be made is that path 2 actually con-
sists of multiple paths through the dispatch stage. This is because
when both operands are not being bypassed, then the instruction is
allowed to stall in the dispatch stage. The remaining three paths do
not stall in the dispatch stage because a condition for bypassing to
occur is that the two instructions involved must be dispatched in
consecutive cycles.

5.2. Symbolic Trajectory Evaluation
The trajectory assertion in Figure6 is very complex and has in

cation of the fied point unit of a ReerPC processof he specifi-
cation vas lept abstract at the Jel of the instruction set
architecture. A separate implementation mappingvigeal the
comple implementation specific details for the FXU. STRsw
used to erify that the FXU subsystem correctly fulfilled the
abstract specification of the procesdnrsome sense, the mapping
merely sered as hints to guide thenrification task.

At first glance the mapping might seem to be too coxaptiew-

ever, note the dct that most of the compiliéy in the mapping is in
defining the evironment around the FXU. And the reality is, mod-
ern systems are designed as a set of vesstibsystems with com-
plex interfaces and protocols. Thereforeyaachnique for formal
verification of subsystemsauld have to deal with the samevig

of compleity. The ultimate aim of this project is therification of

the entire system i.e., thewerPC processoHowever the current

set of methodology and tools cannot deal with thellef com-
plexity of an entire processoOur initial focus is to erify each
subsystem i.e., each functional unit (FXU, LSU, BPU) separately
and then reason about the interactions amongst the subsystems. W
feel that our wrk on the FXU is a significant step in that direction.

References
[1] R. E. Bryant, D. L. Beatty and C. J. H.g&e “Formal

Dispatch

(2]

(3]

(4]

Figure 6. Trajectory assertion for the ORinstruction

excess of 28000 paths in the correspondingclac component
graph. It vould be computationally infeasible to enumerate all the [5]
paths and use STE separately on each path. Instead the paths were
encoded using 456 pathnables and each of the states needs to be
simulated only once. STEas used to erify the entire trajectory
assertion in a singleevification run. Cycles in the trajectory asser-

tion were dealt by recussly identifying the strongly connected
components in the graph and performing a greatest fpoint
computation to deal with the strongly connected components[4].
The \erification of the OR assertion took nearly 50 hours of CPU
time and 185 MBytes of memory on an IBM RS/600 43P Model
140. This may seem to be a considerable amount of time and mem- (8l
ory, but taking into account the enormous number of paths that are
being simulated mas the required amount of resources appear
more reasonable. Imét, on &erage the simulator is able terify

10 paths a secondeXification of the complete trajectory assertion
would most lilely be run as gression tests. During theaddop-
ment of the assertions, implementation mapping, and the actual [10]
design, the simulator can be run intenaglly to delng each of
these components by focusing therification on problematic
paths.

(6]
(7]

(9]

[11]

Additionally, it is not necessary to Y& a one-to-one relationship
between instructions and assertions. Instead, a single assertion
could be used to specify a class of instructions with the same [12]
instruction format. This wuld significantly reduce the number of
assertions to beevified while not significantly increasing the
amount of symbolic manipulation or CPU time. [13]
6. Conclusion

We hare shevn the application of our methodology for therii-

Hardware \érification by Symbolic &rnary Tajectory
Evaluation’, 28th Design Automation Conference, pp. 397-
402, June 1991.

D. L. Beatty and Randal E. Bryant,dfmally \erifying a
Microprocessor Using a Simulation Methodol@gglst
Design Automation Conference, pp. 596-602, June 1994.
C. J. H Sger and R. E. Bryant, ‘@fmal \érification by
Symbolic Ewluation of Rurtially-Ordered Tajectories,
Formal Methods in System Design 6, pp. 147-189, 1994.
A. Jain, K. Nelson and R. E. Bryant,ehfying Nondeter-
ministic Implementations of Deterministic Systenfy-
mal Methodsin CAD, November 1996.

J. R. Burch, E. M. Clak K. L. McMillan and D. L. Dill,
“Sequential Circuit ¥rification Using Symbolic Model
Checking; 27th Design Automation Conference, pp. 46-
51, June 1990.

K. L. McMillan, “Symbolic Model Checking, Kluwer
Academic Publishers, 1993.

R. P Kurshan, Analysis of Discrete Eant Coordination,
Lecture Notes in Computer Science 430, pp. 414-453,
1990.

R. P Kurshan, “ComputeAided \erification of Coordi-
nating Processes: The Automata-Theoretic Apprdach,
Princeton University Press, 1994.

|. Beer S. Ben Duid, C. Eisner and A. Landy, “Rule-
Base: an industry oriented formaénfication tool;, 33th
Design Automation Conference, pp. 655-660, June 1996.
E. M. Clarle and R. PKurshan, “Computeaided \erifica-
tion,” IEEE Spectrum, pp. 61-67, June 1996.

B. Plessier and C. Pixle“Formal \erification of a com-
mercial serial bs interbce, 14th Annual International
Phoenix Conference on Computers and Communications,
pp. 378-382, March 1995.

C. May, E. Silha, R. Simpson and H.aWen, “The Pw-
erPC Architecture: A Specification for a Wd=amily of
RISC Processofsvorgan Kaufmann Publishers, 1994.

F. G. Soltis, “Inside the AS/400Duke Press, 1996.

