
1

Formal Verification of a Superscalar Execution Unit1

Kyle L. Nelson Alok Jain Randal E. Bryant
IBM Corporation Department of ECE School of Computer Science
AS/400 Division Carnegie Mellon University Carnegie Mellon University
Rochester, MN 55901 Pittsburgh, PA 15213 Pittsburgh, PA 15213
email: kln@vnet.ibm.com email: alok.jain@ece.cmu.edu email: randy.bryant@cs.cmu.edu

Abstract. Many modern systems are designed as a set of intercon-
nected reactive subsystems. The subsystem verification task is to
verify an implementation of the subsystem against the simple deter-
ministic high-level specification of the entire system. Our verifica-
tion methodology, based on Symbolic Trajectory Evaluation, is able
to bridge the wide gap between the abstract specification and the
implementation specific details of the subsystem. This paper pre-
sents a detailed description of an industrial application of this meth-
odology to the fixed point execution unit of the PowerPC processor.
We were able to verify a representative instruction under all possi-
ble stall, bypass, pipeline conditions and under all possible timings
for interface to other functional units in the processor.

1. Intr oduction
Some modern systems with a simple deterministic high-level speci-
fication have implementations that exhibit highly nondeterministic
behaviors. A large class of systems that exhibit such behavior are
processors. At the high-level the sequencing model inherent in pro-
cessors is the sequential execution model. However, at the low
level, these processors are implemented as a set of interconnected
reactive subsystems. The subsystems have complex interfaces and
use nondeterministic protocols to interact with each other. In addi-
tion, the underlying implementation of subsystems uses features
such as pipelines and dispatching multiple instruction per cycle in
an effort to increase performance. The interaction among instruc-
tions results in increased interlock and resource conflict problems
which leads to nondeterminism in the subsystem. Such subsystems
contain many subtle features with the potential for serious design
error.

A methodology for formal verification of such subsystems presents
a unique set of challenges. The goal is to verify the implementation
of the subsystem against the more natural high-level specification
of the entire system. The verification methodology has to incorpo-
rate the ability of defining the environment around the subsystem.
The environment defines the set of restrictions and requirements
placed on the subsystem by the rest of the system. The restrictions
and requirements are usually in the form of a set of nondeterminis-
tic protocols defined on the interface signals. In addition to defining
these interfaces, the methodology has to account for complex fea-
tures such as instruction pipelines, pipeline interlocks, multiple
instruction issue, multiple cycle instructions and speculative execu-
tion. Though formal verification tools have started gaining accep-
tance in the industry[8][9][10][11], they do not provide a rigorous
methodology for subsystem verification.

Our verification methodology is able to bridge the wide gap
between the abstract specification of the entire system and the sub-

1This work partially funded by Semiconductor Research Corporation #96-DC-
068

Permission to make digital/hard copy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication and
its date appear, and notice is given that copying is by permission of ACM, Inc. To copy
otherwise, to republish, to post on servers or to redistribute to lists, requires prior spe-
cific permission and /or a fee.

DAC 97, Anaheim, California
(c) 1997 ACM 0-89791-920-3/97/06..$3.50

systems’ often radical deviation from the sequential execution
model. This paper focuses on applying our methodology to verify
the fixed point unit of a PowerPC processor. The fixed point unit
represents a subsystem with a complex interface and several of the
performance enhancing features found in modern day processors.

A high level overview of our methodology for subsystem verifica-
tion and some of the related work is presented in Section2.
Section3 discusses the implementation details of the fixed point
unit. The steps required by our methodology to verify the fixed
point unit are detailed in Section4. The results of the verification
are presented in Section5.

2. Overview of Verification Methodology
The goal is to develop a methodology with which a designer can
show that an implementation of the subsystem correctly fulfills an
abstract specification of the desired system behavior. The abstract
specification describes the high-level behavior of the system inde-
pendent of any timing or implementation details. As an example,
the natural specification of a processor is the instruction set archi-
tecture. The specification is a set ofabstract assertions defining the
effect of each operation on user-visible state elements. The verifica-
tion process must bridge a wide gap between the detailed sub-
system implementation and the abstract specification. In spanning
this gap, the verifier must account for issues such as system clock-
ing, pipelines and interfaces with other subsystems. To bridge this
gap, the verification process requires some additional mapping
information. Theimplementation mapping relates the abstract state
elements in the assertions to signals in the subsystem. The imple-
mentation mapping is a nondeterministic mapping defined in terms
of state diagrams. State diagrams allow users to create an environ-
ment around the subsystem and define complex nondeterministic
interface protocols. The state diagrams corresponding to the inputs
can be viewed as generators that generate low-level signals required
for the operation of the subsystem. State diagrams corresponding to
outputs can be viewed as acceptors that recognize low-level signals
on the outputs of the subsystem. In addition to defining the environ-
ment, the mapping also has information about how to stitch instruc-
tions together to create infinite execution sequences.

The abstract specification and the implementation mapping are
used to generate thetrajectory specification. The trajectory specifi-
cation consists of a set oftrajectory assertions. Each abstract asser-
tion gets mapped into a trajectory assertion. The trajectory assertion
captures all possible sequences of circuit state that arise due to non-
deterministic interactions of the signals in the environment around
the subsystem. A modified form of symbolic simulation called
Symbolic Trajectory Evaluation (STE)[1] is used to verify the tra-
jectory assertions on the subsystem.

The reader is referred to [4] for a more detailed description of our
verification methodology.

2.1. Related Work

Beatty[2] laid down the foundation for our methodology for formal
verification of systems. However his work had one basic limitation.
The methodology could handle only bounded single behavior
sequences. We have extended the methodology to handle a greater
level of nondeterministic behavior required for subsystem verifica-

2

tion.

STE has been used earlier to verify trajectory assertions. Beatty [2]
mapped each abstract assertion into a set of symbolic patterns.
STE was used to verify the set of symbolic patterns on the circuit.
The set of symbolic patterns corresponded to a single sequence of
states in a state diagram. Seger[3] extended STE to perform fixed
point computations to verify a single sequence of states augmented
with a limited set of loops. We have extended STE to deal with
arbitrary state diagrams.

Our work has some resemblance to the capabilities provided by the
Symbolic Model Verifier (SMV)[5][6]. SMV requires a closed sys-
tem. The environment is modeled as a set of machines. The state
diagrams in our mapping correspond to creating an environment
around the system. However, there is one essential difference.
Though SMV does provide the capability of describing the envi-
ronment, it does not provide a methodology for rigorously defining
these machines and stitching them together to reason about infinite
execution sequences. The other difference is that the model-check-
ing algorithm in SMV requires the complete next-state relation. It
would be impossible to obtain the entire next-state relation for a
complex subsystem. On the other hand, we use STE to evaluate the
next-state function on-the-fly and only for that part of the sub-
system that is required by the specification.

Kurshan[7][8] has used the concept of mappings to perform hierar-
chical verification. Kurshan uses reduction transformations as a
basis of complexity management and hierarchical verification.
Reductions are homomorphic transformations which correspond to
abstraction mappings. Inverse reductions (called refinements) cor-
respond to our implementation mappings. However Kurshan does
not have the concept of stitching tasks together to create an infinite
sequence of tasks. Also Kurshan uses language containment as
opposed to STE as the verification task.

3. Overview of the Fixed Point Unit
The fixed point unit being verified is part of a superscalar imple-
mentation of the PowerPC architecture[12] used in IBM’s AS/400
Advanced 36 computer[13]. The FXU interfaces with the branch
processing unit (BPU) and the load store unit (LSU). The FXU is
responsible for executing all fixed point instructions other than
loads and stores. Instructions are received from the BPU. The BPU
can dispatch a maximum of two instructions per cycle depending
on the number of valid prefetched instructions and the interlock
conditions set by previously dispatched instructions. All instruc-
tions are pre-decoded and steered to and acknowledged by the cor-
rect functional unit. If the unit is busy and can not receive the
instruction, then no acknowledgment will be given to the BPU.
The instruction will stall in the dispatch stage, and the BPU will try
to dispatch it again in the following cycle.

The FXU processes instructions in two stages, the decode stage
and the execute stage. In the decode stage, the latched instruction
is decoded into the instruction fields. In this stage, requests for all
required source operands are made, and a target operand, if
required, is reserved. The required register source operands will
come from one of two places. If the source’s register address is
equivalent to the target’s register address of the execute stage’s
instruction, then the source data will be forwarded to the decode
stage, bypassing the register file. Otherwise, if there is no register
match or if there is some special circumstance in which the hard-
ware does not support register bypassing, a request for the data is
sent to the LSU, where the general purpose register (GPR) file
resides. Part of the LSU’s function is to manage all the interlocks
involved in the allocation of register resources. Instructions will
stall in the decode stage until all of the source operands are avail-
able and the execute stage is available. The execute stage is consid-

ered available when either it does not currently contain a valid
instruction or the instruction in the execute stage is going to be
completed in the current cycle.

When the execute stage begins, all required operands are available,
and the current instruction is latched into the execute stage instruc-
tion register. Most instructions will complete the execute stage in a
single cycle. Multiply and divide instructions are the exceptions.
Result data is provided to the LSU to be stored in the GPR file, and
the instruction is complete when the LSU acknowledges the store.
This acknowledgment may be delayed, causing the instruction to
stall, if there are previous instructions in the instruction stream that
still have the possibility of causing an interrupt.

The complexity resulting from both the interlock logic that
enforces pipeline stalls and the non-deterministic interfaces
between the FXU and the other functional units are common in
modern processors. These features are a significant source of
errors and increase the difficulty of the verification task.

4. Fixed Point Unit Verification

4.1. Specification

The initial step in verifying the FXU is to formally document its
specification. The specification can be directly taken from the por-
tion of the PowerPC’s instruction set architecture that it imple-
ments. Each instruction that the FXU executes can be expressed as
an abstract assertion. In our methodology, an abstract assertion is
of the form:P LEADSTO Q, whereP serves as the precondition
andQ as the postcondition. The conditionsP andQ are a conjunc-
tion of clauses where each clause is an assignment to an abstract
state element. The precondition expresses some assumed condi-
tions over the system state and the postcondition expresses the
condition that should result. The set of all the assertions form the
functional unit’s specification.

The abstract system level assertion of a specific instruction, the bit-
wise OR instruction, is shown in Figure1. This instruction com-
putes the bitwiseOR of two source registers and stores the result in
a target register. The assertion is completely implementation inde-
pendent. Lines 2-3 contain the precondition of the assertion. First
it specifies that the opcode must be that for theOR instruction.
Next, by using symbolic variables, it specifies that the two source
operands,RA andRB, and the target operand,RT, can be any regis-
ter address. It also specifies the contents of the two source registers
to be the symbolic valuesdataA and dataB. The assertion’s
postcondition is specified in line 5. It is simply that the contents of
the target register will contain the bitwiseOR of the data in the two
source registers. Line 1 of the assertion is a condition that filters
out illegal input patterns. An illegal pattern would be when the two
source operands refer to the same register address and the data
contained in the two source registers is different.

4.2. Implementation Mapping

The implementation mapping consists of amain machine and a set
of map machines. The main machine defines the flow of control for
individual system operations. The map machines define a mapping
for the state elements in the assertion. Each state element is associ-
ated with a single map machine. The main machine and the map

Figure 1. Abstract assertion for the OR instruction

WHEN (ra != rb) || (dataA == dataB)
(op is OR) and (RA is ra) and (RB is rb) and (RT is rt) and
(Reg[ra] is dataA) and (Reg[rb] is dataB)

LEADSTO
(Reg[rt] is dataA | dataB)

(1)
(2)
(3)
(4)
(5)

3

machines are nondeterministic machines that are modeled as con-
trol graphs. Control graphs are state diagrams with the capability
of synchronization at specific time points. A control graph has two
sets of vertices: 1) State vertices that represent some non-zero
duration of time and 2) Event vertices that represent instantaneous
time points. A control graph has a source, an event vertex with no
incoming edges, and a sink, an event vertex with no outgoing
edges. Nondeterminism is modeled as multiple outgoing edges
from a vertex.

The main machine is a control graph with a cutset of event vertices
that denotes the nominal end of the current operation and start of
the successive operation. The main machine for the FXU is shown
in Figure 2. The vertices labelled dsp, dcd and exe are state ver-
tices that represent the three pipeline stages in the FXU. The self
loops on each state vertex represent that an instruction can stall in
each pipe stage for a nondeterministic period of time. The rest of
the vertices in the figure are event vertices. The cutset
dsp_to_dcd represents the fact that the successive instruction
can be started at this point thus overlapping the decode stage of the
current instruction with the dispatch stage of the successive
instruction.

Once the main machine is defined, then a map machine for each
state element is defined. The map machine is a control graph with
node formulas and synchronization points. Node formulas are on
the state vertices and refer to assignments to actual nodes or sig-
nals in the circuit. Node formulas can either be antecedent node
formulas or consequent node formulas. Antecedent node formulas
define the stimuli and current state for the circuit. Consequent node
formulas define the desired response and state transitions. Both
types of node formulas can be associated with a single state vertex.
Synchronization is on the event vertices and synchronizes event
vertices in the map and main machines.

The map machine can be used to define the protocols on the inter-
face signals of the FXU. A single clause in the assertion is often
expanded to protocols involving the interface signals of the inter-
acting functional units. In the case of the FXU and the OR asser-
tion, the (op is OR) clause is mapped into a protocol involving
interface signals between the BPU and the FXU. This protocol is
carried out during the instruction dispatch stage. Similarly, the
clause (Reg[ra] is dataA) is mapped into a protocol between
the LSU and the FXU. Here the FXU must request the register data
from the LSU since the LSU manages the allocation of registers.

The implementation mapping must also consider the flow of the
instruction through the particular functional unit. This often
exposes some of the functional unit’s internal states. Figure 3
shows the high level flow of an instruction through the three pipe-
line stages. First, the BPU must successfully dispatch the instruc-
tion to the FXU. In the dispatch stage, the instruction is pre-
decoded and it is determined whether the source operand data will
bypass the register file. This determination is based on the dispatch
stage’s pre-decode, the current decode stage instruction, and
instruction dispatch information from the LSU. In the decode
stage, data for the source operands is obtained. If bypassing was
determined to occur, this data comes from the execute stage; other-
wise it comes from the LSU. Also, the target register is reserved
during the decode stage. Additionally, the instruction will stall in
the decode stage until the execute stage is available. In the execute

stage, the target data is calculated and stored in the register file.
The execute stage completes when the LSU acknowledges this
store.

The implementation mapping for each clause in the abstract asser-
tion will take into account one of more of these details. The focus
of the discussion here will be on the mappings for the OR asser-
tion’s clauses (Reg[ra] is dataA) and (Reg[rt] is
dataA|dataB).

The A operand data is received during the decode stage and will
originate from one of two sources: either from the LSU, where the
register file is located, or from the FXU’s execute stage instruction.
The signals that are involved in this transaction are shown in
Figure 4. If the data originates from the LSU, the FXU will assert
fx_a_req and set fx_a_sel to ra, the register address. When
the register data is available, the LSU will assert ls_a_valid
and ls_a_data. If instead, the data originates from the FXU’s
execute stage, the data will be received when the execute stage
completes its computation. The execute stage will assert
ex_trgt_valid and the target data that is to be forwarded will
be in ex_trgt_data. After the decode stage is complete, the
instruction moves into the execute stage. When the target data is
computed, it will attempt to store the data into the target register.
The execute stage will assert ex_trgt_valid,
ex_trgt_data, and ex_trgt_sel until the LSU completes
the handshake with ls_trgt_ack.

This transaction is captured in the map machine for the clause
(Reg[ra] is dataA), shown at the top of Figure 5. The proto-
col is defined by associating antecedent and consequent node for-
mulas with each state in the control graph. The antecedent node

Figure 2. Main machine

dcd_to_exe

dsp

dsp_to_dcd done

dcd

start

exe

successful instruction dispatch

determine if bypassing is allowed

obtain the source operand data

reserve the target register

store the target data

FXU

LSU

BPU

execute stage available

Execute Stage

Decode Stage

Dispatch Stage

Figure 3. Instruction flow and interactions through the FXU

Figure 4. A operand data and target data interface signals

Dispatch Stage

Execute Stage

Decode Stage
ls_a_valid, ls_a_data

fx_a_req, fx_a_sel

ls_trgt_ack

ex_trgt_valid, ex_trgt_data

LSU

FXU

ex_trgt_sel

4

formulas are shown in the upper half of the shadowed boxes and
consequent node formulas are shown in the lower half. The control
graph for Reg[ra] is synchronized with the decode stage of the
main machine as indicated by the dashed lines at the control
graph’s source and sink.The control graph has two legs, the top leg
maps the case where the data comes from the LSU, and the bottom
leg maps the bypass case. The consequent node formulas of the
first two states, s1 and s2, of the top leg indicate that the FXU is
requesting the data from register ra. Potentially the instruction can
wait an indefinite period of time in the state s1 before
ls_a_valid is asserted in the state s2. The register data is
received from the LSU in state s2. Once the data is received, the
FXU latches it up for use in the execute stage. After receiving the
data, the instruction may remain in the decode stage while other
resources are being attained. This is represented in state s5. During
this period, the FXU drops its request to the LSU since the data is
being internally stored.

The bottom leg, the bypass case, of the graph has exactly the same
flow, only the node expressions are different. On this path,
fx_a_req is never asserted because the data is not originating
from the LSU. Instead, the data will be supplied by the signal
ex_trgt_data in state s4.

The implementation mapping needs to expose some of the internal
signals in the FXU. The mapping for the bypass case of the A
operand data clause is dependent upon two execute stage related
signals, ex_valid and ex_trgt_valid. Their map machines
are shown in Figure 5. The signal ex_valid is asserted when the
execute stage contains a valid instruction, and ex_trgt_valid
is asserted when the execute stage has completed the computation
of the target data. These signals represent the state of the preceding
instruction and can be considered inputs into the decode stage. As
a result, their node formulas are antecedent node formulas, and the
control graph is synchronized to the decode stage. Later in the dis-
cussion of the mapping for the target data clause, these signals will
be considered as outputs of the execute stage, in which case their
control graphs will be synchronized to the execute stage of the
main machine and the antecedent node formulas will become con-
sequent node formulas. In general, state elements that are con-
tained in both the precondition and the postcondition are always
mapped by the same control graph, only the role of the antecedent
node formulas and the consequent node formulas are reversed.

As shown in Figure 5, the top leg of the control graph for
ex_valid is the case where the execute stage does not have a
valid instruction. In state s2 on the bottom leg, the execute stage is
valid. It is possible that the execute stage instruction completes
while the current instruction is still stalling in the decode stage.
This explains the path from state s2 to state s1. A key point of this
graph is the synchronization line between itself and the Reg[ra]
graph. Synchronizing the bottom legs of these two machines guar-
antee that if the A operand data is being forwarded by the execute
stage, then the execute stage must contain a valid instruction.

Similarly, the mapping for (Reg[ra] is dataA) is dependent
upon ex_trgt_valid. The top leg of this control graph is the
case where the execute stage does not contain a valid instruction as
indicated by the antecedent node formula. On the bottom leg, the
antecedent node formula for state s2 indicates that the target data is
not yet valid. In state s3 the execute stage has completed its com-
putation, and the data is valid. This signal will remain asserted
until the LSU acknowledges receiving the target data for the exe-
cute instruction by asserting ls_trgt_ack. Once the acknowl-
edgment is received, then the execute stage completes. As shown
in the mapping for ls_trgt_ack, this acknowledgment from
the LSU is received in the last occurrence of ex_trgt_valid’s
state s3. The first two synchronization lines ensure that the top leg
is taken only when the execute stage does not have a valid instruc-

tion and that the bottom leg is only taken when the execute stage
does have a valid instruction. The next synchronization line guar-
antees that the A operand data is received on the first cycle that
ex_trgt_valid is asserted. The final synchronization line
ensures that when ex_trgt_valid is de-asserted, ex_valid
is also de-asserted because the execute stage instruction has com-
pleted.

The last graph of Figure 5 is the mapping for the target data clause
(Reg[rt] is dataA | dataB). This control graph is synchro-
nized to the execute stage of the main machine. Its node formulas
relate to FXU output signals, therefore they are consequent node
formulas. Two other output signals of the execute stage must also
be mapped during the execute stage. These signals are ex_valid
and ex_trgt_valid. These signals have been discussed with
respect to the decode stage where they were considered as inputs.
The execute stage mapping of these signals was automatically
derived from its decode stage map machines. Additionally, ante-
cedent node formulas have become consequent node formulas. In
effect, the execute stage control graph for ex_valid becomes
just the bottom leg of its decode stage mapping. This is because the
instruction being verified is in the execute stage, so clearly the exe-
cute stage contains a valid instruction.

The execute stage mapping of ex_trgt_valid is in effect just
state s3. This is because the OR instruction being considered here
requires a single cycle to compute its target. As a result,
ex_trgt_valid will be asserted in the first cycle of the execute
stage.

The signal ls_trgt_ack is an input to both the decode and exe-
cute stages. Its execute stage mapping is automatically derived
from the decode stage map machine. The control graph in the exe-
cute stage is the leg of the decode stage’s mapping in which the
execute stage has a valid instruction. Because this signal is an input
from the LSU in both the decode and the execute stages, its node
formulas are antecedent node formulas.

5. Results
The implementation mapping was specified for the FXU. It defines
24 control graphs representing inputs, outputs and internal states of
the FXU. Only five of these control graphs have been shown here.
The remaining control graphs map the other interactions outlined
in Figure 3. The abstract assertion for the OR instruction and the
implementation mapping were used to automatically generate the
trajectory assertion. STE was used to verify the OR trajectory
assertion on a gate-level model of the FXU. The gate-level repre-
sentation of the FXU contains approximately 28000 multi-input
gates and over 1000 latches.

5.1. Trajectory Generation

The trajectory assertion corresponds to the composition of the 24
map machines defined in the implementation mapping for the bit-
wise OR assertion. Composition amounts to taking the cross-prod-
uct of these aligned map machines under restrictions placed by the
synchronization function. Figure 6 shows the trajectory assertion
that was generated for the OR assertion. The trajectory assertion
corresponds to all possible cases that can arise due to interactions
between the map machines. The trajectory assertion has 488 verti-
ces, 34 loops and 28,602 paths. Each path represents a unique
ordering of events for a particular set of inputs and current states.

While it is not feasible to go into details about the composition of
each state in the trajectory assertion, we are able to make some
intuitive sense out of it. First notice the two horizontal cutsets in
the graph. These correspond to the nodes dsp_to_dcd and
dcd_to_exe shown in the main machine, Figure 2. The differ-
ence is that the state vertices dsp, and dcd have been expanded,

5

showing all possible interactions that can occur. Also, the decode
stage of the graph is significantly more complex than the other two
pipeline stages. The dispatch and execute stages require only an
acknowledgment in order to complete the pipeline stage. The
decode stage must attain multiple resources to advance. The set of
states in which the circuit can enter the dispatch stage and the many
orderings in which resources can be obtained account for the com-
plexity of the decode stage portion of the graph.

Also, in the dispatch stage the graph fans out into four paths. Path 1
and path 4 correspond to the case where one of the source operands
is being bypassed. Path 2, the path where neither operand is being
bypassed, is the most complex path. This is because all the
resources that need to be obtained in the decode stage are com-

pletely independent. Path 3, the path where both operands are being
bypassed, is the simplest path. On this path the arrival of the A and
B operands coincide with the signal ex_trgt_valid.

Another observation that can be made is that path 2 actually con-
sists of multiple paths through the dispatch stage. This is because
when both operands are not being bypassed, then the instruction is
allowed to stall in the dispatch stage. The remaining three paths do
not stall in the dispatch stage because a condition for bypassing to
occur is that the two instructions involved must be dispatched in
consecutive cycles.

5.2. Symbolic Trajectory Evaluation

The trajectory assertion in Figure 6 is very complex and has in

Figure 5. A source operand data mapping and target data mapping

(ex_valid)

(ex_trgt_valid)

(Reg[ra] is dataA)

(ex_trgt_valid is 1)

(ex_trgt_data is dataA)
(ls_a_valid is 0)

(fx_a_req is 0)

(ls_a_valid is 0)

(fx_a_req is 0)

(ex_valid is 1)

(ex_trgt_valid is 0)

Main Machine

s1

s3

s4

s5

s1

s2

s3

s2

(ls_a_data is dataA)
(ls_a_valid is 1)

(fx_a_req is 1)
(fx_a_sel is ra)

(ex_valid is 0)

(ls_a_valid is 0)

(fx_a_req is 0)

(ls_a_valid is 0)

(fx_a_req is 1)
(fx_a_sel is ra)

(ls_trgt_ack is 1)

(ls_trgt_ack is 0)

s1

s2

s3

(ex_trgt_valid is 0)

(ls_trgt_ack is 0)

(ls_trgt_ack is 1)

(ls_trgt_ack)

(Reg[rt] is dataA|dataB)

s1

(ex_trgt_valid is 1)

(ex_valid is 1)

s3

s2

(ls_trgt_ack is 0)

s2

s3

dsp_to_dcd dcd_to_exe dcd_to_exe done

dsp exe

s2

(Reg[rt] is dataA|dataB)
(ex_trgt_sel is rt)

6

excess of 28000 paths in the corresponding acyclic component
graph. It would be computationally infeasible to enumerate all the
paths and use STE separately on each path. Instead the paths were
encoded using 456 path variables and each of the states needs to be
simulated only once. STE was used to verify the entire trajectory
assertion in a single verification run. Cycles in the trajectory asser-
tion were dealt by recursively identifying the strongly connected
components in the graph and performing a greatest fixed point
computation to deal with the strongly connected components[4].
The verification of the OR assertion took nearly 50 hours of CPU
time and 185 MBytes of memory on an IBM RS/600 43P Model
140. This may seem to be a considerable amount of time and mem-
ory, but taking into account the enormous number of paths that are
being simulated makes the required amount of resources appear
more reasonable. In fact, on average the simulator is able to verify
10 paths a second. Verification of the complete trajectory assertion
would most likely be run as regression tests. During the develop-
ment of the assertions, implementation mapping, and the actual
design, the simulator can be run interactively to debug each of
these components by focusing the verification on problematic
paths.

Additionally, it is not necessary to have a one-to-one relationship
between instructions and assertions. Instead, a single assertion
could be used to specify a class of instructions with the same
instruction format. This would significantly reduce the number of
assertions to be verified while not significantly increasing the
amount of symbolic manipulation or CPU time.

6. Conclusion
 We have shown the application of our methodology for the verifi-

cation of the fixed point unit of a PowerPC processor. The specifi-
cation was kept abstract at the level of the instruction set
architecture. A separate implementation mapping provided the
complex implementation specific details for the FXU. STE was
used to verify that the FXU subsystem correctly fulfilled the
abstract specification of the processor. In some sense, the mapping
merely served as hints to guide the verification task.

At first glance the mapping might seem to be too complex. How-
ever, note the fact that most of the complexity in the mapping is in
defining the environment around the FXU. And the reality is, mod-
ern systems are designed as a set of reactive subsystems with com-
plex interfaces and protocols. Therefore any technique for formal
verification of subsystems would have to deal with the same level
of complexity. The ultimate aim of this project is the verification of
the entire system i.e., the PowerPC processor. However the current
set of methodology and tools cannot deal with the level of com-
plexity of an entire processor. Our initial focus is to verify each
subsystem i.e., each functional unit (FXU, LSU, BPU) separately
and then reason about the interactions amongst the subsystems. We
feel that our work on the FXU is a significant step in that direction.

References
[1] R. E. Bryant, D. L. Beatty and C. J. H. Seger, “Formal

Hardware Verification by Symbolic Ternary Trajectory
Evaluation,” 28th Design Automation Conference, pp. 397-
402, June 1991.

[2] D. L. Beatty and Randal E. Bryant, “Formally Verifying a
Microprocessor Using a Simulation Methodology,” 31st
Design Automation Conference, pp. 596-602, June 1994.

[3] C. J. H Seger and R. E. Bryant, “Formal Verification by
Symbolic Evaluation of Partially-Ordered Trajectories,”
Formal Methods in System Design 6, pp. 147-189, 1994.

[4] A. Jain, K. Nelson and R. E. Bryant, "Verifying Nondeter-
ministic Implementations of Deterministic Systems,"For-
mal Methods in CAD, November 1996.

[5] J. R. Burch, E. M. Clarke, K. L. McMillan and D. L. Dill,
“Sequential Circuit Verification Using Symbolic Model
Checking,” 27th Design Automation Conference, pp. 46-
51, June 1990.

[6] K. L. McMillan, “Symbolic Model Checking,” Kluwer
Academic Publishers, 1993.

[7] R. P. Kurshan, “Analysis of Discrete Event Coordination,”
Lecture Notes in Computer Science 430, pp. 414-453,
1990.

[8] R. P. Kurshan, “Computer-Aided Verification of Coordi-
nating Processes: The Automata-Theoretic Approach,”
Princeton University Press, 1994.

[9] I. Beer, S. Ben David, C. Eisner and A. Landver, “Rule-
Base: an industry oriented formal verification tool,” 33th
Design Automation Conference, pp. 655-660, June 1996.

[10] E. M. Clarke and R. P. Kurshan, “Computer-aided verifica-
tion,” IEEE Spectrum, pp. 61-67, June 1996.

[11] B. Plessier and C. Pixley, “Formal verification of a com-
mercial serial bus interface,” 14th Annual International
Phoenix Conference on Computers and Communications,
pp. 378-382, March 1995.

[12] C. May, E. Silha, R. Simpson and H. Warren, “The Pow-
erPC Architecture: A Specification for a New Family of
RISC Processors,” Morgan Kaufmann Publishers, 1994.

[13] F. G. Soltis, “Inside the AS/400,” Duke Press, 1996.

447

446

449

448

445

444

373

372

391

390

375

374

377

376

389

388

387

386

385

384

395

394

397

396

399

398

401

400

427

426

425

424

423

422

421

420

419

418

417

416

415

414

393

392

379

378

383

382

381

380

403

402

405

404

413

412

411

410

409

408

407

406

429

428

443

442

441

440

439

438

437

436

435

434

433

432

431

430

371

370

357

356

359

358

361

360

363

362

365

364

367

366

369

368

157

156

177

176

159

158

161

160

169

168

175

174

181

180

183

182

185

184

187

186

237

236

239

238

241

240

271

270

179

178

163

162

165

164

189

188

191

190

193

192

195

194

317

316

319

318

321

320

171

170

173

172

243

242

245

244

247

246

249

248

323

322

167

166

197

196

199

198

325

324

355

354

353

352

351

350

349

348

347

346

293

292

295

294

297

296

299

298

313

312

315

314

311

310

309

308

307

306

305

304

303

302

301

300

291

290

289

288

287

286

285

284

283

282

281

280

279

278

277

276

275

274

273

272

345

344

343

342

223

222

225

224

235

234

233

232

231

230

229

228

227

226

221

220

219

218

217

216

215

214

213

212

341

340

339

338

337

336

335

334

333

332

257

256

259

258

261

260

269

268

267

266

265

264

263

262

255

254

253

252

251

250

331

330

329

328

203

202

205

204

211

210

209

208

207

206

201

200

327

326

155

154

131

130

133

132

145

144

143

142

141

140

129

128

135

134

139

138

137

136

147

146

153

152

151

150

149

148

127

126

8

7

10

9

53

52

71

70

105

104

83

82

81

80

79

78

77

76

75

74

73

72

6

5

12

11

14

13

51

50

37

36

35

34

33

32

107

106

55

54

57

56

63

62

61

60

59

58

109

108

16

15

27

26

18

17

111

110

125

124

91

90

89

88

87

86

85

84

93

92

95

94

97

96

99

98

101

100

103

102

123

122

121

120

43

42

41

40

39

38

45

44

47

46

49

48

119

118

65

64

67

66

69

68

117

116

29

28

31

30

115

114

20

19

25

24

23

22

21

113

112

4

3

2

1

0

1
2

3
4

Dispatch

Decode

Execute

Figure 6. Trajectory assertion for the OR instruction

