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Abstract A tool called Tanalyze [4] has been created that transforms a

Our goal is to transform a low-level cinit design into a mer  switch-level circuit into a functionally equivalent gate-level repre-
abstract epresentation. A @-existing tool, fanalyze [4], takes a  sentation. Tanalyze is able to capture aspects of switch-level cir-
switch-level cicu_it and generates a functionally_ equivalent gate- cyjts such as bi-directional transistors, preghdrlogic, stored
level epresentation. This work focuses on taking that gate-levelpage and multiple signal strengths. As an example, consider the
sequential cicuit and performing a temporal analysis which o b 1ovel domino circuit shown in Figure 1

abstracts the clocks dm the cicuit. The analysis generates a

cycle-level gate model with the detailed timing abstracteeh the  The abstraction process ofahalyze can be broken down into a
original circuit. Unlike other possible appaches, our analysis few steps. The first step performs a switch-level analysis and gen-
does notequire the user to identify state elements or give the timerates a low-level gate circuit. For this domino circuit, the switch-
ings of internal state signals. The temporal analysiscgss has  |evel analysis generates a functionally correct but very compli-
applications in simulation, formal verification, andverse engi-  cated gate-level representation. The RS circuit in Figure 1 repre-
neering of existing ctuits. Experimentalesults show a 40%-70% sents most aspects of the circuit generated by the switch-level
reduction in the size of the ciiit and a 3X-150X speedup in simu- analysis. The behavior of the circuit is similar to an RS latch with
lation time. the set activated on a low clock and the reset oratiieof the

1 Introduction clock and data inputs. Note the complexity of this representation.

As the digital design industry continues to grew does the impor- The normal operation of domino circuits is as follow: wigeis
tance of tools to aid in the analysis ofglardesigns. Specifically low the circuit is prechging and neD is low. Wheng is high,
there exists a need for analysis tools that transform detailed circutite circuit conditionally dischges, and ne® is essentially the
models into more abstract models. A more abstract circuit desigmand of netsa and b. Net P is easily recognized to be the
may provide advantages in the areas of simulation, formal hardwarenvert of netO. The circuit details of the clocking have been
verification, and reverse engineering of existing circuits. As designearefully included in the gate network, making it a complex repre-
grow lager, it becomes impractical to simulate an entire low-levelsentation.

design. Tansformations are performed to remove details from the o) biai h simpl ion if th
circuit design, thus producing a smalletore abstract circuit and 't IS Possible to obtain a much simpler representation if the user

improving the performance of a simulat@ur formal verification specifies the clocking behavior and input/output timing for the cir-

strategy [2] attempts to bridge the wide gap between a detailed cipit. For e_xa_mpl_e, given the RS cwgwt_ln Figure 1 and detal_ls
cuit and the abstract specification. Abstraction of the circuit modefPOUt the timing information for the circuit, our temporal analysis
enables us to reduce the gap between the circuit implementatié®C! €@n extract out a much simpler circuit, as shown with the 2-
and the abstract specification. Finatlye abstracted model can be MPutnand in Figure 1. This model is very simple to read since
used to reverse engineer the functionality of some pre-existing ciFhe clqck has '_Oee“ ab;t_racted out. By taklng advaptage_of the tem-
cuit designs. poral information specified by the usarsimple static logic gate
is produced.
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Figure1 Domino Example Like the example above, many sequential circuits may have com-
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contract number 94-DC-068. understand. If the clocking methodology is known, the clocks can
be abstracted through a “temporal analysis” that would generate a
higherlevel circuit. Figure 2 describes this clock abstraction pro-
cess. The lowest level is a transidmrel circuit. After a switch-
level analysis has been performed, a functionally equivalent gate-

level representation is obtained. This circuit has detailed timing



information built into it, and thus a temporal analysis is performedame phase. Infett, these input and output nets are multiplexed
that abstracts out all of the timing information from the circuit. Thisinto and out of the circuit over a period of time. Another limitation
temporal analysis stage will be the focus of this papelike other of earlier approaches is the lack of a way to deal with oscillating

possible approaches, our approach does not require the user to ma3fts: Most of the previous approaches either could not deal with

ually identify state nodes. In addition, our tool automatically identi-osCIIIatIng nets or merely set the net.to be a logic Kdﬁln dis-
Igy the true value to the user for a given discrete time.

fies internal state nodes and performs the temporal analysis basoe

on these nodes. All of the clock suppression approaches are implemented in a
) logic simulator However we will generate a new abstracted gate-
1.1 Pevious Work level circuit that can be simulated using any gate-level simulator

Most of the previous work done in the area of clock abstraction ia form of symbolic simulation is used to perform the temporal
based on the idea of clock suppression. This method attempts 4galysis.

reduce the activity in networks by suppressing the clocks during

simulation. The limitation of clock suppression is that it must belhe timing model used to describe sequential circuits is explained
implemented as algorithms in special purpose simulators. The orig section 2. Our temporal analysis algorithm is presented in sec-
inal concept of clock suppression was devised by Ulrich [9]. Théion 3. Section 4 describes an example to illustrate the methodol-
suggested method is to temporarily disconnect the sequential circ@@y used for our analysis. Results are presented in section 5, and
from the clock source and reconnect it when a data input i§ection 6 ders concluding remarks.

received. Both \@ber [10] and dkamine [8] introduce new signal . .

values that represent periodic signalebéfs model introduces a 2 Discete Timmg Model

periodic state wittsignal wave information, which encompasses 2.1 Basic Model

the period, the rise times, and the fall timeskdmine introduces 4 |t is worthwhile to define the terminology used to describe

separate states to describe periodic signals that are currently highseiquential circuits. Figure 3 shows the model for a sequential cir-
currently low in both positive and negative logic. While both meth-cyit primary inputs (P1), or external inputs, are made updafa

ods produce good results, neither guarantee a full clock S“pprqﬁ'puts (DI) andclocks (¢). The combinational portion of the cir-

sion. Although the number of periodic signals has been reduceq, . ; ;
there may still be some signals that cannot be suppressed by th gglet (C) uses the primary inputs t states (PS) to generate

methods and are thus evaluated during simulation. Another disa 1€ outputs (O) andnext states (NS). The states are held during a

vantage of these methods is that with the introduction of new stategiEro-delay evaluation of the circuit. The next States are updated to
new truth tables must be developed for each gate primitive. present states as each next state passes thraughdalay (9).

) ' . This delay represents the smallest increment of a time. délag
A new general approach is called “Static Clock Suppression” [7]y state is held for one time unit. The switch-level analysisdn-T

Ra;dan perform_s his apalysis ona phase_-level modphage is alyze generates a model like the one on the left in Figure 3.
defined as a period of time when all clock inputs are held constant

Razdan only allows inputs to change at the beginning of a phase )
Like other work done in this area, his method produces very ’
impressive results in simulation. Howeyér has certain restric-

tions. First of, inputs can only be set at phase boundaries. Sec DIO DI(t) o(t)
ondly, nets must stabilize before they are reported. Thus the useri s s s s
unable to view nets during an oscillatory period. 3

: ’4— < A ><—
Kam [5] generates a finite state machine from a transistor netlis
given information relating to clock signals and clock modules. The
method involves performing a fixed point computation of the
steady state response. The FSM generated is described as a BDD.
The size of the BDD could become vengiarmaking it dificult to After performing a temporal analysis on the circuit, a model such
represent laye, complex circuits. Another problem with this as the one shown on the right in Figure 3 is obtained. In the new

method is that it is unable to handle oscillating circuits. Finallymodel, unit delays and clocks have been replacezydby delays
inputs can only be changed on phase boundaries, similar to t{#). States are now held for a full clock period, as opposed to a

Figure 3 Sequential Cicuit model, before and after abstraction

restrictions placed by the clock suppression techniques. single time unit with a unit delay model. Note also that the combi-
national portion of the new circuit is not necessarily the same as
1.2 Our Approach the combinational portion in the earlier model. Extra logic may be

All of the previously mentioned methods deal with circuits at 8added to make sure that all uspecified visible nets are present

phase-level, implying data inputs can only be set and outpuif the new circuit. Also, some logic may be deleted if none of the
viewed at phase boundaries, i.e. when a clock is changed. Wjsible nets are dependent on this logic.

remove this limitation by working with a discrete time model. This

allows for inputs to be changed and outputs to be sampled at ar@-2  Timing Specifications

trary points in time. As opposed to previous approaches, oun order to temporally analyze a sequential circuit, the user must
approach also allows input nets to take on multiple values in onexplicitly provide the temporal details of the circuit in a separate
phase. Similarlyany net can be sampled at multiple points in thefile. Unlike other work which used a phase-level timing model,



our approach uses a discrete timing model. Under our timing
scheme, there exists little difference between clocks and data
inputs. Clocks must be set to a constant logic value, while data
input values may be represented by symbolic variables. Variable
names must explicitly be given by the user for every interva in
which an input may take on a different value. The user must specify
the output nets or visible netsin the circuit and the discrete pointsin
time which the user wishes to sample each output net. Note that
whereas data inputs and clocks are specified over an interval of
time, outputs are sampled at discrete pointsin time. This allows for
nets that oscillate over time to be reported.

2.3 Detailed Mode

The temporal analysisis performed on a sequential circuit over one
complete cycle. Any time adata input or clock changes, the circuit
must be re-analyzed. After the circuit has been analyzed for acom-
plete cycle, the individua results obtained are combined. Figure 4
shows a basic diagram of how thisis accomplished. The shaded box
in Figure 4 represents the combinational portion of the circuit on
the right in Figure 3. The data input, DI(t), and output, O(t), have
now been replaced by individual vectors for each discrete time.

Since primary inputs are set over ranges of time, every input change
introduces a new input vector and a hew combinationa circuit.
Associated with each new combinational circuit is a new output
vector, as indicated in Figure 4. Note that while the inputs are set
over ranges of time, the outputs are sampled at discrete points in
time in the range [0, A-1], with A representing the clock period.
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Figure 4 Detailed Model of a Temporally Analyzed Circuit

In a unit delay model, next states are updated to present states by
traversing through unit delays. Thus the value for a next state net at
time t is equivalent to the corresponding present state at time t+1,
as shown in Figure 4. For instance, nets NS(0) and PS(1) can be
represented by the same net in the gate-level description. The same
istrue for nets NS(A-1) and PS(A). Since we are only representing
values in the range [0, A-1], the value of net PS(A) is the same as
the value of net PS(0), separated by a delay of A. The net PS(A)
effectively represents the initial value of the present state for the
next cycle. Heuristics are used that allow a minimal amount of cir-
cuitry at each step.

By generating new circuits until the nets have stabilized, we are
able to handle transient and even oscillating circuits. Figure 5
shows the analysis for a circuit that incurs a change in a primary
input change at time tg.

Assume that the circuit stabilizes at time tg and the next primary
input changes at time't. If t > t, the circuit is stable and the analy-
sis uses net values from the C(ty) circuit. If t < tg, the circuit has
not stabilized. However, the analysis can still proceed, using the
values from the C(t-1) circuit. In fact, this can be generalized to
handle oscillating nets. An oscillating circuit is represented when
tg is infinity. Inputs can still be changed without the circuit first
stabilizing.

| |
I | 1
to tg

Figure5 Transient Circuit

3 Temporal Analysis Algorithm

Once all of the data input and present state variables have been
introduced, the temporal anaysis algorithm is invoked. An algo-
rithm for the analysis is presented below. The routine Synbol -

i ¢Si mul at e performs a zero-delay symbolic simulation of the
circuit. The algorithm takes in acircuit called ckt and generates a
new temporally analyzed circuit called ckt’, while leaving ckt

unchanged.

[TemporalAnalysis(ckt)
time =0
apply inputs and clocks at time 0
introduce variables for initial present states
SymbolicSimulate(ckt)
for each unique net in ckt, create new net in ckt
sample outputs at time 0
while (time < cycle_time)
apply any new data inputs and/or clocks
SymbolicSimulate(ckt)
for each net in ckt
if there is no logically equivalent net in ckt’
create new net
sample outputs at current time
update time to point of next change in DI or ¢
return ckt’

The procedure analyzes the circuit for one complete clock cycle. It
begins by applying values to constant data inputs and clocks at
time 0. Non-constant data inputs and present state nets are
assigned symbolic variables. Then a zero-delay symbolic simula-
tion of the circuit is performed until the circuit stabilizes. After
each symbolic simulation call, nets are added to ckt’. Logical
equivalence is checked by building up BDDs for each net. The
routine Synbol i ¢Si mul at e represents a gate-level symbolic
simulator that has been developed by our group. It uses binary
decision diagrams [3] as a platform for logic manipulation. The
simulator uses a nominal transport delay model and an interpre-
tive implementation method, as described in [1].



To initialize values, present states for the first stage were repr&o represent the three modes, two states are multiplexed onto the
sented by introducing new variables. These were created for tempggntrol signalop. Note thatop2 is set during the previous cycle,

rary purposes, as they actually represented states from the previgHgrefore creating a pipelined desigable 1 gives the encoding
cycle. Upon completion of the algorithm, these variables must bg hase modes of operation

removed. The initial present state nets now become cycle delays to

the next state nets in the last stage. Referring back to Figure 4, the Table 1 Modes of Operation for Stack
initial present state nets are PS(0). The next state nets in the last

stage are N®¢1). Note that this net is equivalent to the value of stack
the artificial net P). During this step, the temporary variables op2 opl mode operation
introduced for the PS(0) nets are replaced by cycle delays £ PS( 1 0 PUSH S.1-S

nets. Since the cycle delays are dependent on the values of the next POP s 5
states in the last stage, we must ensure that each of these nets are 7
represented in our circuit. Thus, our tool automatically identifies 0 0 HOLD S -5
each of the state nets and marks each of these nets to be visible at
time ‘cycle_time - 1', which is the last discrete time in our cycle.!n order to incorporate all of the input information in one clock
The values at this time represent the values in the last stage of ¢cle, we have chosen to shift the cycle boundaries, as shown in
cycle, and thus guarantees that the next states in the last stage Wiure 7. As the usewe have chosen output reet; to be visible

be represented in the temporally analyzed circuit. at time 50 within our cycle. This net is a function of the data input
from the previous cycle and the op-signal from both the previous
4 Mead and Conway Stack Example and present cycle. The bold signals represent the information sup-

An example is now presented to help explain the algorithm. Figur@lied to the temporal analyzer
6 shows a block diagram for a pipelined stack, as described By e 8 shows a generalized section of the circuit generated after

Mead and Conway [6]. the temporal analysis has been performed. The figure represents
the circuitry required for thdibit of the stack. Referring back to

oL@2 Table 1, the functionality of sta is correct for the three modes
+ + of operation. For example, whepl=op2=0, aHOLD operation
op—» is performed. From Figure 8, this means that s@igsS;, andS;.
in—mt S S1 S Sere- Sha 1 all retain their previous value. FolPDP operation, the values
out w—j of the states get updated as follov@, - S, Si1— S, and
Figure 6 Block Diagram for Mead and Conway Stack Si—S.1. The values in each state is shifted up one level. The

PUSH operation is the reverse. The fourth case, when dypth

A PUSH operation will shift the data inpuin( into the stack and  anqop2 are high, was designed to be a dargre. Our tool has
shift stored datag) deeper into the stack (to the right).FOP ., yecqy identified this case to implementH®LD operation.

operation does the reverse - the data stored in$gaseoutputted .'Ejhe first and last bits of the stack represent special cases and
and the rest of the data is shifted up one level (to the left). The th'radded circuitry is produced to represent their functionalit
mode is &HOLD, which retains the states in the stack. The circuit yisp P y

uses a two-phase nonoverlapping clock. The mode of operation is
selected by the sequence of values on the op signal. Figure 7 shows
the timing for the circuit.

op2
op1

HOLD S 00

l t-1 L t POP S,; —01 O
50 100 150 200 250 300 350 400 PUSH S.; —10
HOLD S 1
q)l . .
Figure 8 Temporally analyzed stack (generalized case)
%73

| @ 5 Results

The temporal analysis was performed upon three classes of cir-

in @ cuits. The first two are Manchester adders (AdderX) and counters
CounterX) and make heavy use of pregedrlogic. The last cat-
5 ( . \ .
statg Gy & egory consists of dynamic RAMS (RamX) made up of 1 bit
out words. Rble 2 shows the results of the tests. All experiments were
performed on a DEC 5000 workstation with 500 MB of RAM.
L Our
0 2550 _5(:3'011945 175200 The columns labeled “SLA” correspond to the gate circuit gener-

ated after the switch-level analysis iramalyze, without any tem-
Figure 7 Timing Diagram for Stack



Table2 The effect of temporal analysis

Analysis(sec) | Memory (MB)

Gate Count | Simulation (sec)

SLA TA SLA TA

SLA TA SLA TA

Adderl 1.8 76] 0.67 1.16

214 m 11.9 3.6

Adder4 4.1 112 0.74 1.41

298 142 64.4 114

Adder16 34.0| 1143] 1.06 8.59

1186 550 116.7 4.5

Counter4 0.8 1.2 0.67 0.74

184 62 17.9 1.6

Counterl6 7.7 8.0 0.90 1.06

816 235 33.8 1.0

Counter64{| 32.7| 40.8] 1.72 2.81

3320 917 82.4 0.5

Ram16 6.8 8.0] 0.80 0.96

594 301 35.2 2.8

Ram64 40.1| 420] 112 1.75

1809 993 126.9 6.9

Ram256 2404 | 265.8] 2381 5.50

9927 | 3511 591.0| 48.0

poral analysis. The columns labeledA"Icorrespond to the circuit References

generated after the temporal analysis [1]

The temporal analysis reduces the gate count by 40%-70%. The cir-
cuit was simulated using Cadencerbg-XL 1.7 and exhibited a
speedup of 3X-150X. The simulation speed comes at a price, that
being increased CPU time. Howeyvihis is a one-time cost and the 2]
circuit can then be resimulated without first performing the analy-

Sis.

(3]
The temporal analysis displayed a greater speedup fyerlair-
cuits. Thus the benefits of temporal analysis may be further realized
on even lager circuits. [4]

6 Conclusionsand Future Work

We have developed a tool that performs a temporal analysis on
gate-level circuits. The netfett of this temporal analysis is that [5]
the clocks are abstracted from the circuit, and a new gate-level cir-
cuit is produced. This new circuit has applications in simulation,
formal hardware verification, and reverse engineering of existing
circuits. V& have observed a significant reduction in the size of the [g]
circuit after a temporal analysis is performed. The speedup of the
simulation ranges from 3X-150X, with speedup increasing as the
size of the circuit increases. 7]

One major limitation we discovered is the memory needed to per-
form the analysis. Our tool uses BDDs, which can easily become
very lage if a non-optimal variable ordering scheme is used. There-
fore, we should focus futurefefts on ensuring a good variable (8]
ordering to control the size of the BDD.

Currently our temporal analysis tool samples outputs at discrete
points in time. The formal verification strategy used by our group [9]
requires outputs to be valid over a range of time, so it would be
advantageous for us to extend our temporal analysis so that outputs
are sampled over a range of time. This extension would also allow [10]
the analysis to generate an even more abstract circuit. For instance,
the next logical step would be to extract a finite state machine from

the temporally analyzed circuit.
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