
Abstract
Our goal is to transform a low-level circuit design into a more
abstract representation. A pre-existing tool, Tranalyze [4], takes a
switch-level circuit and generates a functionally equivalent gate-
level representation. This work focuses on taking that gate-level
sequential circuit and performing a temporal analysis which
abstracts the clocks from the circuit. The analysis generates a
cycle-level gate model with the detailed timing abstracted from the
original circuit. Unlike other possible approaches, our analysis
does not require the user to identify state elements or give the tim-
ings of internal state signals. The temporal analysis process has
applications in simulation, formal verification, and reverse engi-
neering of existing circuits. Experimental results show a 40%-70%
reduction in the size of the circuit and a 3X-150X speedup in simu-
lation time.

1    Introduction
As the digital design industry continues to grow, so does the impor-
tance of tools to aid in the analysis of large designs. Specifically,
there exists a need for analysis tools that transform detailed circuit
models into more abstract models. A more abstract circuit design
may provide advantages in the areas of simulation, formal hardware
verification, and reverse engineering of existing circuits. As designs
grow larger, it becomes impractical to simulate an entire low-level
design. Transformations are performed to remove details from the
circuit design, thus producing a smaller, more abstract circuit and
improving the performance of a simulator. Our formal verification
strategy [2] attempts to bridge the wide gap between a detailed cir-
cuit and the abstract specification. Abstraction of the circuit model
enables us to reduce the gap between the circuit implementation
and the abstract specification. Finally, the abstracted model can be
used to reverse engineer the functionality of some pre-existing cir-
cuit designs.
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Figure 1  Domino Example
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A tool called Tranalyze [4] has been created that transforms a
switch-level circuit into a functionally equivalent gate-level repre-
sentation. Tranalyze is able to capture aspects of switch-level cir-
cuits such as bi-directional transistors, precharged logic, stored
charge, and multiple signal strengths. As an example, consider the
switch-level domino circuit shown in Figure 1.

The abstraction process of Tranalyze can be broken down into a
few steps. The first step performs a switch-level analysis and gen-
erates a low-level gate circuit. For this domino circuit, the switch-
level analysis generates a functionally correct but very compli-
cated gate-level representation. The RS circuit in Figure 1 repre-
sents most aspects of the circuit generated by the switch-level
analysis. The behavior of the circuit is similar to an RS latch with
the set activated on a low clock and the reset on theand of the
clock and data inputs. Note the complexity of this representation.

The normal operation of domino circuits is as follow: whenφ is
low the circuit is precharging and netO is low. Whenφ is high,
the circuit conditionally discharges, and netO is essentially the
nand of nets a and b. Net P is easily recognized to be the
invert of netO. The circuit details of the clocking have been
carefully included in the gate network, making it a complex repre-
sentation.

It is possible to obtain a much simpler representation if the user
specifies the clocking behavior and input/output timing for the cir-
cuit. For example, given the RS circuit in Figure 1 and details
about the timing information for the circuit, our temporal analysis
tool can extract out a much simpler circuit, as shown with the 2-
input nand in Figure 1. This model is very simple to read since
the clock has been abstracted out. By taking advantage of the tem-
poral information specified by the user, a simple static logic gate
is produced.

Like the example above, many sequential circuits may have com-
plicated clocking and timing patterns, making them difficult to
understand. If the clocking methodology is known, the clocks can
be abstracted through a “temporal analysis” that would generate a
higher-level circuit. Figure 2 describes this clock abstraction pro-
cess. The lowest level is a transistor-level circuit. After a switch-
level analysis has been performed, a functionally equivalent gate-
level representation is obtained. This circuit has detailed timing
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Figure 2  Abstraction process in circuit design
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information built into it, and thus a temporal analysis is performed
that abstracts out all of the timing information from the circuit. This
temporal analysis stage will be the focus of this paper. Unlike other
possible approaches, our approach does not require the user to man-
ually identify state nodes. In addition, our tool automatically identi-
fies internal state nodes and performs the temporal analysis based
on these nodes.

1.1    Previous Work
Most of the previous work done in the area of clock abstraction is
based on the idea of clock suppression. This method attempts to
reduce the activity in networks by suppressing the clocks during
simulation. The limitation of clock suppression is that it must be
implemented as algorithms in special purpose simulators. The orig-
inal concept of clock suppression was devised by Ulrich [9]. The
suggested method is to temporarily disconnect the sequential circuit
from the clock source and reconnect it when a data input is
received. Both Weber [10] and Takamine [8] introduce new signal
values that represent periodic signals. Weber’s model introduces a
periodic state withsignal wave information, which encompasses
the period, the rise times, and the fall times. Takamine introduces 4
separate states to describe periodic signals that are currently high or
currently low, in both positive and negative logic. While both meth-
ods produce good results, neither guarantee a full clock suppres-
sion. Although the number of periodic signals has been reduced,
there may still be some signals that cannot be suppressed by these
methods and are thus evaluated during simulation. Another disad-
vantage of these methods is that with the introduction of new states,
new truth tables must be developed for each gate primitive.

A new general approach is called “Static Clock Suppression” [7].
Razdan performs his analysis on a phase-level model. Aphase is
defined as a period of time when all clock inputs are held constant.
Razdan only allows inputs to change at the beginning of a phase.
Like other work done in this area, his method produces very
impressive results in simulation. However, it has certain restric-
tions. First off, inputs can only be set at phase boundaries. Sec-
ondly, nets must stabilize before they are reported. Thus the user is
unable to view nets during an oscillatory period.

Kam [5] generates a finite state machine from a transistor netlist
given information relating to clock signals and clock modules. The
method involves performing a fixed point computation of the
steady state response. The FSM generated is described as a BDD.
The size of the BDD could become very large, making it difficult to
represent large, complex circuits. Another problem with this
method is that it is unable to handle oscillating circuits. Finally,
inputs can only be changed on phase boundaries, similar to the
restrictions placed by the clock suppression techniques.

1.2    Our Approach
All of the previously mentioned methods deal with circuits at a
phase-level, implying data inputs can only be set and outputs
viewed at phase boundaries, i.e. when a clock is changed. We
remove this limitation by working with a discrete time model. This
allows for inputs to be changed and outputs to be sampled at arbi-
trary points in time. As opposed to previous approaches, our
approach also allows input nets to take on multiple values in one
phase. Similarly, any net can be sampled at multiple points in the

same phase. In effect, these input and output nets are multiplexed
into and out of the circuit over a period of time. Another limitation
of earlier approaches is the lack of a way to deal with oscillating
nets. Most of the previous approaches either could not deal with
oscillating nets or merely set the net to be a logic X. We can dis-
play the true value to the user for a given discrete time.

All of the clock suppression approaches are implemented in a
logic simulator. However, we will generate a new abstracted gate-
level circuit that can be simulated using any gate-level simulator.
A form of symbolic simulation is used to perform the temporal
analysis.

The timing model used to describe sequential circuits is explained
in section 2. Our temporal analysis algorithm is presented in sec-
tion 3. Section 4 describes an example to illustrate the methodol-
ogy used for our analysis. Results are presented in section 5, and
section 6 offers concluding remarks.

2    Discrete Timing Model
2.1    Basic Model
It is worthwhile to define the terminology used to describe
sequential circuits. Figure 3 shows the model for a sequential cir-
cuit. Primary inputs (PI), or external inputs, are made up ofdata
inputs (DI) andclocks (φ). Thecombinational portion of the cir-
cuit (C) uses the primary inputs andpresent states (PS) to generate
theoutputs (O) andnext states (NS). The states are held during a
zero-delay evaluation of the circuit. The next states are updated to
present states as each next state passes through aunit delay (δ).
This delay represents the smallest increment of a time delay. Thus
a state is held for one time unit. The switch-level analysis in Tran-
alyze generates a model like the one on the left in Figure 3.

After performing a temporal analysis on the circuit, a model such
as the one shown on the right in Figure 3 is obtained. In the new
model, unit delays and clocks have been replaced bycycle delays
(∆). States are now held for a full clock period, as opposed to a
single time unit with a unit delay model. Note also that the combi-
national portion of the new circuit is not necessarily the same as
the combinational portion in the earlier model. Extra logic may be
added to make sure that all user-specified visible nets are present
in the new circuit. Also, some logic may be deleted if none of the
visible nets are dependent on this logic.

2.2    Timing Specifications
In order to temporally analyze a sequential circuit, the user must
explicitly provide the temporal details of the circuit in a separate
file. Unlike other work which used a phase-level timing model,

Figure 3  Sequential Circuit model, before and after abstraction
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our approach uses a discrete timing model. Under our timing
scheme, there exists little difference between clocks and data
inputs. Clocks must be set to a constant logic value, while data
input values may be represented by symbolic variables. Variable
names must explicitly be given by the user for every interval in
which an input may take on a different value. The user must specify
the output nets or visible nets in the circuit and the discrete points in
time which the user wishes to sample each output net. Note that
whereas data inputs and clocks are specified over an interval of
time, outputs are sampled at discrete points in time. This allows for
nets that oscillate over time to be reported.

2.3    Detailed Model
The temporal analysis is performed on a sequential circuit over one
complete cycle. Any time a data input or clock changes, the circuit
must be re-analyzed. After the circuit has been analyzed for a com-
plete cycle, the individual results obtained are combined. Figure 4
shows a basic diagram of how this is accomplished. The shaded box
in Figure 4 represents the combinational portion of the circuit on
the right in Figure 3. The data input, DI(t), and output, O(t), have
now been replaced by individual vectors for each discrete time.

Since primary inputs are set over ranges of time, every input change
introduces a new input vector and a new combinational circuit.
Associated with each new combinational circuit is a new output
vector, as indicated in Figure 4. Note that while the inputs are set
over ranges of time, the outputs are sampled at discrete points in
time in the range [0, ∆-1], with ∆ representing the clock period.

In a unit delay model, next states are updated to present states by
traversing through unit delays. Thus the value for a next state net at
time t is equivalent to the corresponding present state at time t+1,
as shown in Figure 4. For instance, nets NS(0) and PS(1) can be
represented by the same net in the gate-level description. The same
is true for nets NS(∆-1) and PS(∆). Since we are only representing
values in the range [0, ∆-1], the value of net PS(∆) is the same as
the value of net PS(0), separated by a delay of ∆. The net PS(∆)
effectively represents the initial value of the present state for the
next cycle. Heuristics are used that allow a minimal amount of cir-
cuitry at each step.

By generating new circuits until the nets have stabilized, we are
able to handle transient and even oscillating circuits. Figure 5
shows the analysis for a circuit that incurs a change in a primary
input change at time t0.
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Figure 4  Detailed Model of a Temporally Analyzed Circuit
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Assume that the circuit stabilizes at time ts and the next primary
input changes at time t. If t > ts, the circuit is stable and the analy-
sis uses net values from the C(ts) circuit. If t ≤ ts, the circuit has
not stabilized. However, the analysis can still proceed, using the
values from the C(t-1) circuit. In fact, this can be generalized to
handle oscillating nets. An oscillating circuit is represented when
ts is infinity. Inputs can still be changed without the circuit first
stabilizing.

3    Temporal Analysis Algorithm
Once all of the data input and present state variables have been
introduced, the temporal analysis algorithm is invoked. An algo-
rithm for the analysis is presented below. The routine Symbol-
icSimulate performs a zero-delay symbolic simulation of the
circuit. The algorithm takes in a circuit called ckt  and generates a
new temporally analyzed circuit called ckt’ , while leaving ckt
unchanged.

TemporalAnalysis(ckt)
time = 0
apply inputs and clocks at time 0
introduce variables for initial present states
SymbolicSimulate(ckt )
for each unique net in ckt , create new net in ckt’

sample outputs at time 0
while (time < cycle_time)

apply any new data inputs and/or clocks
SymbolicSimulate(ckt )
for each net in ckt

if there is no logically equivalent net in ckt’
create new net

sample outputs at current time
update time to point of next change in DI or φ

return ckt’

The procedure analyzes the circuit for one complete clock cycle. It
begins by applying values to constant data inputs and clocks at
time 0. Non-constant data inputs and present state nets are
assigned symbolic variables. Then a zero-delay symbolic simula-
tion of the circuit is performed until the circuit stabilizes. After
each symbolic simulation call, nets are added to ckt’ . Logical
equivalence is checked by building up BDDs for each net. The
routine SymbolicSimulate represents a gate-level symbolic
simulator that has been developed by our group. It uses binary
decision diagrams [3] as a platform for logic manipulation. The
simulator uses a nominal transport delay model and an interpre-
tive implementation method, as described in [1].
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Figure 5  Transient Circuit
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To initialize values, present states for the first stage were repre-
sented by introducing new variables. These were created for tempo-
rary purposes, as they actually represented states from the previous
cycle. Upon completion of the algorithm, these variables must be
removed. The initial present state nets now become cycle delays to
the next state nets in the last stage. Referring back to Figure 4, the
initial present state nets are PS(0). The next state nets in the last
stage are NS(∆-1). Note that this net is equivalent to the value of
the artificial net PS(∆). During this step, the temporary variables
introduced for the PS(0) nets are replaced by cycle delays to PS(∆)
nets. Since the cycle delays are dependent on the values of the next
states in the last stage, we must ensure that each of these nets are
represented in our circuit. Thus, our tool automatically identifies
each of the state nets and marks each of these nets to be visible at
time ‘cycle_time - 1’, which is the last discrete time in our cycle.
The values at this time represent the values in the last stage of the
cycle, and thus guarantees that the next states in the last stage will
be represented in the temporally analyzed circuit.

4    Mead and Conway Stack Example
An example is now presented to help explain the algorithm. Figure
6 shows a block diagram for a pipelined stack, as described by
Mead and Conway [6].

A PUSH operation will shift the data input (in) into the stack and
shift stored data (Si) deeper into the stack (to the right). APOP
operation does the reverse -- the data stored in stateS0 is outputted
and the rest of the data is shifted up one level (to the left). The third
mode is aHOLD , which retains the states in the stack. The circuit
uses a two-phase nonoverlapping clock. The mode of operation is
selected by the sequence of values on the op signal. Figure 7 shows
the timing for the circuit.
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Figure 6  Block Diagram for Mead and Conway Stack

.. ... .

•
Si+1

•
Si

φ1

φ2

op

in

state

op2t op1t

dint

St-1 St

t-1 t

Our
Cycle

Figure 7  Timing Diagram for Stack
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To represent the three modes, two states are multiplexed onto the
control signalop. Note thatop2 is set during the previous cycle,
therefore creating a pipelined design. Table 1 gives the encoding
for these modes of operation.

In order to incorporate all of the input information in one clock
cycle, we have chosen to shift the cycle boundaries, as shown in
Figure 7. As the user, we have chosen output netoutt to be visible
at time 50 within our cycle. This net is a function of the data input
from the previous cycle and the op-signal from both the previous
and present cycle. The bold signals represent the information sup-
plied to the temporal analyzer.

Figure 8 shows a generalized section of the circuit generated after
the temporal analysis has been performed. The figure represents
the circuitry required for the ith bit of the stack. Referring back to
Table 1, the functionality of stateSi is correct for the three modes
of operation. For example, whenop1=op2=0, aHOLD  operation
is performed. From Figure 8, this means that statesSi+1, Si, andSi-

1 all retain their previous value. For aPOP operation, the values
of the states get updated as follows:Si+2→Si+1, Si+1→Si, and
Si→Si-1. The values in each state is shifted up one level. The
PUSH operation is the reverse. The fourth case, when bothop1
andop2 are high, was designed to be a don’t care. Our tool has
correctly identified this case to implement aHOLD  operation.
The first and last bits of the stack represent special cases and
added circuitry is produced to represent their functionality.

5    Results
The temporal analysis was performed upon three classes of cir-
cuits. The first two are Manchester adders (AdderX) and counters
(CounterX) and make heavy use of precharged logic. The last cat-
egory consists of dynamic RAMS (RamX) made up of 1 bit
words. Table 2 shows the results of the tests. All experiments were
performed on a DEC 5000 workstation with 500 MB of RAM.

The columns labeled “SLA” correspond to the gate circuit gener-
ated after the switch-level analysis in Tranalyze, without any tem-

Table 1  Modes of Operation for Stack

op2 op1 mode
stack
operation

1 0 PUSH Si-1 →Si

0 1 POP Si+1 →Si

0 0 HOLD Si →Si

Figure 8  Temporally analyzed stack (generalized case)
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poral analysis. The columns labeled “TA” correspond to the circuit
generated after the temporal analysis

The temporal analysis reduces the gate count by 40%-70%. The cir-
cuit was simulated using Cadence Verilog-XL 1.7 and exhibited a
speedup of 3X-150X. The simulation speed comes at a price, that
being increased CPU time. However, this is a one-time cost and the
circuit can then be resimulated without first performing the analy-
sis.

The temporal analysis displayed a greater speedup for larger cir-
cuits. Thus the benefits of temporal analysis may be further realized
on even larger circuits.

6    Conclusions and Future Work
We have developed a tool that performs a temporal analysis on
gate-level circuits. The net effect of this temporal analysis is that
the clocks are abstracted from the circuit, and a new gate-level cir-
cuit is produced. This new circuit has applications in simulation,
formal hardware verification, and reverse engineering of existing
circuits. We have observed a significant reduction in the size of the
circuit after a temporal analysis is performed. The speedup of the
simulation ranges from 3X-150X, with speedup increasing as the
size of the circuit increases.

One major limitation we discovered is the memory needed to per-
form the analysis. Our tool uses BDDs, which can easily become
very large if a non-optimal variable ordering scheme is used. There-
fore, we should focus future efforts on ensuring a good variable
ordering to control the size of the BDD.

Currently, our temporal analysis tool samples outputs at discrete
points in time. The formal verification strategy used by our group
requires outputs to be valid over a range of time, so it would be
advantageous for us to extend our temporal analysis so that outputs
are sampled over a range of time. This extension would also allow
the analysis to generate an even more abstract circuit. For instance,
the next logical step would be to extract a finite state machine from
the temporally analyzed circuit.
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Table 2  The effect of temporal analysis

Analysis (sec) Memory (MB) Gate Count Simulation (sec)

SLA TA SLA TA SLA TA SLA TA

Adder1 1.8 7.6 0.67 1.16 214 111 11.9 3.6

Adder4 4.1 11.2 0.74 1.41 298 142 64.4 11.4

Adder16 34.0 114.3 1.06 8.59 1186 550 116.7 4.5

Counter4 0.8 1.2 0.67 0.74 184 62 17.9 1.6

Counter16 7.7 8.0 0.90 1.06 816 235 33.8 1.0

Counter64 32.7 40.8 1.72 2.81 3320 917 82.4 0.5

Ram16 6.8 8.0 0.80 0.96 594 301 35.2 2.8

Ram64 40.1 42.0 1.12 1.75 1809 993 126.9 6.9

Ram256 240.4 265.8 2.81 5.50 9927 3511 591.0 48.0


