Mapping switch-level simulation onto gate-level hardware accelerators

Alok Jain*
Dept of ECE

Carnegie Mellon
Pittsburgh, PA 15213

Abstract

In this paper, we present a framework for perform-
ing switch-level simulation on hardware accelerators.
A symbolic analyzer preprocesses the MOS network
into a functionally equivalent Boolean representation.
The analyzer thus converts switch-level simulation
into a task of evaluating Boolean expressions. QOur
approach maps the Boolean representation into the
instruction set of the hardware accelerator. The re-
sultant framework supports switch level simulation
on a class of hardware accelerators that traditionally
have been limited to gate-level simulation.

1 Introduction

Software simulation of large digital circuits is con-
strained, to a significant extent, by limited CPU time.
In this respect, dedicated hardware accelerators pro-
vide a fast and efficient simulation mechanism. How-
ever, most of these machines are limited to logic gate
simulation. Such features as the bidirectional nature
of MOS transistors, charge sharing, precharged buses
and sneak paths are difficult to model on gate-level
machines. Attempts to incorporate switch-level sim-
ulation on these machines have met with limited suc-
cess. The Zycad Logic Evaluator|?] has tried to ex-
tend the gate-level simulator by introducing a bidi-
rectional logic element. However, the bidirectional
element has several shortcomings since it cannot sim-
ulate sneak paths and charge sharing in the circuit.
Implementing switch-level simulation algorithms on
the hardware accelerator[?, ?] adds considerable com-
plexity over that required to support gate-level simu-
lation. Moreover these attempts have been limited to
a specific machine. Researchers at IBM[?] have mod-
ified and adapted a traditional switch-level algorithm

*This research partially funded by Semiconductor Re-
search Corporation contract number 90-DC-068.

Randal E. Bryant*

School of Computer Science

Carnegie Mellon
Pittsburgh, PA 15213

for execution on the Yorktown Simulation Engine[?].
The problem is that the instruction set and data rep-
resentation of the simulation engine are too weak for
supporting a full switch-level algorithm. The model
restricts the number of signal strengths and uses a
pessimistic method for computing the effects of un-
known states. Steady-state is reached by performing
worst-case number of iterations so as to prevent any
data-dependent branches. Our work overcomes these
limitations through greater preprocessing to produce
a “program” that can be easily mapped onto gate-
level hardware accelerators.

Our approach is to use ANAMOS|?)], the prepro-
cessing stage of a COmpiled Simulator for MOS cir-
cuits (COSMOS)[?]. The preprocessor reads in the
switch-level description of MOS networks and de-
rives a functionally equivalent Boolean representa-
tion. The Boolean representation is a set of Boolean
formulas that capture all the switch-level aspects of
MOS networks. ANAMOS thus converts switch-level
simulation to the task of evaluating Boolean opera-
tions. COSMOS evaluates the formulas by translat-
ing the Boolean representation into a set of machine
language procedures. An alternative is to evaluate
the formulas on a hardware simulation engine. The
instruction set of the accelerator consists of multi-
valued multi-input logic elements. The intention is
to map the Boolean two-input operations generated
by ANAMOS into three-valued multi-input gates that
can serve as logic elements. There is no straight-
forward way to perform this mapping. Moreover,
mapping Boolean operations into an optimal number
of gates is an NP-complete problem. The empha-
sis of this paper is on the Hardware LGC Compiler
(HLGCC) which is used to map the Boolean repre-
sentation into a feasible gate-level representation. A
brief description of ANAMOS and HLGCC is given
in sections 1.1-1.2.

Page 1

y | yh | yl
0] 0|1
1{11]0
X1 1

Table 1: Boolean Encoding of logic values

1.1 ANAMOS

The symbolic analyzer ANAMOS[?] partitions the
transistor network into channel-connected subnet-
works. Each subnetwork corresponds to a component
in the undirected graph having as vertices the storage
nodes and as the edges the pairs of nodes connected
by transistor sources and drains. Figure 1 shows a
transistor network that is partitioned into 3 subnet-
works. Since the first and third subnetworks have
the same structure, there are 2 unique subnetworks in
the circuit. These are labeled as subnetworks SubN_A
and SubN_B. Each unique subnetwork is mapped into
a Boolean module. The Boolean module represents
steady state response of the subnetwork by a func-
tionally equivalent Boolean description. To express
three-valued switch-level behavior, each logic value
y € {0,1,X} is represented by a dual rail Boolean en-
coding, [y:h,y:l] € {0,1} as shown in Table 1. For each
node n, ANAMOS introduces Boolean variables, n:h
and n:, to represent encoded initial node state values.
It then derives Boolean encodings of the excitation,
N:H and N:L, to represent the steady state response
of the subnetwork.

1.2 The Hardware LGC Compiler

The Intermediate Code Generation phase of HLGCC
represents Boolean module descriptions as Directed
Acyclic Graphs (DAGs). The Boolean DAG can be
defined by a 3-tuple: Gy =< X3, Y3, >. Xpand Y,
refer to the sets of Boolean inputs and outputs of the
DAG. The inputs, denoted in lower case, represent en-
coded values of the initial node states. The outputs,
denoted in upper case, represent encoded values of
the excitations. The DAG vertices correspond to the
Boolean operators in the set 8. The logical AND,
OR operators are represented as &, +5 respectively
so that 8 = {&p, +s}. As an example, SubN_A is
mapped into a Boolean DAG shown in Figure 3. X,
is the set of encoded initial state values correspond-
ing to nodes a, b, c representing subnetwork inputs,
and node n representing stored charge. Y is the set
of Boolean encoded values of the excitations (M, N)
that specify how nodes (m, n) should be updated.
The Code Generation phase of HLGCC maps the
Boolean DAG into a DAG of three-valued multi-
input gates. HLGCC subdivides the mapping into

Figure 1: Partitioning a circuit into subnetworks

Figure 2: Translating Gy to G;

two stages. Section 2 deals with the first stage
which maps the Boolean into a ternary representa-
tion. The ternary representation consists of three-
valued two-input operations. Section 3 deals with
the second stage which attempts to merge two-input
operations into a minimum number of multi-input
gates. The Zycad Logic Evaluator[?] and the York-
town Simulation Engine[?] are two hardware acceler-
ators that support ternary simulation on multi input
gates. Some of the machine specific details that are
relevant for switch-level simulation are discussed in
section 4. Section 5 presents some of the results ob-
tained for the Zycad Logic Evaluator.

2 Boolean to Ternary

The Boolean DAG, defined as Gy, =< X3, Y3, 8 >,
is mapped into a ternary DAG, defined as G; =<
Xy, Yy, 6 > as shown in Figure 2. Each element
xz € X, (respectively, Y € Y;) corresponds to a pair
of Boolean elements [z:h, z:l] € X, (respectively,
[Y:H, Y:L] € Y}). 0 represents the set of ternary
operations that are required to provide a mapping
between X; and Y;. Some of the properties of the set
0 are discussed in section 2.1. Details of the map-
ping are presented in the subsequent section 2.2-2.3.
As an example, consider the node m in SubN_A (Fig-
ure 1). It can be seen from the network that the node
m evaluates the NAND function over the arguments
a and b. However at the level of ANAMOS, the sub-
network is just a connectivity of transistors. It is the
task of HLGCC to extract the NAND function from
the Boolean description.

Page 2

2.1 Overview of Ternary Algebra

The ternary algebra[?] to be developed is based upon
the three-valued logic 0, 1, X. The ternary AND, OR,
NEGATION operations are denoted as &;, +¢, —.
The system ({0, 1, X}, &;, +¢) forms a distribu-
tive lattice. Ternary algebra satisfies many rules of
Boolean algebra including the laws of a distributed
lattice, identity laws, laws for double negation and
DeMorgan laws. However, the laws of excluded mid-
dle do not extend to ternary algebra. The ternary
AND operation can be represented in terms of the
Boolean encodings as in equation 1. The encodings
can be interpreted as the output A goes high (logic
1) if both inputs v and v are at logic high. And
the output goes low (logic 0) if either w or v is at
logic low. The ternary NEGATION operation can be
represented as in equation 2. The ternary negation
operation thereby acts as a rail flipper.

A= & (u,v) = { i? :: ‘—S;—C: ((’Ijtill: gl};) @)
N =~ (u) = { %?:1% @

2.2 Ternary Representation

Equations 1 and 2 indicate that the Boolean oper-
ations can be mapped into the ternary AND and
NEGATION operations. Start by shifting all the in-
puts to the Boolean DAG to the high rail encoding
(:h), by using the rail flipper property of the ternary
NEGATION operation. That is, for any z:l € X, the
low rails is shifted to the high rail as z:l = (—x):h.
The & operation is realized as the high rail encoding
of the &; operator. The +; operation is realized by
temporarily shifting the arguments into the low rail,
performing the &; operation and then shifting the re-
sult back to the high rail. The &; operation is thus
mapped into a single &; operator. The +; operation
is mapped into a &; and three —; operators.

For the outputs of the Boolean DAG use an updn-
function (UPDN'). The updn-function extracts the
high rails from the signal and combines the Boolean
encodings of the excitation to give the ternary exci-
tation. For two ternary signals a and b, the UPDN
extracts the Boolean rails [Y : H, Y : L] € Y,
and combines them to generate the excitation ¥ =
UPDN (a, b), where Y € Y;. Section 2.3 looks into
the possibility of reducing the total number of ternary
operations in G;.

2.3 Reduction in ternary operations

The number of operation in G; can be further reduced
by eliminating all double negations, merging com-
mon subexpressions and special case simplication of
the UPDN function. After elimination double nega-
tions, a hash table is used is used to merge common
ternary subexpressions. It can be verified from the
truth tables that: UPDAN (a, ~va) = a. Therefore,
in the event the arguments of the UPDN composite
are complements of each other, the YPDN compos-
ite can be collapsed. For example, SubN_A is mapped
into a ternary DAG (Figure 4!) where the UPDN is
collapsed for the output M but cannot be collapsed
for the output N. The output M defines a ternary
NAND over the inputs a and b. It can be seen that
our method automatically detects and optimizes most
gate-level logic.

3 Operations to Gates

The final ternary representation G, =< X;, Y, 6 >,
where 0 = {&;, —, UPDN}, consists of one or
two-input operations. G; is mapped into G, =<
X, Yy, v >, where v is the instruction set sup-
ported by the hardware accelerator. The process of
mapping G; to G, is known as Technology Binding.
The technology binding process on DAG’s is simi-
lar to the problem of optimal code generation with
common subexpressions. An optimal solution to this
problem has been proven to be NP-complete[?]. Pre-
vious work done in the area of technology binding
include the Socrates[?], Dagon[?] and the MIS[?] sys-
tems. Socrates uses a rule based approach to the
problem. Dagon and MIS systems exploit the fact
the optimal technology binding on trees can be done
in polynomial time. A similar algorithm along with
some local optimization across tree boundaries has
been used to map G; to G,.

The instruction set 7 is a set of multi-input gate-
functions. The gate-functions are defined as pattern
trees. The set 8 serves as the primitive operations for
the pattern trees. The algorithm places some limits
on the elements of the set v. Any gate, such as a mul-
tiplexor, which cannot be represented as a tree can-
not be described as a valid pattern for the technology
binding process. A top-down matching algorithm[?],
a generalization of the Aho-Corasick string matching
algorithm[?], is used to generate a finite state au-
tomata for the pattern trees.

G; is decomposed into a forest of trees Gy. DAG
nodes with fanout of greater than unity serve as de-

LA black dot represents a ternary negation operation

Page 3

Figure 3: Gy for SubN_A

composition points for the trees. The tree matching
algorithm is used over G¢. The algorithm gives all
the possible matches for all node in Gy. A dynamic
programming algorithm is used to obtain an optimal
matching for G;. The final stage replaces each pat-
tern match by the required gate to give G,. One pos-
sible gate-level representation for SubN_A is shown in
Figure 5.

4 Hardware Accelerators

Most hardware accelerators support a limited set of
user-programmable instructions. The instruction set
v is defined in terms of multi-input gate-functions.
The Zycad Logic Evaluator supports 16 three-input
programmable gate-functions[?]. The limited instruc-
tion set cannot support all possible three-input pat-
tern trees defined over the set 8. We have divided the
instruction set into two subsets of pattern trees. The
first subset incorporates all unique gate-functions de-
fined over the &; and —; operators. Zycad associates
a binary flag with the fanouts of every gate which al-
lows the fanout to be positive or complemented. Ex-
ploiting the commutative and associative properties
of the &; operator, there are 10 unique three-input
pattern trees on the &; and —; primitives which can
be used with the positive or complemented binary
flag. The second subset incorporates 4 (UPDN with
each input positive or complemented) two-input gate-
functions? defined over the UPDN and —; operators.
The limited instruction set constrains the optimiza-
tion achieved in the technology binding process.
Hardware accelerators were designed to simulate
actual gate-level circuit designs. As a result, these
machines have various limitations which are reason-
able assumptions for digital designs. Several of these
limitations surface in arbitrary networks generated by

2Remember UPDN is not a commutative function

Figure 4: G; for SubN_A

Figure 5: G, for SubN_A

automatic gate network generators. Most hardware
accelerators place a limit on the number of fanouts of
logic elements. To overcome these fanout limitations
we had to incorporate fanout trees with appropri-
ate delay distribution. Some hardware accelerators
place limitation in the delay modeling of gate net-
works. The COSMOS model is unit-delay model at
the inter-subnetwork level and zero-delay within the
subnetworks. The Zycad Logic Evaluator[?] does not
allow zero-delay logic elements with non-zero fanin
delay. A delay distribution algorithm is used to assign
delays to the gate-level representation to artificially
force rank-order evaluation. The algorithm, in effect,
levelizes the gate-level representation of each subnet-
work, and then assigns delay to every gate fanin to
rank order the subnetwork. Every gate has 1 unit
delay. Let Level(g) denote the level of a gate g in a
subnetwork, and Max_Level = MAX [Level(og) V
output gates og in all subnetworks]. An input of a
gate g; driven by a gate g; is assigned a fanin delay
Level(g;) — Level(g;) — 1. The output gate og of each
subnetwork is then associated with an additional de-
lay Max_Level — Level(og). The entire simulation is
now run by stretching the timing so that a unit delay
step takes time equal to Max_Level.

5 Experimental Results

Presently the gate level representation is geared to-
wards the Zycad Logic Evaluator. Experimental re-
sults are shown in Table 2. The Boolean representa-
tion consists of the total number of &; and +; oper-
ators in the “LGC” description. The ternary repre-
sentation consists of the total number of &; operators
and the YPDN functions. The Gate representation
consists of the total number of gates (logic elements)
downloaded into the hardware accelerator.

Page 4

Circuit Trx. | Boolean Ternary 3-input | Gate | Trx. | Software | Hardware

Count | LgcOps | TernOps | UPDN Gates | Ratio | Ratio in sec in sec | Speedup
74181 ALU 240 265 179 14 131 2.02 0.55 2.0 1.8 1.11
RAM16 144 884 863 37 537 1.64 | 3.73 0.6 0.64 0.94
RAM32 243 1266 1213 54 751 1.68 | 3.09 14 0.68 2.06
RAM64 374 2645 2592 107 1579 1.67 4.22 1.9 0.91 2.09
RAM256 1140 8346 8213 349 4888 1.70 | 4.29 20.4 1.53 13.42
MCNTR16 416 2227 2112 131 1480 1.50 3.56 50.1
MCNTRA48 1248 6723 6376 395 4464 1.51 | 3.58 174.4
MCNTR64 1664 8971 8508 6527 5956 1.51 | 3.58 221.3
SLAP 20167 80057 72946 1552 | 45085 1.78 | 2.23 329 18.49 17.91
MBCL 43004 | 131039 123801 8315 85791 1.53 | 2.00

Table 2: Mapping Boolean to gate level representation

The ratio of Boolean operations to gates® is around
1.6. Only the 74181 ALU circuit shows a ratio of
greater than 2. The reason is that the ALU circuit
has been implemented as a system of gates. The cir-
cuit consists of small subnetworks that collapse neatly
into gates. On the other hand, the Manchester cir-
cuits have pass transistor circuitry. A large number of
operations are required to simulate sneak paths and
shared charge in this circuitry.

The gate to transistor count* gives an indication of
the average number of gates required to simulate a
single transistor in the circuit. It would be desirable
to keep this value as low as possible. Only the 74181
ALU circuitry shows a ratio of less than unity. All
other tested circuits require 2-5 gates to simulate a
single transistor. Note the fact that the two bench-
mark circuits (SLAP and MBCL) which contain mix
of various logic styles require on an average 2 gates
per transistor.

Software simulation time is the CPU time on the
COSMOS switch-level simulator implemented on a
DEC-3100 workstation. The hardware simulation
time is the elapsed time on the Zycad Logic Evalua-
tor®. For the scalable (16 to 256 bit) RAM cells, the
same number of instructions were used to test part
of these RAMs. The performance speedup® increases
with an increase in the number of gates required to
represent the circuit behavior. Hardware acceleration
is effective only after a critical circuit size. The criti-
cal size is a function of both the circuit topology and
the set of input stimuli applied to test the circuit. For
the SLAP benchmark, tt can be seen that hardware
acceleration offers approximately a 15x speedup over
software methods. Note the fact that we are compar-
ing the CPU time on DEC-3100 with the elapsed time

3Gate Ratio = LgcOps / Gates

4Trx Ratio = Gates / Trans.

5Z7ycad reports only the elapsed time

6Hardware simulation time/Software simulation time

on the Zycad Logic Evaluator. On the other hand, if
we compare elapsed time on both machines, then our
simulation results showed around 25x speedup on the
Zycad Logic Evaluator. Another interesting fact is
that the DEC-3100 workstation represents a state of
the art machine, where as the Zycad LE used for our
hardware simulation is the first generation hardware
accelerator. Hardware acceleration thus offers a sig-
nificant potential for switch-level simulation.

Page 5

