
Symbolic Simulation—Techniques and Applications
�

Randal E. Bryant
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Symbolic simulation involves evaluating circuit behavior
using special symbolic values to encode a range of circuit
operating conditions. In one simulation run, a symbolic
simulator can compute what would require many runs of
a traditional simulator. Symbolic simulation has appli-
cations in both logic and timing verification, as well as
sequential test generation.

The concept of symbolic simulation has been discussed
for over 10 years, but early attempts had only limited
success. The recent introduction of more powerful, al-
gorithmic methods of symbolic manipulation have had a
major impact on the classes of circuits and properties that
can be evaluated symbolically.

1 Introduction

A single run of a conventional simulator provides limited
information about the behavior of a digital system. It de-
termines only how the circuit would behave for a single
initial state, input sequence, and set of circuit parameters.
Characterizing the system for all possible operating con-
ditions by this means is at best impractical and at worst
impossible.

Many CAD tasks require more extensive information
than can be obtained by a single simulation run. For ex-
ample, the formal verification of a design requires show-
ing that the circuit will behave properly for all possible
initial states and input sequences. Automatic test gener-
ation requires selecting a subset from among the set of
all input sequences that will detect a given set of faults.
Clearly, conventional simulation is of little use for such
tasks. Most CAD researchers have solved these problems
by means other than simulation. For example, the most
common approach to formal verification is by theorem
�
This research was supported by the Defense Advanced Research

Projects Agency, ARPA Order Number 4976, by the Semiconductor
Research Corporation under contract 90-DC-068, and by the National
Science Foundation under grant number MIP-8913667.

proving [1]. The most common approach to test genera-
tion is by combinatorial search, such as the D-algorithm
[13].

Some tasks that cannot be solved effectively by con-
ventional simulation become tractable by extending the
simulator to operate over a symbolic domain. Symbolic
simulation involves introducing an expanded set of signal
values and redefining the basic simulation functions to op-
erate over this expanded set. This enables the simulator to
evaluate a range of operating conditions in a single run.

As a simple example, Roth’s D-calculus [13] can be
viewed as a form of symbolic evaluation, although it is not
used for simulation. The D-calculus allows one to simulta-
neously characterize both faulty and fault-free behavior. It
does this by redefining the functions of basic logic gates to
operate over an expanded set of values

�
0 � 1 ����� ��� . This

symbolic extension is small—it covers only two different
circuit operating conditions—but the basic idea is there.

As a second example, concurrent fault simulation [15]
can be viewed as a form of symbolic simulation. This
symbolic extension allows one to characterize the behav-
ior of the circuit under fault-free and many different faulty
conditions simultaneously. The fault list data structures
can be viewed as representing elements of a symbolic do-
main encoding the value of a signal in the good and all
faulty machines. The list manipulations and gate evalua-
tions performed while processing the input lists for a logic
gate can be viewed as implementing an extension of the
gate function to this symbolic domain. Although this is
an unconventional view of concurrent fault simulation, it
serves to demonstrate the value of data abstraction. That
is, we can distinguish between the abstract domain over
which the simulation is performed versus the detailed data
structures used to represent elements of this domain.

The above two examples illustrate how well-known
CAD algorithms can be viewed as making use of sym-
bolic evaluation. In this paper, we will describe the basic
principles of symbolic simulation and some novel ways it
can be used.

Page 1



2 Historical Perspective

As already illustrated, the basic principles of symbolic
simulation have implicitly been used by CAD programs
for many years. The term was introduced explicitly in
the late 1970’s by researchers at IBM interested in reason-
ing about circuits represented at the register-transfer level
[6, 9]. Their approach drew on techniques developed for
reasoning about software by symbolic execution. That is,
to evaluate the effect of a sequence of circuit operations,
they introduced symbolic values to represent both the pos-
sible initial contents of the circuit registers as well as the
possible data values applied to the inputs. They extended
the primitives of the simulator to operate over expressions
involving these symbolic values.

Other researchers continued this work into the early
1980’s [8], but activity died off within a few years. People
discovered that this form of symbolic evaluation was not
powerful enough for reasoning about overall circuit behav-
ior. For example, if the simulator reached a conditional
branch while evaluating a sequence of control operations,
it would simply evaluate both paths of the branch, but la-
bel the outcomes with the conditions under which each
branch would be taken. After simulating a number of
such branches, the expressions would become too large
and cumbersome to use effectively. Looping constructs
proved even more intractable, since in general the simu-
lator could not determine the conditions under which the
loop would terminate.

The success of this early work was limited by the weak-
ness of the symbolic manipulation methods. During the
course of a symbolic simulation, these programs built up
algebraic expressions that closely reflected the evaluations
that had been performed. Consider, for example how such
a program would simulate the effect of adding the con-
tents of two registers and then adding this to the contents
of a third register. It would first introduce symbolic values�

, � , and � , to indicate the register values. After simu-
lating the two operations, the program would produce an
expression � 1 ��� ��� �
	 � � . Now suppose that another
sequence of operations summed these numbers in a differ-
ent order to produce an expression � 2 � � � � ��� ��	 ,
and that a conditional branch were taken based on a com-
parison between � 1 and � 2. For such a simple example,
a simple algebraic manipulator could exploit the laws of
commutativity and associativity to show that the two ex-
pressions are always equal. For more complex cases, how-
ever, it becomes very difficult to detect such properties in
the symbolic expressions.

3 Recent Activity

In the past few years, there has been a renewed interest in
symbolic simulation. These recent efforts have been char-
acterized by a more algebraic approach to the problem.
That is, rather than build up symbolic expressions based
on the evaluation sequence, these programs use represen-
tations that are based more strongly on the underlying
symbolic domain. The signal values are represented in
ways that facilitate the evaluation of the simulation func-
tions over the extended domain. This algebraic approach
allows the symbolic simulator to reason more effectively
about the actual circuit function.

Several different algebras have been used depending on
the class of problems the symbolic simulator is intended
to solve.

3.1 Boolean Algebraic Approaches

Boolean algebra is the most natural domain for reasoning
about digital circuits, since it directly reflects the binary
nature of digital signals. Expressing simulation opera-
tions in Boolean algebra also leads directly to a symbolic
formulation. That is, if we introduce a set of Boolean
variables, then we can let our symbolic domain be the set
of Boolean functions over these variables. We then rede-
fine the logic operations AND, OR, and NOT to operate over
functions rather than over the values 0 and 1. This gives
us an algebra that satisfies all of the laws of a Boolean al-
gebra. Thus, any simulation step that can be expressed in
terms of Boolean operations can, in principle, be evaluated
symbolically.

As an example, our own work expresses all aspects
of a switch-level simulation algorithm in terms of Boolean
operations [4]. We use Ordered Binary Decision Diagrams
(OBDDs) [3] to represent the Boolean functions created
and manipulated by the simulator. This representation has
the advantage that it is canonical, i.e., each function has a
unique representation. Furthermore, the representation is
reasonably compact for many of the functions encountered
in evaluating digital circuit functions.

Let us return to the example of the register transfer op-
erations described above. Rather than representing the
contents of a register with a single integer-valued symbol�

, we would represent it as a vector of Boolean-valued
symbols 
���� 1 ����������
 0, where � is the width of the regis-
ter. In doing this, we exploit the fact that actual hardware
works with finite precision numbers, and hence we do not
need to reason about arbitrary integers. This is fortunate,
since many properties of the integers are undecidable. As
simulation progresses, the circuit signals are expressed in
terms of Boolean functions over these symbols. Thus, in
summing the contents of the 3 registers, we would de-
rive � OBDDs (one for each bit of the sum) over the 3 �

Page 2



variables: 
 � � 1 ��������� 
 0,
� ��� 1 ������� � � 0, and � ��� 1 ������� ��� 0.

While this might seem more cumbersome than construct-
ing the expression � � � �
	 � � , it has the advantage that
we would derive the exact same OBDDs regardless of the
way these values are summed. Thus, our symbolic ma-
nipulator is able to detect all possible relations among the
signal values in the circuit.

A Boolean algebraic approach solves many of the prob-
lems encountered during early attempts at symbolic simu-
lation. For example, conditional branches cause no prob-
lems. We simply follow both branches and combine the
two results with a “multiplexor” function. Even the func-
tion resulting from a looping construct can be constructed
by simply simulating the evaluation of the loop repeatedly
until it “terminates,” i.e., the conditional expression en-
abling loop execution evaluates to the constant function 0.
In essence, the simulator evaluates the loop for the worst
case number of times.

It is obvious that Boolean algebra can be used for rea-
soning about two-valued digital models. Many digital
circuit models, however, are based on multi-valued signal
domains. Rather than developing new symbolic repre-
sentations for these signal domains, we can often encode
the elements with multiple Boolean values. Our register
transfer example above, for instance, illustrated an encod-
ing of a finite precision integer by a set of Boolean values
according to a binary representations. Similarly, our own
simulator encodes three-valued signals by pairs of Boolean
values. That is, each signal ���

�
0 � 1 ��� � , is represented

by a pair of Boolean signals ���
	 and ���
� , according to the
following encoding:

� ���
	 ���
�
1 1 0
0 0 1
� 1 1

The above encoding is extended symbolically by repre-
senting each signal value computed by the simulator as a
pair of OBDDs. All of the operations required by the sim-
ulator can then be implemented by Boolean manipulation.

As another example of Boolean encoding, researchers
at Kyoto University [12] use symbolic simulation to model
the behavior of a digital circuit in which each gate can have
a range of possible delays. By considering only bounded,
integer-valued delays, they can encode each delay as a
series of Boolean values using a binary representation. By
using Boolean manipulation during the simulation, they
can then derive the detailed behavior of the circuit for all
possible combinations of gate delays.

Powerful symbolic Boolean manipulation adds an en-
tirely new dimension to the reasoning power of a symbolic
simulator. We and others have found it possible to in-
corporate a number of features into the simulation model,

including switch-level models and more detailed timing
models [14]. The only requirement is to recast the sim-
ulation algorithm into a form that involves only Boolean
operations.

3.2 Reasoning about Continuous Systems

For reasoning about digital circuits in which the circuit
parameters may vary continuously, it becomes impossible
to use Boolean encodings. We require symbolic methods
that can deal with infinite domains. Typically, as we move
to algebras over infinite domains, the problems quickly be-
come intractable. Nevertheless, symbolic simulators for
these tasks can sometimes exploit particular properties of
the underlying system to provide useful reasoning capa-
bilities.

For example, prior to their use of Boolean encodings,
researchers at Kyoto University considered digital models
in which each gate delay can vary continuously between
a minimum and maximum value [11]. During the course
of a simulation, the signal changes occurring on each line
depend on the relative values of the delay sums along dif-
ferent paths in the circuit. Fortunately, these relations can
all be expressed as linear constraints, and hence algorithms
developed to solve the linear programming problem can
be used to determine the conditions under which signal
transitions may actually occur. Needless to say, however,
this modeling required far more computation than their
later version based on integer-valued delays.

Researchers in Belgium have developed a symbolic sim-
ulator for modeling analog circuits [10]. Such applications
clearly require more powerful symbolic domains than can
be represented by Boolean encodings. By linearizing the
circuit elements at particular operating points, and by at-
tempting only frequency domain analysis, their program
can represent signal values as rational functions in the �
(continuous time) or 
 (discrete time) domain. They can
therefore employ algorithms for manipulating rational ex-
pressions that have been developed by researchers in the
field of symbolic algebra.

As these two experiences show, symbolic simulation
can be applied for more complex problem domains where
Boolean encodings are impossible. However, the capabili-
ties of such programs are limited in their expressive power
and in the size of circuit they can model.

3.3 Weak Signal Algebras

A quite different style of symbolic simulation is to reduce
the amount of information that the program attempts to
derive. The simulator can then use much simpler and
more efficient symbolic algebras but still produce useful
results. As an example, researchers at IBM have shown
that a conventional 3-valued simulation algorithm can be

Page 3



extended to make a more detailed analysis of the effects of
unknown signal values [5]. That is, for each uninitialized
state variable � in the simulation, they assign an initial
value ��� . Rather than treating each of these initial values
as a distinct Boolean variable, however, they view them
as unknown, but annotated values. During the course of
simulation, they represent each signal as either 0, 1, ��� , ���
(the complement of ��� ), or � . The value � represents
a signal about which nothing is assumed to be known.
The simulator can reason to a limited extent about the
interactions between unknown values. For example, it can
use the identity � ��� � � � 1. Whenever unknown signals
originating from different sources interact, however, an �
signal results.

This work indicates how adding a limited amount of
symbolic reasoning to a simulator can improve its accuracy
in dealing with unknown values without incurring the high
overhead of full-fledged symbolic simulation.

4 Applications and Results

The original work on symbolic simulation was directed
toward formal circuit verification. This remains the major
application for symbolic simulation today. The purpose of
formal verification is to prove that the circuit will behave
properly for all possible operating conditions. For com-
binational circuits, verification by symbolic simulation is
(conceptually) straightforward. The verifier introduces
Boolean variables for each primary input and simulates
the circuit operation to compute a Boolean function for
each primary output. It then compare these functions with
ones derived from the circuit specification.

For sequential circuits, the methodology by which one
applies a symbolic simulator to prove circuit correctness is
more complex. For cases where the specification and the
circuit are sequential circuits using the same state encod-
ing, we can simply verify the combinational logic portion
of the circuit. For cases where the specification is given
in some other form, or where the state encodings differ,
more sophisticated approaches are required. In one recent
approach [2], both the circuit and the specification are
represented as sequential systems, but with different state
encodings. The user must explicitly specify the relation
between the two state encodings in terms of an abstrac-
tion function, mapping a circuit state into a corresponding
specification state.

A second application for symbolic simulation has been
to automatic test generation. This approach to the test
generation problem differs markedly from the more tra-
ditional, search-based approaches. In our work [7], we
view test generation as proceeding by symbolic fault sim-
ulation. That is, we simulate the good and faulty circuits
over a set of symbolic patterns, effectively evaluating their

behaviors over many different actual patterns. We then use
Boolean manipulation to derive a set of input sequences
that will cause the good and faulty circuits to produce dif-
ferent outputs. This approach has several advantages over
search-based methods. Most significantly, it extends quite
naturally to both sequential and switch-level circuits. We
have demonstrated the ability of our program to generate
tests for a number of moderate-sized sequential circuits,
but much further work is needed to make this approach
truly practical. The memory required to store the OBDDs
representing the good and faulty circuit behaviors limits
the scale of circuits that we can handle.

5 Conclusions

Symbolic simulation has already produced practical results
in formal circuit verification and automatic test genera-
tion. The recent advent of algebraic methods employing
powerful symbolic manipulation techniques has greatly
enhanced the capabilities of these programs. The future
prospects appear quite promising, as researchers try new
symbolic domains, new manipulation algorithms, and new
applications.

References

[1] H. G. Barrow. Proving the Correctness of Digital
Hardware Designs. VLSI Design Vol. V, No. 7 (July
1984), 64–77.

[2] S. Bose and A. L. Fisher, “Verifying Pipelined Hard-
ware Using Symbolic Logic Simulation,” Interna-
tional Conference on Computer Design, October,
1989.

[3] R. E. Bryant. “Graph-Based Algorithms for Boolean
Function Manipulation,” IEEE Transactions on
Computers, Vol. C-35, No. 8 (Aug., 1986), pp. 677–
691.

[4] R. E. Bryant, et al, “COSMOS: A Compiled Sim-
ulator for MOS Circuits,” 24th Design Automation
Conference, 1987, pp. 9–16.

[5] J. L. Carter, et al, “Restricted Symbolic Evaluation
is Fast and Useful,” ICCAD-89, pp. 38–41.

[6] W. C. Carter, W. H. Joyner, Jr., and D. Brand, “Sym-
bolic Simulation for Correct Machine Design,” 16th
ACM/IEEE Design Automation Conference, 1979,
pp. 280–286.

[7] K. Cho, and R. E. Bryant, “Test Pattern Generation
for Sequential MOS Circuits by Symbolic Fault Sim-
ulation,” 26th ACM/IEEE Design Automation Con-
ference, June, 1989, pp. 418–423.

Page 4



[8] W. E. Cory, “Symbolic Simulation for Functional
Verification with ADLIB and SDL,” 18th ACM/IEEE
Design Automation Conference, 1981, pp. 82–89.

[9] J. A. Darringer, “The Application of Program Veri-
fication Techniques to Hardware Verification,” 16th
ACM/IEEE Design Automation Conference, 1979,
pp. 375–381.

[10] G. G. E. Gielen, H. C. C. Walscharts, and W. M. C.
Sansen, “ISAAC: A Symbolic Simulator for Analog
Circuits,” Journal of Solid-State Circuits, Vol. 24,
No. 6 (December, 1989), pp. 1587–1597.

[11] N. Ishiura, M. Takahashi, and S. Yajima, “Time-
Symbolic Simulation for Accurate Timing Verifi-
cation of Ansynchronous Behavior of Logic Cir-
cuits,” 26th ACM/IEEE Design Automation Confer-
ence, 1989, pp. 497–502.

[12] N. Ishiura, Y. Deguchi, and S. Yajima, “Coded Time-
Symbolic Simulation Using Shared Binary Decision
Diagram,” 27th ACM/IEEE Design Automation Con-
ference, 1990.

[13] J. P. Roth, Computer Logic, Testing, and Verification,
Computer Science Press, 1980.

[14] C.-J. Seger, and R. E. Bryant, “Modeling of Circuit
Delays in Symbolic Simulation,” IFIP Workshop on
Applied Formal Methods for VLSI Design, Novem-
ber, 1989.

[15] E. Ulrich, and T. Baker, “The Concurrent Simulation
of Nearly Identical Digital Networks”, IEEE Com-
puter (April, 1974), pp. 39–44.

Page 5


