Test Pattern Generation
for Sequential MOS Circuits

by Symbolic Fault Simulation

*

Kyeongsoon Cho
Randal E. Bryant
Carnegie Mellon University

Abstract

The COSMOS symbolic fault simulator generates test sets
for combinational and sequential MOS circuits represented
at the switch level. All aspects of switch-level networks in-
cluding bidirectional transistors, stored charge, different sig-
nal strengths, and indeterminate (X) logic values are cap-
tured. To generate tests for a circuit, the program derives
Boolean functions representing the behavior of the good and
faulty circuits over a sequence of symbolic input patterns. It
then determines a set of assignments to the input variables
that will detect all faults. Symbolic simulation provides a
natural framework for the user to supply an overall test
strategy, letting the program determine the detailed con-
ditions to detect a set of faults. Symbolic preprocessing of
switch-level networks, combined with efficient Boolean ma-
nipulation makes this approach feasible.

1. Overview

Most approaches to test generation (e.g., the D-Algorithm
[11] or PODEM [7]) are based on combinatorial search.
Given a fault, the program searches for an assignment to
the primary inputs that both excites the fault and sensitizes
a path to a primary output. While such generators can pro-
duce test sets with good fault coverage for some circuits,
they suffer from several drawbacks. Most importantly, the
computational complexity for sequential circuits with search-
based algorithms is usually high, since the search space con-
sists of both space and time. In practice, MOS circuits are
often sequential because of the following design tendencies:
many memory elements are interspersed in the circuit since
storage is cheap; pipelining is often used to enhance circuit
performance; and precharged logic (e.g., Domino logic) is
common.

There have been many efforts in utilizing design for testa-
belity methodologies to reduce the computational complexity

*This research was supported in part by the Defense Advanced
Research Projects Agency, ARPA Order Number 4976, and in part
by the Semiconductor Research Corporation under contract 88-DC-
068.

of test generation for sequential circuits. One proven method
is to use a complete scan design methodology to reduce the
test generation problem of sequential circuits to that of com-
binational circuits. For many circuits, however, the cost of
linking all registers into a scan chain may be too high. Many
such systems can be made testable with partial scan chains
and by exploiting the bus structure. A test generation tool,
such as ours, that can handle arbitrary sequential design has
great potential value.

Most previously reported test pattern generators for
MOS circuits worked only for static, combinational cir-
cuits [6, 8, 9, 10]. Chen, et al [5] developed a program that
could handle precharged logic as well, but not true sequen-
tial behavior. Furthermore, none of these programs has seen
widespread usage, due to their limited generality and their
poor performance.

As a further limitation of search-based techniques, if the
circuit contains an undetectable fault, the program may ex-
haustively try all possible input combinations until it deter-
mines that the fault is undetectable, expending enormous
effort on fruitless searches. For gate-level combinational cir-
cuits, undetectable faults occur only if the circuit contains
redundant logic and hence can be minimized by careful logic
design. At the switch level, however, undetectable faults
may arise due to intermediate voltages or undefined initial
states. Hence, a switch-level test generator must handle un-
detectable faults efficiently.

As an alternative, we propose symbolic fault simulation.
This approach eliminates the need for combinatorial search.
Instead, three sets of Boolean variables are introduced to
encode many combinations of input, fault, and initial state.
The circuit is then simulated, where the node states are given
by Ordered Binary Decision Diagrams (OBDD’s) [2] repre-
senting Boolean functions over the variables. These node
states encode the behaviors of the good and many faulty
circuits for many possible input sequences and for many
possible initial states. From this information, a set of test
patterns can be obtained by deriving a Boolean function rep-
resenting the difference between the good and faulty circuits.
This test function is computed by first exclusive-OR’ing the
functions for each good and faulty circuit output and then
OR’ing the functions for the different outputs. The test set
is then derived by calculating a set of input sequences satis-
fying the test function for all possible combinations of fault
and initial state.

Since the interface to our program is based on simulation,
the user remains in control of the overall testing strategy.
That is, he or she determines how many patterns to sim-
ulate and hence the length of each test. Furthermore, by
simulating patterns with some inputs (e.g., control signals)
set to constants, the user can, in effect, provide guidance to

Page 1

the program on how to transfer data from the primary in-
puts into internal nodes of the circuit, or from internal nodes
to observation points. This results in a reasonable division
of labor, with the user providing an overall testing strategy,
and the program determining the detailed patterns to detect
the faults.

This paper describes the prototype implementation of a
switch-level test generator based on symbolic fault simula-
tion. The program was created by extending the COSMOS
switch-level simulator [3] with efficient symbolic Boolean ma-
nipulation based on OBDD’s. We have successfully gener-
ated tests for sequential MOS circuits containing up to 770
transistors. This is more than twice the size of any previ-
ously reported automatic test generation at the switch level.

2. Symbolic Simulation

Conventional simulators model the functionality of the cir-
cuit only for the particular data given by the user. A large
amount of input data is usually required to fully exercise a
circuit. The complexity grows exponentially in the number
of inputs. Symbolic simulation reduces the number of pat-
terns simulated by evaluating a circuit for many input com-
binations simultaneously. A symbolic simulator resembles a
conventional simulator, except that the input sequence can
contain input variables in addition to the constants 1 and 0.
During simulation, the circuit node states are computed as
Boolean functions of the past and present input variables.
These Boolean functions describe the behavior of the circuit
for the set of all possible data represented by the variables.
A symbolic simulator can also represent the behavior of a se-
quential circuit by computing the sequence of Boolean func-
tions that would appear at each output as a function of the
sequences of variables that have been applied to each input.

A circuit can be viewed as a finite state machine. Con-
sider a circuit having n primary inputs & = (z1,...,%s), m
primary outputs C = (C1,...,Cr), and p state variables
S = (S1,...,5p). At time ¢ (measured in clock cycles), if
we apply input variables zt = (z},...,2%) to the primary
inputs, this circuit is represented by the following two equa-
tions:

St = next(St1, zt) (1)
Ct = out(_’t)

where t = 1,2,.... Note that these functions St and Ct
should be represented as ternary functions to cover the
ternary behavior of switch-level networks. Initially, all el-
ements of S equal X, an uninitialized state:

S0 =(X,...,X)

According to the above equations, the present states are de-
termined by the previous states and the present input vari-
ables. The present outputs are directly derived from the
present states. Hence, Ct and St are ternary functions of
the past and present input variables.

To cast the switch-level model in terms of Boolean oper-
ations, a logic value y € {0,1, X} is represented by a “dual
rail” Boolean encoding, y.1,y.0 € {0, 1} as follows:

y | y.1 9.0
1 1 0
0 0 1
X 1 1

*
phi-1 — *
phi-2 —* N; *|Jp in —* Ny *r— qgH
kill — *
= [

Figure 1: Network Partitioning and Fault Model

To extend this encoding to symbolic simulation, each circuit
node state is represented by a pair of Boolean functions,
represented as OBDD’s. In this way we can operate in the
Boolean domain instead of the ternary domain. The sym-
bolic simulator derives two Boolean functions C.1¢ and C.0¢,
for each output :. Equation 1 is expressed in these terms as:

St = next.l(S.l?—l,S.O_t’—l,x—’t) (2)
S0t = next.O(S.ﬁ—l,S.O}’—l,x—’t)
Cl1t = out.1(S.1t,5.0)
CO0t = out.0(S.1t,5.0)
where t = 1,2,.... Since the X state is represented by the

encoding 1, 1, the initial values of 51t and S.0* are
510 =500 =(1,...,1)

The preprocessing methods used by the COSMOS switch-
level simulator [4] make it possible to simulate MOS circuits
symbolically. The COSMOS preprocessor applies symbolic
analysis to convert the switch-level representation of a cir-
cuit into a Boolean representation. This analysis captures
all details of the switch-level model and works for arbitrary
networks. The resulting Boolean description is converted
into a set of C language modeling procedures. By using
different macro expansions, these procedures can implement
the Boolean operations using machine-level logic instructions
(for conventional simulation) or by calls to OBDD manipu-
lation routines (for symbolic simulation).

3. Fault Model

Our preprocessor accepts as input the switch-level rep-
resentation of a MOS circuit, and partitions the network
into channel-connected subnetworks [4]. Each subnetwork
consists of a set of storage nodes connected by transistor
sources and drains. This partitioning describes the static
connections in the network, i.e., those independent of tran-
sistor state. The user can inject stuck-at-1 and stuck-at-0
faults on the subnetwork inputs and outputs. Single faults
are injected by default, but multiple faults are also allowed.

Figure 1 shows an example of network partitioning and
the fault model. This circuit partitions into 2 subnetworks:
N7 and N>. The local feedback shown for each subnetwork

represents the nodes that may store charge dynamically.

Page 2

L LO AND !

OR

Figure 2: Injection of Stuck-at Faults on Node n with State
s

The global feedback represents cyclic connections. Stuck-
at faults can be injected at locations marked with asterisks
(*). Faults cannot be injected on the subnetwork inputs
formed by local feedback, since these are only implicit in-
puts. Observe that nodes g-L, ¢, and d are not shown in
the subnetwork structure. These nodes are eliminated dur-
ing preprocessing since they serve only as interconnection
points within a subnetwork, i.e., they neither control any
transistors nor form part of the circuit’s dynamic memory.
Hence, no faults can be injected on these nodes. Two dis-
tinct faults can be injected for node g-H. One is on the
output of subnetwork Nz, while the other is on an input to
subnetwork N;. Assuming g-H is the only primary output
of the circuit, the effect of a fault on node g-H in Nz can be
observed directly. The effect of a fault on the fanout of node
g-H to Ni can be observed only if it propagates through both
subnetworks.

Our fault model is chosen as a compromise between mod-
eling detail and efficiency. By injecting faults only at subnet-
work boundaries, we avoid the need to symbolically analyze
circuits containing fault effects. Furthermore, experience has
shown that many detailed faults such as stuck-closed tran-
sistors cannot be reliably modeled using switch-level models.
That is, the fault causes the simulator to set a node to X,
to represent a potentially intermediate voltage. The simula-
tor cannot determine whether the faulty circuit would ever
produce the opposite digital (non-X) value from the good
circuit on some primary output. Nonetheless, our model
generates patterns that exercise every signal connection in
the circuit and propagates the effects to the primary out-
puts. We anticipate that such patterns will reliably detect
most chip defects.

4. Fault Injection

Suppose we wish to evaluate N different faults numbered
from 0 to N — 1. Figure 2 shows the idea of how we inject
stuck-at faults on a line with good value s concurrently and
symbolically, where fault 2 causes this line to be stuck at 1,
and fault j causes this line to be stuck at 0. By introducing
two Boolean fault injection signals, F; and F}, a “qualified”
line value s’ is created. Note that the OR and AND gates
in Figure 2 are just conceptual representations of how faults
can be injected in an algorithmic way. We do not actually
introduce any physical gates or transistors into the circuit.
Setting one of the fault injection signals to 1 causes the cor-
responding fault to appear. Setting both to 0 makes the line
behave as in the good circuit. This idea is extended to cover
the ternary behavior of MOS circuits as follows:

1 = (s.lVFi)/\E
s'0 = (s.OVFj)/\E
To inject a multiple stuck-at fault, the values representing

all of the faulted lines are qualified by a single fault injection
signal.

L - - =

I Fn_y

Circuit with
IFault injection|

logic

Figure 3: Control of Fault Injection with Fault Variables

Circuit | f1 | fo | description out
0 0 0 ing s.a.0 1
1 0 1 s s.a.l ar
2 1 0 out s.a.l 1
3 1 1 no fault a1 Aas

Figure 4: NAND Circuit with 3 Faults

A circuit with N faults requires N fault injection signals.
Since only one fault injection signal is active for a given
faulty circuit, only N + 1 combinations out of 2V will be
used. In other words, if each fault injection signal were rep-
resented by an independent variable, symbolic simulation
would effectively evaluate all possible multiple faults. We
only want to evaluate single faults plus the good circuit. To
control the injection of faults, we generate the fault injection
signals in a manner analogous to the outputs of a decoder,
as shown in Figure 3. Again, the decoder is only a con-
ceptual representation. We do not model any extraneous
circuitry. A set of k = [log(N + 1)] Boolean fault variables,

f = (fr=1,..., fo) is introduced to control fault injection.
Each fault injection signal F; is then given by the OBDD
for the function having value 1 when the fault variables are
assigned values corresponding to the binary representation
of 2. No fault injection signal is activated when the fault
variables all equal 1, and hence we model the good circuit
as well. By symbolically simulating the circuit as a function
of these fault variables, we effectively compute the behavior
of the good and all faulty circuits concurrently. Due to the
sharing of common subgraphs within OBDD’s, this approach
exploits the commonality between all good and faulty circuit
functions. In this sense, our approach improves on conven-
tional concurrent fault simulation, which exploits only the
commonality between each faulty circuit function and the
good circuit function.

5. Symbolic Fault Simulation

Symbolic fault simulation combines symbolic logic simu-
lation with the fault injection described in Section 4. The
circuit model for symbolic fault simulation is an extension of
the symbolic simulation model described earlier. A circuit
contains n primary inputs £ = (z1,...,Z,), m primary out-
puts C = (Ch,...,Cn), p state variables S = (S1,...,5p),
and k fault variables f = (frx=1,---, fo). The symbolic fault
simulator derives two circuit output functions , C.1! and
C.0, for each output i in a similar manner to Equation 2,
with the extension that the functions depend on the fault
variables f

As an example of symbolic fault simulation, consider a
two-input NAND circuit having inputs in; an in2 and out-
put out. Suppose we wish to generate tests to detect stuck-

Page 3

Figure 6: OBDD for test function 7' for circuit of Figure 7

at-1 faults on in2 and out, and a stuck-at-0 fault on n;.
To model the 3 faulty plus the good circuit, we introduce
2 fault variables: fi and fo as listed in Figure 4. To simu-
late this circuit, we set in; to Boolean variable a; and ins
to variable as. The simulator then computes two functions
for the output: out.1 and out.0. Figure 5 shows the OBDD
representation of these functions. Function out.1 represents
the circuit output, while out.0 is its complement (denoted
by the solid dot on the arc pointing to the root). In general
the functions describing the state of a node will be comple-
ments of one another, unless some assignment to the vari-
ables could produce node state X. Figure 4 shows Boolean
expressions corresponding to the output functions for the 4
circuits simulated.

6. Test Pattern Generation

Given a set of functions €71 and C.0' representing the
good and faulty circuit behaviors, we derive a set of test
patterns to detect the faults. The good circuit function for
each output 2 is obtained by restricting the fault variables
to 1’s:

gl = c1

F=,...1

Gg.ol = coil-
F=,...,1)

As is illustrated by Figure 5, computing this restriction is
a simple matter of following the path from the OBDD root
through the fault variable vertices, always following arcs la-
beled by 1. For each output z, we then derive a function
H! indicating the conditions under which the faulty circuits
produce the opposite digital (non-X) value from the good
circuit:

H! = (G1IACOY) v (G.OIACLY

This equation exploits the property that the two ternary
signals z and y are opposite only if either z.1 = y.0 =0, or
z.0=y.1=0.

Next, we derive a test function 7", describing all ways
of testing every fault with a t cycle test. No fault can be
detected for ¢ = 0, and hence 7° = 0. For other values of ¢,
a fault can be detected if it has been detected earlier, or if
one of the faulty circuit outputs at time ¢ is different from
the corresponding good circuit output:

T = T 'v \/ ot
1<i<m

By ordering the fault variables before the input variables,
the topology of the OBDD representing 7" has the following
structure:

fault vars.

input vars.

We derive a test function for faulty circuit : by traversing
the path from the root through the fault variable vertices
following the labels corresponding to the binary representa-
tion of . Each of the resulting functions 7; denotes the set
of all tests for fault :. That is, any assignment to the vari-
ables that causes 7; to evaluate to 1 defines a test for fault
1. If the fault cannot be detected, the corresponding test
function will equal the constant function 0. Hence, unde-
tectable faults are easily identified. To generate a complete
set of tests, we attempt to maximize the number of faults
covered by each test by intersecting the test functions for a
number of faults (using the AND operation). For example,
the function 7; A T} denotes the set of all input sequences
that test both faults ¢ and 7.

Returning to the example of Figure 4, the OBDD for the
test function 7", derived from out.1 and out.0, is shown in
Figure 6. This graph contains the test functions of all faulty
circuits, i.e., To = a1 Aaz, Ty = a1 Aaz, and To = a1 A az.
The test set is then derived by calculating a set assignments
to the variables satisfying the three test functions. In this
case, the test set is uniquely determined as {(in1 = 1,inz =
1), (in1 = 1,inp; = 0)}. For larger circuits, the program has
more flexibility in selecting tests and can achieve higher test
compaction.

As an example of sequential test generation, consider the
circuit in Figure 7 with a stuck-at-1 fault on one input of the
NAND gate. Assume that the Boolean functions represent-
ing the good circuit output functions at time ¢ are denoted
G.1" and G.0%, while the faulty circuit output functions at
time t are denoted F.1* and F.0'. For t = 0, these functions
all equal the constant value 1 denoting state X. The initial

Page 4

l—— ph1
out latch
s.a.l m
) NAND
in——————>
Function Cycle t |
0 1 2 3
.1 — | a1 as as
n.0 - | ar az as
G.1° 1] 1 |aiva az vV az
G.Ot 1 al ao (Cll \ @) A as
F.1° 1| @ s as
F.0t 1| a; as as
T® 0] o0 0 ar Aaz Aas

Figure 7: Sequential Test Generation Example

phi stuck-at-0

1
iny Il

inz

AND —— out

Figure 8: Example Circuit for Initialization Problem

test function 7° equals the constant 0. The NAND gate
output is updated as follows:

m.l1 <+ n.0Vout0
m.0 <« n.lAoutl

The above two equations cover the ternary behavior of
NAND circuit. To detect this fault, we introduce an in-
put variable a; and run one clock cycle. As indicated in
Figure 7, T" is computed as 0, indicating that this fault is
not yet detectable. We introduce a second input variable as
and simulate a second cycle. 72 also equals 0, and hence
we introduce a third variable az and simulate one more cy-
cle. Finally, T° is computed as @ A az A as, denoting a test
with a1 =0, az = 1, and as = 1. The test sequence is then
derived by repeating the simulation sequence with these con-
stant values substituted for the variables, as indicated by the
following table:

cycle 1 | cycle 2 | cycle 3
n 0 1 1
outy 1 0 1
outy 1 0 0

The resulting test sequence detects the fault in 3 cycles. Set-
ting ¢n to O for the first cycle initializes the circuit, causing
a 1 on out for both the good and faulty circuits. The sec-
ond input pattern excites the fault by setting out to 0. The
third pattern makes this fault effect observable by sensitizing
a path to out.

7. Initialization Variables

In switch-level simulation, all circuit node states are nor-
mally set to X at the beginning of simulation. This causes
some faults to be declared undetectable. Consider a simple

AND gate and pass transistor, as shown in Figure 8 with the
pass transistor gate phi stuck at 0. We consider a fault truly
detected only if the faulty circuit produces the opposite digi-
tal value from the good circuit on some primary output. The
state of node p in the faulty circuit remains at X, because
it cannot be controlled by the inputs. Using the algorithm
described thus far, there is no way to generate a test for this
fault.

As a compromise, most fault simulators and test gener-
ators classify a fault as “soft” or “possibly” detected if the
good circuit output toggles between 0 and 1 while the faulty
circuit output remains at X. This compromise is not very
satisfactory. The user has no way of determining the true
coverage of a set of test patterns when many faults are la-
beled as only possibly detected.

In an actual circuit, we may reasonably assume that each
node will initialize to either O or 1, but in an unpredictable
way. We can exploit this property by introducing a set of
inetialization variables to represent the arbitrary initial state
of the circuit. The user can specify that some nodes should
be set to initialization variables, rather than to X. The
symbolic fault simulator then derives a test function in terms
of the past and present input variables, the fault variables,
and the initialization variables. The test set is then derived
to cover all combinations of fault and initial state.

Returning to the example in Figure 8, we introduce an
initialization variable y, to represent the initial state of node
p. Let us assume that nodes in; and ins are set to input
variables a; and a2 respectively, and the clock node ph: is
set to 1. Then, the state of output node out will be (a1 Aaz)
for the good circuit and (y A az) for the faulty circuit. We
then derive two test functions a1 A as and a; A as to cover
both possible initial states. By testing the circuit with the
patterns (in; = 1,inz = 1) and (in; = 0,inz = 1), we
can reliably detect the fault. Other programs would say
these patterns possibly detect the fault, but our program
can guarantee fault coverage.

The test function T* is derived in the same way as that
described in Section 6, except that initialization variables
are also incorporated into this function. The topology of the
OBDD representing T° has the following structure:

fault vars.

init. vars.

input vars.

Each vertex lying below the dotted line with a parent above
the line represents an equivalence class of fault and initial
state. That is, suppose two paths lead to one such vertex,
where one path denotes fault 7 and initial state i while the
other denotes fault i’ and initial state §’. Then these two
fault and initial state combinations are detected by exactly
the same set of tests. Thus, we can consider each such vertex
to be the root of the OBDD for a test function 7;. By
creating a test set that for every j contains at least one
input assignment satisfying 7}, we are guaranteed to test
for all combinations of fault and initial state. In the worst
case, a circuit with v initialization variables and N faults
could have N - 2" test functions. In practice, the number is
far smaller. We generate a compacted test set as before by
intersecting the test functions as much as possible.

Page 5

primary inputs 14

primary outputs 8
transistors 240
faults injected 266
faults detected 266
test patterns generated 12
CPU time (on VAX 8800) | 69 sec.
memory required 4.5 MB

Table 1: Results of Test Pattern Generation for 74181 4-Bit
ALU

primary inputs 7
primary outputs 5
transistors 206
faults injected 302
faults detected 274
undetectable faults 28
test patterns generated 24
CPU time (on VAX 8800) | 90 sec.
memory required 3.7 MB

Table 2: Results of Test Pattern Generation for 4-Bit Accu-
mulator

8. Testing Strategy

The computational complexity of our test generation pro-
gram grows with the number of faults, the number of ini-
tialization variables, and the number of input variables. As
the circuit size increases, these factors also increase. For-
tunately, the test generator can operate over a spectrum of
generality. By simulating patterns of constants, the program
operates as a fault simulator, evaluating the coverage of the
patterns. In fact, our ability to model arbitrary initial state
provides a feature not found in any other fault simulator.
By simulating patterns containing only variables, the pro-
gram operates as a fully automatic test pattern generator.
For larger circuits, the most desirable approach is a hybrid
of the two, in which the patterns contain both constants and
variables. For example, we can start by generating tests for
easily detected faults using patterns containing mostly con-
stants. Full symbolic simulation is applied only after the
fault set has been reduced to the difficult ones. Alterna-
tively, we can generate patterns for one block of the circuit
at a time. First, a series of patterns is simulated to transfer
symbolic data to the inputs of the block. The block is then
exercised, and a series of patterns is simulated to transfer
the block outputs to the primary outputs. In this manner,
the user guides the program on an overall test strategy, while
the program determines the detailed data values needed to
test the block. A symbolic simulator provides a natural in-
terface for specifying such test strategies. It gives the user
total control over the nodes to set to initialization variables,
the number of cycles to simulate, and the constants and vari-
ables to apply to the inputs.

9. Experimental Results

We have tested our program on a variety of combinational
and sequential MOS circuits. In the following discussion, all
measurements were taken on a Digital Equipment Corpora-
tion VAX 8800, an 8 MIP mainframe computer.

As a combinational benchmark circuit, we selected the
74181 4-bit Arithmetic Logic Unit (ALU) circuit. We im-

plemented this circuit using 240 CMOS transistors. Ta-
ble 1 summarizes the results of this experiment. We in-
jected stuck-at-1 and stuck-at-0 faults on all subnetwork in-
puts and outputs. All the faults are detected with 12 test
patterns. Akers and Krishnamurthy [1] have shown that 12
test patterns are the minimum required for a complete single
stuck-at fault test set of this circuit. This demonstrates our
success at test compaction.

As a sequential benchmark circuit, we selected a 4-bit
CMOS accumulator circuit consisting of a 4-bit adder, latch,
and overflow logic. This circuit contains a variety of struc-
tures unique to MOS, including transmission gates, dynamic
latches, and a precharged Manchester carry chain. There
would be no way to construct a gate-level equivalent. We
introduced 5 initialization variables to set the internal nodes
within the latches. Since this circuit is sequential, we need
to run at least two clock cycles. We could generate tests for
this circuit by introducing an input variable for each data
input at each time point until maximum fault coverage is
obtained. However, this approach requires too much com-
putation. Instead, we used a hybrid approach applying re-
stricted patterns first, and then more general patterns. As a
restricted pattern, we set each data input to the same input
variable, thereby evaluating the patterns 0000 and 1111. By
running two clock cycles with this type of pattern, we ob-
tained 75% fault coverage. To detect the remaining faults,
we introduced a new input variable on each data input for
two more cycles. The 28 remaining faults were determined
to be inherently undetectable: 6 lie within logically redun-
dant circuitry, while 22 cause one side of a transmission gate
to remain off. The program then generated a set of 6 tests,
each 4 cycles long. Table 2 summarizes the results.

We also generated tests a 16-bit version of this accumula-
tor (770 transistors) following a similar testing strategy. For
this circuit, the program required 3390 CPU seconds and
15 MB of virtual memory. This is the biggest circuit we
have tried to date.

10. Conclusion

Our prototype program demonstrates that symbolic fault
simulation is a promising approach to test generation. It
can handle situations that other test generation programs
find intractable or impossible, such as:

e Arbitrary MOS circuits
e Sequential circuits
o Undetectable faults

e Faults that prevent proper circuit initialization

Furthermore, since the program provides a continuous range
between fault simulation and fully automatic test generation,
the user has close control over the strategy used in generating
tests.

We have successfully generated tests for a number of non-
trivial benchmark circuits, including ones larger than any
other switch-level test pattern generator has been able to
handle. Much more work remains, however, to make this
tool usable for genuine VLSI circuits. The performance of
our program is currently limited by the high memory re-
quirement needed to store the large OBDD’s created. These
graphs are accessed in a highly random fashion causing the
computer system to thrash badly once we exceed the phys-
ical memory of the machine. We plan to investigate several
ways to improve the performance of the program. Major
improvements seem possible.

Page 6

References

(1]

[10]

[11]

S. B. Akers and B. Krishnamurthy, “On the Application
of Test Counting to VLSI Testing,” 1985 Chapel Hill
Conference on Very Large Scale Integration, Computer
Science Press, 1985, pp. 343-360.

R. E. Bryant. “Graph-Based Algorithms for Boolean
Function Manipulation,” IEEE Transactions on Com-
puters, Vol. C-35, No. 8 (Aug., 1986), pp. 677-691.

R. E. Bryant, et al, “COSMOS: A Compiled Simulator
for MOS Circuits,” 24th Design Automation Confer-
ence, 1987, pp. 9-16.

R. E. Bryant. “Boolean Analysis of MOS Circuits,”
IFEFE Transactions on Computer-Aided Design of In-
tegrated Circuits, Vol. CAD-6, No. 4 (July, 1987),
pp. 634-649.

H. H. Chen, R. G. Mathews, and J. A. Newkirk, “An
Algorithm to Generate Tests for MOS Circuits at the
Switch Level,” International Test Conference, 1986,
pp. 304-312.

R. 1. Damper and N. Burgess. “MOS Test Pattern Gen-
eration Using Path Algebras,” IEEE Transactions on
Computers, Vol. C-36, No. 9 (Sept., 1987), pp. 1123—
1128.

P. Goel. “An Implicit Enumeration Algorithm to Gen-
erate Tests for Combinational Logic Circuits,” IEFE
Transactions on Computers, Vol. C-30, No. 3 (March,
1981), pp. 215-222.

S. K. Jain and V. D. Agrawal. “Modeling and Test Gen-
eration Algorithms for MOS Circuits,” [EFE Trans-
actions on Computers, Vol. C-34, No. 5 (May, 1985),
pp. 426-433.

M. K. Reddy, S. M. Reddy, and P. Agrawal. “Iransistor
Level Test Generation for MOS Circuits,” 22nd Design
Automation Conference, 1985, pp. 825-828.

S. H. Robinson and J. P. Shen. “Towards a Switch-
Level Test Pattern Generation Program,” International
Conference on Computer-Aided Design, 1985, pp. 39—
41.

J. P. Roth, Computer Logic, Testing, and Verification,
Computer Science Press, 1980.

