
Symbolic Manipulation of Boolean Functions
Using a Graphical Representation

Randal E. Bryant1

Dept. of Computer Science
Carnegie-Mellon University

Abstract

In this paper we describe a data structure for representing Boolean functions and an associated set of
manipulation algorithms. Functions are represented by directed, acyclic graphs in a manner similar to the
representations of Lee and Akers, but with further restrictions on the ordering of decision variables in the
graph. Although a function requires, in the worst case, a graph of size exponential in the number of
arguments, many of the functions encountered in typical applications have a more reasonable
representation. Our algorithms are quite efficient as long as the graphs being operated on do not grow
too large. We present performance measurements obtained while applying these algorithms to problems
in logic design verification.

This paper was presented at the 22nd Design Automation Conference, 1985.

1This research was funded at the California Institute of Technology by the Defense Advanced Research Projects Agency ARPA
Order Number 3771 and at Carnegie-Mellon University by the Defense Advanced Research Projects Agency ARPA Order Number
3597

1

1 Introduction
Many aspects of digital logic design would benefit from efficient computer algorithms for representing

and manipulating Boolean functions. For example, if we could construct representations of the Boolean
functions computed by a logic circuit (either combinational or sequential) and compare them to functions
describing the desired behavior of the system, then we could truly verify the correctness of the circuit.
Instead, most designers today rely on simulators for this task, only verifying the correctness for the
particular data simulated. As another example, suppose we could construct representations of the
functions computed by a circuit and by the circuit in the presence of some fault. Then by computing the
exclusive-or of these two functions and finding some input pattern that yields a 1 for this new function, we
would obtain a test for the fault. This technique was used before the advent of search-based test
generation algorithms [1], and forms the basis of the Boolean difference method. [2]

Unfortunately, many of the operations one would like to perform with Boolean functions, such as testing
whether there is any assignment of input variables for which a given Boolean expression evaluates to 1

(satisfiability), or whether two Boolean expressions denote the same function (equivalence) require
solutions to NP-Complete or coNP-Complete problems [3]. Consequently, all known approaches to
performing these operations require, in the worst case, an amount of computer time that grows
exponentially with the size of the problem. Our goal is to develop algorithms that achieve substantially
better performance for a reasonably large class of Boolean functions, including those encountered in logic
design applications.

In this paper we present a new class of algorithms for manipulating Boolean functions represented as
directed acyclic graphs. Our representation resembles the binary decision diagram notation introduced
by Lee [4] and further popularized by Akers [5]. However, we place further restrictions on the ordering of
decision variables in the vertices. These restrictions enable the development of algorithms for
manipulating the representations in a more efficient manner. We will describe these algorithms and
present performance results when applied to problems in logic design verification.

Our representation has several advantages over previous approaches to Boolean function
manipulation. [6, 7] First, most commonly-encountered functions are represented by graphs of
reasonable size. For example, the even and odd parity functions and the functions representing the
output bits of an adder are represented by graphs where the number of vertices grow linearly with the
number of arguments. In contrast, a sum-of-products representation of each of these functions grows
exponentially with the number of arguments. Second, the performance of a program based on our
algorithms when processing a sequence of operations degrades slowly, if at all. That is, the time
complexity of any single operation is bounded by the product of the graph sizes for the functions being
operated on. For example, complementing a function requires time proportional to the size of the function
graph, while combining two functions with a binary operation (of which intersection, subtraction, and
testing for implication are special cases) requires at most time proportional to the product of the two graph
sizes. In contrast, attempting to complement a function or compute the exclusive-or of two functions can
cause many other Boolean function manipulation programs to "blow up", either running out of storage or
requiring an inordinate amount of computer time. Finally, our representation in terms of reduced graphs
is a canonical form, i.e. every function has a unique representation. Hence, testing for equivalence
simply involves testing whether the two graphs match exactly, while testing for satisfiability simply
involves comparing the graph to that of the constant function 0.

2

Unfortunately, our approach does have its own set of undesirable characteristics. Most significantly, at
the start of processing we must choose some ordering of the system inputs as arguments to all of the
functions to be represented. For some functions, the size of the graph representing the function is highly
sensitive to this ordering. Our experience, however, has been that a human with some understanding of
the problem domain can generally choose an appropriate ordering without great difficulty. Furthermore,
some functions can be represented by Boolean expressions of reasonable length but the representation
as a function graph is too large to be practical (i.e. more than 50,000 vertices.) Our experience has been
that such functions arise in only one class of digital logic designs, namely multipliers.

2 Representation
We will assume the functions to be represented all have the same n arguments, written x1, . . . ,xn. In

expressing a system such as a combinational logic network as a Boolean function, we must choose some
ordering of the inputs and this ordering must be the same for all functions to be represented. The
function which for all arguments yields the value 1 (respectively 0) is denoted 1 (resp. 0).

A function graph is defined as a rooted, directed acyclic graph containing two types of vertices. A
nonterminal vertex v has as attributes an argument index index (v) ∈ {1, . . . ,n}, and two child vertices
low (v),high (v). A terminal vertex v has as attribute a value value (v) ∈ {0,1}. Furthermore, for any
nonterminal vertex v, if low (v) is also nonterminal, then we must have index (v) < index (low (v)). Similarly, if
high (v) is nonterminal, then we must have index (v) < index (high (v)). This ordering requirement
differentiates our representation from conventional binary decision diagrams. A function graph having
root vertex v denotes a Boolean function fv defined recursively as:

1. If v is a terminal vertex:
a. If value (v)=1, then fv=1
b. If value (v)=0, then fv=0

2. If v is a nonterminal vertex with index (v)=i, then fv is the function

fv(x1, . . . ,xn) = x−i⋅flow (v)(x1, . . . ,xn) + xi⋅fhigh (v)(x1, . . . ,xn).

In other words, we can view a set of argument values x1, . . . ,xn as describing a path in the graph starting
from the root, where if some vertex v along the path has index (v) = i, then the path continues to the low
child if xi = 0 and to the high child if xi = 1. The value of the function for these arguments equals the value
of the terminal vertex at the end of the path.

A function graph can be reduced in size without changing the denoted function by eliminating
redundant vertices and duplicate subgraphs. The resulting graph will be our primary data structure for
representing a Boolean function. More formally, a function graph is said to be reduced if it contains no
vertex v with low (v)=high (v), nor does it contain distinct vertices v and v ′ such that the subgraph
consisting of v and all of its descendants is isomorphic to the subgraph consisting of v ′ and all of its
descendants. It can be shown that for any Boolean function, its representation as a reduced function
graph is unique. Hence, our algorithm for reducing a function graph not only saves storage, it also
produces a canonical representation.

3

3 Properties

<==<bool1.press<

Figure 1: Example Function Graphs

In this section we will explore the efficiency of our representation by means of several examples
illustrated in Figure 1. In the figure, a nonterminal vertex is represented by a circle containing the index
with the two children indicated by branches labeled 0 (low) and 1 (high). A terminal vertex is represented
by a square containing the value.

The function which yields the value of the i th argument is represented by a graph with a single
nonterminal vertex having index i and having as low child a terminal vertex with value 0 and as high child
a terminal vertex with value 1. We present this graph mainly to point out that an input variable can be
viewed as a Boolean function and hence can be operated on by the manipulation algorithms described in
this paper.

The odd parity function of n variables is represented by a graph containing 2n+1 vertices. This
compares favorably to its representation in reduced sum-of-products form (requiring 2n terms.) This
graph resembles the familiar parity ladder contact network first described by Shannon [8]. In fact, we can
adapt his construction of a contact network to implement an arbitrary symmetric function to show that any
symmetric function of n arguments is represented by a reduced function graph having O (n2) vertices.

As a third example, the graph representing the function x1⋅x2 + x4 contains 5 vertices as shown. This

4

example illustrates several key properties of reduced function graphs. First, observe that there is no
vertex having index 3, because the function is independent of x3. More generally, a reduced function
graph will not contain any vertices with a given index unless the function depends on this variable.
Second, observe that even for this simple function, several of the subgraphs are shared by different
branches. This sharing yields efficiency not only in the size of the function representation, but also in the
performance of our algorithms_ once some operation has been performed on a subgraph, the result can
be utilized by all places sharing this subgraph.

<==<bool2.press<

Figure 2: Example of Argument Ordering Dependency

Figure 2 shows an extreme case of how the ordering of the arguments can affect the size of the graph
representing a function. The functions x1⋅x2 + x3⋅x4 + x5⋅x6 and x1⋅x4 + x2⋅x5 + x3⋅x6 differ from each other
only by a permutation of their arguments, yet one is represented by a function graph with 8 vertices while
the other requires 16 vertices. Generalizing this to functions of 2n arguments, the function
x1⋅x2 + ⋅ ⋅ ⋅ + x2n−1⋅x2n is represented by a graph of 2n+2 vertices, while the function x1⋅xn+1 + ⋅ ⋅ ⋅ + xn⋅x2n
requires 2n+1 vertices. Consequently, a poor initial choice of input ordering can have very undesirable
effects.

Upon closer examination of these two graphs, we can gain a better intuition of how this problem arises.

5

Imagine a bit-serial processor that computes a Boolean function by examining the arguments x1, x2, and
so on in order, producing output 0 or 1 after the last bit has been read. Such a processor requires internal
storage to remember enough about the arguments it has already seen to correctly compute the value of
the function from the values of the remaining arguments. Some functions require little internal storage.
For example, to compute parity a bit-serial processor need only store the parity of the arguments it has
already seen. Similarly, to compute the function x1⋅x2 + ⋅ ⋅ ⋅ + x2n−1⋅x2n, the processor need only
remember whether any of the preceding pairs of arguments were both 1 as well as the value of the
previous argument. On the other hand, to compute the function x1⋅xn+1 + ⋅ ⋅ ⋅ + xn⋅x2n, we would need to
store the first n arguments to correctly deduce the value of the function from the remaining arguments. A
function graph can be thought of as such a processor, with the set of vertices having index i describing
the processing of argument xi . Rather than storing intermediate information as bits in a memory,
however, this information is encoded in the set of possible branch destinations. That is, if the bit-serial
processor requires b bits to encode information about the first i arguments, then in any graph for this
function there must be at least 2b vertices that are either terminal or are nonterminal with index greater
than i having incoming branches from vertices with index less than or equal to i. For example, the
function x1⋅x4 + x2⋅x5 + x3⋅x6 requires 23 branches between vertices with index less than or equal to 3 to
vertices which are either terminal or have index greater than 3. In fact, the first 3 levels of this graph must
form a complete binary tree to obtain this degree of branching. In the generalization of this function, the
first n levels of the graph form a complete binary tree, and hence the number of vertices grows
exponentially with the number of arguments.

Unfortunately, the Boolean functions representing the output bits of an integer multiplier provide a case
for which no ordering of the inputs produces a graph that is polynomial in the word size. Again, our
bit-serial processor provides insight into this_ there is no implementation of a bit-serial multiplier that
requires internal storage less than the word size.

4 Operations
We view a symbolic manipulation program as executing a sequence of commands that build up

representations of functions and determine various properties about them. For example, suppose we
wish to construct the representation of the function computed by a combinational logic gate network.
Starting from graphs representing the input variables, we proceed through the network, constructing the
function computed at the output of each logic gate by applying the gate operator to the functions at the
gate inputs. A similar procedure is followed to construct the representation of the function denoted by
some Boolean expression. At this point we can test various properties of the function, such as whether it
equals 0 (satisfiability) or 1 (tautology), or whether it equals the function denoted by some other
expression (equivalence). In this section we will describe the two most important algorithms for our
Boolean function manipulation program.

4.1 Reduction
The reduction algorithm transforms an arbitrary function graph into a reduced graph denoting the same

function. It closely follows an algorithm presented in Example 3.2 of Aho, Hopcroft, and Ullman [9] for
testing whether two trees are isomorphic. Proceeding from the terminal vertices up to the root, a unique
integer identifier is assigned to each unique subgraph root. That is, for each vertex v it assigns a label
id (v) such that for any two vertices u and v, id (u) = id (v) if and only if fu=fv. Given this labeling, the

6

algorithm constructs a graph with one vertex for each unique label. By working from the terminal vertices
up to the root, a procedure can label the vertices by the following inductive method. First, two terminal
vertices should have the same label if and only if they have the same value attributes. Now assume all
terminal vertices and all nonterminal vertices with index greater than i have been labeled. As we proceed
with the labeling of vertices with index i, a vertex v should have id (v) equal to that of some vertex that has
already been labeled if and only if one of two conditions is satisfied. First, if id (low (v)) = id (high (v)), then
vertex v is redundant, and we should set id (v) = id (low (v)). Second, if there is some labeled vertex u with
index (u) = i having id (low (v)) = id (low (u)), and id (high (v)) = id (high (u)), then the reduced subgraphs with
these vertices as roots will be isomorphic, and we should set id (v) = id (u).

The algorithm proceeds as follows. First, the vertices are collected into lists according to their indices.
Then we process these lists working from the one containing the terminal vertices up to the one
containing the root. For each vertex on a list we create a key of the form (value) for a terminal vertex or of
the form (lowid, highid) for a nonterminal vertex, where lowid = id (low (v)) and highid = id (high (v)). If a
vertex has lowid = highid, then we can immediately set id (v) = lowid. The remaining vertices are sorted
according to their keys using a linear-time lexicographic sort. We then work through this sorted list,
assigning a given label to all vertices having the same key. The reduced graph is constructed by creating
a vertex for each unique label having as children the vertices corresponding to the labels in the key. The
complexity of the algorithm is linear in the number of vertices.

<==<bool3.press<

Figure 3: Reduction Algorithm Example

Figure 3 shows an example of how the reduction algorithm works. Next to each vertex we show the
key and the label generated during the labeling process. Observe that both vertices with index 3 have the
same key, and hence the right hand vertex with index 2 is redundant.

7

4.2 Composition
The functional composition algorithm provides the basic method for creating the representation of a

function according to the operators in a Boolean expression or logic gate network. It takes graphs
representing functions f1 and f2, a binary operator <op> (i.e. any Boolean function of 2 arguments) and
produces a reduced graph representing the function f1 <op> f2 defined as

[f1 <op> f2](x1, . . . ,xn) = f1(x1, . . . ,xn) <op> f2(x1, . . . ,xn).

This procedure can also be used to complement a function (compute f ⊕ 1) to test for implication
(compare f1 ⋅ ¬ f2 to 0), and a variety of other operations. With our representation, we can implement all
of the operators with a single algorithm.

Before describing this algorithm, we must introduce some additional notation. The function resulting
when some argument xi to a function f is replaced by a constant b is called a restriction of f, denoted
f |xi=b. That is, for any arguments x1, . . . ,xn,

f |xi=b(x1, . . . ,xn) = f (x1, . . . ,xi−1,b,xi+1, . . . ,xn)

The algorithm proceeds from the roots of the two argument graphs downward, creating vertices in the
result graph at the branching points of the two arguments graphs. First, let us explain the basic idea of
the algorithm. Then we will describe two refinements to improve the efficiency. The control structure of
the algorithm is based on the following recursion:

f1 <op> f2 = x−i⋅(f1 |xi=0 <op> f2 |xi=0) + xi⋅(f1 |xi=1 <op> f2 |xi=1)

To apply the operator to functions represented by graphs with roots v1 and v2, we must consider several
cases. First, suppose both v1 and v2 are terminal vertices. Then the result graph consists of a terminal
vertex having value value (v1) <op> value (v2). Otherwise, suppose at least one of the two is a nonterminal
vertex. If index (v1) = index (v2) = i, we create a vertex u having index i, and apply the algorithm recursively
on low (v1) and low (v2) to generate the subgraph whose root becomes low (u), and on high (v1) and
high (v2) to generate the subgraph whose root becomes high (u). Suppose, on the other hand, that
index (v1) = i, but either v2 is a terminal vertex or index (v2) > i, Then the function represented by the graph
with root v2 is independent of xi , i.e.

f2 |xi=0 = f2 |xi=1 = f2.

Hence we create a vertex u having index i, but recursively apply the algorithm on low (v1) and v2 to
generate the subgraph whose root becomes low (u), and on high (v1) and v2 to generate the subgraph
whose root becomes high (u). A similar situation holds when the roles of the two vertices in the previous
case are reversed. In general the graph produced by this process will not be reduced. Hence we apply
the reduction algorithm before returning the result.

If we were to implement the technique described in the previous paragraph directly we would obtain an
algorithm of exponential (in n) time complexity, because every call for which one of the arguments is a
nonterminal vertex generates two recursive calls. This complexity can be reduced by two refinements.

First, the algorithm need not evaluate a given pair of subgraphs more than once. Instead, we can
maintain a table containing entries of the form (v1,v2,u) indicating that the result of applying the algorithm
to subgraphs with roots v1 and v2 was a subgraph with root u. Then before applying the algorithm to a
pair of vertices, we first check whether the table contains a corresponding entry. If so, we can
immediately return the result. Otherwise, we proceed as described in the previous paragraph and add a
new entry to the table. This refinement limits the complexity to the product of the two graph sizes,

8

showing that by exploiting the sharing of subgraphs in the data structures we gain efficiency in the
algorithms. If the two graphs contain many shared subgraphs, we will obtain a high "hit rate" for our table.
In practice we have found the hit rate to range between 40% and 50%.

Second, suppose the algorithm is applied to two vertices where one, say v1, is a terminal vertex, and
for this particular operator, value (v1) is a "controlling" value, i.e. either value (v1) <op> a = 1 for all a, or
value (v1) <op> a = 0 for all a. For example, 1 is a controlling value for either argument of the operator +,
while 0 is a controlling value for either argument of ⋅. In this case, there is no need to evaluate further.
We simply create a terminal vertex having the appropriate value. While this refinement does not improve
the worst case complexity of the algorithm, it certainly helps in many cases. In practice, we have found
this case occurs around 10% of the time.

<==<bool4.press<

Figure 4: Example of Functional Composition

9

Figure 4 shows an example of how this algorithm would proceed in applying the "or" operation to
graphs representing the functions ¬ (x1⋅x3) and x2⋅x3. This figure shows the graph created by the
algorithm before reduction. Next to each vertex in the resulting graph, we indicate the two vertices on
which the procedure was invoked in creating this vertex. Each of our two refinements is applied once:
when the procedure is invoked on vertices a3 and b1 (because 1 is a controlling value for this operator),
and on the second invocation on vertices a3 and b3. For larger graphs, we would expect these
refinements to be applied more often. After the reduction algorithm has been applied, we see that the
resulting graph indeed represents the function ¬ (x1⋅x−2⋅x3).

5 Experimental Results
As with all other known algorithms for solving NP-hard problems, our algorithms have a worst-case

performance that is unacceptable for all but the smallest problems. We hope that our approach will be
practical for a reasonable class of applications, but this can only be demonstrated experimentally. We
have already shown that the size of the graph representing a function can depend heavily on the ordering
of the input variables, and that our algorithms are quite efficient as long as the functions are represented
by graphs of reasonable size. Hence, the major questions to be answered by our experimental
investigation are: how can an appropriate input ordering be chosen, and given a good ordering how large
are the graphs encountered in typical applications.

We have implemented the algorithms described in this paper and have applied them to problems in
logic design verification, test pattern generation, and combinatorics. On the whole, our experience has
been quite favorable. By analyzing the problem domain, we can generally develop strategies for
choosing a good ordering of the inputs. Furthermore, it is not necessary to find the optimal ordering.
Many orderings will produce acceptable results. Functions rarely require graphs of size exponential in the
number of inputs, as long as a reasonable ordering of the inputs has been chosen. Furthermore, the
algorithms are quite fast, remaining practical for graphs with 20,000 or more vertices.

As an application, we consider the problem of verifying that the implementation of a logic function (in
terms of a combinational logic gate network) satisfies its specification (in terms of Boolean expressions.)
As examples we will use several different Arithmetic Logic Unit (ALU) designs constructed from 74181
and 74182 TTL integrated circuits [10]. The ’181 implements a 4 bit ALU slice, while the ’182 implements
a lookahead carry generator. These chips can be combined to create an ALU with any word size that is a
multiple of 4 bits. An ALU with an n bit word size has 6+2n inputs: 5 control inputs labeled m,s0,s1,s2,s3 to
select the ALU function, a carry input labeled cin, and 2 data words of n bits each, labeled a0, . . . ,an−1
and b0, . . . ,bn−1. It produces n+2 outputs: n function outputs, a carry output, and a comparison output
labeled A=B (the logical "and" of the function outputs.)

n Bin. Ops. Evals. Secs. A=B

4 95 6405 19 197
8 194 22590 68 377
16 399 85641 239 737

Table 1: ALU Circuit Examples

For our experiments, we created logic gate networks by combining the gate-level descriptions of the
chips according to the chip-level interconnections specified in the circuit manual. We then derived the
functions at outputs of the networks and compared them to functions derived from Boolean expressions

10

obtained by encoding the functional specification in the circuit manual. We succeeded in verifying ALU’s
with word sizes of 4, 8, and 16 bits. The performance of our program in deriving the functions from the
circuit descriptions is summarized Table 1. These data were measured with the best ordering we were
able to find, as will be discussed shortly. The number of binary operations indicates the approximate
complexity of each circuit, defined as the number of equivalent binary operations represented by the gate
networks. The number of evaluations equals the total number of calls to the recursive routine in the
composition algorithm. The CPU time is expressed in seconds as measured on a Digital Equipment
Corporation VAX 11/780 (approximately 1 MIP machine.) The final column shows the number of vertices
in the reduced graph for the A=B output. In all cases, this was the largest graph generated.

As can be seen, the execution time of the individual procedures are quite short. Including the time
used for memory management, for the user interface, and for reducing the graphs, the program required
around 3 milliseconds per call to the recursive composition procedure. We can also see that the time
required to derive the functions for these circuits grow approximately as the square of the word size. This
is as good as can be expected: both the number of binary operations and the sizes of the graphs being
operated on grow linearly with the word size, and the total execution time grows as the product of these
two factors.

These ALU circuits also provide an interesting test case for evaluating different input orderings,
because the successive bits of the function output word are functions of increasingly more variables.
Figure 5 shows how the sizes of these graphs depend on the ordering of circuit inputs for 4 different
cases. Case 1 is the best result obtained, corresponding to the ordering one would choose for a bit-serial
implementation of the ALU: first the bits describing the function to be computed and then the successive
bits of the two data words starting with the least significant bits. Case 2 provides the next best result, the
same as before but with the data ordered with the most significant bit first. This ordering represents an
alternative but often successful strategy: order the bits in decreasing order of importance. The i th bit of
the output word depends more strongly on the i th bits of the input words than on any lower order bits. As
can be seen, this strategy also works quite well. Case 3 represents an ordering with the control inputs
last. This ordering could be expected to produce a rather poor result, since the outputs depend strongly
on the control inputs. However, the complexity of the graphs still grows linearly, due to the fact that the
number of control inputs is a constant. To explain this linear growth in terms of the bit-serial processor
analogy, we could implement the ALU with the control inputs read last by computing all 32 possible ALU
functions and then selecting the appropriate result once the desired function is known. Case 4 shows the
effect a poor ordering, with all bits of 1 word preceding those of the other. This ordering requires the
program to represent functions similar to the function x1⋅xn+1 + ⋅ ⋅ ⋅ + xn⋅x2n considered in Section 3, with
the same exponential growth characteristics.

6 Conclusion
These experimental results indicate that our representation works quite well for functions representing

many arithmetic and logical operations on words of data, as long as we choose an ordering in which the
successive bits of the input words are interleaved. Our representation seems especially efficient when
compared to other representations of Boolean functions. For example, a truth table representation for
output c15, cout, or A=B of the 16 bit ALU would require 2.7 × 1011 bits of storage, enough to fill 1500 reels

of magnetic tape!2 A reduced sum-of-products representation of the most significant bit in the arithmetic

22400 foot reels, 6250 bits per inch

11

<==<bool5.press<

Input Orderings:
1: m,s0,s1,s2,s3,cin,a0,b0 . . . ,an−1bn−1
2: m,s0,s1,s2,s3,cin,an−1,bn−1, . . . ,a0b0
3: cin,a0,b0, . . . ,an−1bn−1,m,s0,s1,s2,s3
4: m,s0,s1,s2,s3,cin,a0, . . . ,an−1b0, . . . ,bn−1

Figure 5: ALU Output Graph Sizes for Different Input Orderings

sum of two n bit numbers requires about 2n+2 product terms, and hence a reduced sum-of-products
representation of this circuit would be equally impractical. We believe our approach will be practical for
representing a large class of logic designs. With the exception of integer multiplication, we have
encountered no functions that require the exponential size graphs that a worst case analysis would
predict, given an appropriate choice of input ordering.

12

References
1. J.P. Roth, ‘‘Diagnosis of Automata Failures’’, Tech. report SR-114, IBM Thomas Watson

Research Center, 1960.

2. F.F. Sellers, Jr., M.Y. Hsiao, and L.W. Bearnson, ‘‘Analyzing Errors with the Boolean Difference’’,
IEEE Transactions on Computers, Vol. C-17, No. 7, July 1968, pp. 676-683.

3. M.R. Garey and D.S. Johnson, Computers and Intractibility: A Guide to the Theory of NP-
Completeness, Freeman, New York, 1979.

4. C.Y. Lee, ‘‘Representation of Switching Circuits by Binary-Decision Programs’’, Bell System
Technical Journal, Vol. 38, July 1959, pp. 985-999.

5. S.B. Akers, ‘‘Binary Decision Diagrams’’, IEEE Transactions on Computers, Vol. C-27, No.
6, June 1978, pp. 509-516.

6. J.P. Roth, Computer Logic, Testing, and Verification, Computer Science Press, Potomac, MD.,
1980.

7. R. Brayton, et al, Logic Minimization Algorithms for VLSI Synthesis, Kluwer Academic Publishers,
1984.

8. C.E. Shannon, ‘‘A Symbolic Analysis of Relay and Switching Circuits’’, Transactions of the
AIEE, Vol. 57, 1938, pp. 713-723.

9. A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA., 1974.

10. Texas Instruments, TTL Data Book, 1976.

i

Table of Contents
1 Introduction 1
2 Representation 2
3 Properties 3
4 Operations 5

4.1 Reduction 5
4.2 Composition 7

5 Experimental Results 9
6 Conclusion 10

References 12

ii

List of Figures
Figure 1: Example Function Graphs 3
Figure 2: Example of Argument Ordering Dependency 4
Figure 3: Reduction Algorithm Example 6
Figure 4: Example of Functional Composition 8
Figure 5: ALU Output Graph Sizes for Different Input Orderings 11

iii

List of Tables
Table 1: ALU Circuit Examples 9

