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ABSTRACT

Binary Decision Diagrams (BDDs) often fail to exploit shar-
ing between Boolean functions that differ only in their sup-
port variables. In a memory circuit, for example, the func-
tions for the different bits of a word differ only in the data
bit while the address decoding part of the function is iden-
tical. We present a symbolic representation approach using
ordered function templates to exploit such regularity.

Templates specify functionality without being bound to a
specific set of variables. Functions are obtained by instan-
tiating templates with a list of variables. We ensure canon-
icity of the representation by requiring that templates are
normalized and argument lists are ordered. We also present
algorithms for performing Boolean operations using this rep-
resentation. Experiments with a prototype implementation
built on top of CUDD indicate that function templates can
dramatically reduce memory requirements for symbolic sim-
ulation of regular circuits.
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1. INTRODUCTION

Reduced Ordered Binary Decision Diagrams(BDDs) [4]
are a graph representation for boolean functions. For many
practical cases, the size of the BDD representation is quite
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compact, thus enabling the efficient representation and ma-
nipulation of boolean functions. However, in several cases,
the size of the BDD representation is prohibitively large,
e.g., multipliers have provably exponential BDD size [2]. In
other instances, even though the sizes of the BDDs for in-
dividual functions are small, the combined size of all of the
BDDs becomes too large to represent in memory.

Shared BDDs alleviate the second problem somewhat, by
using a multi-rooted DAG to represent all the functions of
interest. Edge attributes further reduce the size require-
ments. In [10], the authors proposed three edge-attributes
to reduce the size of the shared DAG:

1. Output inversion or complemented edges. This at-
tribute allows a function and it’s complement to use
the same graph representation.

2. Input inversion. This attribute has the effect of swap-
ping the two children of a variable node. Thus, the
functions f =x-g+-r-hand f =x-h+ —-x-gcan
be represented by the same BDD.

3. Variable Shifter. This attribute was motivated by the
observation that functions such as (vi + v2.v3) and
(v2 + vs3.v4) are isomorphic except for a difference of
one in the indices of the input variables. This attribute
allows such functions to be represented by the same
BDD by keeping the difference as an edge attribute.
This idea was generalized to Differential BDDs in [1].

The variable shifter attribute allows the same node to be
labeled by multiple variables. Other representation schemes
also transform the input space of functions to obtain multi-
ple variable labelings on nodes. In Graph Driven BDDs [11]
and Free BDDs [5], the input space is transformed by an or-
acle graph which gives possibly different variable orderings
on different computation paths. In Linearly Transformed
BDDs [6], the input vector is linearly transformed based on
a transformation matrix, thus labeling each node with the
parity of a set of variables.

In this paper, we describe a simple representation for com-
pact representation of shared BDDs using ordered function
templates. Our representation, described below, also uses
a re-mapping of input variables, but unlike the above ap-
proaches, there is no global oracle or transformation ma-
trix. Instead, we compact the set of input variables for each
function independently.

Consider a memory with four rows and three columns. If
we write the symbolic values d1, d2 and ds to the row address



Figure 1: Output functions for a 4-row 3-column
memory on reading address [b1, b2] after writing data
[d1,d2,ds] to address [a1,az].

[a17 az] in a memory initialized with all 0’s and then perform
a symbolic read at address [b1, b2], the output functions for
the three columns are f; = (a1 < b1) - (a2 <> b2) - d;. The
three functions differ only in the data variable d;. Figure
1 shows the BDDs for the three output functions, with the
variable order [a1, b1, a2, b2, d1,d2, ds] (address before data).
Note that the variable-shifter attribute does not allow us to
use the same BDD for all three functions, since the address
bits are exactly the same in the three functions and only the
data bit differs.

In the above example, if we let F' stand for the func-
tion template (x1 < z2) A (3 < z4) A 5, then the three
output functions can be obtained by the substitution f; =
Flai/x1,b1/x2,a2/x3,b2 /x4, d; /25]. The template serves as
a macro for functions we want to represent, which can be ob-
tained by substituting real variables for the formal variables
used in the template. Hence, a function can be represented
by a tuple containing a function template and an argument
list, e.g., fi = (F,[a1,b1,a2,b2,d;]), where the substitution
is implicit.

In the above example, we use a different mapping of the
input space for each function. In particular d; maps to s
in the representation of f;. This is in contrast to the global
re-mapping schemes of [11, 5, 6].

We place restrictions on the representation of templates
and argument lists to ensure canonicity of the representation
— we will require that function templates are normalized and
that the argument lists are ordered. With this restriction,
the function template for a function is just a relabeled ver-
sion of the function itself. Hence, not taking into account
the overhead for the argument list, the size of the repre-
sentation for a single function is exactly the same with or
without the use of function templates. However, the size of
the representation for multiple functions can decrease dra-
matically if, like in the example above, several functions use
the same template. We further increase sharing by ensur-

ing that smaller templates get used in constructing larger
templates.

Our experiments indicate that the use of ordered function
templates can give significant savings for regular circuit ap-
plications. In general, we expect the representation to be
beneficial in applications where the sizes of individual BDDs
are not large compared to the size of the shared representa-
tion. This is quite often the case in semi-formal verification
using symbolic simulation.

While we describe how to use function templates with
BDDs, the ideas are general enough that they can be used in
conjunction with other underlying symbolic representations.
In addition, we can extend the scheme to multi-terminal
decision diagrams by using two argument lists, one for the
variables and one for the terminal values.

The rest of the paper is organized as follows. In Section
2, we describe the ordered function template representation.
Section 3 presents algorithms for performing Boolean opera-
tions on function represented with function templates. Sec-
tion 4 describes our prototype implementation which was
used to obtain the experimental results in Section 5. Our
conclusions are presented in Section 6.

2. ORDERED FUNCTION TEMPLATES

As described in the Introduction, we want to represent
any boolean function as a tuple of a function template and
an argument list. In the rest of the paper, we will as-
sume that function templates are defined over the variables
X = {x1,x2,...} and the argument lists are defined over
the variables V' = {v1, v2,...}. We will refer to the variables
in X as formal variables and the variables in V' as actual
variables. Also, [(i) refers to the i-th element of list [ and
|| is the number of elements in the list.

We restrict templates to a class of normalized functions
over X to avoid multiple representations for the same func-
tion. Our normalization condition is that we use the smallest
numbered variables. So, x1 4+ x2 is a normalized template
whereas 1 + 3 and x4 + x5 are not normalized. To de-
fine a normalized function, we first define the support of a
function F' in the usual way.

Definition 1. The support of a function F' over variables
in X is given by support(F) = {xi | Flo,—0 # Fla;=1}-

The definition of the support of F' corresponds to the set
of variables used in the BDD representation of F. We now
define a normalized function.

Definition 2. A function F' over variables in X is mor-
malized if and only if Vi > l.z; € support(F) = xi—1 €
support(F). An n-argument function template is a normal-
ized function F such that |support(F)| = n.

In order to make the representation canonical, we also
require that argument lists be ordered with respect to some
strict ordering < on the actual variables V.

Definition 3. An n-argument list is an ordered list over
V with n elements, i.e., [Ur(1), ..., VUr(n)] such that v, <
Ur(it+1), for all 1 <i < n.

A tuple (F,l), where F' is a function (not necessarily nor-
malized) over X and [ is a list of arguments (not necessarily
variables from V'), represents the function obtained by sub-
stituting the arguments in the list for the variables in X, i.e.,



(Fy[y1,---yn]) = Flya/z1, ..., yn/xn]. We will not distin-
guish between the tuples and the functions they represent.

Definition 4. A function instance is a tuple (F,l) where F’
is an n-argument function template and [ is an n-argument
list for some n.

Thus a function instance is, essentially, a normalized tuple
(F,1), i.e., F is a normalized function over X, [ is an ordered
list over V' and the number of actual variables in [ is the same
as the number of formal variables in the support of F'. These
restrictions ensure canonicity of the representation.

Proposition 1. For f = (F,lf) and g = (G,ly) we have
f=gifand only if F =G and Iy =,.

Proof outline. (If) Let Iy = Iy = [vr1),-.-,Vx(m)]- By
definition we have f = Flvr1)/T1,...,Vrn)/®n] and g =
Glura)/T1, .., Vn(n)/Zn]. But F =G, giving us f = g.

(Only If) For any arbitrary n-length boolean vector Y €
B™, we have f(Y) = ¢(Y). By applying the definitions
and simplification, we get f(Y) = F(Y) and g(Y) = G(Y).
Hence F(Y) = G(Y) for arbitrary Y. Hence, F' = G. From
f =g, F = G and the normalization condition on templates,
it follows that [y = I4.

3. BOOLEANOPERATIONSONFUNCTION
INSTANCES

We now describe how to perform operations on function
instances. Given function instances f = (F,ly), g = (G, 1)
and a binary operation ®, we want to compute h = (H,lp)
such that h = f ® g. In order to do so, we first denormal-
ize the function templates to ensure that formal variables
correspond to the same actual variables in both operands,
based on the expanded domain (the merged list of argu-
ments). Then we can perform the binary operation on the
denormalized functions. Finally, we eliminate unnecessary
variables from the argument list and normalize the template.

The algorithm for applying a binary operator ® is shown
in Algorithm 1. The algorithm denormalizes the templates
(lines 2,3) to account for domain expansion (line 1), using
Algorithm 2. It then computes an intermediate result by
applying © (line 4) to the denormalized templates. This
intermediate result is not necessarily normalized because of
possible domain contraction. Finally, it normalizes the re-
sult (line 5) using Algorithm 3.

Consider computing h = f + g, where f = v1 -v2 +v3 and
g = v1-—wa +v4 represented by (z1-x2 + 3, [v1,v2,v3]) and
(z1 - —x2 + x3, [v1, v2, v4]) Tespectively.

In our example, the merged list is I, = [v1,v2,vs,v4].
Based on this, we denormalize the template for g to G =
1 - ~x2 + x4, by substituting x4 for x3 in G, since the real
variable corresponding to x3 in g is v4 which is fourth in the
merged list. The template for f remains unchanged, i.e.,
F=ux T2+ T3. T~he disjunction of the modified templates
gives us H = F + G = x1 + ©3 4+ x4 which does not have x2
in its support. Hence, we eliminate vz, which corresponds
to x2, from the merged argument list to get the result list
ln = [v1,v3,v4], and normalize H = z1 + x3 + x4 to get the
result template H = x1 4+ 22+ x3. The final computed tuple
is (H,lp) = (z1 + x2 + 3, [v1, v3,v4]) which is the desired
result.

Algorithm 1 Apply ©®

Require: Function Instances (F,l¢) and (G, lg)
Ensure: (H,l;) = (F,lf) © (G,l,)

I, — merge(ls,ly)

F — denormalize(F, 1y, 1)

G — denormalize(G, l,, 1)

H—FoG

(H,1,) — normalize(H, i)

return (H,lp)

Algorithm 2 Denormalize

Require: Function Instance (F,ls) and expanded list In
Ensure: (F,l;) = (F,ly)
cn o |l
71— 1
J1
while : <n do
if lf(l) = lh(j) then
ii — Ty
i—1+1
end if
Je=Jj+1
10: end while
11: F «— F[i’l/mh .

12: return F

©

7in/x"]

The denormalization and normalization represent the com-
putational overhead in this scheme. In particular, the over-
head comes largely from the substitution operations in line
11 of Algorithm 2 and line 13 of Algorithm 3 and the support
computation in line 1 of Algorithm 3. Note that the denor-
malization and normalization could be done on demand in
much the same way as BDD reduction. Our prototype im-
plementation described below, however, is built as a set of
wrappers around the CUDD package [12] using the algo-
rithms shown.

4. IMPLEMENTATION

It is a well known fact that the size of the BDD represen-
tation for a function can change dramatically based on the

Algorithm 3 Normalize

Require: Tuple (F,I;)
Ensure: (F,lf) is a function instance and (F,ls) = (F, )
: S « support(F)
n «— |9]
11
Je1
while i <n do
if z; € S then
Ly (1) = 1s(9)
T < Tj
9: t—1+1
10:  end if
11:  j«—j5+1
12: end while
13: F «— F[l}l/i’l,..
14: return (F,ly)

 Tn [ Tn]




Circuit Information BDD Ordered Function Templates

Name | Steps | Peak(K) Time(s) | PeakTemp(K) PeakArg(K) TimeTot(s) TimeOvhd TimeSupp(s)
Cam-rtl 3 206 16 51 890 823 326
Cam-xtor 3 276 10 64 1370 1184 545
Sram-xtor 3 794 120 2 43 38 20
Reg-rtl 3 32375 2148 354 223 2911 2843 1118
Reg-xtor 3 9897 802 385 11 1310 1096 839
Fifo-rtl 16 3511 90 535 1 70 49 40
Snp-rtl 6 8241 27 1039 8 119 103 52
Ctrl-rtl 12 782 14 938 1 56 43 25
Mis-rtl 3 | Memout - 2942 4 220 189 124

Table 1: Symbolic Simulation with BDDs and Ordered Function Templates

BDD variable ordering used. In our representation, we have
two orders: the BDD variable ordering used to represent the
function templates and the ordering on the actual variables
for argument lists. The effect corresponding to traditional
BDD re-ordering can be obtained by re-ordering either of
the two orders in our setup. If we keep the argument order
fixed, the BDD variable order for formal variables behaves
in the standard way. On the other hand, we can keep the
BDD variable order fixed and re-order the arguments, in
which case the function template used for a particular in-
stance changes and gives us the same effect. We choose the
second option, since it allows us to further increase sharing
between different functions as explained below.

We chose a fixed variable ordering on X such that z;,4+1 <
z;. The reason for choosing this ordering is that we can
increase sharing since larger templates (templates with more
arguments) can reuse the smaller templates. Consider the
Shannon decomposition of an n-argument template ' with
respect to z, given by F = z, - F‘xnzl + -z, - F\zn:o«
It is likely that the co-factors of F' with respect to z, are
normalized, and hence they would re-use smaller templates.
On the other hand, if we placed x:1 at the top, then we get
reduced sharing because the co-factors of F' with respect to
x1 are definitely not normalized.

The argument lists are implemented as BDD cubes, which
gives an easy merge procedure: the ordered merged list cor-
responding to [y and [, is given by the conjunction l-l,. We
chose to implement the argument list cubes and the function
templates in different BDD managers since we want to keep
a fixed variable ordering for templates whereas we would
like to re-order the argument lists. The re-ordering proce-
dure will differ from traditional BDD variable re-ordering,
though, since the success of the re-ordering on the cubes will
be measured by its effect (in terms of increased sharing) on
the templates.

Consider reordering the real variables by swapping the
adjacent variables v,(;y and vr(;+1). Any function instance
which does not have both v ;) and vx(i41) in its argument
list remains unchanged. If both are used in f = (F,ly), then
the representation for f after reordering is given by (F , [ £)
where F = Flzi/zit1,is1/x:) and [f(i) = v,r(iﬂ),l}(i +
1) = vr(;) and It(p) =1;(p),Vp & {i,i+ 1}. The basic swap
operation can be used to build reordering strategies similar
to those used for BDDs [9)].

5. EXPERIMENTAL RESULTS

We used our implementation of ordered function tem-

plates to perform symbolic simulation of several memory
related industrial circuits. The results are shown in Table
1.

The suffix rtl indicates that the design is at the register-
transfer level while the xtor suffix indicates a transistor level
design. The designs were simulated symbolically using all
symbolic inputs, for the number of simulation steps shown
in the Steps column. For the experiments with BDDs using
CUDD, Peak indicates the peak live nodes in thousands and
Time indicates the time taken in seconds for the symbolic
simulation. For the experiments with Ordered Function
Templates, PeakTemp indicates the peak live nodes used for
the templates and PeakArg for the argument lists (cubes).
TimeTot indicates the total time taken and TimeOvhd in-
dicates the time taken for normalize and denormalize op-
erations, including TimeSupp, the time taken for support
computation (line 1 of Algorithm 3).

Ordered Function Templates give significant savings in
peak live nodes for most of the data-path circuits (the first
six rows). This is mainly due to extensive reuse of the tem-
plates.

Table 2 shows the distribution of output functions at the
end of the symbolic simulation for Reg-rtl, e.g., there are two
templates with support size 222. These two templates are
used in 774 unique function instances. Note that only one
template with one variable is ever needed, since any variable
v; is represented as (z1, [vs]).

Reg-rtl is a 64 column multiport register file with three
read and three write ports with 16 bit addresses. The sym-
bolic simulation is performed using ternary values [3] start-
ing from a completely general state with all memory ele-
ments set to X. For this circuit, the behavior is very much
like that for the example in the Introduction, except that
we have two possible templates for each column because of
the ternary simulation. The function instances with 194,
195 and 222 variables represent the functions obtained for

Variables 1 2 194 195 222
Templates 1 1 2 2 2
Functions | 1098 52 258 774 774

Table 2: Distribution of Unique Templates and

Functions for Reg-rtl at the end of symbolic simula-
tion. The table shows the number of unique Func-
tion Templates and Functions used in the represen-
tation of the output functions and state of the circuit
against the number of variables in their support.



Variables 1
Templates 1 4 2
Functions | 120 4 2

38 40 44 45 46 47 49 52

2
2

54 55
3 2 1 8§ 3 3 8
3 2 1 8§ 3 3 8

Table 3: Distribution of unique Function Templates and Functions for Ctrl-rtl.

the state of the memory, the output at the three ports and
the verification conditions in the symbolic testbenches. For
each case we have just two templates, which are reused for
each column on each read port. The gain is amplified by
the fact that the supports of these functions are really large
since the address decoding part of the functions includes ad-
dresses from the multiple ports on multiple write cycles. In
addition, the support includes variables used for hierarchical
compression of the circuit [8, 7]. With function templates,
the ternary values on all 64 columns are represented by the
same two templates, giving a dramatic reduction in memory
requirements.

With Ctrl-rtl, which is a controller for a DRAM, the or-
dered functional template has a higher peak live node count
than for BDDs. As Table 3 shows, in this case there is no ex-
ternal template reuse since the number of templates is equal
to the number of function instances. In addition, since the
distribution contains only functions with a large support
size, there are no smaller templates for internal reuse ei-
ther. The increase in peak live nodes occurs because of the
creation of denormalized BDDs while performing Boolean
operations.

In Snp-rtl (a priority encoder for an SRAM), too, there is
no external reuse of templates. However, the distribution in-
cludes function instances over a wide range of support sizes.
Hence, the internal reuse of smaller templates for larger tem-
plates results in almost an 8 times lower peak node count
for templates.

For all circuits, except Mis-rtl, we used good variable or-
derings available from a regression suite. For Mis-rtl, which
is an SRAM, we used the default variable order obtained
from the input file. In this case, the symbolic simulation
with BDDs does not complete with 2GB of memory, while
with Ordered Function Templates we are able to complete
the simulation, well within the memory limit.

For most cases, the Ordered Function Templates run is
much slower than the BDD run. However, this is mainly
because of the overheads incurred from normalization and
de-normalization. In Sram-xtor and Fifo-rtl, the runtime
is better than that for BDDs since the increased sharing
enhances the effect of the computed cache. In these cases,
the effect of the computed cache more than makes up for
the overheads incurred. A clean implementation performing
normalization and denormalization on the fly should reduce
the run time significantly.

In summary, we think function templates can give signif-
icant memory savings in regular circuit applications where
only a few templates are needed to represent the majority
of functions of interest. In addition to memories, we ex-
pect them to perform well for data-flow circuits. We do not
expect function templates to be useful for control circuits.

Another potential application is in verification with cut-
points where the new variables introduced at the cut-points
can cause problems with BDDs since all the functions cre-
ated beyond the cut-point differ in their support from the
functions up to the cut-point. With function templates, the

two sets of functions would get mapped to the same formal
variable space.

6. CONCLUSIONS

We have presented a representation for Boolean functions
using normalized function templates and ordered argument
lists and shown how to perform operations using this repre-
sentation. We have built a prototype implementation as a
set of wrappers around the CUDD package and used it to
perform symbolic simulation of several memory related in-
dustrial circuits. Our experiments indicate that for regular
circuits, the new representation can be effective in reducing
the memory requirement.

Our current implementation is much slower than BDDs
in most cases. However, the runtime performance for Or-
dered Function Templates can be improved by a better im-
plementation which tightly integrates the normalization and
denormalization with the apply procedure.
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