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ABSTRACT
SAT-based decision procedures for quantifier-free fragments of first-
order logic have proved to be useful in formal verification. These
decision procedures are either based on encoding atomic subfor-
mulas with Boolean variables, or by encoding integer variables as
bit-vectors. Based on evaluating these two encoding methods on a
diverse set of hardware and software benchmarks, we conclude that
neither method is robust to variations in formula characteristics. We
propose a new hybrid technique that combines the two methods.
We give experimental results showing that the hybrid method can
significantly outperform either approach as well as other decision
procedures.

Categories and Subject Descriptors
I.1 [Symbolic and Algebraic Manipulation]: Expressions and
Their Representation, Algorithms; I.2.3 [Deduction and Theorem
Proving]; F.4.1 [Mathematical Logic]: Mechanical theorem prov-
ing

General Terms
Algorithms, Experimentation, Measurement, Verification

Keywords
Design verification, Decision procedures, Boolean satisfiability, The-
orem proving.

1. INTRODUCTION
Quantifier-free fragments of first-order logic and decision proce-
dures for them have become commonplace in many formal verifi-
cation efforts. Decision procedures for the Logic of Equality with
Uninterpreted Functions(EUF) have been successfully used in the
automated verification of pipelined processor designs [8, 4]. Pred-
icate abstraction methods [9] based on decision procedures have
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been used to verify parameterized cache coherence protocols. The
logic of Counter Arithmetic with Lambda Expressions and Unin-
terpreted Functions [6] (CLU), which generalizes EUF, is the basis
for the UCLID verifier which has been used for bounded model
checking and inductive invariant checking of out-of-order micro-
processors with unbounded resources [11]. Decision procedures
are an integral part of software verification systems including the
Code Validation tool [13] and the Blast verifier [10]. Hence the
importance of having efficient decision procedures can hardly be
overstated.
Many decision procedures leverage off the recent advances in Boolean
satisfiability (SAT) solvers. These decision procedures differ in the
Boolean encoding and the degree of the coupling with the SAT
solver. One can classify these procedures as being either eager
or lazy. In the eager approaches [4, 6, 12, 14], the quantifier-
free first-order formula is converted in a single step to an equiva-
lent Boolean formula which is checked using the SAT solver. The
lazy approaches (e.g., [3, 1]) iteratively refine the Boolean encod-
ing based on satisfying assignments from the SAT solver that are
inconsistent with the first order theory. The process is repeated until
a consistent assignment is found or all assignments are explored.
We consider the problem of deciding formulas in the logic of Sep-
aration Predicates and Uninterpreted Functions (SUF), which can
express properties of systems modeled in CLU logic. For deci-
sion procedures using the eager approach, two Boolean encoding
methods have been proposed: small-domain encoding (also called
finite instantiation) [6], and per-constraint encoding [14]. In small-
domain encoding, each integer variable is interpreted over a finite
set of values that is determined by analyzing the formula. On the
other hand, in per-constraint encoding, each atomic subformula is
encoded as a Boolean variable. Constraints are then added to prune
off the inconsistent assignments of the Boolean variables.
In this paper, we confirm results of our previous experimental eval-
uation [5] of these two encoding methods, concluding that neither
of the approaches are robust to variations in formula characteris-
tics. Hence, we propose a new hybrid method that combines the
two methods, and show that it can be more robust than either ap-
proach. Finally, we report empirical results comparing our hybrid
method with other decision procedures for SUF logic.

2. BACKGROUND
Figure 1 summarizes the expression syntax for SUF logic. Expres-
sions can be of two types: integer or Boolean. Boolean expressions
are formed by combining equalities, inequalities, or applications
of uninterpreted predicates using Boolean connectives. Integer ex-
pressions are formed by applying an uninterpreted function to a list
of integer expressions, or by applying the unary arithmetic func-



tions succ (“+1”) and pred (“−1”), or by applying the ITE (“if-
then-else”) operator. We will omit parentheses for function and

bool-expr ::= true | false |¬bool-expr | (bool-expr∧bool-expr)
| (int-expr= int-expr) | (int-expr< int-expr)
| predicate-symbol(int-expr, . . . , int-expr)

int-expr ::= ITE(bool-expr, int-expr, int-expr)
| succ(int-expr) |pred(int-expr)
| function-symbol(int-expr, . . . , int-expr)

Figure 1: SUF Syntax.

predicate symbols with zero arguments, writing a instead of a().
We refer to function symbols of zero arity as symbolic constants,
and to predicate symbols of zero arity as symbolic Boolean con-
stants.
Uninterpreted functions and predicates are used in hardware de-
sign verification to abstract word-level values of data and imple-
mentation details of functional blocks. These functions and pred-
icates satisfy no particular property other than functional consis-
tency, viz., that they evaluate to the same value on the same argu-
ments. Adding equalities, inequalities, and interpreted functions
succ and pred facilitates reasoning about ordering and equality of
data values, and modeling ordered data structures such as queues.

2.1 Decision Procedure Overview
Assume we start with a well-formed formula Fsuf in SUF. The de-
cision procedure must determine whether it is valid, i.e., true un-
der all possible interpretations of the function and predicate sym-
bols. Through a sequence of validity-preserving transformations,
we convert a SUF formula to a propositional formula Fbool. Va-
lidity of Fsuf is then checked by checking the (un)satisfiability of
¬Fbool.

2.1.1 Eliminating Function Applications
The first step is to eliminate applications of uninterpreted func-
tion and predicate symbols of arity greater than one. In doing so,
we keep track of a property of function applications called posi-
tive equality. The general idea is to determine the polarity of each
equality in the formula, i.e., whether it appears under an even (pos-
itive) or odd (negative) number of negations. Applications of un-
interpreted functions can then be classified as either p-function ap-
plications, i.e., used only under positive equalities, or g-function
applications, i.e., general function applications that appear under
other equalities or under inequalities. The p-function applications
can be encoded in propositional logic with fewer Boolean variables
than the g-function applications, thus greatly simplifying the result-
ing SAT problem.
To be able to exploit positive equality, Bryant et al. eliminate
function applications using “ITE” expressions. As an example, if
function symbol f has two occurrences: f (a1) and f (a2), then we
would generate 2 new symbolic constants vf 1 and vf 2. We would
then replace all instances of f (a1) by vf 1 and all instances of f (a2)
by ITE(a2 = a1, vf 1, vf 2). Note that this encoding ensures func-
tional consistency. Predicate applications are eliminated using a
similar process.

2.1.2 Deciding Separation Logic
Eliminating function and predicate applications leaves us with a
formula Fsep containing only symbolic constants, ITEs, successors,

predecessors, equations, inequalities, and Boolean connectives. We
will refer to this logic as separation logic. In addition, we will
refer to equalities or inequalities involving only symbolic constants,
successors, and predecessors, as separation predicates.
The problem of deciding the satisfiability of a formula in separation
logic is NP complete. It is NP-hard since Boolean satisfiability can
be trivially reduced to it. In addition, it is in NP because the logic
has a “small-model” property, viz., if it is satisfiable, there exists a
satisfying assignment such that the values of the integer symbolic
constants in the formula are polynomially bounded in the size of
the formula.
As mentioned in Section 1, there are two approaches to encoding a
formula in separation logic as a Boolean formula:

1. Small-Domain Encoding (SD): For each symbolic constant
vi in Fsep, we compute the bound bi on its value. The bounds
bi are then used to derive an encoding of each vi as a “sym-
bolic bit-vector” of Boolean variables. This results in a for-
mula with only Boolean variables, along with ITEs, succes-
sors, predecessors, equations, inequalities, and Boolean con-
nectives. Binary arithmetic is then used to transform this for-
mula into a Boolean formula Fbool.

2. Per-Constraint Encoding (EIJ): In this method, we first
eliminate the ITE construct from the formula, to get a for-
mula that is a Boolean combination of separation predicates.
Each separation predicate is then encoded with a fresh Boolean
variable to get a Boolean formula Fbvar. To rule out as-
signments to these Boolean variables that do not correspond
to any assignment to the integer-valued symbolic constants
in Fsep, we construct a Boolean formula Ftrans that imposes
“transitivity constraints” on the values of the fresh Boolean
variables. For example, if e=,0

x,y encodes x = y, and e=,0
y,z en-

codes y = z, we would impose the constraint e=,0
x,y ∧e=,0

y,z =⇒

e=,0
x,z . This process might, in general, result in new Boolean

variables, such as e=,0
x,z , being generated. Let Ftrans denote

the conjunction of all the imposed constraints. We finally
construct Fbool as Ftrans =⇒ Fbvar.

For example, if Fsep is x ≥ y∧ y ≥ z∧ z ≥ succ(x), then using SD,
Fbool is the Boolean formula

[〈0x1x0〉 ≥ 〈0y1y0〉]∧ [〈0y1y0〉 ≥ 〈0z1z0〉]∧ [〈0z1z0〉 ≥ 〈0x1x0〉+1]

where 2 Boolean variables suffice to encode each symbolic con-
stant, and the arithmetic and relational operators are re-interpreted
over bitvectors of length 3. Using EIJ, Fbool is

[(e≥,0
x,y ∧e≥,0

y,z =⇒ e≥,0
x,z )∧(e≥,0

x,z =⇒ ¬e≥,1
z,x )] =⇒ [e≥,0

x,y ∧e≥,0
y,z ∧e≥,1

z,x ]

where the antecedent of the outermost implication is Ftrans and the
consequent is Fbvar.
Each of SD and EIJ has its drawbacks when used in isolation. We
describe these drawbacks in the next section.

3. COMPARISON OF SD AND EIJ
The method of encoding a SUF formula using SD usually results
in a compact Boolean formula. As shown in [6], if there are N
distinct nodes in the Directed Acyclic Graph (DAG) representation
of a SUF formula Fsuf , then the size of the DAG for the resulting
Boolean formula is roughly O(Nlg(N)). However, since numerical
constants are encoded in unary (e.g., x + k as succk(x)), N can be
very large if the formula has very large constants. However, in
our experience, formulas rarely have very large constants. The EIJ
method, on the other hand, can produce a Boolean formula whose



size is exponential in N. This is because there is a potential of gen-
erating an exponential number of transitivity constraints using this
method [14]. Note, however, that for the subclass of logic involving
only equalities without arithmetic, the number of transitivity con-
straints grows only polynomially in the number of equalities in the
original formula [7].
The SD and EIJ methods also differ in their impact on search in
SAT solvers. As the SD method uses a vector of Boolean vari-
ables to encode each symbolic constant, sufficient number of these
Boolean variables have to be assigned values before the search
space of solutions is pruned. On the other hand, in the EIJ method,
each separation predicate (e.g., x ≥ y + c) is encoded using a sin-
gle Boolean variable (e.g., e≥,c

x,y ). This encoding appears to assist
the DPLL-based SAT solvers, as has been observed by Velev and
Bryant [15] for deciding the restricted class of EUF logic. This
is probably because, in many formulas, separation predicates con-
trol the values sub-expressions of the formula evaluate to, and so
assigning to the corresponding Boolean variables is more likely to
lead to a conflict or a satisfying assignment.
In previous work [5], we performed an experimental study compar-
ing SD and EIJ along with other variants of a decision procedure
for SUF. The results indicated that neither SD nor EIJ performed
consistently well over all benchmarks used in the study. However,
it was noted that they appear to complement each other, suggesting
that they might perform well in combination. In the same paper, we
presented a hybrid technique that encodes equalities without arith-
metic using EIJ and the remaining separation predicates using SD;
however, this combination met with limited success as the decision
of whether to choose SD or EIJ is fixed, i.e., it does not depend on
features of the formula being checked.
In the rest of this section, we report on new experiments that con-
firm our previous findings comparing SD and EIJ and identify fea-
tures of input formulas that affect the relative performance of SD
and EIJ.
Benchmarks. For use in all the experiments reported in this pa-
per, we collected a set of 49 valid SUF formulas to use as bench-
marks, many of which were used in our previous study [5], and
are described in detail in that paper. We drew these formulas from
real problems encountered in both hardware and software design
verification. The hardware designs include the load-store unit of
an industrial microprocessor, an out-of-order microprocessor de-
sign [11], a cache coherence protocol, and a 5-stage DLX pipeline.
The software benchmarks are generated in the verification of safety
properties of device driver code [10], and in translation valida-
tion [13]. The sizes of the formulas, when measured in terms of the
number of nodes in a DAG representation, range from 100 nodes to
7500 nodes.
For the experiments described in this section, we selected a sam-
ple of 16 formulas at random from the above benchmark set such
that there was at least 1 formula from each problem domain. Ex-
periments were run on a Pentium-IV 2 GHz machine with 1 GB of
RAM.
Impact on SAT solver. We first performed an experiment to study
how the encoding method affects the performance of the SAT solver.
Figure 2 shows results on 5 of the larger benchmarks from the
sample of size 16. The numbers in the table support our conjec-
ture that the EIJ encoding is more effective with SAT solvers. Al-
though the original number of clauses are far more in the case of
EIJ method (due to transitivity constraints), the number of conflict
clauses needed to span the entire search space is far less for EIJ en-
coding. The lower number of conflict clauses added for EIJ method
suggests better pruning of the search space through case splitting
on the Boolean variables encoding separation constraints. This di-

rectly translates to significant improvement in the run time of the
SAT solver (zChaff).

Benchmark # of CNF # of Conflict SAT Time
Clauses Clauses (sec)

SD EIJ SD EIJ SD EIJ

22s 67699 169387 15811 150 21.63 0.56
25s 67528 104941 12304 95 9.71 0.29

elf.r8 30556 30889 1807 77 0.89 0.06
ooo.t12 85441 116482 20364 2937 31.83 5.49

dlx 27469 37033 11358 745 5.06 0.43

Figure 2: Effect of Encoding on zChaff performance. “Conflict
Clauses” denotes the conflict clauses added by zChaff.

Combining SD and EIJ based on Formula Features. From the
preceding discussion and experimental results, it appears that EIJ
would be a better encoding method except in cases where the num-
ber of transitivity constraints grows too large, slowing down the
translation procedure. Thus, a decision rule that chooses between
the EIJ and SD methods of encoding would ideally be based on
an estimate of the the number of transitivity constraints. Unfortu-
nately, this number is hard to estimate in polynomial time, since
it corresponds to the problem of estimating the number of cycles
in a directed graph. We therefore performed a set of experiments
to identify other formula features that are closely correlated with
the run-time of the SD and EIJ methods. We started with a can-
didate set of several features, including (1) the number of separa-
tion predicates in the formula obtained after eliminating function
applications, (2) the maximum over the sizes of the small-model
required for each symbolic constant, (3) the fraction of function-
applications that were p-function applications, and (4) the sum of
the sizes of the small-models. The intuition was, for example, to
use the number of separation predicates as an estimate of complex-
ity of the EIJ method, and the small-model size as an estimate for
the SD method.
For each of the 16 benchmarks, we measured CPU run-time, nor-
malized by the size of the original SUF formula. The normalization
allows us to study how each formula feature affects the run-time by
removing the effect of formula size, yielding similar normalized
run-times for formulas with similar features. The CPU run-times
have two components: the time taken to translate the formula to a
Boolean formula, and the time taken by the SAT solver to solve that
resulting Boolean formula.
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We found that the only feature that showed any correlation with
run-time was the number of separation predicates. Specifically, the
run-times of the EIJ method show good correlation with the number
of separation predicates, as shown in Figure 3. When the number
of separation predicates is low, the EIJ method outperforms the SD
method, due to faster SAT times. But as the number increases,
its performance gets worse, until beyond a certain threshold, the
EIJ method fails to go beyond the formula translation stage (and
was timed out after an hour). In Figure 3, this occurs for the three
benchmarks with the largest number of separation predicates. On
the contrary, the small-domain method completes within 6 minutes
on all these three benchmarks.
The results shown in Figure 3 indicate a natural heuristic for choos-
ing between SD and EIJ, viz., checking if the number of separation
predicates is greater than a threshold value SEP THOLD. If the num-
ber exceeds the threshold, we can use the SD encoding method,
otherwise, we use EIJ. In the next section, we show how we can
use this heuristic to develop a new hybrid method of encoding the
separation logic formula as a Boolean formula.

4. HYBRID METHOD
A naive scheme based on the results of the previous section might
use the number of separation predicates to select either SD or EIJ
for encoding the entire formula Fsep. However, we can exploit the
formula structure to encode different parts of the formula using dif-
ferent methods. The main idea is to group symbolic constants into
classes, and use a different encoding method for each class. To do
this, we define two symbolic constants to be in the same class if
they are compared to each other using an equality or an inequality.
Symbolic constants appearing in Fsep are thus partitioned into equiv-
alence classes, where those in one equivalence class can be encoded
completely independent of symbolic constants in other equivalence
classes. For each class, the choice of encoding is based on the num-
ber of separation predicates which involve two symbolic constants
from that class. In the rest of this section, we describe the steps
in the hybrid encoding method, viz., how to compute the equiva-
lence classes, estimate the number of separation predicates for each
class, and then finally use the estimate to encode the formula using
a combination of both the schemes.
1. Generate Classes. We first collect the set of symbolic constants
occuring in Fsep into two sets Vp and Vg. Vp consists of those sym-
bolic constants occurring in Fsuf that were classified as p-function
applications, as well as those constants vf i that were introduced
when eliminating an application of some p-function symbol f . The
remaining symbolic constants are in Vg.
We start by assigning each symbolic constant in Vg to its own class.
We then compute the dependency set for each term in Fsep, denoting
some subset of symbolic constants in Vg to which this term could
evaluate. While doing this, we merge some of the classes so that
each dependency set is a subset of some class. For term T

.
= v,

its dependency set is /0 if v ∈ Vp and is {v} if v ∈ Vg. For term
T

.
= succ(T1), its dependency set is the same as that of T1. Similarly

for T
.
= pred(T1). For T

.
= ITE(F, T1, T2), its dependency set is the

union of those of T1 and T2. If the dependency sets of T1 and T2 are
subsets of two distinct classes, then we merge those classes. For
each equation T1 = T2 and each inequality T1 < T2, we perform a
similar merging if the dependency sets of T1 and T2 are subsets of
distinct classes. Let V1, . . . ,VK be the K different symbolic constant
classes generated by this procedure. It is easy to see that none of the
symbolic constants in Vp belong to any of the classes V1, . . . ,VK .
2. Generate ground terms. A ground term is an expression of
the form succk(v) or predk(v), where k is a non-negative integer
and v is a symbolic constant. We transform the formula to generate

ground terms by repeatedly applying the following rewrite rules
until a fixed point is reached.

succ(pred(T )) → T pred(succ(T )) → T

succ(ITE(F,T1,T2)) → IT E(F,succ(T1),succ(T2))

pred(ITE(F,T1,T2)) → IT E(F,pred(T1),pred(T2))

At this point, the terms at the leaves consist of only ground terms.
For brevity, from now on we will simply write v + k (respectively
v− k) for succk(v) (resp. predk(v)).
3. Compute Domain Sizes. For each symbolic constant v, we
compute u(v), the maximum amount it can be incremented and
l(v), the maximum amount it can be decremented. u(v) represents
the maximum offset of v in any of the ground terms present in the
formula. Similarly, l(v) represents the minimum offset. For ex-
ample, if {v− 4,v− 2,v,v + 3,v + 7} is the set of ground terms in
which v appears, then u(v) = 7, and l(v) = −4. For each class Vi
we compute its range as:

range(Vi) = ∑
v∈Vi

(u(v)− l(v)+1).

This determines the size of the finite instantiation we need to con-
sider for each symbolic constant in Vi for SD encoding. Interpreting
the symbolic constants over bit vectors of this size is sufficient to
determine the validity of the separation logic formula (due to the
small-model property).
4. Compute an upper bound on the number of separation pred-
icates for each class. For each of the classes Vi, estimate SepCnt(Vi),
the maximum number of separation predicates which would in-
volve two symbolic constants from the class Vi. This is done as
follows. Initially, SepCnt(Vi) = 0, for each class Vi. Then, for each
equation T1 = T2 and each inequality T1 < T2, we find the set of
ground terms G(T1) and G(T2) that T1 and T2 can evaluate to, re-
spectively. This is done by modifying the algorithm for computing
the dependency set (described above) to include ground terms in
addition to symbolic constants. Let Vl be the class containing sym-
bolic constants from Vg that appear in either of G(T1) or G(T2). For
every pair (t1,t2) in the cross product G(T1)×G(T2) that has not
been encountered yet, and where t1 and t2 are distinct from each
other, we increment SepCnt(Vl ) by 1.
At the end of the process SepCnt(Vi) gives an upper bound on the
number of separation predicates that would involve two symbolic
constants from the class Vi.1

5. Perform hybrid encoding. At this point, we have all the in-
formation we need to encode the separation logic formula into a
Boolean formula. As discussed in Section 3, we use the threshold
value SEP THOLD to avoid encoding classes that have a very large
number of separation predicates with the EIJ method.
The algorithm proceeds by recursing on the formula structure. A
symbolic Boolean constant retains the same encoding. For a node
f1 ∧ f2, we recursively encode the subexpressions f1, f2 and con-
join the results. Similarly, ¬ f1 is evaluated by encoding f1 and
negating the result. The more interesting cases involve equation or
inequalities.
For each equation T1 = T2 or an inequality T1 < T2, we find the
class VT1 which contains the symbolic constants which appear in
G(T1) and G(T2).
If SepCnt(VT1 ) > SEP THOLD, then we encode T1, T2 using SD
method. The encodings of T1 and T2 are symbolic bit-vectors. Bit-
wise equality or comparison is used to translate these bit-vectors
to a Boolean expression. Each symbolic constant is encoded with
1SepCnt(Vi) is an upper bound because we count predicates that
disappear after eliminating ITEs, e.g., counting (v1,v2) at the node
ITE(F, v1, v2)= ITE(¬F, v2, v1).



a vector of symbolic Boolean constants. The size of the vector
is determined by the domain size computed previously. Note that
symbolic constants in Vp are assigned distinct bit-string values. The
arithmetic operations succ and pred are encoded using binary arith-
metic, and ITE expressions are encoded as multiplexors.
Otherwise, we use the EIJ method to encode T1 and T2, using the
technique proposed by Bryant et al. [4]. Suppose T1 evaluates to a
ground term gi under the condition c1

i , and T2 evaluates to g j under
c2

j . For example, the term ITE(F, v1, v2) evaluates to v2 under ¬F .
The encoding of the predicate T1 ./ T2, where ./∈ {=,<}, is given
by

�
i, j c1

i ∧ c2
j ∧ e./

gi,g j
, where e./

gi,g j
is a symbolic Boolean constant

to encode the constraint gi ./ g j . Note that if either of gi or g j
contains a symbolic constant from Vp, then e./

gi,g j
= false.

6. Generate Fbool. Let Fbvar denote the formula obtained by per-
forming the hybrid encoding on Fsep. We generate the conjunction
Ftrans of all transitivity constraints for predicates in Fsep encoded
using the EIJ method. The final Boolean formula Fbool is then gen-
erated as (Ftrans =⇒ Fbvar).
Hereafter we will denote our hybrid encoding method by HYBRID.

4.1 Automatically Selecting a Threshold
The value of the threshold parameter SEP THOLD determines the
mix of SD and EIJ in HYBRID, and hence determines its overall
efficiency. For example, when SEP THOLD = 0, HYBRID is the
same as SD. While it might be acceptable to manually set the value
of SEP THOLD for some formulas, it is highly desirable to find a
good default value.
We select a default value of SEP THOLD by statistical analysis of
the results of running EIJ on a sample of the benchmarks. As a
sample, we selected the same 16 benchmarks that we used in Sec-
tion 3 to find the correlation of EIJ with the number of separation
predicates. Given the sorted sequence T1, . . . ,T16 of the normal-
ized run-times of EIJ on these benchmarks, we calculated the value
of k, 1 ≤ k ≤ 16, that minimized the sum of the variances of each
the two subsets {T1, . . . ,Tk} and {Tk+1, . . . ,T16}. Dividing points
into subsets in this manner is a well-known technique for cluster-
ing points in one dimension, using squared distance as a measure
of similarity. Having performed this clustering, we chose the de-
fault SEP THOLD as the smallest multiple of 100 greater than nk,
the number of separation predicates corresponding to the run-time
Tk. For our sample set, we calculated nk to be 676, so we set the
default value of SEP THOLD to be 700 for all experiments reported
in Section 5.
In general, a user can determine a default SEP THOLD by using a
similar statistical technique on all formulas from a relevant domain
that the tool has been run on in the past.

5. RESULTS & DISCUSSION
We implemented a decision procedure for SUF based on HYBRID

in Moscow ML, a dialect of the Standard ML programming lan-
guage. In this section, we describe empirical results comparing
HYBRID with the SD and EIJ encoding methods. We also report
comparisons with other decision procedures that can decide SUF
logic.
All experiments were run on a Pentium-IV 2 GHz machine with 1
GB of RAM running Linux. As a SAT engine, we used the zChaff
SAT solver (version 2001.2.17) with the default options. A limit of
30 minutes was imposed on each run of a decision procedure. We
used the entire set of 49 benchmarks described in Section 3, com-
paring HYBRID to SD, EIJ, and other decision procedures over the
total time taken to decide each formula. For HYBRID, SD, and EIJ,
this is the sum of the encoding time and the SAT time. Our results

are depicted in Figures 4, 5, and 6. In each plot, the x-coordinate
of each point is the time taken by HYBRID, and the y-coordinate
is the time taken by the decision procedure we compare it against.
We also plot the diagonal line y = x in each plot. Thus, points
above the diagonal correspond to benchmarks on which HYBRID

outperforms the other procedures, while points below it correspond
to benchmarks on which HYBRID is outperformed.
Comparing HYBRID to SD and EIJ. The results obtained from
comparing HYBRID against SD and EIJ fall into two categories.
The first set of results are on 39 benchmarks on which HYBRID

with the default value of SEP THOLD outperformed both SD and
EIJ, and are depicted in Figure 4. These 39 benchmarks exclude
formulas generated in proving correctness of hardware designs us-
ing invariant checking. On the remaining 10 benchmarks, SD out-
performed both EIJ and HYBRID, for various values of SEP THOLD

greater than 100 including the default value; the results obtained by
setting SEP THOLD to 100 are shown in Figure 5.
Figure 4 shows that HYBRID scales better than EIJ and SD. We
notice that SD and EIJ timed out after 30 minutes on some bench-
marks, while HYBRID completed on all benchmarks. On several
benchmarks that SD and EIJ completed on, HYBRID is a factor of
4 to 8 times faster. The only benchmarks on which SD and EIJ
are marginally faster than HYBRID are small ones, all of which are
decided within 16 seconds. The improvement of HYBRID over EIJ
is due to reduction in the number of transitivity constraints, while
the improvement over SD is due to reduced SAT time. On one in-
stance, zChaff fails to decide the SAT problem generated by SD
within 30 minutes, while it finishes on the HYBRID encoding in
about 90 seconds.
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Figure 4: Comparing HYBRID against EIJ and SD. Non-
invariant checking benchmarks were used. Note the log scales
on both axes.

However, the results on the invariant checking formulas are very
different. These formulas are characterized by many inequalities
and a very large number of applications of uninterpreted functions,
almost none of which are p-function applications. This results in
a relatively small number of large-sized symbolic constant classes.
Thus, even if the original number of separation predicates in each
class is relatively low (e.g., less than SEP THOLD), the number of
symbolic constants involved in those predicates is large, and this
leads to a large number of transitivity constraints. Hence, using
the EIJ encoding method results in poor performance, whether in
pure form or in HYBRID. We found that SD performs the best
on these benchmarks. EIJ and HYBRID using the default value of
SEP THOLD fail to complete on any of them. Setting SEP THOLD to
100, we found that HYBRID manages to complete on some bench-



marks, but it is still outperformed by SD, as shown in Figure 5.
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Figure 5: Comparing HYBRID against SD and EIJ on invariant
checking benchmarks. SEP THOLD was set to 100.

Comparison with Other Decision Procedures. We compared our
decision procedure against existing decision procedures that can
decide SUF formulas. One such procedure is the Stanford Valid-
ity Checker (SVC) [2]. SVC (version 1.1) can decide a superset of
SUF, including, in addition, linear arithmetic and bit-vector arith-
metic. We also compared against the more recent Cooperating Va-
lidity Checker (CVC) [3], which is SAT-based. In all experiments,
we used HYBRID with the default value of 700 for SEP THOLD.
Since both SVC and CVC interpret function applications over the
rational numbers, we could not run them on the invariant check-
ing benchmarks which involve inequalities, and whose validity de-
pends on the property that the integers are not dense. We there-
fore restricted our performance comparisons to the 39 non-invariant
checking benchmarks.
Figure 6 compares HYBRID against both CVC and SVC. Let us
first consider the comparison with SVC. We see that the formulas
on which SVC outperforms HYBRID are relatively small, decided
within 32 seconds. This is mainly due to the overhead of translating
to SAT in HYBRID. Also many of these formulas are conjunctions
of atomic predicates on which SVC performs well, since deciding
a conjunction of separation predicates can be reduced to a shortest-
path problem. However, for larger formulas involving several dis-
junctions, SVC’s run-time quickly blows up, and it fails to finish
within 30 minutes. HYBRID, on the other hand, completes within
3 minutes on all formulas.
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Figure 6: Comparing HYBRID against SVC and CVC.

Next, consider the comparison with CVC. Like EIJ, CVC works
by replacing every equality or inequality with a fresh Boolean vari-
able, and calling a SAT solver (a customized version of Chaff) on

the Boolean encoding. However, unlike EIJ, transitivity constraints
are enforced lazily, based on adding conflict clauses to rule out spu-
rious satisfying assignments from the SAT solver. Each iteration of
adding conflict clauses requires a call to a first-order decision pro-
cedure. Our experiments indicate that for many benchmarks, the
overhead of lazy enforcement of transitivity constraints is too high,
and HYBRID outperforms CVC by orders of magnitude. The ex-
ceptional cases where CVC outperforms HYBRID are conjunctions
that are decided by both methods within 16 seconds. We believe
this is because CVC tries to add conflict clauses that involve the
smallest possible subset of literals from the satisfying assignment,
and for a conjunction, this clause enforces transitivity constraints
without need for futher iteration.
Conclusions. The hybrid encoding method presented in this paper
combines the complementary strengths of the small-domain and
per-constraint encodings. Even with the default value of threshold,
the method is robust to variations in formula characteristics, per-
forming well on the majority of the benchmarks, and scaling better
than other decision procedures.
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