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Abstract

We compae SAT-cheders and decisiondiagramson the evalua-

tion of Booleanformulasproducedin the formal verification of

bothcorrectandbuggy versionsof supescalarand VLIW micro-

processos. We identify one SAT-chedker that significantly out-

performsthe rest.We evaluatewaysto enhanceits performance
by variationsin thegeneation of the Booleancorrectnesgormu-

las. e reasses®ptimizationspreviously usedto speedup the

formal verification and mbe futue dallenges.

1 Intr oduction

In the past few years, SAT-checlers have made a dramatic
improvementin boththeir speedandcapacity We compare28 of
them with decisiondiagrams—BDDsg[7] and BEDs [61]—as
well aswith ATPGtools[21][52] whenusedasBooleanSatisfi-
ability (SAT) proceduresn the formal verification of micropro-
cessorsThe comparisoris basedon two benchmarlsuites,each
of 101 Booleanformulasgeneratedn the verification of 1 cor-
rectand 100 buggy versionsof the samedesign—asuperscalar
and a VLIW microprocessor respectiely. Unlike existing
benchmarlksuites,e.g.,ISCAS 85 [5] andISCAS 89 [6], which
are collections of circuits that have nothing in common, our
suitesare basedon the samecorrectdesignandhenceprovide a
point for consistent comparison of féifent @aluation methods.

Thecorrectnessonditionthatwe useis expressedn adecid-
ablesubsebf First-OrderLogic [10]. Thatallows it eitherto be
checleddirectly with a customizedlecisionprocedurdg51] or to
be translatedo an equivalentBooleanformula [55] that canbe
evaluatedwith SAT enginesfor either proving correctnessor
finding a counter&ample.The latter approackcandirectly bene-
fit from improvements in the SRAtools.

We identify Chaf [38] asthe mostefficient SAT-checler for
the secondverificationstratey whenappliedto both correctand
buggydesignsChaf significantlyoutperformsBDDs[7] andthe
SAT-checler DLM-2 [48], the previous mostefficient SAT pro-
ceduresfor, respectiely, correct and buggy processors.We
reevaluate optimizationsusedto enhancethe performanceof
BDDs andDLM-2 andconcludethatmary of themarenolonger
crucial on the samebenchmarksuites.Our study allows us to
eliminateconserative approximationghat might resultin false
negativesandthus consumeprecioususertime for analysis.We
alsoprioritize the optimizationsthatarestill usefulwith Chaf in
the orderof theirimpacton the efficiency of the formal verifica-
tion.

1. This research &s supported by the SRC under contract 00-DC-684.

2 Background

The formal verification is done by correspondencehecking—
comparisonof the superscalar/VLIWImplementationagainst a
non-pipelinedSpecificationpasednthe BurchandDill flushing
technique[10]. The correctnesgriterion is expressedas a for-
mulain the logic of Equality with Uninterpreted=unctionsand
Memories(EUFM) [10] andstatesthatall uservisible stateele-
mentsin the processoshouldbe updatedn syncby eitherO0, or
1, or up to Kk instructionsafter eachclock cycle, wherek is the
issuewidth of the design.The correctnesformulais thentrans-
latedto a Booleanformulaby anautomatidool [55] thatexploits
the propertiesof Positive Equality [8], thee; encoding[18], and
anumberof conserative approximationsTheresultingBoolean
formula shouldbe a tautologyin orderfor the processotto be
correct and can bevaluated by ay SAT procedure.

The syntax of EUFM [10] includes terms and formulas.
Termsareusedin orderto abstractvord-level valuesof data,reg-
isteridentifiers,memoryaddressesswell asthe entirestatesof
memoryarrays.A term canbe an Uninterpretedrunction(UF)
appliedon alist of agumentterms,a domainvariable,or anITE
operatorselectingbetweentwo argumenttermsbasedon a con-
trolling formula,suchthatI TE(formula, terml, term2) will evalu-
ateto terml whenformula = true andto term2 whenformula=
false The syntaxfor termscanbe extendedto modelmemories
by meansof thefunctionsreadandwrite [10][59]. Formulasare
usedin orderto modelthe control path of a microprocessoras
well asto expressthe correctnessondition.A formulacanbean
UninterpretedPredicat§ UP) appliedon alist of agumentterms,
a propositionalvariable,an ITE operatorselectingbetweentwo
amgumentformulasbasedon a controlling formula, or an equa-
tion (equality comparison)of two terms. Formulas can be
negatedand connectedy Booleanconnectves.We will referto
both terms and formulas aspeessions.

UFs and UPs are usedto abstractaway the implementation
detailsof functionalunits by replacingthemwith “black boxes”
that satisfyno particularpropertiesotherthanthat of functional
consistencyNamely thatthe samecombinationf valuesto the
inputsof the UF (or UP) producethe sameoutputvalue.Then, it
no longermatterswhetherthe original functionalunit is anadder
or a multiplier, etc.,aslong asthe sameUF (or UP) is usedto
replaceit in boththe Implementatiorandthe SpecificationNote
thatin this way we will prove a moregeneralproblem—thathe
processoris correct for ary implementationof its functional
units. Havever, that more general problem is easier tospro

Two possiblewaysto imposethe propertyof functionalcon-
sisteny of UFs and UPs are Ackermannconstraints[1] and
nestedITEs [3][4][21]. The Ackermannschemereplaceseach
UF (UP) applicationin the EUFM formulaF with a nev domain
variable (propositionalvariable) and then addsexternal consis-
teng constraintsFor example,the UF applicationf(ay, bq) will
bereplacedby a new domainvariablec,, anotherapplicationof
thesameUF, f(ay, by), will bereplacedy anew domainvariable
Co. Then, the resulting EUFM formula F* will be extendedas
[(a1=a) O(by=by) O (cg=cy)] O F.InthenestedTEs



scheme,the first application of the UF above will still be
replacedby a new domainvariablec;. However, the secondone
will bereplacedy ITE((a, = &) O (b, = by), ¢4, ¢y), Wherec, is
anew domainvariable.A third one,f(ag, bs), will bereplacedy
ITE((ag = ap) O (b = by), ¢y, ITE((ag = ap) U (b3 = by), ¢, €3)),
wherecs is a nev domain wariable, and so on. Similarly for UPs.

Positve Equality allows the identification of two types of
termsin the structureof an EUFM formula—thosewhich appear
in only positive equationsand are called p-terms (for positive
terms), and thosewhich appearin both positive and negative
equationsandare called g-terms (for generalterms).A negative
equationis onewhich appearsinderanodd numberof negations
or aspartof thecontrollingformulafor anI TE operator The effi-
cieng/ from exploiting Positve Equalityis dueto theobsenation
that the truth of an EUFM formula undera maximally diverse
interpretationof the p-termsimplies the truth of the formula
underary interpretation.A maximally diverseinterpretationis
one wherethe equality comparisonof a domain variable with
itself evaluatesto true, that of a p-termdomainvariablewith a
syntacticallydistinctdomainvariableevaluatego false, andthat
of a g-termdomainvariablewith a syntacticallydistinct g-term
domainvariable (a g-equation)could evaluateto eithertrue or
false and can be encoded with Booleamiables [18][40].

3 Microprocessor Benchmarks

We baseour comparisorof SAT proceduresn asetof high-level

microprocessors;anging from a single-issues-stagepipelined
DLX [23], 1XDLX-C, to adual-issuesuperscalabLX with mul-

ticycle functional units, exceptions, and branch prediction,
2xDLX-CC-MC-EX-BP [56], to a 9-wide VLIW architecture,
9VLIW-MC-BP [57], thatimitatesthe Intel Itanium [25] [49] in

speculatie featuressuch as predicatedexecution, speculatie

register remapping, adwced loads, and branch prediction.

The VLIW designis far more complex thanary otherthat
hasbeenformally verified previously in anautomatiowvay. It has
afetchenginethatsuppliesthe executionenginewith a packet of
9 instructionswith no internaldatadependencie€achof these
instructionsis alreadymatchedwith oneof 9 executionpipelines
of 4 stages# integer pipelines,two of which canperformboth
integer and floating-point memory accesses? floating-point
pipelines; and 3 branch-addressomputationpipelines. Every
instructionis predicatedwith a qualifying predicateidentifier,
suchthat the result of that instructionaffects uservisible state
only whenthe predicatesvaluatesto 1. Datavaluesarestoredin
4 register files: integer, floating-point, predicate,and branch-
addressThe two floating-pointALUs, aswell asthe Instruction
andDataMemoriescaneachtake multiple cyclesfor computing
aresultor completingafetch,respectiely. Therecanbeupto 42
instructionsin flight. An extendedversion,9VLIW-MC-BP-EX,
also implementsxeeptions.

We created100 incorrectversionsof both 2xDLX-CC-MC-
EX-BP and 9VLIW-MC-BP. The bugs were variantsof actual
errorsmadein the designof the correctversionsandalso coin-
cided with the typesof bugsthat Van Campenhoutet al. [54]
analyzedto be among the most frequent design errors. The
injected bugs included omitting inputs to logic gates,e.g., an
instructionis not squasheavhena precedingoranchis takenor a
stallingconditionfor theloadinterlockdoesnotfully accountfor
the caseswhenthe dependentataoperandwill be used.Other
typesof bugswere dueto usingincorrectinputsto logic gates,
functionalunits,or memoriesge.g.,aninput with the samename
but a differentindex. Finally, lack of mechanismgo correcta
speculatie updateof a uservisible stateelementwhenthe spec-
ulation is incorrect. Hence, the variationsintroducedwere not
completelyrandom,asdonein other efforts to generatebench-
mark suites[22][26][27][36]. The bugs were spreadover the

entire designs and occurred either as single or multiple errors.

4 Comparison of SAT Procedures

We evaluated28 SAT-checlers: SATO.3.2.1[44][63]; GRASP
[17][32] [33], usedbothwith a singlestratgy andwith restarts,
randomizationandrecursve learning[2]; CGRASP[12][34], a
versionof GRASPthat exploits structuralinformation; DLM-2
andDLM-3 [48], aswell asDLM-2000[62], all incompleteSAT-
checlers(i.e., they cannotprove unsatisfiability)basedon global
randomsearchanddiscreteLagrangianMultipliers asa mecha-
nismto notonly getthe searctout of local minima, but alsosteer
it in the direction towards a global minimum—a satisfying
assignmentsatz[30][45], satz.v21330][45], satz-rand.v4.¢19]
[45], eqsatz.v20[31]; GSAT.v41 [45][47], WalkSAT.v37 [45]
[46]; posit [16][45]; ntab [13][45]; rel_sat.1.0and rel_sat.2.1
[3][45]; rel_sat_rand1.019][45]; ASAT and C-SAT [15]; CLS
[41]; QSAT [39] andQBF [42], two SAT-checlersfor quantified
Booleanformulas; ZRes[11], a SAT-checler combining Zero-
Supresse®DDs (ZBDDs) with the original Davis-Putnampro-
cedure BSAT andIS-USAT, bothbasedn BDDs andexploiting
the propertiesof unateBooleanfunctions[29]; Prover, a com-
mercial SAT-checler basedon Stalmarcks method[50]; Heer-
Hugo [20], also basedon the samemethod;and Chaf [38], a
completeSAT-checler exploiting lazy Booleanconstraintpropa-
gation, non-chronologicabacktrackingrestarts randomization,
and maw optimizations.

Additionally, we experimentedvith 2 of thefastes{andpub-
licly available)ATPGtools—ATOM [21] andTIP [52]—usedin
amodethatteststhe outputof a benchmarkor beingstuck-at-0,
which triggersthe justification of value 1 at the output, turning
the ATPGtool into a SAT-checler. We alsousedBinary Decision
DiagramsBDDs) [7] andBooleanExpressiorDiagramgBEDs)
[61]—the latter not beinga canonicalrepresentationf Boolean
functions, but shovn to be extremely efficient when formally
verifying multipliers [60].

Thetranslationto the CNF format[28], usedasinputto most
SAT-checlers,was doneafter insertinga negation at the top of
the Booleancorrectnesgormula that hasto be a tautologyin
orderfor the processoto be correct.If the formulais indeeda
tautology its negation will be false, so that a complete SAT-
checler will be ableto prove unsatisfiability Else, a satisfying
assignment for the gation will be a counterample.

In translatingo CNF, we introduceda new auxiliary Boolean
variable for the output of every AND, OR, or ITE gatein the
Booleancorrectnesgormula and thenimposeddisjunctive con-
straints(clauses)that the value of a variableat the output of a
gate be consistentwith the valuesof the variablesat the inputs,
given the function of the gate. Inverterswere subsumedn the
clausesfor the driven gates. All clauseswere conjuncted
togetherincluding a constrainthatthe only primary output(the
negation of the Booleancorrectnesgormula) is true. The vari-
ablesin the supportof the Booleancorrectneséormulabeforeits
translation to CNF will be calleprimary Boolean variables.

The experimentswere performedon a 336 MHz Sun4with
1.2 GB of memoryand1 GB of swapspaceCUDD [14] andthe
sifting dynamicvariablereorderingheuristic[43] were usedfor
the BDD-basedruns.In the BED evaluations,we experimented
with corverting the final BED into a BDD with both the
up_one() andup_al I () functions[61] by emplgying 4 dif-
ferent variable ordering heuristics—ariants of the depth-first
andfanin[37] heuristics—thatverethe mostefficientin the ver-
ification of multipliers [60][61].

The SAT procedureshatscaledor the 100 buggy variantsof
2xDLX-CC-MC-EX-BP are listed in Table 1. The rest of the
SAT solwers had trouble even with the single-issueprocessar
1xDLX-C, or could not scalefor its dual-issueversion,2xDLX-
CC (without exceptions,multicycle functionalunits,andbranch
prediction). The SAT-checler Chaf had the bestperformance,
finding a satisfyingassignmenfor eachbenchmarkin lessthan



40 seconds (indeed, less than 37 seconds). We ran the rest of the
SAT procedures for 400 and 4,000 seconds—one and two orders
of magnitude more, respectively. DLM-2 was the second most
efficient SAT-checker for this suite, closely followed by DLM-3.
CGRASP was next, solving only half of the benchmarks in 400
seconds, followed by QSAT with 49 of the benchmarks under
400 seconds. The rest of the SAT procedures, including BDDs,
performed significantly worse. DLM-2000 is slower than DLM-2
and DLM-3 because of extensive analysis before each decision.

% Satisfiablein
SAT Procedure
<40 sec <400sec | <4,000sec
Chaff 100 100 100
DLM-2 61 20 98
DLM-3 58 86 99
CGRASP 46 50 71
QSAT 40 49 52
SATO 22 39 71
rel_sat.1.0 13 20 22
Walk SAT 13 18 32
rel_sat_rand 10 27 34
DL M-2000 9 37 70
GRASP 6 27 48
GRASP + restarts 6 11 18
CLS 5 8 10
re_sat.2.1 4 71 99
egsatz 3 4 5
BDDs 2 2 5

Table 1: Comparison of SAT procedures on 100 buggy
versions of 2xDLX-CC-MC-EX-BP.

When verifying the correct 2xDLX-CC-MC-EX-BP, Chaff
again had the best performance, requiring 40 seconds of CPU
time, followed by BDDs with 2,635 seconds [56], and QSAT
with 14 hours and 37 minutes. CGRASP, SATO, GRASP, and
GRASP with restarts, randomization, and recursive learning
could not prove the CNF formula unsatisfiable in 24 hours.
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Figure 1: Comparison of Chaff and BDDs on 100 buggy ver-
sions of 9VLIW-MC-BP. The benchmarks are sorted in ascend-

ing order of their times for the BDD-based experiment.

We then compared Chaff and DLM-2 on the 100 buggy
VLIW designs: Chaff was better in 77 cases, with DLM-2 being
faster with more than 60 seconds on only 10 benchmarks. How-
ever, Chaff took at most 355 seconds, and 79 seconds on average,
while DLM-2 did not complete 2 of the benchmarksin 3,600 sec-
onds (we tried 4 different parameter sets). When verifying the
correct 9VLIW-MC-BP, Chaff required 1,644 seconds, compared
to the 31.5 hours by BDDs [57], using a monolithic correctness
criterion in both cases. Figure 1 compares Chaff and BDDs on
the 100 buggy VLIW designs, such that Chaff is evaluating only

one monolithic correctness criterion, while BDDs evaluate 16
weak (and easier) criteriain parallel [57]. The assumption is that
there are enough computing resources to support parallel runs of
thetool. As soon as one of these parallel runs comes with a coun-
terexample, we terminate the rest, and consider the minimum
time as the verification time. As shown, the difference between
BDDs and Chaff is up to 4 orders of magnitude.

Applying the script si nplify [35] in order to perform
algebraic simplifications on the CNF formula for one of the
buggy VLIW designs required more than 47,000 seconds, while
Chaff took only 14 seconds to find a satisfying assignment with-
out simplifications. Thisis not surprising, given the CNF formula
sizes of up to 450,000 clauses with up to 25,000 variables.

Hence, based on experiments with two suites consisting of
100 buggy designs and their correct counterpart, we identified
Chaff as the most efficient SAT procedure—more than 2 orders
of magnitude faster than other SAT solvers—for evaluating Bool-
ean formulas generated in the formal verification of complex
microprocessors with realistic features. How does this change the
frontier of possibilities? The rest of the paper examines ways to
increase the productivity in formal verification of microproces-
sors by using Chaff as the back-end SAT-checker.

5 Impact of Structural Variationsin Gener-

ating the Boolean Correctness Formulas

Early reduction of p-equations. When eliminating UFs and
UPs that take only p-terms as arguments, the translation algo-
rithm introduces equations between argument terms in order to
enforce the functional consistency property by nested ITEs
[8][55]. The argument terms consist of only nested ITEs that
select one among a set of supporting domain variables. If the
terms on both sides of an equation have digoint supports of
p-term domain variables, then the two compared terms will not
be equal under amaximally diverse interpretation and their equa-
tion can be replaced with false. Thisis already done in the final
step of the translation algorithm [55]. However, an early reduc-
tion of such equations will result in a different structure of the
DAG for the final Boolean formula, i.e., in adifferent (but equiv-
alent) CNF formula to be evaluated by SAT-checkers.

Eliminating UPs with Ackermann constraints. Ackermann
constraints [1] result in a negated equation for the outputs of the
eliminated UF or UP: [(a; =a5)d(b; =by) O (c;=cy)] O F,
which isequivalent to: (a; = ap)d(b, = b))+ (c; =¢y) O F.The
negated equation for the output values ¢, and ¢, means that they
cannot be p-terms—something that we want to avoid in order to
exploit the computational efficiency of Positive Equality. There-
fore, Ackermann constraints should not be used for eliminating
UFs whose results appear only in positive equations. However,
they can be used when eliminating UPs—then the negated equa-
tions will be over Boolean variables and that is not a problem
when using Positive Equality. Hence, Ackermann constraints can
be used instead of nested ITEs for eliminating UPs.

The data points for 4 runs with structural variations, shownin
Fig. 2, are the minimum times among 4 parallel runs: one with no
structural variations (the data plotted for 1 run), one for each of
the above variations used alone, and one for both variations com-
bined. The datafor 4 runs with parameter variations are the mini-
mum among the 1 run with no structural variations and 3
additional runs where some of the input parameters to Chaff were
changed. The average time for finding a satisfying assignment
when using structural variations is 45.8 seconds, with the maxi-
mum being 278 seconds, compared to 45 and 254 seconds,
respectively, with parameter variations. Therefore, the effect of
structural variations is amost identical with that of parameter
variations, as can be seen in the figure. Running them in parallel
(7 runs) reduces the average time to 37 seconds and the maxi-
mum to 218 seconds. Hence, only afew parallel runswith differ-



ent structural and/or parameter variations can help reduce the
time for SAT checking with Chaff. Structural variations also
accelerated the verification of correct designs with up to 20%.
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Figure 2: Using structural vs. parameter variations in Chaff.

The benchmarks are sorted in ascending order of their times

for the experiment with 1 run.

6 Encoding G-Equations

The g; encoding. The equation g; = g;, where g; and g; are g-
term domaln variables, is replaced by a unique Boolean varlable

& [18]. Transitivity of equality, (g = ) 0(gy = 9 O (g = G
has to be enforced additionally, e.g., by {rlangulatlng the compar-
ison graph of those g; variables that affect the final Boolean for-
mula and then enforcmg transitivity for each of the resulting
triangles—sparse trangitivity [9]. Although not every correct
MiCroprocessor requires transitivity for its correctness proof, that
property is needed in order to avoid false negatives for buggy
processors or for designs that do need transitivity.

The small domains encoding. Every g-term domain variable is
assigned a set of constant values that it can take on in away that
allows it to be either equal to or different from any other g-term
domain variable that it can be transitively compared for equality
with [40]. If the set of constants for a g-term variable consists of
N values, those can be indexed with [bg,(N)J Boolean variables.
Then two g-term domain variables are equal if their indexing
Boolean variables select simultaneously a common constant.
Note that transitivity is automatically enforced in this encoding.
Depending on the structure of the g-term variable comparison
graphs, the small domains encoding might introduce fewer pri-
mary Boolean variables than the g; encoding. That would mean a
smaller search space. However, now the equality comparison of
two g-term domain variables gets replaced with a Boolean for-
mula—a disjunction of conjuncts, each consisting of many Bool-
ean variables or their complements and encoding the possibility
that the two g-term domain variables evaluate to the same com-
mon constant—instead of just a single Boolean variable.

The two encodings are compared on the 100 buggy VLIW
designsin Fig. 3. In asingle run of the small domains encoding,
the maximum CPU time for detecting a bug is 3,633 seconds and
the average is 394 seconds, compared to 355 and 79 seconds,
respectively, for the g; encoding (which was used for the experi-
ments before this sectlon) Constraints for trangitivity of equality
were included when using the g; encoding. Structural variations
with 4 runs reduced the maX|mum time with the small domains
encoding to 1,240 seconds, and the average to 154 seconds, com-
pared to 154 and 46 seconds, respectively, for the g; encoding.

When verifying the correct 9VLIW-MC- Bb the small
domains encoding resulted in 1,152 primary Boolean variables,
with 890 of them being indexing variables, and required 6,008
seconds of CPU time. On the other hand, the g; encoding
resulted in 2,615 primary Boolean variables, with 2, 3153 of them

being e; variables, and required 1,644 seconds of CPU time.
Smcethls design does not need transitivity of equality for its cor-
rectness proof, such constraints were not included in the formula
generated with the g; encoding. Adding these constraints
resulted in 705 extra g; varlables due to triangulating the g-term
comparison graph, and in 2,680 seconds of CPU time—an
increase of over 1,000 seconds. Hence, including transitivity con-
straints for a design that does not need them for its correctness
proof might result in an increase of the verification time.
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Figure 3: Comparison of the e; and small domains encodings
on 100 buggy versions of 9VLIW-MC-BP, using Chaff. The
benchmarks are sorted in ascending order of their times for
the experiment with the small domains encoding.

We also compared the two encodings on correct designs that
do require transitivity of equality for their correctness proofs—
superscalar processors with out-of-order execution that can exe-
cute register-register and load instructions. Because instructions
are dispatched when they do not have Write-After-Write (in
addition to Write-After-Read and Read-After-Write) dependen-
cies [23] on instructions that are earlier in the program order but
are stalled due to data dependencies, transitivity of equality is
required in proving the equality of the final states of the Register
File reached after the Implementation and the Specification sides
of the commutative correctness diagram.

G-Equation Encoding
| ssue Sij small domains
Width | Primary CPU Time Primary CPU Time
Boolean [sed] Boolean [sed]
Variables Variables
2 % 35 81 3.7 |
3 201 54 127 64
4 346 810 194 2,358
5 530 2,500 249 3,804

Table 2: Comparison of the e;; and small domains encodings
on correct out-of-order superscalar microprocessors that do
require transitivity of equality for their correctness proofs.

While the small domains encoding introduced fewer Boolean
variables—less than half of those required by the g; encoding for
the 5-wide design—it resulted in longer CPU tlmes Chaff could
not prove the unsatisfiability of the CNF formula for the 6-wide
superscalar processor with either encoding in less than 24 hours
of CPU time—adirection for future work.

The efficiency of the g; encoding can be explained by the
impact of g-equations on the instruction flow, and hence on the
correctness formula. Such equations determine forwarding and
stalling conditions, based on equality comparisons of register
identifiers, as well as instruction sguashing conditions for cor-
recting branch mispredictions, based on equality comparisons of
actual and predicted branch targets. Therefore, g-equations affect



the execution of many instructions. A single Boolean variable,
introduced in the g; encoding, naturally fits the purpose of
accounting for both caseﬁ—that the equality comparison is either
true or false. Transitivity of equality is never violated—as soon
as two g; variables in a triangle become true then the third g;
variable |n that triangle immediately becomes true, due to the
imposed transitivity constraints and the effect of the unit clause
rule in SAT-checkers, and this is immediately extended to any
cycle of g; variables [9]—which avoids wasteful exploration of
infeasible portl ons of the search space.

On the other hand, the small domains encoding enumerates
all mappings of g-term domain variables to a sufficient set of dis-
tinct constants, thus introducing more information than actually
required to solve the problem. Now, an auxiliary Boolean vari-
ablef; isintroduced in place of each primary g; Boolean variable
from ghe previous encoding, such that f; represents thevalue of a
Boolean formula enumerating the cases when g-termsi and j will
evaluate to the same common constant. Therefore, f;; depends on
the indexing Boolean variables x; that encode the mapping of
g-termi to its set of possible constants, and on the indexing Bool-
ean variables x;, that encode the mapping of g-term j to its set of
possible constants. Note that the indexing variables x; will affect
the value of each f;,, auxiliary variable that encodes the equality
between g-term i and some g-term m. If a SAT-checker assigns
values to f; variables before all their supporting indexing vari-
ables, then the f; values might violate transitivity of equality.
Furthermore, it mlght take a while before enough indexing vari-
ables get assigned in order to detect the violation and to correct it
by backtracking. The work done in the meantime will be wasted.
On the other hand, if al supporting indexing variables get
assigned before the f; variables that they affect, then those f;
variables will flip every time when a single indexing variable i |n
their support flips. Note that each legal assignment to g; vari-
ablesis alegal assignment to f; variables, except that now it can
be justified with many possible assignments to the indexing vari-
ables. Hence, multiple branches in the formula will be revisited
for what will be just one visit with the g; encoding. As a result,
the small domains encoding is less effici ent than the g; encoding.

In a different application—encoding constraint satlsfactlon
problems as SAT instances—Hoos [24] similarly found that bet-
ter performance is achieved with an encoding that introduces
more variables but results in conceptually simpler search spaces.

7 Benefits of Conservative Approximations
and Positive Equality

Conservative approximations, such as manually inserted transla-
tion boxes (dummy UFs or UPs with one input) [56] or automati-
cally abstracted memories [57] have the potential to speed up the
verification of correct designs, but might result in fal se negatives
that will require manual user intervention and analysis. Not
exploiting such optimizations in the verification of 9VLIW-MC-
BP-EX resulted in CPU time of 2,542 seconds with monolithic
evaluation of the correctness criterion and the g; encoding, com-
pared to 1,513 seconds with the optimizations. I—liowever, exploit-
ing structural variations in only one run—combining early
reductions of p-equations and Ackermann constraints for elimi-
nating UPs—resulted in CPU time of 1,964 seconds. Thisis a
negligible overhead, compared with the burden of manual analy-
Sis necessary to identify potential false negatives that might
result when using these optimizations.

We then evaluated the benefits of exploiting Positive Equal-
ity, given the extremely efficient SAT-checker Chaff. This was
implemented by introducing an e; Boolean variable for the
equality comparison of two dlstlnct p-term domain variables as
done originaly by Goel, et al. [18], instead of treating these
p-terms as different. We started with a buggy version of
1xDLX-C: the bug was detected in 0.02 seconds with Positive

Equality, compared to 20 seconds without. Verifying the correct
1xDLX-C took 0.17 seconds with Positive Equality, compared to
3,111 seconds without. The bug in an erroneous version of
2xDLX-CC-MC-EX-BP was detected in 1.6 seconds with Posi-
tive Equality, compared with 661 seconds without. The correct
2xDL X-CC-MC-EX-BP was verified in 40 seconds with Positive
Equality, consuming 36 MB of memory, but ran out of memory
after 77,668 seconds without exploiting Positive Equality.
Finaly, a bug in an incorrect version of 9VLIW-MC-BP was
detected in 173 seconds using 96 MB, compared to running out
of memory after 6,351 seconds without Positive Equality. There-
fore, exploiting Positive Equality is still the major reason for our
success in formally verifying complex microprocessors.

8 Conclusions

We found the SAT-checker Chaff [38] to be the most efficient
means for evaluating Boolean formulas generated in the formal
verification of both correct and buggy microprocessors, dramati-
cally outperforming 27 SAT-checkers, 2 ATPG tools, and 2 deci-
sion diagrams—BDDs [7] and BEDs [61]. Reassessing various
optimizations that can be applied when producing the Boolean
formula for the microprocessor correctness, we conclude that the
single most important step is exploiting Positive Equality [8].
Without it, Chaff would not have scaled for realistic superscalar
and VLIW microprocessors with exceptions, multicycle func-
tional units, branch prediction, and other specul ative features.

Exploiting the e; encoding [18] of g-equations resulted in a
speedup of afactor o%‘ 4 for our most complex VLIW benchmarks
compared to the small domains encoding [40] when verifying
correct designs, and consistently performed better on buggy ver-
sions. Although the €; encoding results in more than twice as
many primary Boolean variables, its efficiency can be explained
with the conceptual simplicity of the resulting search space—
with each g; Boolean variable naturally encoding the equality
between a palr of g-term domain variables. Trangitivity of equal-
ity is never violated, which avoids wasteful exploration of infea-
sible portions of the search space. In contrast, the small domains
encoding enumerates all mappings of g-term domain variables to
asufficient set of distinct constants, thus introducing more infor-
mation than actually required to solve the problem. This results
in revisiting portions of the search space for what would be just
one visit with the g; encoding. Transitivity of equality is not
guaranteed to be always satisfied, also allowing wasteful work.

Conservative approximations, such as automatic abstraction
of memories [57] and manually-inserted trandation boxes [56],
are not as essential to the fast verification of correct VLIW and
dual-issue superscalar processors when using Chaff as these opti-
mizations were when using BDDs—previously the most efficient
SAT procedure for correct designs.

Structural variations in generating the Boolean correctness
formulas—early reductions of p-equations and using Ackermann
constraints for eliminating uninterpreted predicates—as well as
parameter variations for Chaff can help to somewhat accelerate
the SAT checking, although no single variation performs best.

Applying algebraic simplifications [35] to the CNF formulas
resulting from realistic microprocessorsisimpractical, due to the
large number of clauses—hundreds of thousands.

To conclude, we showed that Chaff can easily handle very
hard and big CNF formulas, produced in the formal verification
of microprocessors without applying conservative transforma-
tions that were previously needed in BDD-based evaluations but
have the potential to result in false negatives and to take exten-
sive human effort to analyze. We identified the optimizations that
do help increase the performance of Chaff on realistic dual-issue
superscalar and VLIW designs—Positive Equality, combined
with the g; encoding, and possibly with structural/parameter
variations |n multiple parallel runs. Our study will increase the
productivity of microprocessor design engineers and shorten the



time-to-marletfor VLIW andDSParchitectureshatconstitutea
significant portion of the microprocessormarket [53]. The
benchmarks used in this paper arailable as [58].
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