
1

EffectiveUseof BooleanSatisfiability Proceduresin theFormal Verification
of Superscalar and VLIW Micr oprocessors1

Miroslav N. Velev*

mvelev@ece.cmu.edu
http://www.ece.cmu.edu/~mvelev

Randal E. Bryant‡, *

randy.bryant@cs.cmu.edu
http://www.cs.cmu.edu/~bryant

*Department of Electrical and Computer Engineering
‡School of Computer Science

Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.

Abstract
We compare SAT-checkers anddecisiondiagramson theevalua-
tion of Booleanformulasproducedin the formal verificationof
bothcorrectandbuggyversionsof superscalarandVLIWmicro-
processors. We identify one SAT-checker that significantlyout-
performsthe rest.We evaluatewaysto enhanceits performance
byvariationsin thegenerationof theBooleancorrectnessformu-
las. We reassessoptimizationspreviously usedto speedup the
formal verification and probe future challenges.

1 Intr oduction
In the past few years, SAT-checkers have made a dramatic
improvementin boththeir speedandcapacity. Wecompare28of
them with decisiondiagrams—BDDs[7] and BEDs [61]—as
well aswith ATPGtools [21][52] whenusedasBooleanSatisfi-
ability (SAT) proceduresin the formal verificationof micropro-
cessors.Thecomparisonis basedon two benchmarksuites,each
of 101 Booleanformulasgeneratedin the verificationof 1 cor-
rect and100 buggy versionsof the samedesign—asuperscalar
and a VLIW microprocessor, respectively. Unlike existing
benchmarksuites,e.g.,ISCAS 85 [5] andISCAS 89 [6], which
are collections of circuits that have nothing in common,our
suitesarebasedon thesamecorrectdesignandhenceprovide a
point for consistent comparison of different evaluation methods.

Thecorrectnessconditionthatweuseis expressedin adecid-
ablesubsetof First-OrderLogic [10]. Thatallows it eitherto be
checkeddirectly with a customizeddecisionprocedure[51] or to
be translatedto an equivalentBooleanformula [55] that canbe
evaluatedwith SAT enginesfor either proving correctnessor
finding a counterexample.Thelatterapproachcandirectly bene-
fit from improvements in the SAT tools.

We identify Chaff [38] asthemostefficient SAT-checker for
thesecondverificationstrategy whenappliedto bothcorrectand
buggydesigns.Chaff significantlyoutperformsBDDs[7] andthe
SAT-checker DLM-2 [48], the previous mostefficient SAT pro-
ceduresfor, respectively, correct and buggy processors.We
reevaluate optimizationsused to enhancethe performanceof
BDDsandDLM-2 andconcludethatmany of themareno longer
crucial on the samebenchmarksuites.Our study allows us to
eliminateconservative approximationsthat might result in false
negativesandthusconsumeprecioususertime for analysis.We
alsoprioritize theoptimizationsthatarestill usefulwith Chaff in
theorderof their impacton theefficiency of theformal verifica-
tion.

1. This research was supported by the SRC under contract 00-DC-684.

2 Background
The formal verification is doneby correspondencechecking—
comparisonof the superscalar/VLIWImplementationagainst a
non-pipelinedSpecification,basedontheBurchandDill flushing
technique[10]. The correctnesscriterion is expressedas a for-
mula in the logic of Equality with UninterpretedFunctionsand
Memories(EUFM) [10] andstatesthatall user-visible stateele-
mentsin theprocessorshouldbeupdatedin syncby either0, or
1, or up to k instructionsafter eachclock cycle, wherek is the
issuewidth of thedesign.Thecorrectnessformula is thentrans-
latedto aBooleanformulaby anautomatictool [55] thatexploits
thepropertiesof Positive Equality [8], theeij encoding[18], and
a numberof conservative approximations.TheresultingBoolean
formula shouldbe a tautologyin order for the processorto be
correct and can be evaluated by any SAT procedure.

The syntax of EUFM [10] includes terms and formulas.
Termsareusedin orderto abstractword-level valuesof data,reg-
ister identifiers,memoryaddresses,aswell astheentirestatesof
memoryarrays.A term canbe an UninterpretedFunction(UF)
appliedon a list of argumentterms,a domainvariable,or an ITE
operatorselectingbetweentwo argumenttermsbasedon a con-
trolling formula,suchthatITE(formula, term1, term2) will evalu-
ateto term1 whenformula= true andto term2 whenformula=
false. The syntaxfor termscanbe extendedto modelmemories
by meansof thefunctionsreadandwrite [10][59]. Formulasare
usedin order to model the control pathof a microprocessor, as
well asto expressthecorrectnesscondition.A formulacanbean
UninterpretedPredicate(UP)appliedona list of argumentterms,
a propositionalvariable,an ITE operatorselectingbetweentwo
argumentformulasbasedon a controlling formula, or an equa-
tion (equality comparison)of two terms. Formulas can be
negatedandconnectedby Booleanconnectives.We will refer to
both terms and formulas as expressions.

UFs andUPsareusedto abstractaway the implementation
detailsof functionalunitsby replacingthemwith “black boxes”
that satisfyno particularpropertiesotherthanthat of functional
consistency. Namely, thatthesamecombinationsof valuesto the
inputsof theUF (or UP) producethesameoutputvalue.Then,it
no longermatterswhethertheoriginal functionalunit is anadder
or a multiplier, etc.,as long as the sameUF (or UP) is usedto
replaceit in boththeImplementationandtheSpecification.Note
that in this way we will prove a moregeneralproblem—thatthe
processoris correct for any implementationof its functional
units. However, that more general problem is easier to prove.

Two possiblewaysto imposethepropertyof functionalcon-
sistency of UFs and UPs are Ackermannconstraints[1] and
nestedITEs [3][4][21]. The Ackermannschemereplaceseach
UF (UP) applicationin theEUFM formulaF with a new domain
variable(propositionalvariable)and then addsexternal consis-
tency constraints.For example,the UF applicationf(a1, b1) will
be replacedby a new domainvariablec1, anotherapplicationof
thesameUF, f(a2, b2), will bereplacedby anew domainvariable
c2. Then, the resultingEUFM formula F’ will be extendedas
[(a1 = a2) ∧ (b1 = b2) ⇒ (c1 = c2)] ⇒ F’ . In the nestedITEs

2

scheme,the first application of the UF above will still be
replacedby a new domainvariablec1. However, thesecondone
will bereplacedby ITE((a2 = a1) ∧ (b2 = b1), c1, c2), wherec2 is
a new domainvariable.A third one,f(a3, b3), will bereplacedby
ITE((a3 = a1) ∧ (b3 = b1), c1, ITE((a3 = a2) ∧ (b3 = b2), c2, c3)),
wherec3 is a new domain variable, and so on. Similarly for UPs.

Positive Equality allows the identification of two types of
termsin thestructureof anEUFM formula—thosewhich appear
in only positive equationsand are called p-terms (for positive
terms), and thosewhich appearin both positive and negative
equationsandarecalledg-terms (for generalterms).A negative
equationis onewhichappearsunderanoddnumberof negations
or aspartof thecontrollingformulafor anITE operator. Theeffi-
ciency from exploiting PositiveEqualityis dueto theobservation
that the truth of an EUFM formula undera maximally diverse
interpretationof the p-terms implies the truth of the formula
underany interpretation.A maximally diverseinterpretationis
one where the equality comparisonof a domainvariablewith
itself evaluatesto true, that of a p-termdomainvariablewith a
syntacticallydistinctdomainvariableevaluatesto false, andthat
of a g-termdomainvariablewith a syntacticallydistinct g-term
domainvariable(a g-equation)could evaluateto either true or
false and can be encoded with Boolean variables [18][40].

3 Microprocessor Benchmarks
Webaseourcomparisonof SAT proceduresonasetof high-level
microprocessors,ranging from a single-issue5-stagepipelined
DLX [23], 1×DLX-C, to adual-issuesuperscalarDLX with mul-
ticycle functional units, exceptions, and branch prediction,
2×DLX-CC-MC-EX-BP [56], to a 9-wide VLIW architecture,
9VLIW-MC-BP [57], that imitatesthe Intel Itanium[25] [49] in
speculative featuressuch as predicatedexecution, speculative
register remapping, advanced loads, and branch prediction.

The VLIW designis far more complex than any other that
hasbeenformally verifiedpreviously in anautomaticway. It has
a fetchenginethatsuppliestheexecutionenginewith apacketof
9 instructions,with no internaldatadependencies.Eachof these
instructionsis alreadymatchedwith oneof 9 executionpipelines
of 4 stages:4 integer pipelines,two of which canperformboth
integer and floating-point memory accesses;2 floating-point
pipelines; and 3 branch-addresscomputationpipelines.Every
instruction is predicatedwith a qualifying predicateidentifier,
suchthat the result of that instructionaffects user-visible state
only whenthepredicateevaluatesto 1. Datavaluesarestoredin
4 register files: integer, floating-point, predicate,and branch-
address.The two floating-pointALUs, aswell asthe Instruction
andDataMemories,caneachtakemultiplecyclesfor computing
a resultor completinga fetch,respectively. Therecanbeup to 42
instructionsin flight. An extendedversion,9VLIW-MC-BP-EX,
also implements exceptions.

We created100 incorrectversionsof both 2×DLX-CC-MC-
EX-BP and 9VLIW-MC-BP. The bugs were variantsof actual
errorsmadein the designof the correctversionsandalsocoin-
cided with the typesof bugs that Van Campenhout,et al. [54]
analyzedto be among the most frequent design errors. The
injected bugs included omitting inputs to logic gates,e.g., an
instructionis not squashedwhenaprecedingbranchis takenor a
stallingconditionfor theloadinterlockdoesnot fully accountfor
the caseswhenthe dependentdataoperandwill be used.Other
typesof bugsweredueto using incorrectinputs to logic gates,
functionalunits,or memories,e.g.,an input with thesamename
but a different index. Finally, lack of mechanismsto correcta
speculative updateof a user-visible stateelementwhenthespec-
ulation is incorrect.Hence,the variationsintroducedwere not
completelyrandom,asdonein otherefforts to generatebench-
mark suites [22][26][27][36]. The bugs were spreadover the
entire designs and occurred either as single or multiple errors.

4 Comparison of SAT Procedures
We evaluated28 SAT-checkers: SATO.3.2.1 [44][63]; GRASP
[17][32] [33], usedbothwith a singlestrategy andwith restarts,
randomization,andrecursive learning[2]; CGRASP[12][34], a
versionof GRASPthat exploits structuralinformation;DLM-2
andDLM-3 [48], aswell asDLM-2000[62], all incompleteSAT-
checkers(i.e., they cannotprove unsatisfiability)basedon global
randomsearchanddiscreteLagrangianMultipliers asa mecha-
nismto notonly getthesearchoutof localminima,but alsosteer
it in the direction towards a global minimum—a satisfying
assignment;satz[30][45], satz.v213[30][45], satz-rand.v4.6[19]
[45], eqsatz.v20[31]; GSAT.v41 [45][47], WalkSAT.v37 [45]
[46]; posit [16][45]; ntab [13][45]; rel_sat.1.0and rel_sat.2.1
[3][45]; rel_sat_rand1.0[19][45]; ASAT and C-SAT [15]; CLS
[41]; QSAT [39] andQBF [42], two SAT-checkersfor quantified
Booleanformulas;ZRes[11], a SAT-checker combiningZero-
SupressedBDDs (ZBDDs) with the original Davis-Putnampro-
cedure;BSAT andIS-USAT, bothbasedonBDDsandexploiting
the propertiesof unateBooleanfunctions[29]; Prover, a com-
mercial SAT-checker basedon Stålmarck’s method[50]; Heer-
Hugo [20], also basedon the samemethod;and Chaff [38], a
completeSAT-checker exploiting lazy Booleanconstraintpropa-
gation, non-chronologicalbacktracking,restarts,randomization,
and many optimizations.

Additionally, weexperimentedwith 2 of thefastest(andpub-
licly available)ATPGtools—ATOM [21] andTIP [52]—usedin
a modethatteststheoutputof a benchmarkfor beingstuck-at-0,
which triggersthe justificationof value1 at the output,turning
theATPGtool into aSAT-checker. WealsousedBinaryDecision
Diagrams(BDDs) [7] andBooleanExpressionDiagrams(BEDs)
[61]—the latternot beinga canonicalrepresentationof Boolean
functions, but shown to be extremely efficient when formally
verifying multipliers [60].

Thetranslationto theCNF format[28], usedasinput to most
SAT-checkers,wasdoneafter insertinga negation at the top of
the Booleancorrectnessformula that has to be a tautology in
order for the processorto be correct.If the formula is indeeda
tautology, its negation will be false, so that a completeSAT-
checker will be able to prove unsatisfiability. Else,a satisfying
assignment for the negation will be a counterexample.

In translatingto CNF, we introducedanew auxiliary Boolean
variable for the output of every AND, OR, or ITE gate in the
Booleancorrectnessformula andthenimposeddisjunctive con-
straints(clauses)that the value of a variableat the output of a
gatebe consistentwith the valuesof the variablesat the inputs,
given the function of the gate. Inverterswere subsumedin the
clauses for the driven gates. All clauses were conjuncted
together, includinga constraintthat theonly primaryoutput(the
negation of the Booleancorrectnessformula) is true. The vari-
ablesin thesupportof theBooleancorrectnessformulabeforeits
translation to CNF will be calledprimary Boolean variables.

The experimentswereperformedon a 336 MHz Sun4with
1.2GB of memoryand1 GB of swapspace.CUDD [14] andthe
sifting dynamicvariablereorderingheuristic[43] wereusedfor
the BDD-basedruns.In the BED evaluations,we experimented
with converting the final BED into a BDD with both the
up_one() andup_all() functions[61] by employing 4 dif-
ferent variable ordering heuristics—variants of the depth-first
andfanin[37] heuristics—thatwerethemostefficient in thever-
ification of multipliers [60][61].

TheSAT proceduresthatscaledfor the100buggyvariantsof
2×DLX-CC-MC-EX-BP are listed in Table 1. The rest of the
SAT solvers had trouble even with the single-issueprocessor,
1×DLX-C, or couldnot scalefor its dual-issueversion,2×DLX-
CC (without exceptions,multicycle functionalunits,andbranch
prediction).The SAT-checker Chaff had the bestperformance,
finding a satisfyingassignmentfor eachbenchmarkin lessthan

3

40 seconds (indeed, less than 37 seconds). We ran the rest of the
SAT procedures for 400 and 4,000 seconds—one and two orders
of magnitude more, respectively. DLM-2 was the second most
efficient SAT-checker for this suite, closely followed by DLM-3.
CGRASP was next, solving only half of the benchmarks in 400
seconds, followed by QSAT with 49 of the benchmarks under
400 seconds. The rest of the SAT procedures, including BDDs,
performed significantly worse. DLM-2000 is slower than DLM-2
and DLM-3 because of extensive analysis before each decision.

When verifying the correct 2×DLX-CC-MC-EX-BP, Chaff
again had the best performance, requiring 40 seconds of CPU
time, followed by BDDs with 2,635 seconds [56], and QSAT
with 14 hours and 37 minutes. CGRASP, SATO, GRASP, and
GRASP with restarts, randomization, and recursive learning
could not prove the CNF formula unsatisfiable in 24 hours.

Figure 1: Comparison of Chaff and BDDs on 100 buggy ver-
sions of 9VLIW-MC-BP. The benchmarks are sorted in ascend-
ing order of their times for the BDD-based experiment.

We then compared Chaff and DLM-2 on the 100 buggy
VLIW designs: Chaff was better in 77 cases, with DLM-2 being
faster with more than 60 seconds on only 10 benchmarks. How-
ever, Chaff took at most 355 seconds, and 79 seconds on average,
while DLM-2 did not complete 2 of the benchmarks in 3,600 sec-
onds (we tried 4 different parameter sets). When verifying the
correct 9VLIW-MC-BP, Chaff required 1,644 seconds, compared
to the 31.5 hours by BDDs [57], using a monolithic correctness
criterion in both cases. Figure 1 compares Chaff and BDDs on
the 100 buggy VLIW designs, such that Chaff is evaluating only

SAT Procedure
% Satisfiable in

< 40 sec < 400 sec < 4,000 sec

Chaff 100 100 100
DLM-2 61 90 98
DLM-3 58 86 99
CGRASP 46 50 71
QSAT 40 49 52
SATO 22 39 71
rel_sat.1.0 13 20 22
WalkSAT 13 18 32
rel_sat_rand 10 27 34
DLM-2000 9 37 70
GRASP 6 27 48
GRASP + restarts 6 11 18
CLS 5 8 10
rel_sat.2.1 4 71 99
eqsatz 3 4 5
BDDs 2 2 5

Table 1: Comparison of SAT procedures on 100 buggy
versions of 2xDLX-CC-MC-EX-BP.

0 10 20 30 40 50 60 70 80 90 100
10

0

10
1

10
2

10
3

10
4

10
5

100 Buggy VLIW Designs

Ti
m

e,
 s

ec
.

BDDs: 16 runs
Chaff: 1 run

one monolithic correctness criterion, while BDDs evaluate 16
weak (and easier) criteria in parallel [57]. The assumption is that
there are enough computing resources to support parallel runs of
the tool. As soon as one of these parallel runs comes with a coun-
terexample, we terminate the rest, and consider the minimum
time as the verification time. As shown, the difference between
BDDs and Chaff is up to 4 orders of magnitude.

Applying the script simplify [35] in order to perform
algebraic simplifications on the CNF formula for one of the
buggy VLIW designs required more than 47,000 seconds, while
Chaff took only 14 seconds to find a satisfying assignment with-
out simplifications. This is not surprising, given the CNF formula
sizes of up to 450,000 clauses with up to 25,000 variables.

Hence, based on experiments with two suites consisting of
100 buggy designs and their correct counterpart, we identified
Chaff as the most efficient SAT procedure—more than 2 orders
of magnitude faster than other SAT solvers—for evaluating Bool-
ean formulas generated in the formal verification of complex
microprocessors with realistic features. How does this change the
frontier of possibilities? The rest of the paper examines ways to
increase the productivity in formal verification of microproces-
sors by using Chaff as the back-end SAT-checker.

5 Impact of Structural Variations in Gener-
ating the Boolean Correctness Formulas

Early reduction of p-equations. When eliminating UFs and
UPs that take only p-terms as arguments, the translation algo-
rithm introduces equations between argument terms in order to
enforce the functional consistency property by nested ITEs
[8][55]. The argument terms consist of only nested ITEs that
select one among a set of supporting domain variables. If the
terms on both sides of an equation have disjoint supports of
p-term domain variables, then the two compared terms will not
be equal under a maximally diverse interpretation and their equa-
tion can be replaced with false. This is already done in the final
step of the translation algorithm [55]. However, an early reduc-
tion of such equations will result in a different structure of the
DAG for the final Boolean formula, i.e., in a different (but equiv-
alent) CNF formula to be evaluated by SAT-checkers.
Eliminating UPs with Ackermann constraints. Ackermann
constraints [1] result in a negated equation for the outputs of the
eliminated UF or UP: [(a1 = a2)∧(b1 = b2) ⇒ (c1 = c2)] ⇒ F’,
which is equivalent to: (a1 = a2)∧(b1 = b2)∧¬(c1 = c2) ∨ F’. The
negated equation for the output values c1 and c2 means that they
cannot be p-terms—something that we want to avoid in order to
exploit the computational efficiency of Positive Equality. There-
fore, Ackermann constraints should not be used for eliminating
UFs whose results appear only in positive equations. However,
they can be used when eliminating UPs—then the negated equa-
tions will be over Boolean variables and that is not a problem
when using Positive Equality. Hence, Ackermann constraints can
be used instead of nested ITEs for eliminating UPs.

The data points for 4 runs with structural variations, shown in
Fig. 2, are the minimum times among 4 parallel runs: one with no
structural variations (the data plotted for 1 run), one for each of
the above variations used alone, and one for both variations com-
bined. The data for 4 runs with parameter variations are the mini-
mum among the 1 run with no structural variations and 3
additional runs where some of the input parameters to Chaff were
changed. The average time for finding a satisfying assignment
when using structural variations is 45.8 seconds, with the maxi-
mum being 278 seconds, compared to 45 and 254 seconds,
respectively, with parameter variations. Therefore, the effect of
structural variations is almost identical with that of parameter
variations, as can be seen in the figure. Running them in parallel
(7 runs) reduces the average time to 37 seconds and the maxi-
mum to 218 seconds. Hence, only a few parallel runs with differ-

4

ent structural and/or parameter variations can help reduce the
time for SAT checking with Chaff. Structural variations also
accelerated the verification of correct designs with up to 20%.

Figure 2: Using structural vs. parameter variations in Chaff.
The benchmarks are sorted in ascending order of their times
for the experiment with 1 run.

6 Encoding G-Equations
The eij encoding. The equation gi = gj, where gi and gj are g-
term domain variables, is replaced by a unique Boolean variable
eij [18]. Transitivity of equality, (gi = gj) ∧ (gj = gk) ⇒ (gi = gk)
has to be enforced additionally, e.g., by triangulating the compar-
ison graph of those eij variables that affect the final Boolean for-
mula and then enforcing transitivity for each of the resulting
triangles—sparse transitivity [9]. Although not every correct
microprocessor requires transitivity for its correctness proof, that
property is needed in order to avoid false negatives for buggy
processors or for designs that do need transitivity.
The small domains encoding. Every g-term domain variable is
assigned a set of constant values that it can take on in a way that
allows it to be either equal to or different from any other g-term
domain variable that it can be transitively compared for equality
with [40]. If the set of constants for a g-term variable consists of
N values, those can be indexed with log2(N) Boolean variables.
Then two g-term domain variables are equal if their indexing
Boolean variables select simultaneously a common constant.
Note that transitivity is automatically enforced in this encoding.
Depending on the structure of the g-term variable comparison
graphs, the small domains encoding might introduce fewer pri-
mary Boolean variables than the eij encoding. That would mean a
smaller search space. However, now the equality comparison of
two g-term domain variables gets replaced with a Boolean for-
mula—a disjunction of conjuncts, each consisting of many Bool-
ean variables or their complements and encoding the possibility
that the two g-term domain variables evaluate to the same com-
mon constant—instead of just a single Boolean variable.

The two encodings are compared on the 100 buggy VLIW
designs in Fig. 3. In a single run of the small domains encoding,
the maximum CPU time for detecting a bug is 3,633 seconds and
the average is 394 seconds, compared to 355 and 79 seconds,
respectively, for the eij encoding (which was used for the experi-
ments before this section). Constraints for transitivity of equality
were included when using the eij encoding. Structural variations
with 4 runs reduced the maximum time with the small domains
encoding to 1,240 seconds, and the average to 154 seconds, com-
pared to 154 and 46 seconds, respectively, for the eij encoding.

When verifying the correct 9VLIW-MC-BP, the small
domains encoding resulted in 1,152 primary Boolean variables,
with 890 of them being indexing variables, and required 6,008
seconds of CPU time. On the other hand, the eij encoding
resulted in 2,615 primary Boolean variables, with 2,353 of them

0 10 20 30 40 50 60 70 80 90 100
10

0

10
1

10
2

10
3

100 Buggy VLIW Designs

Ti
m

e,
 s

ec
.

1 run
4 runs, structural variations
4 runs, parameter variations

being eij variables, and required 1,644 seconds of CPU time.
Since this design does not need transitivity of equality for its cor-
rectness proof, such constraints were not included in the formula
generated with the eij encoding. Adding these constraints
resulted in 705 extra eij variables due to triangulating the g-term
comparison graph, and in 2,680 seconds of CPU time—an
increase of over 1,000 seconds. Hence, including transitivity con-
straints for a design that does not need them for its correctness
proof might result in an increase of the verification time.

Figure 3: Comparison of the eij and small domains encodings
on 100 buggy versions of 9VLIW-MC-BP, using Chaff. The
benchmarks are sorted in ascending order of their times for
the experiment with the small domains encoding.

We also compared the two encodings on correct designs that
do require transitivity of equality for their correctness proofs—
superscalar processors with out-of-order execution that can exe-
cute register-register and load instructions. Because instructions
are dispatched when they do not have Write-After-Write (in
addition to Write-After-Read and Read-After-Write) dependen-
cies [23] on instructions that are earlier in the program order but
are stalled due to data dependencies, transitivity of equality is
required in proving the equality of the final states of the Register
File reached after the Implementation and the Specification sides
of the commutative correctness diagram.

While the small domains encoding introduced fewer Boolean
variables—less than half of those required by the eij encoding for
the 5-wide design—it resulted in longer CPU times. Chaff could
not prove the unsatisfiability of the CNF formula for the 6-wide
superscalar processor with either encoding in less than 24 hours
of CPU time—a direction for future work.

The efficiency of the eij encoding can be explained by the
impact of g-equations on the instruction flow, and hence on the
correctness formula. Such equations determine forwarding and
stalling conditions, based on equality comparisons of register
identifiers, as well as instruction squashing conditions for cor-
recting branch mispredictions, based on equality comparisons of
actual and predicted branch targets. Therefore, g-equations affect

Issue
Width

G-Equation Encoding

eij small domains

Primary
Boolean

Variables

CPU Time
[sec]

Primary
Boolean

Variables

CPU Time
[sec]

2 95 3.5 81 3.7
3 201 54 127 64
4 346 810 194 2,358
5 530 2,500 249 3,804

Table 2: Comparison of the eij and small domains encodings
on correct out-of-order superscalar microprocessors that do
require transitivity of equality for their correctness proofs.

0 10 20 30 40 50 60 70 80 90 100
10

0

10
1

10
2

10
3

10
4

100 Buggy VLIW Designs

Ti
m

e,
 s

ec
.

small domains encoding: 1 run
e

ij
 encoding: 1 run

5

the execution of many instructions. A single Boolean variable,
introduced in the eij encoding, naturally fits the purpose of
accounting for both cases—that the equality comparison is either
true or false. Transitivity of equality is never violated—as soon
as two eij variables in a triangle become true then the third eij
variable in that triangle immediately becomes true, due to the
imposed transitivity constraints and the effect of the unit clause
rule in SAT-checkers, and this is immediately extended to any
cycle of eij variables [9]—which avoids wasteful exploration of
infeasible portions of the search space.

On the other hand, the small domains encoding enumerates
all mappings of g-term domain variables to a sufficient set of dis-
tinct constants, thus introducing more information than actually
required to solve the problem. Now, an auxiliary Boolean vari-
able fij is introduced in place of each primary eij Boolean variable
from the previous encoding, such that fij represents the value of a
Boolean formula enumerating the cases when g-terms i and j will
evaluate to the same common constant. Therefore, fij depends on
the indexing Boolean variables xil that encode the mapping of
g-term i to its set of possible constants, and on the indexing Bool-
ean variables xjk that encode the mapping of g-term j to its set of
possible constants. Note that the indexing variables xil will affect
the value of each fim auxiliary variable that encodes the equality
between g-term i and some g-term m. If a SAT-checker assigns
values to fij variables before all their supporting indexing vari-
ables, then the fij values might violate transitivity of equality.
Furthermore, it might take a while before enough indexing vari-
ables get assigned in order to detect the violation and to correct it
by backtracking. The work done in the meantime will be wasted.
On the other hand, if all supporting indexing variables get
assigned before the fij variables that they affect, then those fij
variables will flip every time when a single indexing variable in
their support flips. Note that each legal assignment to eij vari-
ables is a legal assignment to fij variables, except that now it can
be justified with many possible assignments to the indexing vari-
ables. Hence, multiple branches in the formula will be revisited
for what will be just one visit with the eij encoding. As a result,
the small domains encoding is less efficient than the eij encoding.

In a different application—encoding constraint satisfaction
problems as SAT instances—Hoos [24] similarly found that bet-
ter performance is achieved with an encoding that introduces
more variables but results in conceptually simpler search spaces.

7 Benefits of Conservative Approximations
and Positive Equality

Conservative approximations, such as manually inserted transla-
tion boxes (dummy UFs or UPs with one input) [56] or automati-
cally abstracted memories [57] have the potential to speed up the
verification of correct designs, but might result in false negatives
that will require manual user intervention and analysis. Not
exploiting such optimizations in the verification of 9VLIW-MC-
BP-EX resulted in CPU time of 2,542 seconds with monolithic
evaluation of the correctness criterion and the eij encoding, com-
pared to 1,513 seconds with the optimizations. However, exploit-
ing structural variations in only one run—combining early
reductions of p-equations and Ackermann constraints for elimi-
nating UPs—resulted in CPU time of 1,964 seconds. This is a
negligible overhead, compared with the burden of manual analy-
sis necessary to identify potential false negatives that might
result when using these optimizations.

We then evaluated the benefits of exploiting Positive Equal-
ity, given the extremely efficient SAT-checker Chaff. This was
implemented by introducing an eij Boolean variable for the
equality comparison of two distinct p-term domain variables as
done originally by Goel, et al. [18], instead of treating these
p-terms as different. We started with a buggy version of
1×DLX-C: the bug was detected in 0.02 seconds with Positive

Equality, compared to 20 seconds without. Verifying the correct
1×DLX-C took 0.17 seconds with Positive Equality, compared to
3,111 seconds without. The bug in an erroneous version of
2×DLX-CC-MC-EX-BP was detected in 1.6 seconds with Posi-
tive Equality, compared with 661 seconds without. The correct
2×DLX-CC-MC-EX-BP was verified in 40 seconds with Positive
Equality, consuming 36 MB of memory, but ran out of memory
after 77,668 seconds without exploiting Positive Equality.
Finally, a bug in an incorrect version of 9VLIW-MC-BP was
detected in 173 seconds using 96 MB, compared to running out
of memory after 6,351 seconds without Positive Equality. There-
fore, exploiting Positive Equality is still the major reason for our
success in formally verifying complex microprocessors.

8 Conclusions
We found the SAT-checker Chaff [38] to be the most efficient
means for evaluating Boolean formulas generated in the formal
verification of both correct and buggy microprocessors, dramati-
cally outperforming 27 SAT-checkers, 2 ATPG tools, and 2 deci-
sion diagrams—BDDs [7] and BEDs [61]. Reassessing various
optimizations that can be applied when producing the Boolean
formula for the microprocessor correctness, we conclude that the
single most important step is exploiting Positive Equality [8].
Without it, Chaff would not have scaled for realistic superscalar
and VLIW microprocessors with exceptions, multicycle func-
tional units, branch prediction, and other speculative features.

Exploiting the eij encoding [18] of g-equations resulted in a
speedup of a factor of 4 for our most complex VLIW benchmarks
compared to the small domains encoding [40] when verifying
correct designs, and consistently performed better on buggy ver-
sions. Although the eij encoding results in more than twice as
many primary Boolean variables, its efficiency can be explained
with the conceptual simplicity of the resulting search space—
with each eij Boolean variable naturally encoding the equality
between a pair of g-term domain variables. Transitivity of equal-
ity is never violated, which avoids wasteful exploration of infea-
sible portions of the search space. In contrast, the small domains
encoding enumerates all mappings of g-term domain variables to
a sufficient set of distinct constants, thus introducing more infor-
mation than actually required to solve the problem. This results
in revisiting portions of the search space for what would be just
one visit with the eij encoding. Transitivity of equality is not
guaranteed to be always satisfied, also allowing wasteful work.

Conservative approximations, such as automatic abstraction
of memories [57] and manually-inserted translation boxes [56],
are not as essential to the fast verification of correct VLIW and
dual-issue superscalar processors when using Chaff as these opti-
mizations were when using BDDs—previously the most efficient
SAT procedure for correct designs.

Structural variations in generating the Boolean correctness
formulas—early reductions of p-equations and using Ackermann
constraints for eliminating uninterpreted predicates—as well as
parameter variations for Chaff can help to somewhat accelerate
the SAT checking, although no single variation performs best.

Applying algebraic simplifications [35] to the CNF formulas
resulting from realistic microprocessors is impractical, due to the
large number of clauses—hundreds of thousands.

To conclude, we showed that Chaff can easily handle very
hard and big CNF formulas, produced in the formal verification
of microprocessors without applying conservative transforma-
tions that were previously needed in BDD-based evaluations but
have the potential to result in false negatives and to take exten-
sive human effort to analyze. We identified the optimizations that
do help increase the performance of Chaff on realistic dual-issue
superscalar and VLIW designs—Positive Equality, combined
with the eij encoding, and possibly with structural/parameter
variations in multiple parallel runs. Our study will increase the
productivity of microprocessor design engineers and shorten the

6

time-to-market for VLIW andDSParchitecturesthatconstitutea
significant portion of the microprocessormarket [53]. The
benchmarks used in this paper are available as [58].

Acknowledgments
We thank M. Moskewicz for providing us with Chaff and for
fine-tuning it on our benchmarks.

References
[1] W. Ackermann,SolvableCasesof theDecisionProblem, North-Holland,

Amsterdam, 1954.
[2] L. Baptista,andJ.P. Marques-Silva, “Using RandomizationandLearning

to Solve Hard Real-World Instancesof Satisfiability,”2 Principles and
Practice of Constraint Programming (CP ‘00), September 2000.

[3] R.J. Bayardo,Jr., and R. Schrag,“Using CSPlook-back techniquesto
solve realworld SAT instances,” 14thNationalConferenceon Artificial
Intelligence (AAAI ‘97), July 1997, pp. 203-208.

[4] BED Package3, version 2.5, October 2000.
[5] F. Brglez, and H. Fujiwara, “A Neutral Netlist of 10 Combinational

BenchmarkCircuits,” InternationalSymposiumon Circuits and Systems
(ISCAS ’85), 1985.

[6] F. Brglez, D. Bryan, and K. Kozminski, “Combinational Profiles of
SequentialBenchmarkCircuits,” International Symposiumon Circuits
and Systems (ISCAS ’89), 1989.

[7] R.E. Bryant, “Symbolic Boolean Manipulation with OrderedBinary-
DecisionDiagrams,” ACM ComputingSurveys, Vol. 24, No. 3 (Septem-
ber 1992), pp. 293-318.

[8] R.E. Bryant,S. German,andM.N. Velev, “ProcessorVerificationUsing
EfficientReductionsof theLogic of UninterpretedFunctionsto Proposi-
tional Logic,”4 ACM Transactionson ComputationalLogic (TOCL),
Vol. 2, No. 1 (January 2001).

[9] R.E. Bryant, and M.N. Velev, “Boolean Satisfiability with Transitivity
Constraints,”4 Computer-AidedVerification(CAV ‘00), E.A. Emersonand
A.P. Sistla,eds., LNCS 1855, Springer-Verlag, July 2000, pp. 86-98.

[10] J.R.Burch, andD.L. Dill, “AutomatedVerificationof PipelinedMicro-
processorControl,” Computer-Aided Verification (CAV ‘94), D.L. Dill,
ed., LNCS 818, Springer-Verlag, June 1994, pp. 68-80.

[11] P. Chatalic, and L. Simon, “Multi-Resolution on CompressedSetsof
Clauses,” 12th International Conferenceon Tools with Artificial Intelli-
gence (ICTAI ‘00), November 2000, pp. 2-10.

[12] CGRASP, http://vinci.inesc.pt/~lgs/cgrasp.
[13] J.M. Crawford, andL.D. Auton, “ExperimentalResultson theCrossover

Point in Random3SAT,” Frontiersin ProblemSolving:PhaseTransitions
and Complexity, Artifi cial Intelligence,T. Hogg, B. A. Hubermanand
C. Williams, eds., Vol. 81, Nos. 1-2 (March 1996), pp. 31-57.

[14] CUDD-2.3.0, http://vlsi.colorado.edu/~fabio.
[15] O. Dubois, “Can a Very Simple Algorithm be Efficient for SAT?”,

ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/contributed/dubois/.
[16] J.W. Freeman,“Improvements to Propositional Satisfiability Search

Algorithms,” Ph.D. thesis, Departmentof Computerand Information
Science, University of Pennsylvania, 1995.

[17] GRASP, http://vinci.inesc.pt/~jpms/grasp.
[18] A. Goel,K. Sajid,H. Zhou,A. Aziz, andV. Singhal,“BDD BasedProce-

duresfor a Theoryof Equalitywith UninterpretedFunctions,” Computer-
AidedVerification(CAV ‘98), A.J. Hu andM.Y. Vardi, eds., LNCS 1427,
Springer-Verlag, June 1998, pp. 244-255.

[19] C.P. Gomes,B. Selman,N. Crator, andH.A. Kautz, “Heavy-Tailed Phe-
nomenain Satisfiability andConstraintSatisfactionProblems”,Journalof
Automated Reasoning, Vol. 24, Nos. 1-2 (February 2000), pp. 67-100.

[20] J.F. Groote,andJ.P. Warners,“The propositionalformula checker Heer-
Hugo,” Journalof AutomatedReasoning,Vol. 24, Nos. 1-2 (February
2000), pp. 101-125.

[21] I. Hamzaoglu,and J.H. Patel, “New Techniquesfor DeterministicTest
PatternGeneration,” Journalof ElectronicTesting:TheoryandApplica-
tions, Vol. 15, Nos. 1-2 (August 1999), pp. 63-73.

[22] J.E.Harlow III, andF. Brglez,“Designof Experimentsfor Evaluationof
BDD PackagesUsingControlledCircuit Mutations,” Formal Methodsin
Computer-AidedDesign(FMCAD ’98), G. GopalakrishnanandP. Wind-
ley, eds., LNCS 1522, Springer-Verlag, November 1998, pp. 64-81.

[23] J.L. Hennessy, andD.A. Patterson,ComputerArchitecture: A Quantita-
tiveApproach, 2ndedition,MorganKaufmannPublishers,SanFrancisco,
CA, 1996.

[24] H.H. Hoos,“SAT-Encodings,SearchSpaceStructure,andLocal Search
Performance,” International Joint Conferenceon Artificial Intelligence
(IJCAI ’99), August 1999, pp. 296-302.

[25] IA-64 Application Developer’s Architecture Guide,5 Intel Corporation,
May 1999.

[26] K. Iwama,H. Abeta,andE. Miyano, “RandomGenerationof Satisfiable
and Unsatisfiable CNF Predicates,” Information Processing92, Vol. 1:
Algorithms, Software,Architecture,J. Van Leeuwen,ed., Elsevier Sci-
ence Publishers B.V., 1992, pp. 322-328.

[27] K. Iwama,andK. Hino, “RandomGenerationof TestInstancesfor Logic
Optimizers,” 31st Design Automation Conference (DAC ’94), June 1994.

[28] D.S. Johnson,M.A. Trick, eds., The SecondDIMACS Implementation
Challenge, DIMACS Series in Discrete Mathematicsand Theoretical
Computer Science. http://dimacs.rutgers.edu/challenges.

[29] P. Kalla, Z. Zeng,M.J. Ciesielski,andC. Huang,“A BDD-BasedSatisfi-
ability InfrastructureUsing the Unate Recursive Paradigm,” Design,
Automation and Test in Europe (DATE ’00), March 2000, pp. 232 -236.

[30] C.M. Li, and Anbulagan, “Heurisitics Basedon Unit Propoagation for
Satisfiability Problems,” International Joint Conference on Artificial

2. http://vinci.inesc.pt/~jpms
3. http://www.it-c.dk/research/bed
4. http://www.ece.cmu.edu/~mvelev
5. http://developer.intel.com/design/ia-64/architecture.htm

Intelligence (IJCAI ‘97), August 1997, pp. 366-371.
[31] C.M. Li, "IntegratingEquivalency Reasoninginto Davis-PutnamProce-

dure," 17th National Conferenceon Artificial Intelligence(AAAI ‘00),
July – August 2000, pp. 291-296.

[32] J.P. Marques-Silva,andK.A. Sakallah,“GRASP:A SearchAlgorithm for
PropositionalSatisfiability,” IEEE Transactionson Computers,Vol. 48,
No. 5 (May 1999), pp. 506-521.

[33] J.P. Marques-Silva, “The Impactof BranchingHeuristicsin Propositional
Satisfiability Algorithms,”2 9thPortugueseConferenceonArtificial Intel-
ligence (EPIA), September 1999.

[34] J.P. Marques-Silva, and L.G. e Silva, “Algorithms for Satisfiability in
CombinationalCircuitsBasedon BacktrackSearchandRecursive Learn-
ing,”2 12th Symposiumon Integrated Circuits and SystemsDesign
(SBCCI ‘99), September – October 1999, pp. 192-195.

[35] J.P. Marques-Silva, “Algebraic Simplification Techniquesfor Proposi-
tional Satisfiability,”2 Principles and Practice of Constraint Program-
ming (CP ‘00), September 2000, pp. 537-542.

[36] D. Mitchell, B. Selman,andH. Levesque,“Hard andEasyDistributions
of SAT Problems,” 10th National Conferenceon Artificial Intelligence
(AAAI ‘92), July 1992, pp. 459-465.

[37] S. Malik, A.R. Wang, R.K. Brayton, and A. Sangiovani-Vincentelli,
“Logic VerificationUsingBinaryDecisionDiagramsin aLogic Synthesis
Environment,” International Conference on Computer-AIded Design
(ICCAD ’88), November 1988, pp. 6-9.

[38] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Engineeringa Highly Efficient SAT Solver,” 38th DesignAutomation
Conference (DAC ’01), June 2001.

[39] D.A. Plaisted,A. Biere,andY. Zhu,“A Satisfiability Procedurefor Quan-
tified Boolean Formulae,” submitted for publication, 2000.

[40] A. Pnueli,Y. Rodeh,O. Shtrichman,andM. Siegel, “Deciding Equality
Formulasby Small-DomainInstantiations,” Computer-AidedVerification
(CAV ’99), N. HalbwachsandD. Peled,eds., LNCS 1633,Springer-Ver-
lag, June 1999, pp. 455-469.

[41] S.D.Prestwich,“StochasticLocal Searchin ConstrainedSpaces,” Practi-
cal Application of Constraint Technology and Logic Programming
(PACLP ‘00), April 2000, pp. 27-39.

[42] J.Rintanen,“Improvementsto theEvaluationof QuantifiedBooleanFor-
mulae,” International Joint Conference on Artificial Intelligence
(IJCAI ’99), August 1999, pp. 1192-1197.

[43] R. Rudell,“DynamicVariableOrderingfor OrderedBinaryDecisionDia-
grams,” International Conference on Computer-Aided Design
(ICCAD ’93), November 1993, pp. 42-47.

[44] SATO.3.2.1, http://www.cs.uiowa.edu/~hzhang/sato.
[45] SATLIB—Solvers, http://www.satlib.org/solvers.html.
[46] B. Selman,H. Kautz,B. Cohen,“Local SearchStrategiesfor Satisfiability

Testing,” DIMACSSeriesin DiscreteMathematicsandTheoreticalCom-
puter Science, Vol. 26 (1996), pp. 521-532.

[47] B. Selman,and H. Kautz, “Domain-IndependentExtensionsto GSAT:
Solving Large StructuredSatisfiability Problems,” International Joint
Conferenceon Artificial Intelligence(IJCAI ‘93), August – September
1993, pp. 290-295.

[48] Y. Shang,andB.W. Wah, “A DescreteLagrangian-BasedGlobal-Search
Methodfor SolvingSatisfiability Problems,” Journalof GlobalOptimiza-
tion, Vol. 12, No. 1, (January 1998), pp. 61-99.

[49] H. Sharangpani,“Intel ItaniumProcessorMichroarchitectureOverview,”5

Microprocessor Forum, October 1999.
[50] G. Stålmarck,“A Systemfor DeterminingPropositionalLogic Theorems

by Applying ValuesandRulesto Triplets thatareGeneratedfrom a For-
mula,” SwedishPatentNo. 467 076 (approved 1992),U.S. PatentNo. 5
276 897 (1994), European Patent No. 0403 454 (1995), 1989.

[51] Stanford Validity Checker (SVC), http://sprout.Stanford.EDU/SVC.
[52] P. Tafertshofer, A. Ganz,andK.J. Antreich, “GRAINE—An Implication

GRaph-bAsedengINE for Fast Implication, Justification, and Propaga-
tion,” IEEE Transactions on CAD, Vol. 19, No. 8 (August 2000).

[53] D. Tennenhouse,“Proactive Computing,” Communicationsof the ACM,
Vol. 43, No. 5 (May 2000), pp. 43-50.

[54] D. VanCampenhout,T. Mudge,andJ.P. Hayes,“Collection andAnalysis
of MicroprocessorDesignErrors,” IEEE Design& Test of Computers,
Vol. 17, No. 4 (October – December 2000), pp. 51-60.

[55] M.N. Velev, andR.E. Bryant, “SuperscalarProcessorVerificationUsing
Efficient Reductionsof the Logic of Equality with UninterpretedFunc-
tionsto PropositionalLogic,”4 CorrectHardwareDesignandVerification
Methods(CHARME ‘99), L. Pierre and T. Kropf, eds., LNCS 1703,
Springer-Verlag, September 1999, pp. 37-53.

[56] M.N. Velev, andR.E.Bryant,“FormalVerificationof SuperscalarMicro-
processorswith Multicycle Functional Units, Exceptions,and Branch
Prediction,”4 37th Design Automation Conference (DAC ’00), June 2000.

[57] M.N. Velev, “FormalVerificationof VLIW Microprocessorswith Specu-
lative Execution,”4 Computer-Aided Verification (CAV ‘00), E.A. Emer-
son and A.P. Sistla,eds., LNCS 1855, Springer-Verlag, July 2000.

[58] M.N. Velev, Benchmark suites4 SSS-SAT.1.0, VLIW-SAT.1.0,
FVP-UNSAT.1.0, and FVP-UNSAT.2.0, October 2000.

[59] M.N. Velev, “AutomaticAbstractionof Memoriesin theFormalVerifica-
tion of SuperscalarMicroprocessors,”4 ToolsandAlgorithmsfor theCon-
structionand Analysisof Systems(TACAS’01), T. Margaria andW. Yi,
eds., LNCS 2031, Springer-Verlag, April 2001.

[60] P.F. Williams, A. Biere, E.M. Clarke, A. Gupta,“Combining Decision
DiagramsandSAT Proceduresfor EfficientSymbolicModelChecking,”3

Computer-Aided Verification (CAV ‘00), E.A. Emersonand A.P. Sistla,
eds., LNCS 1855, Springer-Verlag, July 2000, pp. 124-138.

[61] P.F. Williams, “Formal Verification Basedon BooleanExpressionDia-
grams,”3 Ph.D.thesis,Departmentof InformationTechnology, Technical
University of Denmark, Lyngby, Denmark, August 2000.

[62] Z. Wu, andB.W. Wah,“Solving HardSatisfiability Problems:A Unified
Algorithm Basedon DiscreteLagrangeMultipliers,” 11th IEEE Interna-
tional Conference on Tools with Artificial Intelligence (ICTAI ‘99),
November 1999, pp. 210-217.

[63] H. Zhang,“SATO: An EfficientPropositionalProver,” InternationalCon-
ferenceon AutomatedDeduction(CADE’97), LNAI 1249,Springer-Ver-
lag, 1997, pp. 272-275.

7

