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Abstract

We etend the Buwh and Dill flushing telenique [6] for formal
verification of micoprocessos to be applicable to designs waer

Hosabettu, Svias and Gopalakrishnan [13]. Wever, the former
approach requires the user to manualljyictban intermediate
abstraction of the processor and to definegelaumber of lem-
mas (Swada defined nearly 4,000), necessary for the correctness

the functional units and memories have multicycle and possibly proof. The latter approach requires the user to manually define a

arbitrary latency We also show ways to incormie eceptions
and branch prediction by gploiting the poperties of the Igic of
Positive Equality with Unintergted Functions [4][5]. W study
the modeling of the abe featues in diferent vesions of dual-
issue supecalar pocessos.

1 Intr oduction

In order for formal methods to scale fagrification of modern
microprocessors, tigeneed to be applicable easily and with a
high degyree of automation to designs with mujtite functional
units, multigscle memories, >@eptions, and branch prediction.
Burch and Dills werification methodology has the potential to be
highly automatic, bt has preiously been applied only to designs
with single-gcle functional units and memories that produce
their results instantaneously [5][6][7][21]. The approaches/v
elegant in usingflushingof the processor—feeding it wittub-
bles until all instructions in flight complete thekegution—in

set of completion functions, one per unfinished instruction in
flight, describing her that instruction will be completed,vgin

that all the instructions that it has data dependencies v ha
already been completed. Furthermore, the user has to manually
define a vay to compose these completion functions in order to
form the abstraction function for the proces8&mth of these the-
orem-praving methods require months of manuariwfor com-

plex designs, i.e., theare not automatic.

Not only has the Burch and Dill flushing technique not been
applied to processors with muliie functional units, bt Hosa-
bettu, Swas and Gopalakrishnan [12]Jsaclaimed that it has
the dravback of being hard to use for pipelines with indetermi-
nate lateng, particularly where an ALU computation mightvlea
a data-dependent duration or a memory hiegyaotimultiple lev-
els might hge a non-deterministic delay

In this work we extend Burch and Dilk flushing-based meth-
odology to be applicable to microprocessors with functional

order to compute an abstraction function mapping Implementa- units and memories of multicle and possibly arbitrary latenc

tion states to a Specification state. (Thdediénce between a
bubble and a nop is that altble does not modify gruservisi-

We also modelx@eptions and branch prediction. Our most com-
plex designs hee 10 abstract instruction types. Vhieave two

ble state, while a nop increments the PC.) The correctness crite-completely functional pipelines, each consisting oé fetages,

rion is a commutate diagram, stating that an application of the
transition function of the Implementation falled by flushing
should produce the same us@ible state as first flushing the
Implementation and then using the resultant-uigble state to
apply the transition function of the Specification between kand
times, wherek is the issue-width of the Implementation. As
obsened and gploited by Burch in his controlled flushing [7],

for a total of up to 10 instructions in flight. Therefonghaustve
binary simulation must consider 1Unstruction sequences of 10
instructions each. Furthermore, accounting for possible data
dependencies, raisedaeptions, correctness/incorrectness of the
branch predictions, and muljicle computations will mak that
number significantly higheEven directed simulation will proba-

bly find it very hard, if at all possible, to generate all interesting

we can change the logic during flushing, since the only purpose instruction sequences for such a designvéler, we were able

of that logic is to compute an abstraction functionvikig an
improper abstraction function will not compromise thegifica-
tion and can only result in alée negative.

to formally \erify it in less than 44 minutes of CPU time.

2 Background

The same correctness criterion has been adopted by the theo-The key to our success is &Ry eficient decision procedure [21]

rem-proving community and applied to an out-of-order design
with exceptions and interrupts by Bada and Hunt [17] and to
an out-of-order design with only arithmetic instructions by

1. This research &s supported in part by the SRC under contract
99-DC-068.

for the logic of Equality with Uninterpreted Functions and Mem-
ories (EUFM) [6], which rploits the properties of Posid
Equality [4][5] and thes; encoding [10] to generate a proposi-
tional formula, which is thenvaluated with BDDs [3] or SK
checlers. W found BDDs to be unmatched byTséheclers and
SVC [18] (a decision procedure for the logic of EUFM that does
not exploit Positve Equality) when erifying correct designs.
However, SAT-checlers outperform BDDs onuggy processors.
The syntax of EUFM [6] includes terms and formulas. A
term can be an Uninterpreted Function (UF) applied on a list of
amument terms, a domairasable, or anTE operator selecting
between tw agument terms based on a controlling formula,
such thatTE(formula, termi, tern2) will evaluate tderml when
formula = true and toterm2 whenformula = false A formula
can be an Uninterpreted Predicate (UP) applied on a lisgof ar



ment terms, a propositionabnable, anITE operator selecting
between tw agument formulas based on a controlling formula,
or an equation (equality comparison) obtterms. Brmulas can
be ngated and connected by Boolean conwesti W\ will refer

to both terms and formulas ageessions.

UFs and UPs are used to abstragayathe implementation
details of functional units by replacing them with “black &six
that satisfy no particular properties other than thdtttional
consistencyNamely that the same combinations aflves to the
inputs of the UF (or UP) produce the same outpite: Then, it
no longer matters whether the original functional unit is an adder
or a multiplier etc., as long as the same UF (or UP) is used to
replace it in both the Implementation and the Specification. Note
that in this vay we will prove a more general problem—that the
processor is correct for yrimplementation of its functional
units. Havever, that more general problem is much easier to
prove (see [20] for the scaling of the correctness proof for a pro-
cessor with an actual bitvel implementation of its ALU).

The syntax for terms can bgtended to model memories by
means of the functiongadandwrite, wherereadtakes 2 agu-
ment terms serving as memory and address, witite takes 3
argument terms serving as memaagdress, and data. Both func-
tions return a term. Also, thesatisfy the fonarding property of
the memory semanticseadwrite(mem waddr, wdatd), raddr)
is equialent tolTE((raddr = waddr), wdatg readmem raddr)),
in addition to the property of functional consistgndersions of
readandwrite that extend the syntax for formulas can be defined
similarly, such that the former returns a formula, while the latter
takes a formula as its thirdgument.

Three possible ays to impose the property of functional
consisteng of UFs and UPs are Aekmann constraints [1],
nestedITEs [4][5][20], and “pushing-to-the-lgas” [21]. The
Ackermann scheme replaces each UF (UP) application in the
EUFM formula F with a nev domain \ariable (propositional
variable) and then addscternal consistenc constraints. &r
example, the UF applicatioffa;, by) will be replaced by a me
domain \ariablec,, another application of the same, (B, b,),
will be replaced by a medomain wariablec,. Then, the resultant
EUFM formula F will be extended as
[(ag=ay) Oy =by) O (c;=cy] O F.Inthe nestedTEs
scheme, the first application of the UF wabowill still be
replaced by a e domain \ariablec,. However, the second one
will be replaced byTE((a, = a;) O (b, = by), ¢4, C,), wherec, is
a nav domain \ariable. A third onef(ag, bs), will be replaced by
ITE((ag = ap) O (b3 = by), ¢1, ITE((ag = ap) U (b3 = by), ¢y, C3)),
wherec; is a nev domain \ariable, and so on. Similarly for UPs.
Note that the nesteldEs approach éeps the consistepinfor-
mation located in the internal structure of the formula. In the
pushing-to-the-lezes scheme, a UF application is pushed
towards the leaes of its agument nestedlTE expressions until
all aguments become domaianables. Then, each UF applica-
tion on a unique list of gument domain ariables is replaced
with a nev domain ariable. lor example f(ITE(d, a;, a,), b) will
be transformed intdTE(d, f(a;, b), f(ay, b)) and then into
ITE(d, ¢4, Cy), wherec, andc, are nev domain \ariables replac-
ing f(ay, b) andf(ay, b), respectiely. Although this scheme has
the potential to result in a term blaip, it has the adntage that
it does not create equations betweeguarent terms, as the pre-
vious two schemes do. Note also that the pushing-to-theedea
scheme results in a consative approximation to functional
consisteng in that it satisfies the Aekmann functional consis-
teng constraints only for syntactically identical terms.

Positive Equality allevs the identification of tev types of
terms in the structure of an EUFM formula—those which appear
only in positve equations and are callgdterms and those
which can appear in both posgiand ngative equations and are
called g-terms(for general terms). A igative equation is one
which appears under an odd humber afatiens or as part of the

controlling formula for aniTE operator The computational &f
cieng from exploiting Positve Equality is due to a theorem
which states that the truth of an EUFM formula under a maxi-
mally diverse interpretation of the p-terms implies the truth of the
formula under ay interpretation. The classification of p-terms
vs. g-terms is done before UFs and UPs are eliminated by nested
ITEs, such that if an UF is classified as a p-term (g-term), the
new domain \ariables generated for its elimination are also con-
sidered to be p-terms (g-terms). After the UFs and the UPs are
eliminated, a maximally derse interpretation is one where the
equality comparison of tw syntactically identical (i.e.,xactly

the same) domainaviables ealuates tatrue, that of a p-term
domain \ariable with a syntactically distinct domairariable
evaluates tdfalse, and that of a g-term domairanable with a
syntactically distinct g-term domairasiable could ealuate to
eithertrue or false and can be encoded with a dedicated Boolean
variable—ang; variable [10]. An alternate encoding has been
proposed by Pnuetit al.[15].

In order to fully eploit the benefits of Posiié Equality the
designer of an abstract processor model has to use a set of suit-
able abstractions and consaive approximations.df example,
an equality comparison of twdata operands, as used to deter-
mine the condition to taka branch-on-equal instruction, must be
abstracted with an UP in both the Implementation and the Speci-
fication, so that the data operand terms will not appearmited
equations bt only as aguments to UPs and UFs and will be clas-
sified as p-terms. Similarha Finite State Machine (FSM) model
of a memorywhich is a conseative approximation of an actual
memory has to be empjed to model the Data Memorgo that
its addresses, which are produced by the ALU and alse ssrv
data operands, can be classified as p-terms. The result is that data
values produced by the &seter File, the ALU, and the Data
Memory, as well as the PCalues, can be classified as p-terms.
Only the rgister identifiers, whose equations control farging
and stalling conditions that aregag¢ed, are classified as g-terms.
Finally, and this is done automatically [21], the conatve
approximation of pushing-to-the-szs has to be used for elimi-
nating reads from the initial state of memories addressed by
g-terms, such as the §ister File, in order to reduce the number
of distinct equations between g-terms, i.e., to reduce the number
of g; Boolean wariables.

3 Modeling Multicycle Functional Units

We replace multigcle functional units with “place holdets,
which are implemented with the constructs of EUFM ariudbit
enough of the timing characteristics of the original functional
units, such that the correctness of the abstract processor with
place holders will imply the correctness of the actual Implemen-
tation processor with the original functional uniter Example,
we can model the timing bekiar of a functional unit with a
fixed lateng of n cycles by a chain oh-1 latches situated
between the tev pipeline latches that limit the stage of the func-
tional unit, and a single UF abstracting the functionality of the
unit. The chain of latches will be used to delay the signal that
controls the updating of useisible state with the result pro-
duced by the functional unit (see [22] for details)wdeer, it
will be cumbersome to use such a model in processors &t ha
mary multicycle instructions, each of a flifent fixed lateng.
Most importantly this model is not applicable for functional
units where the lategadepends on thealues of the input oper-
ands or on arbitrary gmonment fctors, e.g., a memory system
with cache-coherence mechanisms [11], where a dalize v
might be locled in order to be modified by another procesisor
is such functional units and memory systems that other research-
ers [12] hae found to mak hard the application of the Burch
and Dill method to real processors.

We resole this problem by using a technique that we call
accelented flushing Namely during the one ycle of regular



symbolic smulation of the Implementation, we model the inde-
terminate outcome of possibly completing the computation of a
multicycle functional unit by a new Boolean variable. Then, dur-
ing flushing we force the functional unit to complete its computa-
tions on every clock cycle. That is, if the original computation
was not finished during the single cycle of regular symbolic sim-
ulation of the Implementation, it will be definitely completed on
the first cycle of flushing and a new computation will be com-
pleted on each subsequent cycle of flushing. Such a signal, con-
trolling the completion of multicycle computations, can be
generated with the circuit on Fig. 1.

Generator of Arbitrary Values

| |
| |
| |
! | Preenisite ..
| |
| |

Figure 1. A g enerator of ne w Boolean v ariables, extended
with an OR-gate in or der to pr oduce signal Complete that con-
trols the computation completion f  or a given m ultic ycle func-
tional unit, accor ding to the accelerated flushing tec  hnique .

Observe that the present state of the Finite State Machine
(FSM) above and the output of UF NextSate are not used in
equality comparisons in the circuit, so that they will be classified
as p-terms when the EUFM formula is translated to a proposi-
tiona formula. Then, UF NextState will map each input p-term
domain variable to a new p-term domain variable for the corre-
sponding output value. Therefore, the state of the FSM will be
updated with anew p-term domain variable on every cycle. Each
of these p-term domain variables will be mapped to a new Bool-
ean variable by UP Choice, so that the FSM will generate a
sequence of new Boolean variables. However, only the first one
will be passed on to signal Complete during the one cycle of reg-
ular simulation when input Flush is set to false. During flushing,
input Flush will be true, and so will be signal Complete. Simi-
larly, we can use an UF that depends on the present state of the
FSM on Fig. 1 in order to generate a sequence of hew domain
variables. We call such FSMs generators of arbitrary values.

When designing place holders for multicycle functional units
of arbitrary latency, we assume that the computation semantics
can be expressed with a combinational functional unit abstracted
with UF ALU—see Fig. 2. The FSM on Fig. 2.b is used to
abstract the timing of the functional unit. Conceptually, a multi-
cycle computation can be in one of 3 abstract states—in its first
cycle, in flight (i.e., has already been executed for at least one
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cycle), or has completed but is stalled by the next pipeline stages
(state DoneButStalled). We latch the output of UF ALU when the
computationisinitsfirst cycle, assuming the datainputs have the
correct values only during that cycle.

The 3 abstract states on Fig. 2.b can be encoded with 2 state
bits that should have arbitrary initial Boolean values, so that the
control FSM could bein any stateinitialy. Signal Stall is used to
stall previous pipeline stages when the computation has not com-
pleted (both Complete and DoneButSalled are false) or the result
cannot be accepted (IsStalled istrue). Signal Complete is gener-
ated according to Fig. 1. The control logic of the place holder
generates the signals FirstCycle and DoneButStalled which indi-
cate that the control FSM isin the corresponding state of its state
transition diagram on Fig. 2.b.

In order to model computations that are guaranteed to com-
plete on the clock cycle when they start, the OR gate driving sig-
nal Complete can be extended with extra inputs that account for
such conditions. When the next pipeline stages do not have a
mechanism to stall the multicycle functiona unit, the control
logic of the place holder can be simplified by setting IsStalled to
false and removing state DoneButStalled from the state transition
diagram on Fig. 2.b. Furthermore, a raised squash signal that
affects the multicycle functional unit should set signal Complete
to false and cause the state transition diagram on Fig. 2.b to tran-
sition to state FirstCycle.

The correct result ALU_Result will be passed to the output
Result of the place holder only when the stages ahead are ready
to accept the result (IsStalled is false) and the multicycle compu-
tation has completed in either the present cycle (Complete is
true) or previously (DoneButSalled istrue). Otherwise, the out-
put of the place holder will get a new domain variable produced
by the generator of arbitrary values at its output ND_Result. The
effect is analogous to using Xsis symbolic ternary smulation in
order to express ambiguity [19]. Therefore, the place holder on
Fig. 2 is a conservative approximation of a multicycle functional
unit of arbitrary latency.

The same functional unit is modeled in the Specification pro-
cessor by UF ALU only, but not the extralogic required to imple-
ment the place holder, as the Specification defines the semantics
of theinstructions regardless of their timing. Note that by making
the op-code term Op one of the inputs to UF ALU, we model a
potentially different computation for each instruction. UF ALU
has to be replaced by a memory model, e.g., the FSM-based one
from [4][5][21], when implementing a place holder for amemory
system of arbitrary latency.

The place holder on Fig. 2 is based on the following assump-
tions about the original functional unit that it abstracts: 1) the
functiona unit will not deadlock and will eventually complete

Control Logic:

- Complete

Complete [J-1sStalled IsStalled

Stall ~ IsStalled O - Complete 0-DoneButStalled
(b)

Figure 2. (a) Implementation of a place holder f  or a functional unit of arbitrar y latenc y; (b) State transition dia gram for the contr ol

logic of a place holder that can be stalled, as determined b

y signal IsStalled.



Generator of Arbitrary Values

|
|
NextPredictionState 1
|
PredictTakenBranch IE/ID ID/IEX
| _ i

EX/MEM

PredictedTarget -T KeBranch MEM _TakenBranch Do Misprediction2
L e e e e e e e e e = = = - Bl j‘ )
> MEM_PredictedTakenBranch M1 3
PredictTaken <];(__G:1 > z { =
Brancl ]
MEM_Branch

Translation amp Da H i

Box > IMem = . B MEM_Jump

L'B’Brﬁ’[:h@ ol |11

-
MEM PredictedTarget S
qual Targets B
:Targ e 1| [MEM AcuaTarget (5220000 :
7
.- s
LA LA LA
squash
o @

MEM_Sequential PC

Flush
_'>o

Figure 3. Branch Prediction in a single-issue 5-stage pipelined DLX. The logic not directly related with updating the PC is omitted.

every multicycle computation; 2) the functional unit has a mech-
nism to store its input values if they are guaranteed to be avail-
able only on the first cycle of a multicycle computation; 3) the
functional unit has a mechanism to store the result of its compu-
tation, until the stages ahead are ready to accept that result (this
property should hold only for functional units that can be
stalled); and, 4) the functional unit will discard an on-going com-
putation and will be ready to begin a new one on the next clock
cycleif acontrolling squash signal is raised on the present clock
cycle (this property should hold only for functional units that can
be affected by a squash signal). The original functional unit has
to be formally verified for satisfying the above properties, e.g.,
by model checking [8].

4 Modeling Exceptions

For every functional unit (abstracted with either an UF or an UP)
that can generate an exception we introduce an UP that depends
on the same inputs as the functional unit and produces a Boolean
signal indicating whether an exception was raised. If the func-
tional unit can be a source of several kinds of exceptions, we can
introduce an UF that again depends on the same inputs and pro-
duces a term that indicates the type of the raised exception. Pro-
cessors with exceptions have user-visible state elements that
contain exception status and recovery information. Our architec-
ture has 3 exception status registers—indication whether an
exception was raised by each of the Instruction Memory, the
ALU, and the Data Memory—as well as an ExceptionPC latch,
containing the PC of the excepting instruction.

Exceptions result in sguashing of subsequent instructions in
flight and branching to an exception handler, whose address
depends on the exception type in our architecture. The exception-
handlers are implemented in software and are assumed to be cor-
rect. A return-from-exception instruction has the effect of jump-
ing to the ExceptionPC and clearing the exception status
registers. Exceptions are modeled in both the Implementation
and the Specification processors, since the instruction semantics
depends on exceptions and the exception status registers are user-
visible state elements.

5 Modeling Branch Prediction

We use a generator of arbitrary values in order to abstract the
Branch Predictor in the implementation processor—see Fig. 3.
Every clock cycle, this generator produces: 1) a new Boolean

variable at the output of UP PredictTakenBranch, serving as a
prediction for the taken/not-taken direction of a newly fetched
branch (jumps are aways taken in our architecture); and,
2) anew domain variable at the output of UF PredictedTarget,
serving as a prediction for the target of a branch or ajump. What
is verified is that if the Implementation updates speculatively the
PC according to a prediction madein the Fetch stage of the pipe-
line and the prediction isincorrect as determined when the actual
direction and target become available after the Execution stage,
then the processor has a mechanism to correct the misprediction.
The Specification does not include a Branch Predictor, which is
not part of the user-visible state and is irrelevant for defining the
correct instruction semantics. Note that if an Implementation
processor is verified with completely arbitrary predictions for the
direction of a branch and for the target of a branch or a jump,
then that processor will be correct for any actual implementation
of the Branch Predictor.

Correcting branch mispredictions requires a negated equality
comparison of the actual and predicted targets, so that they will
be classified as g-terms. These terms will update the PC and will
address the Instruction Memory (IMem). That will result in
dependencies of the newly fetched instructions on g; variables,
encoding equality comparisons of such g-term domain variables,
when the nested | TES scheme is used to enforce consistent initial
state of memories addressed by g-terms. These dependencies will
affect the entire final formula and will increase the complexity of
the evaluation. Alternatively, we could use the pushing-to-the-
leaves strategy in order to enforce a consistent initial state for the
IMem. That would avoid the g; variables, but will result inaterm
blow up, especially for wide processors.

Our solution is to introduce a “trandation box” for the
address terms of the IMem (see Fig. 3), i.e,, an UF that will trans-
late its input terms to output p-terms. Indeed, the output terms of
that UF are not be used in any equations, so that they will be clas-
sified as p-terms. Note that such a translation box has to be used
in both the Implementation and the Specification. An UF serving
as atranslation box is a conservative approximation—if a proces-
sor is verified with such UFs, the processor will be correct for
any implementation of these UFs, including the identity function
that connects the input to the output. However, the trandation
boxes help us to better exploit the computational efficiency of
Positive Equality in modeling Branch Prediction. Note that
incorporating Branch Prediction does not require any changes to



Final Vi BDD Variables
Processor F{?al - glgi() M ?\Tgy 'IC':llt:"nL:e
P Rsreg(;:s g g;s Other | Total | €; |Other | Total | Nodes [ME] E

1xDLX-C 52 7 6 0 13 27 36 63 2,127 57| 024
1xDL X-C-BP 49 7 6 10 23 49 41 90 4,004 59| 0.50
1xDLX-C-MC 55 9 6 15 36 47 83 4,650 59| 0.86
1xDLX-C-EX 69 7 6 0 13 27 64 91 7,482 65| 1.78
1xDLX-C-MC-EX 72 9 6 15 36 77| 113 20,624 74 6
1xDL X-C-M C-EX-BP 62 9 6 10 25 62 81| 143 22,270 8.3 6
2xDLX-CA 87 13 12 0 25 116 46| 162 24,227 11 6
2xDLX-CA-BP 83 13 12 15 40 170 68| 238 48,076 15 20
2xDLX-CA-MC 92 17 12 29] 146 76| 222 83,106 15 46
2xDLX-CA-EX 112 15 12 0 27 139 89| 228 345,786 17 410
2xDLX-CA-MC-EX 120 17 12 29] 146 125 271 546,502 20 814
2xDL X-CA-MC-EX-BP 102 17 12 15 441 211 131| 342 779,495 23 979
2xDLX-CC 100 13 12 0 25] 116 57| 173 51,826 16 20
2xDLX-CC-BP 96 13 12 20 451 209 82| 291 113,330 16 81
2xDLX-CC-MC 115 17 12 29] 146 94| 240 182,257 17 164
2xDLX-CC-EX 131 13 12 0 25 122 103 | 225 430,613 19 581
2xDLX-CC-MC-EX 137 17 12 29] 146 150| 296| 1,394,618 37| 3,221
2xDLX-CC-MC-EX-BP | 121 17 12 20| 49] 260| 158| 418| 986,740 31| 2,635

Table 1. Statistics f or the n umber of domain v ariables and the resour ces needed f or the BDD e valuation of the final pr opositional

formula. The memor y and CPU time are repor ted for the sequence of symbolic sim
propositional one , and the e valuation of the latter b y BDDs. V|, designates the set of p-term domain v
g-term domain v ariables. “Sr c Regs” stands f or sour ce register s, while “Dest Regs” f or destination register
gets of branc h and jump instructions.

of the final V, consists of the predicted and actual tar

the Specification processor other than a translation box for the
address terms of the Instruction Memory, i.e., the implementa-
tion details of Branch Prediction remain invisible to the Specifi-
cation. An alternative way to incorporate branch predictionin an
abstract processor is studied in [22].

6 Experimental Results

We started with three base abstract processor models: 1xDL X-C,
a single-issue pipelined DLX [11] with one complete pipeline,
that can execute the 7 abstract instruction types—register-regis-
ter, register-immediate, load, store, branch, jump, and nop;
2xDL X-CA, a dual-issue superscalar DLX with one complete
pipeline and another capable of executing only arithmetic (regis-
ter-register and register-immediate) instructions, such that
between 0 and 2 instructions can be fetched per cycle—this
design is comparable to Burch’s [7] and is inspired by the Intel
Pentium processor; 2xDL X-CC, a dual-issue superscalar DLX
with two complete pipelines, i.e., it has no structural hazards but
4 load interlocks, so that again between 0 and 2 instructions can
be fetched per cycle.

These models were extended with versions that implement:
1) branch prediction, designated with “-BP”; 2) multicycle func-
tional units, marked with “-M C,” where the Instruction Memory,
the ALU in the Execution stage, and the Data Memory were
modeled as having an arbitrary latency, such that two new
abstract instruction types were introduced—multicycle register-
register and multicycle register-immediate (all other computa-
tions that use the ALU were modeled to complete in the clock
cycle when they start)—such that the 2 new instructions could be

ulation, translation of the EUFM f ormula to a
ariables, while V the set of

s. The categor y “Other”

executed only by the complete pipeline in 2xDLX-CA-MC; and,
3) exceptions, “-EX,” where the Instruction Memory, the ALUS,
and the Data Memory could generate exceptions and the new
instruction return-from-exception (executed only by the com-
plete pipeline in 2xDLX-CA-EX) was implemented to clear the
3 Exception Status bits and jump to the Exception-PC. Then, we
created hybrid versions, “-M C-EX” and “-M C-EX-BP,” which
combine several of the above features. Since the second pipeline
in 2xDLX-CA could execute only arithmetic instructions, it had
avacuous Memory stage, so that “-EX” versions of that proces-
sor could have Data Memory exceptions generated only by the
first pipeline. Similarly, “-MC” versions of the same processor
could have stalling of the pipeline stages before the Memory
stage only due to Data Memory accesses of arbitrary latency of
the first pipeline. In “-BP" versions of the dual-issue processors,
branch predictions were made for the two newly fetched instruc-
tions; in “-EX” versions of these models, either of the two new
instruction fetches could generate an Instruction Memory excep-
tion; and, in “~-MC" versions, either of the two instruction fetches
could beinvalid, due to an unfinished Instruction Memory access
of arbitrary latency. All processors were modeled in the style
described in [21].

The results are presented in Table 1. The experiments were
performed on a 336 MHz Sun4 with 1.2 GB of memory. The
Colorado University BDD package [9] and the sifting dynamic
BDD variable reordering heuristic [16] were used to evaluate the
final propositional formula. Burch’s controlled flushing [7] was
employed for al of the designs. As the table shows, our verifica-
tion times range from less than a second for the single-issue case,



up to a little less than 54 minutes for one of the most complex
dual-issue superscalar designs. The memory requirement varies
between 5.7 and 37 MB. The number of propositional variables
ranges from 63 to 418, with between 27 and 260 comprising the
g; variables encoding the equality comparisons of g-term domain
varlables The number of the p-term domain variables is between
2 and 5 times greater than that of the g-term domain variables.

Analyzing the results from the benchmarks where a base
model is extended with a single feature, we can see that adding
exceptions leads to the greatest increase in complexity. This can
be explained with several characteristics of these designs. First,
their user-visible state contains 4 extra latches—an Exception-
PC, and 3 Exception Status bits—so that extra equality compari-
sons for the final states of these latches are added to the EUFM
formula for the correctness criterion. Second, these designs
require more Boolean variables as either part of the initia state
of their pipeline latches or as outputs of the UPs, indicating that a
certain type of exception has been raised for a particular instruc-
tionin flight. Indeed, if we compare the category of “Other BDD
Variables’ in Table 1 for the “-EX” models vs. their correspond-
ing base model, and for the “-MC-EX” models vs. their corre-
sponding “-MC” model, we will see that the number of such
Boolean variables increases significantly, approaching the dou-
ble of the original number. Third, the models with exceptions
exhibit the greatest increase in the branching behavior of the pro-
gram execution. Namely, each raised exception results in squash-
ing of all subsequent instructionsin flight, jumping to the address
of the corresponding exception-handler, and conditional modifi-
cation of all user-visible state elements. Hence, the term blow up
in the correctness criterion formula.

Modeling multicycle functional units—an Instruction Mem-
ory, an ALU, and a Data memory of arbitrary latency, as
explained in Sect. 3—resultsin adlight increase in the number of
“Other BDD Variables.” This can be attributed to the Boolean
variables used as outputs of UPs that produce the non-determin-
istic choice for completing ALU computations or memory
accesses of arbitrary latency. The slightly more g; BDD vari-
ables are dueto theincreased ambiguity of the mstructlon flowin
the processor.

Incorporating Branch Prediction results in the least increase
in evaluation complexity, compared to “-MC" and “-EX" exten-
sions. Between 10 and 20 extra g-term domain variables are cre-
ated (relative to the model that was extended), serving as
predicted and actual targets for branch/jump instructions. This
decreases the number of p-term domain variables, as the actual
targets are no longer classified as p-terms. Potentialy, each of
the extra g-term domain variables can be compared for equality
against al other extra g-term domain variables (unless simplifi-
cations take effect), when the equality comparisons for the final
state of the PC are formed as part of the correctness criterion.
That explains the significant increase in the number of ; Bool-
ean variables. However, most of these g; variables do no{ affect
the instruction flow but only the fina equallty comparisons, so
that their effect isrelatively limited and our BDD variable order-
ing heuristic [21], combined with sifting [16], worked very well.

Although 2xDLX-CC-MC-EX requires 122 fewer BDD vari-
ables than 2xDLX-CC-MC-EX-BP, the verification of the
former takes more CPU time because of variations in the perfor-
mance of the sifting heuristic when used on different Boolean
formulas. However, neither benchmark can be formally verified
without the sifting heuristic—the experiments ran out of memory
after more than 24 hours of CPU time.

Additional details of this research and techniques for acceler-
ating the verification are presented in [22].

7 Conclusions

We were able to formally verify a dual-issue superscalar DLX
processor with two complete pipelines, where the Instruction

Memory, the ALUs, and the Data Memory could each have an
arbitrary latency and possibly generate an exception, as well as
with branch prediction of the two newly fetched instructions, in
less than 44 minutes of CPU time. We believe that the success of
our approach in the extremely efficient formal verification of a
single-issue pipelined DLX with multicycle functional units,
exceptions, and branch prediction (1xDLX-C-MC-EX-BP)—
requiring 6 seconds of CPU time and 8.3 MB of memory—will
enable the formal verification of real pipelined processors with
the same features, e.g., the ARM [2] and the Me CORE [14].
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