
Symbolic Timing Simulation Using Cluster Scheduling
Clayton B. McDonald Randal E. Bryant

�

Department of Electrical and Computer Engineering
Carnegie Mellon University, Pittsburgh, PA 15213�

clayton,bryant � @ece.cmu.edu

ABSTRACT
We recently introduced symbolic timing simulation (STS) using
data-dependent delays as a tool for verifying the timing of full-
custom transistor-level circuit designs, and for the functional ver-
ification of delay-dependent logic. While STS leverages efficient
symbolic encodings to yield huge gains over conventional simula-
tion methodologies, it still suffers from a problem known as event
multiplication. We discuss this problem and present an event-list
management technique based on event-clusters, and a new simula-
tor which utilizes this technique. Finally, we demonstrate substan-
tial speedups on a wide range of test cases, including exponential
improvement on a simple logic chain.

1. INTRODUCTION
As design complexity continues to increase, efficient methods of
verifying timing and functionality become both more important and
more difficult. Symbolic simulation has been used in the past to
greatly increases the effective throughput of simulation-based ver-
ification methodologies, and also as a component of a number of
formal verification strategies. Symbolic timing simulation is an ex-
tension of this technique that correctly accounts for circuit propa-
gation delays.

Symbolic simulation is a form of data-parallel simulation in which
Boolean values are used to encode a set of input data patterns. In
conventional simulation the user applies a pattern of constant 0’s
and 1’s to each of the circuit inputs, steps the simulator, and veri-
fies that the outputs and state elements have settled to the desired
values. With a symbolic simulator, the user may substitute Boolean
variables for any of the input values to signify that the input may be
either a 0 or a 1. If the user applies � Boolean variables, the sym-
bolic simulator will perform the equivalent of ��� conventional sim-
ulations. The outputs and state elements of the circuit will evaluate
to Boolean functions of the input variables, which can be verified
against the desired behavior.

Symbolic simulation relies on having an efficient means of encod-
ing Boolean functions to represent the values of circuit nodes. Typ-
ically, this takes the form of Binary Decision Diagrams(BDDs) [3].
Though the memory required to encode a Boolean function is prov-
ably exponential in the worst case, BDDs have been shown to be
�
This research was supported by the SRC (contract DC-068)

efficient and easily-manipulated data structures for representing a
large number of interesting functions.

We recently applied symbolic timing simulation to the verification
of full-custom transistor-level circuits, as an alternative to static
timing analysis. Custom circuits often contain transistor topologies
that defy heuristic recognition, causing static analyzers to miss tim-
ing checks. A symbolic timing simulator can simulate the timing
of all possible input patterns in parallel and infer the correctness
of all internal timing by checking for correct functional behavior.
This avoids the dependence on correct identification of all possible
latches, flip-flops, dynamic gates, self-timed circuitry, etc.

SirSim [9] is a transistor-level symbolic timing simulator based on
the delay calculation procedures in IRSIM[10]. It demonstrated
the computational feasibility of symbolic timing simulation on a
number of reasonable-sized benchmarks. However, SirSim suffers
from a major bottleneck which we term the event multiplication
problem.

In Section 2, we discuss the extension from symbolic simulation
to symbolic timing simulation as a natural progression of differ-
ent delay models. Section 3 discusses event clusters and how they
can be used to improve performance. In Section 4 we present a
cluster-based event-management scheme and a new symbolic tim-
ing simulator, STEED. Section 5 discusses experimental results and
demonstrates the advantages of our approach.

2. DELAY MODELS
Like conventional simulators, symbolic simulators can be built upon
a wide range of delay models. Historically, symbolic simulators
have been used for functional verification and have tended to uti-
lize either zero- or unit-delay models. However, assigned delay and
data-dependent delay models have been successfully implemented
for other applications.

2.1 Constant Delay
One of the earliest references to symbolic simulation [8] described
a simple zero-delay model. Zero-delay simulation implies a lev-
elized sweep through the circuit going from the inputs to the out-
puts. At each level, a function is computed that represents the value
of each node based on the input variables. While it is extremely ef-
ficient, only acyclic circuits can be dealt with in this manner.

To handle circuits containing feedback or state-holding nodes, a
unit-delay model can be used. Implementation of the unit-delay
model typically utilizes event-lists, where an event is a change in
the value function for a particular node. To start the simulation, the
input values are scheduled by placing them in the list of events to
be executed. The simulator then executes all events in the event
list, computes new values for fanouts of the changed nodes, and
schedules them back onto the event list. This process is repeated

until the circuit reaches a steady-state, as signalled by an empty
event list.

Symbolic simulators which have implemented the unit-delay model
include MOSSYM[2] and Cosmos [4]. Both of these simulators
actually implement a mixture of zero-delay and unit-delay to gain
efficiency when the generality of the full unit-delay model is not
required.

The next level of complexity is the assigned-delay model. Here,
the delay from one node to the next (typically through a logic gate)
has an assigned value � . To handle this case, we simply extend
the event-driven scheme from the unit-delay model by sorting the
event-list by time. At each time-step the event at the head of the
event list is removed (along with any others having the same time
value) and executed. As before, the effects on its fanout are com-
puted, and scheduled into the now-sorted event list to be updated �
time-units later. Devadas et. al. [7] implemented an assigned-delay
symbolic simulator to analyze the transition-delay of gate-level cir-
cuits.

2.2 Data-Dependent Delays
Recently, we demonstrated the feasibility of extending symbolic
simulation to a data-dependent delay model[9]. The difficulty lies
in the fact that the time of an event is dependent on the values of the
input-variables applied to the circuit. Consider the skewed inverter
in Figure 1(a). When the input changes value from variable � to
variable � (Figure 1(b)), either of which could symbolize a 0 or a 1,
it is not clear when the event on node ����� should be scheduled.

To handle this case properly, we can schedule an event at each of
the potential timepoints, along with a mask � that indicates un-
der which input patterns the event will occur. When the event is
removed from the event list, we compute the node’s new value as:

	�

��� �����
���� �������
 ��� � �����
�� �!� ���#"��$� � �����
��
For the inverter case, we schedule an event at time 100 with mask
� � �%� , and at time 200 with mask � � � � , both events having
the new value � . At time 100, the new node value will become� �&�'� � �(�)� �%�*� � �'� � � , and at time 200

� � �+� � �(�!� � �*� � � �'�
� . This resultant series of functions is shown in Figure 1(c). The
intermediate value � � specifies that the output will only be true
between times 100 and 200 if both � and � were false, leaving the
output true continuously.

This mechanism was implemented in SirSim, a transistor-level sym-
bolic timing simulator based on the IRSIM Elmore delay-calculation
scheme. While a substantial speedup was attained over an equiva-
lent exhaustive IRSIM simulation (up to ,.-0/1/ for a 64-bit adder),
SirSim still suffers from the problem of event multiplication. Since
each new node value is scheduled several times, one for each poten-
tial delay, the effects of a single event multiply at each level. This
can cause a total number of events that is exponential in the circuit
depth.

3. EVENT-CLUSTERS
To address the event-multiplication problem in data-dependent sym-
bolic timing simulation, we first introduce the concept of event
clusters. An event cluster is a set of events on a single node with
mutually disjoint masks. The set of events that result on a fanout
node from a single node value change will always form an event
cluster.

11
10

00

fall=100ps

rise=200ps
in out

in a

aba

b

bout

a)

b)

c)

d)

0ps

100ps 200ps

01

ab

Figure 1: Skewed Inverter Timing Diagram

Take for example the events on the output of the skewed inverter
in Figure 1(c). Both output events share a common resultant value,
but differ in their event times and masks. However, the masks are
disjoint (� �(� �&� � -). In Figure 1(d) we plot the timeline for all of
the possible cases in this simple example, representing every event
with a dot. Each dot represents an event which would occur if we
were to run a conventional simulation using the input data pattern
to the left of that line. We join together events which form clusters
with dotted lines.

Each event in a cluster specifies a change on the same node, but
at a different timepoint for each input pattern. Therefore, we can
potentially compute the resultant effects on fanout nodes once for
each cluster, rather than recomputing it for each unique event.

3.1 Cluster-Queues
Unfortunately, event clusters can interact with each other such that
one cluster changes the state of the network during the period cov-
ered by another. In conventional timing simulation, we sort the
event queue such that earlier events are always executed before
later events, thus guaranteeing that the network state is up-to-date.
However, since clusters span time ranges, it is not always possible
to impose a total ordering based on time.

Consider the example in Figure 2, containing the same skewed in-
verter but with an edge-triggered flip-flop connected to its output.
If the clock transitions high at time 150ps, it should sample the old
value for case �&� , and the new value otherwise. Clearly, if we were
to execute the event cluster on ����� before the cluster on 2.�43 , we
would sample the new value for all cases, which is incorrect. Like-
wise, if we executed the cluster on 2.�43 before the cluster on �5��� , we
would sample the old value for all cases, which is also incorrect. In
this case, the only alternative is to split one of the clusters so that
the proper ordering can be maintained.

To be clear about how this splitting takes place, we must first for-
mally define a cluster:687 � 9:	 7<; � 7=;1>?7'@

	 7 A
Node� 7 A
Node value function>?7 A
Set of time-function pairs

� � �1B7 ;1C B7 � �
�1B7 A scalar time valueC B7 A mask function for � B7
Note: DFEHG�JI��1� C B7 � CLK 7 �'� - �

10

00

clk: 0->1 @ 150

out: a -> b @t=100,200
in:a->b @t=0

in
rise=200ps

fall=100ps

clk

out

01

ab

11

Figure 2: Event Cluster Interactions

Based on this definition, we can define a relation � , such that
cluster A can be safely executed before cluster B if and only if687 � 6��

.

6 7 � 6 ����� DFE ; I�� � � B7
	 � K � �(� � C B7 � C K � ���
This states that

6 7 � 6 �
if and only if

6 7
occurs earlier than

6 �
for all cases in which they are both defined.

A cluster queue is an ordered list of clusters such that:
 � � 6��
; 6��5;������ ; 6�� �
D�E 	 I�� 6

B � 6 K �

Note that this definition of correctness requires 3
���
� comparisons

to verify. At the cost of additional splitting, we can reduce the
computations required to insert a new cluster into this queue if we
define the additional function:

C ��� �����
 2
 �
%� 6 7 ; 6 � �'���
B � K
� C B7 � CLK � � � �1B7
	 � K � �1�

In other words,
C �!�.�"���
 2
 �
 returns the Boolean function con-

taining all input assignments for which clusters
6 7

and
6 �

are
both defined, and in which

687
must occur before

6#�
.

During insertion into a cluster queue, we may be required to split
the new cluster so that the above ordering conditions can be met.
To compute the portion of cluster

6
that intersects with an addi-

tional masking function $, we introduce the function
6�% �'& � 6�; $ � ,

which returns a copy of cluster
6

where all events that do not in-
tersect $ have been removed.

6)(�*�+",.- 6�% �/& � 6�; $ �6)(�*�+", � 9:	 ("*�+",�; � ("*�+",�; >�("*�+", @
	 (�*�+", � 	10
� (�*�+", � � 0
>�(�*�+", � � � �1B("*�+", ;1C B(�*�+", � �

� B(�*�+", � � B 0C B(�*�+", � C B 0 �2$
When inserting a new cluster

6 7
into the queue

6��.;������ ; 6 � ; 343
, , we will initially split

6 7
into at most 365 , pieces that will be

inserted between each of the existing clusters:
 � � 687 � ; 6 � ; 687 � ; 6 � ;������ 6 7 �%; 6��&; 6 7�7 ��8 ��9 �

1 EnqueueCluster(Cluster �

� , ClusterQueue

)
2 if(

empty)

3

:- �

�

4 return
5 ; � �
 -=< � �>�

6

>�? ; - �

�
7 foreach cluster 2 in

8 ��� - C ��� �����
 2
 �
&� >�? ; ; 2 �
9 if(�@� � �"���
)

10 insert
>�? ; before 2

11 return
12 else if (�@� � < ���A�
)
13 next 2
14 � - 6�% �'& � >�? ; ; �@� �
15 insert � before 2
16

>B? ; - 6�% �'& � >�? ; ; ��� �
17 ; � �
 - ; � �
 5 �@�
18 if(; � �
�� �"���
)
19 return
20 append(

>�? ; , Q)
21
22 Cluster DequeueCluster(ClusterQueue Q)
23 �
 � � %
 �&� �
 �
24

C-=
ED �
 �
25 return �
 �

Figure 3: Cluster Queue Operations

We can recursively compute each of these partial clusters as fol-
lows:

687
B

� 6�% �/& � 687 ; � B � ; E � , ����� � 3F5 , �
where,

� B � C ��� �����
 2
 �
%� 687'; 6 B � �
GK�H B
� K ; E � , ����� 3

� ��8 � �
�
GK�I � � K

Note that in implementing this insertion procedure, we need not
insert NULL events (for which � B � -).

Pseudocode for the cluster enqueue and dequeue operations are
shown in Figure 3. EnqueueCluster scans through the queue, split-
ting off and inserting each portion of the new cluster as required.
If �@� contains the constant function �"���
 in line 9, we can insert
the entire remaining cluster and terminate. If ��� is

< � �>�
 , there
is no interaction and we can move on to the next cluster. Lines
14-15 enqueue the portion that must be inserted before the current
cluster, and lines 16-19 remove that portion from the original and
keep track of what’s been done so far. If we reach the end of the
queue, any remaining portion of the cluster is simply appended.
DequeueCluster simply removes the head of the cluster queue and
returns it.

Two example cluster insertions are shown in Figure 4. In part (a),
the cluster

6
�KJ"L can be inserted completely before

6#�
. Despite

the fact that the first (leftmost) event in
6 �

is earlier than the first
event in

6
�MJNL ,

6
�KJ"L precedes

6��
for all input assignments for

which they are both defined. In part (b), we see that
6
�MJ"L must be

split into 3 parts to preserve a consistent ordering. Notice that only
those portions that must precede

6��
and

6��
are split off, and the

remainder is grouped together at the end of the queue.

001

011
010

000

100

110
111

101

Cluster
Queue

C1 Cnew C2 ...

(a)

001

011
010

000

100

110
111

101

Cluster
Queue

Cnew2Cnew1 C1 C2 Cnew3

(b)
Figure 4: Cluster Queue Insertion

3.2 Cluster Scheduling
It is possible to construct a data-dependent symbolic timing simula-
tor with a single cluster-queue for all events. However, upon doing
so, we discovered it to be highly inefficient due to interactions be-
tween independent clusters. This results in the majority of clusters
being split several times to maintain proper ordering, which fails
to alleviate the event-multiplication problem. Even worse, it incurs
the additional overhead of managing the cluster-queues.

The solution lies in realizing that a strict time ordering across the
entire circuit is not required. We simply need to make sure that all
circuit state which can affect the computation of a certain event has
been accounted for when that event is executed.

For clarity, we will describe the case of a gate-level logic network,
but the same principles apply to transistor-level networks subdi-
vided into channel-connected regions. For a cluster of events

6
to

be ready for execution at the input to gate � , we must satisfy the
following conservative safety conditions:

1. There may be no pending events on the other inputs to � that
precede events in

6
.

2. There may be no pending events on the output of � that pre-
cede events in

6
.

3. There may be no pending events upstream of the other inputs
to � that could propagate to � before the completion of

6
.

Conditions 1 and 2 can be satisfied by creating one cluster-queue
for each gate. Events are scheduled into the cluster-queue for the
driving gate and all receiving gates. When events are dequeued
from the driving gate’s cluster-queue, only node state is updated.
When events are dequeued from the receiving gate’s cluster-queue,
node state is updated and the effects of that node transition are com-
puted in the receiving gate. Consequently, each node has multiple
current states, one for each gate it is connected to. We denote the
value of node

	
relative to gate � as

���� .

Condition 3 requires knowledge of the minimum propagation delay
between any two gates. If the output of one gate cannot propagate
to the output of another, the minimum propagation delay is defined
as � . Once the minimum delays are known, we can guarantee
safety if, for all other events " :

���	��
 �
��� - D�� ��� ����� ��
������ 5�� �����
!�"��#$� �&%(') ����
�����* �� %
 �

��� �5��E
 � ��+ � C E � B

� �1B + �, �%�
 � ��+ � C �.- B
� �1B + �

The minimum propagation delay between any two nodes can be
computed by determining a conservative minimum delay per gate,
and computing All-Pairs-Shortest-Paths via the Floyd-Warshall or
Johnson’s algorithm [6]. Johnson’s algorithm requires " � � � � �
�0/ � � time, which is " � � / � �0/ � � for a fully-connected graph. How-
ever, since the maximum fanout of each gate is limited to a small
integer, usually 132 , the number of edges is effectively " � � � ,
bringing the overall complexity to " � �

� � �0/ � � . Furthermore, this
computation can be done as a pre-processing step and re-used from
one simulation run to the next.

If no pending clusters satisfy the safety conditions, it is always
safe to effectively revert to the non-cluster methodology by split-
ting off the earliest event contained in all clusters. While this hurts
efficiency, it guarantees forward progress. Hopefully, by remov-
ing several singular events, we will again be able to guarantee the
safety of one or more clusters and return to full-speed operation.

The improved cluster scheduling algorithm is presented in Figure 5.
It makes use of the EnqueueCluster and DequeueCluster operations
from Figure 3.

Simulate() forms the main body of the simulator. As long as pend-
ing events remain, it obtains them via GetNext(). Recall that each
event cluster is scheduled into the cluster queue for its driving gate
and for all receivers. If the cluster returned by GetNext() was from
its driver’s queue, only that node state is updated. However, if the
cluster was removed from a receiver’s queue, then the results of that
node transition in the receiving gate are computed and scheduled as
a future event.

GetNext() is responsible for finding an event-cluster that can be
safely executed. It first checks if any of the clusters at the heads
of any of the gate queues are ”safe”, and returns them if they are.
Otherwise, it creates a new event cluster containing only the earliest
event present in all clusters. That earliest event is then deleted from
the original cluster by eliminating that case from its mask.

Safe() checks condition 3 specified above. It visits event clusters in
order of increasing earliest timepoints, which allows for the early
termination case in line 9. If it finds any event which could arrive at
� before

6
completes, it returns false. If it finds no clusters which

could conflict, it returns true.

Schedule() simply schedules an event cluster into the cluster-queues
for all gates connected to

	 0
.

4. IMPLEMENTATION
The algorithms from the preceding section have been implemented
in STEED (Symbolic Timing Engine for Electronic Design), a transistor-
level symbolic timing simulator. STEED computes data-dependent

1 Schedule(Cluster C)
2 foreach Gate � connected to

	 0
3 EnqueueCluster(

6
,

 �)

4
5 Boolean Safe(Cluster C, Gate G)
6 D("��
 � sorted by increasing earliest timepoint
7 if(��� � ��E
 � ��+25 � E � ;
 �����$+ � � 	 , �%�
 � � 0)
8 return false
9 if(��� � ��E
 � ��+ ' , �%�
 � � 0)

10 return true
11 return true
12
13

9 6 �$��� �
 � ; ���&�
 @ GetNext()
14 foreach Gate �
15 if(Safe(

%
 �&� �
 � � , �))
16 return

9
DequeueCluster(

 �), � @
17 find Cluster � that contains earliest event
18

C - C B � ; such that � B � � ��� � �$E
 � � �
19 ��� -�6�% �'& � � ; C �
20 � - 6�% �/& � � ; C �
21 return ���
22
23 Simulate()
24 while(

9 6�; � @ -
GetNext())

25
���� - � 0

26 if(
	 0 �#E � &F� � � � � �)

27
		� - �5� �>&F��� � � �

28
� � -

new value for
	 �

29
> � -

output transition time of
	
�

30 � - 9:	 � ; � � ; > � @
31

C - � �+
��� ,���� 7 � 9�� ���
32 Schedule(Chop(� ; C))

Figure 5: Symbolic Simulation Using Cluster Scheduling

delays based on the Elmore approximation (RC products), utiliz-
ing the methodology implemented in IRSIM[5]. It borrows the
node value and delay-calculation engines from SirSim [9], an ear-
lier symbolic timing simulator not based on cluster scheduling.

As transistor-level simulators, both STEED and SirSim operate on
channel-connected regions (CCRs) rather than on gates. An input
to a CCR is any node connected to the gate of a transistor in that
CCR. An output of a CCR is any node connected to the source
or drain of a transistor in that CCR. Note that internal nodes are
considered outputs for the purposes of the scheduling algorithms.

When an input to a CCR changes, the new value of all output nodes
is computed based on voltage-divider or on charge-sharing models.
This new value is returned as a BDD, representing the Boolean
function of that node relative to the applied input variables.

Delays are computed symbolically using Multi-Terminal Binary
Decision Diagrams (MTBDDs)[1]. MTBDDs are an extension of
BDDs that may contain an arbitrary number of real-valued termi-
nal nodes, rather than the binary terminals 0 and 1. The delay
MTBDDs returned by the delay calculation engine encode the de-
lay value due to the current node transition, as well as the mask
information. Recall that the mask specifies under what logical con-
ditions the output transition will occur. If no transition will occur,
this is encoded as an infinite delay value in the delay MTBDD.

The delay MTBDD for the skewed inverter case is shown in Figure
6. To interpret this MTBDD, we follow the solid arc when the

b

a

b

inf. 200100

Event Time

Figure 6: Event Time MTBDD

Table 1: Runtimes
SirSim STEED

Name MB sec. Ev MB sec. Ev SU
adder16 22 20 4015 5.5 5.2 2802 3.5
adder32 102 107 15194 17 22 6525 4.8
adder64 280 784 58692 61 147 16459 5.3
byp add16 33 26 13 14 4013 2.0
byp add32 250 213 241 397 19267 0.5
adder32.r 230 207 15616 36 39 6832 5.3
adder64.r 298 2078 61289 188 267 17331 7.8
s298 2.7 2.2 2350 2.5 3.0 3178 0.9
s382 7.2 10.0 5485 6.4 9.0 3178 1.1
s444 6.4 9.5 6324 7.1 11.6 7017 0.8

associated variable is true, and the dashed arc when it is false. In
this case, we see that no event will occur (delay = �) when both
� and � are true, or when both are false. When � is true and �
is false, we get a rising transition on the output having a delay of
200. When � is false and � is true, we get a falling transition on the
output having a delay of 100.

All of the operations in the cluster-queue and cluster-scheduling al-
gorithms can be implemented easily using standard MTBDD func-
tions. The CUDD 2.2.0 [11] decision-diagram package was used
for all symbolic computation.

5. RESULTS
STEED was run for most of the benchmarks reported in [9] as well
as several others. STEED achieved a speedup in nearly every case,
up to 7.8X. Table 1 shows runtimes, peak BDD memory usage,
and event counts for STEED and Sirsim, as well as the speedup
attained. Recall that, in STEED, events are inserted into the queues
for both driver and receiver, increasing their apparent number. The
effective event count is typically about half the total number which
appears in Table 1.

The lowest speedups occur on the carry-bypass adders, byp add16
and byp add32. These test cases contain especially large channel-
connected regions in their carry-chains, meaning more nodes and
events per cluster-queue. When large numbers of events are in-
serted into a single cluster-queue, fragmentation of the events in-

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60 70

R
un

tim
e

(s
ec

on
ds

)

Adder Width

SirSim
STEED

Figure 7: Comparison of Adder Runtimes

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30 35 40 45 50

R
un

tim
e

(s
ec

on
ds

)

Inverter Chain Depth

SirSim - rand caps
SirSim - const caps
STEED - rand caps

STEED - const caps

Figure 8: Inverter Chain Performance

. . .

A B C

Figure 9: Inverter Chain with Data-Dependent Load Elements

creases, and the computational overhead of queue management be-
comes costly. These test cases suggest that a hybrid scheduling
mechanism might be beneficial.

On the smaller combinational benchmarks, we see very little differ-
ence between SirSim and STEED. Apparently, the shallower logic
cones (" ������� � � versus " � � � for the adders), mitigate the event
multiplication problem, such that cluster-queue management off-
sets the gains in event count.

STEED’s performance on the standard adders is exceptional, ob-
taining a speedups as high as 5.3X. As shown in Figure 7, STEED’s
speedup over SirSim grows with the size of the adder.

In order to demonstrate a further advantage over non-cluster-based
scheduling, we generated two test-cases, adder32.r and adder64.r,
with additional small randomized capacitance values on every node.
These capacitances break up much of the symmetry in delay values
on multi-input gates. For SirSim, this aggravates the event multipli-
cation problem, increasing the time required to complete the simu-
lation. However, for STEED, the event time MTBDDs simply grow
a little larger, impacting performance less profoundly. The result
of these additional capacitances is a larger speedup due to cluster
scheduling, reaching 7.8X for the 64-bit circuit. Furthermore, these
test cases model the real-life situation in which back-annotated ca-
pacitance values are included in the simulation, especially when the
circuit being simulated has irregular routing above it.

To isolate the effects of event multiplication, we constructed in-
creasing lengths of inverter chains with data-dependent load ele-
ments (Figure 9). Under SirSim’s scheduling algorithm, a transi-
tion on the input will generate two possible delay values through
the first stage, dependent on the state of signal A. At each succes-
sive stage, the number of events at the output doubles, resulting in
an exponential number of events. This is responsible for the expo-
nential runtime shown by the top two lines of Figure 8.

STEED encodes the events on each stage’s output as an event clus-
ter. If the capacitors connected to the data-dependent load elements
are randomized, there will still be a unique delay case for every pos-
sible input assignment, so the cluster event-time MTBDDs (

> 0
)

will grow exponentially. Note however, that the exponential run-
time is of lower order than in SirSim. If the load-element capaci-
tors are are constant or take on some small number of distinct val-
ues, the cluster event-time MTBDDs have a mesh structure and
quadratic size. In this case STEED achieves polynomial runtime,
as shown by the bottom line on Figure 8.

6. CONCLUSION
We have identified a major bottleneck in the data-dependent schedul-
ing mechanism found in SirSim, which we term the event multi-
plication problem. To address this issue, we introduced an event-
management methodology based on event clusters, and implemented
it in the simulator STEED. We obtained a substantial speedup in
nearly all test-cases attempted, demonstrating the advantages of
cluster-based scheduling.

7. REFERENCES
[1] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. Hachtel, E. Macii,

A. Pardo, and F. Somenzi. Algebraic Decision Diagrams and
Their Applications. ACM/IEEE International Conference on
Computer Aided Design, pages 38–43, October 1992.

[2] R. E. Bryant. Symbolic Verification of MOS Circuits. 1985
Chapel Hill Conference on VLSI, pages 418–438, 1985.

[3] R. E. Bryant. Graph-Based Algorithms for Boolean Function
Manipulation. IEEE Transactions on Computers,
C-35(8):79–85, August 1986.

[4] R. E. Bryant. Boolean Analysis of MOS Circuits. IEEE
Transactions on Computer Aided Design of Integrated
Circuits and Systems, CAD-6(4):634–639, July 1987.

[5] C. Y. Chu. Improved Models for Switch-Level Simulation.
PhD thesis, Stanford University, October 1988.

[6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction
to Algorithms. McGraw Hill, 1997.

[7] S. Devadas, K. Keutzer, S. Malik, and A. Wang. Certified
Timing Verification and the Transition Delay of a Logic
Circuit. Proceedings of the Design Automation Conference,
1992.

[8] I. Hajj and D. Saab. Symbolic Logic Simulation of MOS
Circuits. International Conference on Circuits and Systems,
pages 249–249, 1983.

[9] C. B. McDonald and R. E. Bryant. Symbolic Functional and
Timing Verification of Transistor Level Circuits. ACM/IEEE
International Conference on Computer Aided Design, 1999.

[10] A. Salz and M. A. Horowitz. IRSIM: An Incremental MOS
Switch-level Simulator. Proceedings of the Design
Automation Conference, pages 173–178, June 1989.

[11] F. Somenzi. CUDD: CU Decision Diagram Package -
Release 2.2.0, Online User Manual, May 1998.

