Convergence Testing in Term-Level Bounded
Model Checking *

Randal E. Bryant’?, Shuvendu K. Lahiri?, and Sanjit A. Seshia!

School of Computer Science & Electrical and Computer Engineering Department
Carnegie Mellon University, Pittsburgh, PA 15213
Randy.Bryant@cs.cmu.edu, shuvendu@ece.cmu.edu, Sanjit.Seshia@cs.cmu.edu

Abstract. We consider the problem of bounded model checking of sys-
tems expressed in a decidable fragment of first-order logic. While model
checking is not guaranteed to terminate for an arbitrary system, it con-
verges for many practical examples, including pipelined processors. We
give a new formal definition of convergence that generalizes previously
stated criteria. We also give a sound semi-decision procedure to check
this criterion based on a translation to quantified separation logic. Pre-
liminary results on simple pipeline processor models are presented.

1 Introduction

Systems with parameters of finite but arbitrary or large size are often modeled
as infinite-state systems. Such systems include superscalar processors, communi-
cation protocols with unbounded channels, and networks of an arbitrary number
of identical processes. While state elements can still be of Boolean type, richer
data types such as unbounded integers or unbounded arrays of integers are also
used. Employing this richer expressive power is one approach to tackling the
state explosion problem.

In the area of hardware verification, the logic of Equality with Uninterpreted
Functions and Memories (EUFM) has been successfully used for the automated
verification of pipelined processor designs [8, 3]. The more general logic of Counter
Arithmetic with Lambda Expressions and Uninterpreted Functions [4] (CLU)
has been used for bounded model checking and inductive invariant checking
of out-of-order microprocessors with unbounded resources [14]. Bounded model
checking proceeds by symbolically simulating the system for a finite number of
steps starting from an initial state, checking on each step that a state property
holds. As the state elements can be terms in a first-order logic, we will refer
to this technique as term-level bounded model checking. Since term-level models
can express Turing machines [12], the symbolic simulation might never reach a

* This research was supported in part by the Semiconductor Research Corporation,
Contract RID 1029 and by ARO grant DAAD 19-01-1-0485.

fixpoint in general. However, in many practical cases, the simulation does con-
verge. It is therefore necessary to check, after each simulation step, whether the
simulation has converged.

In this paper, we make two main contributions. First, we give a formal definition
of convergence for term-level bounded model checking, where CLU logic is used
as the modeling formalism. The convergence criterion is formulated as a quanti-
fied second-order formula with one quantifier alternation and is undecidable in
general. Second, we give a semi-decision procedure for this class of second-order
formulas. Our procedure is based on a sound translation to a decidable frag-
ment of first-order logic called quantified separation logic (QSL). QSL formulas
are quantified Boolean combinations of Boolean variables and predicates of the
form x; < z;+cor x; = x;+ ¢, where ; and z; are real or integer variables, and
¢ is a constant. The QSL formulas are then decided by a translation to quantified
Boolean logic [15]. Although we use the semi-decision procedure for convergence
checking, our results are also more generally applicable to automated theorem
proving of second-order formulas.

Previous term-level model checkers vary in expressiveness of the underlying logic,
and either use syntactic convergence criteria or approximation techniques that
guarantee convergence at the cost of completeness. Hojati et al. [12] presented
a modeling formalism called ICS which is similar in expressiveness to EUFM.
They showed that ICS models do not converge in general, except under highly
restrictive assumptions that are not of practical interest. Isles et al. [13] built
on this work, giving a conservative, syntactic definition of convergence of ICS
models, and using it to verify versions of the DLX pipeline. Our logic is more
expressive than ICS. Also, as we show in Section 5.2, their convergence criterion
is a special case of the one we present in this paper. Corella et al. [9] have used
Multiway Decision Graphs (MDGs) for term-level model checking. MDGs are
BDD-like data structures used for representing formulas in quantifier-free logics
such as EUFM and CLU; the exact logic represented depends on the set of
interpreted function symbols used in the model. Thus, Corella et al. use MDGs
to represent the characteristic function of the set of states of a term-level model.
Unlike our work, their models cannot have variables of function type, and hence
cannot verify systems with embedded memories. However, they address a more
general class of properties expressible in a first order temporal logic. With respect
to convergence checking, Corella et al. use syntactic rewriting techniques similar
to those employed for ICS [13]. Bultan et al. [6] have used Presburger arithmetic
for verifying concurrent algorithms. Checking convergence for systems expressed
in Presburger arithmetic is decidable; however, since the model checking might
not converge in general, they conservatively approximate the fixpoint, allowing
the possibility of spurious counterexamples. In comparison, our use of CLU logic
allows us to use uninterpreted functions and also lets us model richer systems
with memories. This expressive power, however, results in convergence checking
becoming undecidable.

The rest of the paper is organized as follows. Section 2 presents CLU logic and
our system modeling formalism. Section 3 defines the term-level bounded model
checking problem. In Section 4, we formally define the convergence criterion.
Section 5 describes how we check this criterion. Finally, we conclude in Section 6
with some preliminary results with pipelined processor models. For brevity, we
have omitted proofs of theorems and an alternate complete semi-decision proce-
dure; these can be found in an accompanying technical report [5].

2 Preliminaries

2.1 CLU Logic

Syntax. The syntax includes four classes of expressions, representing computa-
tions of truth values or integers, as well as functions over integers yielding truth
values or integers. We use symbols to represent abstract values and functions.

bool-expr ::= true | false | bool-symbol | ~bool-expr | (bool-expr A bool-ezpr)

| (int-expr=int-expr) | (int-expr< int-ezpr)

| predicate-expr(int-expr, ... , int-expr)
int-expr = lambda-var | int-symbol | ITE(bool-ezpr, int-expr, int-ezpr)
| int-expr + int-constant | function-ezpr(int-ezpr, . .. , int-expr)
predicate-ezpr := predicate-symbol | X lambda-var, . . . , lambda-var . bool-expr
function-ezpr == function-symbol | A lambda-var, . .. , lambda-var . int-ezpr

Fig. 1. Expression Syntax. Expressions can denote computations of Boolean values,
integers, or functions yielding Boolean values or integers.

Symbols are written with a typewriter font, such as a or f. Associated with
each symbol is a type indicating what kind of value it represents (truth, integer,
function, or predicate). For function and predicate symbols, the type includes
its arity indicating the number of arguments it takes. For function symbol £, we
write its arity as arity(f). For a set of symbols A, we let E(A) denote the set of
all expressions that can be formed using these symbols, obeying the usual rules
on type matching.

The syntax includes integer lambda variables. These only serve to represent the
arguments to lambda expressions. Note also that the lambda expression syntax
is constrained so that they cannot have functions as arguments, and they cannot
express any form of looping or recursion.

Sets of Expressions. We use two ways to refer to sets of expressions in which
we must identify the different elements. The first is a vector notation, in which
we index the elements with integer subscripts. We use the notation &, to denote

a vector with elements e, ... ,e,. The second is a named-element notation, in
which we have a set of symbolic names 4 and write a set of expressions e as
having an element e, for each a € A.

With both notations, we can indicate the syntactic substitution of elements for
symbols or variables in an expression. That is, the expression s [€,/Z,] denotes
the expression where each instance of z; in s is replaced by the expression e; for
1 <4 < n. These substitutions are performed in parallel, so there is no ambiguity
of some expression e; contains the symbol ;. Similarly, s[é/.A] indicates the
result of replacing each instance of a symbol a € A with the expression e,.

Semantics. For a set of symbols A, we let 0 4 indicate an interpretation of each
of these symbols. That is, 04 maps each symbol to an integer, a truth value, or
a function according to the symbol type. For any expression e € E(A), we define
its evaluation under interpretation o4, denoted (e), as the value obtained by
evaluating e when each symbol a is replaced by its interpretation o4(a). We
omit the detailed definition.

A truth expression e € E(A) is said to be universally valid when it evaluates to
true for all interpretations of its symbols, i.e., when (e}, , = true for all o4.

As a final notation, for disjoint symbol sets .4 and B, each having interpretations
o4 and o, we let o4 - op denote the interpretation over the symbols in AU B
obtained by applying the respective interpretations to the symbols in A and B.

As noted earlier, our syntax for function applications requires all arguments to be
integer expressions. We can therefore transform any integer or truth expression
containing lambda expressions into an equivalent lambda-free one by perform-
ing Beta reduction, in which the actual parameter expressions are syntactically
substituted in parallel with the actual parameter expressions.

2.2 System Model

We model the system as having a number of state elements, where each state
element may be a truth or integer value, or a function or predicate. This latter
class of state elements allows us to describe various forms of memories. For
example, a conventional random-access memory can be modeled as a function
that yields an integer data value given an integer address as argument. We use
symbolic names to represent the different state elements giving the set of state
symbols S. We also introduce a set of input symbols T, representing a set of input
signals that can be set to different values on each step of operation. That is, on
each step ¢, we introduce a symbol a; for each input symbol a. We refer to such
signals as the indezed input symbols. We introduce two more sets of symbols
and 7 to allow one run by the verifier to compute the behavior of systems with
different functionality operating with different initial state and input values. The
symbols in K parameterize system functionality. This could include, for example,
function symbols for the ALU, and the contents of the instruction memory. The
symbols in 7 parameterize the initial state and system input sequence. These

could include a function symbol to encode the initial state of a memory. They
also include the indexed input symbols.

The overall system operation is characterized by an initial state s° and a transi-
tion behavior 6. The initial state contains an expression for each state element.
The initial value of state element a is given by an expression s € E(Z). The
transition behavior consists of an expression for each state element. The behav-
ior for state element a is given by an expression d, € E(X US U T). In this
expression, we use the state element symbols to represent the current system
state, and the input symbols to represent the current values of the inputs. The
expression then gives the new state for that state element.

From these expressions, we define the state sequence for the system s, ... ,s?,...,
where the state at step i consists of an expression for each state element s. €
E(K UZ). This expression is given by performing the double substitution

st=108,[s1S, t)T], (1)

where the input expression ¢! has t{ = a; for each a € 7. As mentioned earlier, we
always perform Beta reduction following a substitution such as this. We use the
shorthand s* = §(s*~1,#%) to indicate this process of generating the expressions
for the state at step i.

3 Property Checking

A system property P is represented as a Boolean expression over the state el-
ements P € E(S). Typically we want to determine whether P holds at some
particular step k, or whether P holds at every step. We can determine whether
P holds at some particular step k& by applying a decision procedure for CLU
logic. However, our interest here is to prove that P holds for every step ¢ > 0.
In general, this task is undecidable. The problem remains undecidable even if we
restrict the class of systems to ones with only integer state elements, and where
the system behavior is described using a logic of equality with uninterpreted
functions [12].

Instead, we focus on a more restricted class of systems that satisfy a property
we call k-convergence. With these systems, every reachable state can be reached
within & steps for some combination of initial state and inputs, for some fixed
bound k. If we can prove that a system is k-convergent, then we can guarantee
property P holds on every step by verifying that it holds on every step up
through s*.

Formally, we say that a system with initial state s® and transition behavior &
converges in k steps, when for every interpretation oz of the initial state and
inputs and for every interpretation ox of the system parameters, there exists a
step ¢ < k and an alternate interpretation 67 of the initial state and inputs, such
that for every state symbol a € S

(820z0x = (52 Vorioe - (2)

We use the shorthand (s%), = (sF+1)

0K o0,
state element. Property (2) states that by step k+1, the system will not reach any
new states. That is, for every possible interpretation of the system parameters
Ox, and for every possible operation of the system for k + 1 steps, as determined
by the interpretation oz of the initial state and indexed input symbols Z, there is
some alternate initial state and input sequence, given by interpretation 67 that
would have led to the exact state in i steps for some 0 < i < k.

. to indicate this equality for every

We show that this property guarantees that the system will not reach new states
beyond step k.

Theorem 1. If a system converges in k steps, then for any j > 0 and any
interpretation ox of the system parameters, there exists a step i < k and an
alternate interpretation 01 of the initial state and inputs, such that

COPE SCHR. (3)

4 Formulation of the Convergence Criterion

We now reach the main topic of this paper: determining whether a system is
k-convergent for some value of k. We can express this as a problem in second-
order logic as follows. Introduce a symbol set J consisting of a symbol a’ for
each initial state symbol a € Z, and a symbol a} € 7 for each indexed input
signal a;, for 1 < i < k. Rewrite each state expression s?, for 0 < i < k to an
expression r?, by replacing each symbol in Z with its counterpart in 7.

Using the notation of predicate calculus, we consider the symbols in 7, J, and
K to be quantified variables, either first-order (for integer or Boolean symbols)
or second-order (for function or predicate symbols). We can then write the con-
vergence criterion as:

vkvzag | \/ N ri=stt! (4)

0<i<k a€S

With these quantifiers, we are really quantifying over the possible interpretations
of the symbols. Note that this formula cannot be expressed in first-order logic,
because we have existentially quantified function symbols.

Example 1. Consider a system with the integer state variables x, y and Boolean
state variable b. The operations are defined by:

init[x] = co initly] = <o init[b] true
next[x] = £(x) next[y] = f(y) next[b]=(x=y)

where cg is an integer symbol and £ is an uninterpreted function symbol. Using
our notation, the sets of symbols are defined as follows — S = {x,y,b}, K = {f},
T ={co} and J = {cp}-

After simulating the system for one step, the convergence condition (given by
equation 4, where k = 0) becomes:

V£ Vo Jeg [co = £(co) A cg = £(co) A true = (£(co) = £(co))]

which simplifies to V£ Vco Jcg [c = £(cg)], which is clearly valid, with cj taking
the value £(co).

Therefore the system converges after one step of simulation. As expected, the
state variable b is always true in the reachable set of states.

For a function or predicate state element F, the expression ri = s5*1 is a second-
order equation—it states that two functions or predicates are identical for all
possible arguments.

For systems without function or predicate state elements, our convergence cri-
terion yields a formula with the quantification structure shown in (4), with only
first-order equations. Even for the simple case of a system with one integer sym-
bol in Z, one function symbol of arity 2 in K, deciding the truth of a formula
with this structure is undecidable [2].

Again we find ourselves facing an undecidable property. We deal with this by
1) using syntactic transformations to eliminate the second-order equations for
function and predicate state elements, and 2) using a sound, but incomplete
decision procedure for second-order formulas of the form shown in (4). Our
procedure is quite simple, but it seems to work well for the formulas arising in
our convergence testing.

5 Checking Convergence

5.1 Function and Predicate State Elements

We can convert our convergence formula (4) to one containing only first-order

equations by introducing a set of argument symbols Z = z;,... ,z,, where n
is the maximum arity of any predicate or function state element. Suppose state
element F has arity arity(F) = m. Then define 7% = ri(zy,. .. ,2,), and similarly
define 3. = si(zy,...,2m,). Then we can rewrite the convergence criterion as:
vkvzagvz | \/ N\ #i=s (5)
0<i<k a€S

Unfortunately, we have no general approach to handle formulas with this quan-
tifier structure. Instead, we use rewriting techniques to handle limited forms

of function and predicate state elements. Our technique is sufficient to handle
random-access memories, including the data memory and register file of a mi-
CrOProCessor.

A random-access memory is modeled as a function state element Mem where
the argument is an address, and the function returns the value stored at that
address. Consider a memory with address input Adr, data input Dat and write-
enable signal Wrt. We describe the memory operation in our term-level modeling
language as:

init[Mem| = mp
next[Mem] = Az . ITE(Wrt A z = Adr, Dat, Mem(z))

where mg is an uninterpreted function giving the initial memory contents. Note
the restricted class of expressions that will result when modeling the operation
of this memory over time to generate the expression 7. At the base is an
uninterpreted function, which can be assigned an interpretation that matches
any desired functionality. There will then be a bounded number of updates due
to write operations, but these will each be to a single (symbolic) address.

Suppose we wish to determine whether the system has converged for some fixed
time point 7, so that Equation 5 reduces to

A=] (6)

acS

VKVYI 3T VZ

Then the convergence criterion for state element Mem will have the general form:
VA3IBVz F'(z) = F(z) (7

where expression F' has only symbols in A, while expression F' has symbols from
both B and A.

We apply a set of rewrites to the symbols in B and generate a set of verification
conditions that guarantees (7) holds, based on the structure of expression F".
In general, our rules apply to equations of the form P(z) = F'(z) = F(2),
where P is a predicate expression with symbols from both B and A. At the top
level, we start with P being an expression that always yields true.

1. For equations of the form P(z) = £'(z) = F(z), where £’ is a function
symbol in B, rewrite all occurrences of £’ in 7 to be Az.ITE(P(z), F(z), £'(x)).

2. For equations of the form P(z) Az =E = F'(z) = F(z), where E
is an expression with symbols from both B and A, reduce the equation
to P(E) = F'(E) = F(E). This eliminates any reference to z in the
equation.

3. For equations of the form P(z) = [Az.ITE(Q(z), G'(z), H'(z))] (z) =
F(z), where @), G', and H' are predicate and function expressions containing
symbols in both A and B, we generate two verification conditions: P(z) A
Q(z) = G'(z) = F(z), and P(z) A -Q(z) = H'(z) = F(z), and solve
these recursively.

4. For equations of the form P(z) = £(z) = F(z), where f is a function
symbol in A, we recursively analyze the structure of F.

— If F is of the form ITE(Q(z), G(z), H(z)), where Q, G, and H are
predicate and function expressions containing symbols in .4, we generate
two verification conditions: P(z) A Q(z) = £(z) = G(z), and P(z) A
-Q(z) = f(z) = H(z), and solve these recursively.

— If F is of the form g(z), then the symbols £ and g need to be the same.
If the two symbols are different, we return false which implies that no
rewrite exists.

5. For equations of the form P(z) = F'(z+ ¢) = F(z) with integer constant
¢, transform the equation to be P(z —c¢) = F'(z) = F(z — ¢), and solve
it recursively.

Similar rules hold for equations of the form P = F'(z) = F(z), i.e.,, Pis a
Boolean expression independent of z.

Given the special form of the expressions describing the updating of a random-
access memory, we can see that by repeated application of these rules, we can
eliminate all occurrences of symbol z in (6). The first rule handles the uninter-
preted function representing the initial memory state. The second rule handles
updates to individual memory addresses. The third rule lets us split based on
the case structure of the expression. The last two rules would be required for
more complex memory structures.

Note that CLU logic can be used to model memories in which multiple entries
can be updated in parallel [14]. The rewriting techniques proposed in this section
do not work for such memories.

5.2 Convergence with First-Order Equations

Assume we have applied transformation rules to eliminate all second-order equa-
tions, and hence the convergence criterion is expressed by an equation of the form
shown in (4) with only first-order equations. We would therefore like to decide
the validity of a formula ¢ of the form

»=VYAIB (8)

where ¢ does not contain any quantifiers. In fact, ¢ is a CLU formula, and we can
assume that transformations have been applied to eliminate all ITFE operations!
and lambda applications.

! These can be eliminated by the “push to the leaves” transformation [16].

Our system model is sufficiently general that we can generate any second-order
formula having the structure shown in (8) as part of a convergence test. To
see this, let the variables in ¢ be A = @, and B = b,,. Introduce a set of
m+ 1 state elements, consisting of an element q; for each existentially quantified
variable b; € B, and a final truth-valued state element q,,,41. For each universally
quantified variable a; € A, introduce a system parameter a;. Let the system
have transition behavior § such that &, ., = ¢ [@m/bm, &r/an], and &y, = q; for
1 < i < m. Finally, let the initial state 32,- of each state element q; for 1 <i<m
be a;, and the initial state of gy, 1 be true. Then the system is 0-convergent if

and only if the formula V.A 3B ¢ is valid.

This construction shows that we cannot assume any particular restrictions on
the formulas we must decide to prove convergence, other than the quantifier
structure shown in (8).

Syntactic Approach. Previous approaches to convergence have been based on
finding syntactic similarities between the earlier state r* and the current state
sF*+1. The convergence criterion given by Isles et al. [13] is a more conservative
check than the criterion we give in Equation 5, and hence is less general. We
can see that their syntactic substitution-based technique is simply a strategy for
proving the validity of a formula with the structure shown in (8) as follows.

Proposition 1. Let b denote a set containing an expression b, € E(A) for each

a € B. IfVA ¢ [b/B] is valid, then so is VA 3B ¢.

The proof of this proposition follows by instantiating any symbol a € B with the

value (ba), -

With this approach, we can prove convergence by using a decision procedure for
CLU logic to prove the universal validity of ¢ [b/B]. The challenge, of course, is
to find an appropriate set of substitutions to the symbols in B.

Semantic Approach. We describe a way to transform formulas of the struc-
ture ¢ = VA 3B ¢ into a formula in the logic we call Quantified Separation
Logic (QSL). QSL consists of quantified Boolean and integer variables, Boolean
connectives, and predicates of the form x =y + ¢ and x < y + ¢, where x and
y are integer variables, and c is an integer constant. Our translation T,(¢) (for
“sound”) yields a formula that is valid only if ¢ is valid. By deciding the validity
of the translation we can test for definite convergence.

We can rewrite any Boolean or integer expression in CLU into a normal form,
in which all ITFE operations have been eliminated, and the additions of integer
constants are grouped together. Define an atomic expression as either an integer
or Boolean symbol, or an application of a function or predicate symbol.

Without loss of generality, let us assume ¢ is in normal form. We start by enu-
merating all of the atomic expressions occurring in ¢ as a sequence g1, ... , gn-

Let top(g;) denote the top-level symbol in subexpression g;. We can see that
each atomic expression g; must be of one of the following forms:

Boolean symbol. g; = b, giving top(g;) = b.

Predicate application. g; = p(gi; + Ci1,--- , i, + Cik), giving top(g;) = p.
Integer symbol. g; = x, giving top(g;) = x.

Function application. g; = £(gi, + ¢i1,--- , i, + Cik), giving top(g;) = £.

L=

We require the sequence to be ordered according to subexpression containment.
That is, for the function and predicate application forms listed above, we require
iy <ifor 1 <[< k. The soundness property of translation 7T’s holds for any such
ordering, but we get a tighter bound by listing the subexpressions having top-
level symbols in A as early as possible. That is, if top(g;) € A and top(g;) € B,
then ¢ < j, unless g; is a subexpression of g;.

Now introduce a sequence of symbols v, = vy,...,v,, where v; is an integer
(respectively, Boolean) symbol when top(g;) is an integer or function symbol
(respectively., Boolean or predicate symbol). We generate two formulas C'4 and
Cp, each of which is a conjunction of consistency constraints by considering each
pair of subexpressions g; and g;, with ¢ < j and top(g;) = top(g;)- These are the
same constraints used by Ackermann for removing function applications from a
formula [1]. For subexpression g; of the form £(g;, +¢i1,..., 9, + ¢ix), and g;
of the form £(g;, +¢j1,---,9j, + ¢jk), we include the constraint

Vi, =V + (Cj71 — Ci71) N AV =5, + (Cj,k - Ci,k) = V;=V; (9)

This constraint is included in either C'y or Cp according to whether £ € A or
f € B. Similar constraints are generated when the top-level symbol in g; and g;
is a predicate symbol p.

Let ($ be the formula generated by replacing each atomic expression g; in ¢ with
the symbol v;. We always replace maximal subexpressions, so that the resulting
formula no longer contains any symbols from ¢.

Let quantifier @; be V when top(g;) € A, and 3 when top(g;) € B.

The soundness-preserving translation of 1 is given by
T,() = Qvi Qava -+ Quvn [Ca = (Cs A)] (10)

Theorem 2. For any formula v having the structure ¢» = VA 3B ¢, if Ts(v),
as given by (10), is valid, then so is 1.

We also provide a completeness preserving translation in [5]. We can test for
possible convergence by deciding the validity of this translation.

We now give some examples to demonstrate the capabilities and limitations of
our translation method.

Ezxample 2. Our first example is a case where we successfully prove soundness.
VEy Vxx=£(x)] = y=1£(£(y)) (11)
To get this into the required form, we rewrite it as
VE,y Ix [(x=1(x)) Vy=£(£(y))]

We write the subexpressions as follows. To make the resulting formulas more
readable, we introduce symbols with names based on the subexpressions, rather
than the more generic vy,vsy,...,vy,:

Subexpression g1 g2 g3 [g5
y fy) [f(f(y)| =x (x)
Symbol y fy ffy X fx

For C 4 we then get
(x=y = fx=fy)A (x=fy = fx=Ffy) A (y=fy = fy=1=£fy)

For formula Cp we get true, while for ¢ we get —(x = fx) V y = £fy, and the
overall quantifier structure is:

Vy Viy Vify 3x VEx
It can be easily shown that the QSL formula is valid. We omit the details.

Ezxample 8. Our second example illustrates a case where the formula is valid,
but the soundness-preserving transformation fails to show this.

Vi [Vx f(x)<f(x+1)] = [Vy £(y)<£f(y+ 2)] (12)
To get this into the required form, we rewrite it as
VI Vy Ix (£ (x) <f(x+1)) V £(y)<f(y+2)

We write the subexpressions as follows.

Subexpression g1 g2 g3 ga 95 96
y f(y) |f(y+2)] x f(x) |[f(x+1)
Symbol y fy fy2 X fx fx1

For C'4 we then get

(Xzy — fx:fy)/\(x:y—l > fx]_:fy)
Ax=y+2 = fx=£fy2)A (x=y+1 = fx1=£y2)

For formula Cp we get true, while for qg we get

-(fx<fxl)V fy<fy2

and the overall quantifier structure is:

Vy Viy Viy2 3x Vfx Vix1

This formula is not valid.

This example shows the limited capability of our translation Ts. It does not do
the multiple instantiations of x required to replace the quantified antecedent in
(12) with £f(y)<f(y+1) A £(y+1)<f(y + 2).

6 Results & Discussion

We have implemented a prototype of the convergence testing framework within
the UCLID [4] verification tool. Currently, we have only implemented the soundness-
preserving translation to QSL. The QSL solvers use different techniques to trans-
form a QSL formula to a quantified Boolean formula (QBF) [15]. All the experi-
ments are performed on a 2GHz Pentium-4 running Linux, with 1 GB of memory.

In this section, we describe our experience with the convergence testing frame-
work for a three-stage arithmetic pipeline given in figure 2. This example origi-
nated with the first work on symbolic model checking [7], and has subsequently
become a standard for verification research [10,13]. In our version, we make
use of both stalling and forwarding to resolve read-after-write hazards in the
pipeline. Previous versions used only forwarding, with the result that a new
result is written to the register file on each step of operation.

€OP
eARGL
alu WVAL —
eARG2
FWD
eRC2 -
eDEST : WDEST]
I
WRTHH—-T4{-———--- | WRT,
______ :. b ___——_—"
:

Fig. 2. Pipelined Version of ALU Circuit. The three stages of the pipeline: fetch,
execute and write-back. Read-after-write hazards are resolved for the first operand by
stalling and for the second by forwarding. The dashed lines indicate Boolean control
and the solid lines represent the flow of integer values.

The state elements of the pipeline include a function state variable, an un-
bounded register file pRF. The integer state elements include the different reg-
ister identifiers, namely eSRC2, eDEST and wDEST, the data values eARG1,

eARG2 and wVAL, and the program counter pPC. The Boolean state elements
consist of the write enable registers e WRT and wWRT. The system functionality
is parameterized by uninterpreted function symbols for decoding an instruction,
updating the program counter and the ALU. The Boolean state elements are
initialized to false and the rest of the state elements take on arbitrary initial
values.

The pipeline was symbolically simulated starting from the initial state. The QSL
formula produced by the soundness preserving translation was false after £ = 1
and k = 2 steps of simulation. A look at the Boolean state elements indicated
that the system indeed does not converge within two steps. However, after k = 3
steps of simulation, the QSL formula produced was too large to be solved with the
current QSL solver implementation we use [15]. The formula had 53 quantified
integer variables, with 6 levels of quantifier alternations, 836 nodes in a Directed
Acyclic Graph (DAG) representation of the formula, and the BDD representing
the QBF formula exceeds 1 GB of memory. However, we have been able to prove
the convergence of two simplified versions of the pipeline processor.

1. For the first case, we removed the data-path components of the processor
including the register file, operand values and the write-back value. The re-
maining pipeline still contains the entire control complexity of the original
pipeline including the stalling and the forwarding mechanisms. This model
converges after k = 3 steps of simulation and our decision procedure detects
so within 2 seconds with less than 11 MB of memory. The QSL formula con-
tains 27 quantified integer variables, with 4 levels of quantifier alternations
and 249 nodes in the DAG form. Notice that this example contains uninter-
preted function symbols but does not contain any function state elements.

2. For the second case, we combined the execute and the write-back stages of
the pipeline into a single stage (making the pipeline 2-stage), but retained
the register file pRF and the data-path. The pipeline was modified to ac-
commodate both stalling and forwarding of data. This example converges
after k = 2 steps of simulation and our decision procedure takes 8 seconds
to prove it valid. The memory consumption was about 80 MB. The QSL
formula contains 29 quantified integer variables, with 4 levels of quantifier
alternations and 203 nodes in the DAG form.

We are currently working on alternate translations of QSL formulas to QBF
formulas and hope to test the convergence of the pipeline with a few optimiza-
tions. We are also experimenting with enumeration based QBF solvers including
Quaffle [17].

Discussion. The notion of k-convergence is not useful for systems with un-
bounded buffers, since many such systems do not converge. Moreover, our pre-
liminary results indicate that the convergence criterion we present is precise, but
computationally difficult to check. Abstraction techniques, such as predicate ab-
straction [11], allow for greater efficiency at the expense of using an approximate
notion of convergence, and are a promising area for future work.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

W. Ackermann. Solvable Cases of the Decision Problem. North-Holland, Amster-
dam, 1954.

Egon Borger, Erich Gradel, and Yuri Gurevich. The Classical Decision Problem.
Springer-Verlag, 1997.

R. E. Bryant, S. German, and M. N. Velev. Processor verification using efficient
reductions of the logic of uninterpreted functions to propositional logic. ACM
Transactions on Computational Logic, 2(1):1-41, January 2001.

. R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Modeling and verifying systems using

a logic of counter arithmetic with lambda expressions and uninterpreted functions.
In Computer-Aided Verification (CAV’02), LNCS 2404, pages 78-92, July 2002.
Randal E. Bryant, Shuvendu K. Lahiri, and Sanjit A. Seshia. Convergence test-
ing in term-level bounded model checking. Technical Report CMU-CS-03-156,
Carnegie Mellon University, 2003.

T. Bultan, R. Gerber, and W. Pugh. Symbolic model checking of infinite state
systems using Presburger arithmetic. In Computer-Aided Verification (CAV ’97),
LNCS 1254. Springer-Verlag, June 1997.

J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Sequential circuit
verification using symbolic model checking. In Design Automation Conference,
1991.

J. R. Burch and D. L. Dill. Automated verification of pipelined microprocessor
control. In Computer-Aided Verification (CAV ’94), LNCS 818, pages 68-80. June
1994.

Francisco Corella, Z. Zhou, Xiaoyu Song, Michel Langevin, and Eduard Cerny.
Multiway decision graphs for automated hardware verification. Formal Methods in
Systemn Design, 10(1):7-46, 1997.

D. Cyrluk and P. Narendran. Ground temporal logic: a logic for hardware verifica-
tion. In Computer-Aided Verification (CAV °94), LNCS 818, pages 247-259. June
1994.

S. Graf and H. Saidi. Construction of abstract state graphs using PVS. In Proc.
Intl. Conference on Computer-Aided Verification, (CAV’97), LNCS 1254, 1997.
R. Hojati, A. Isles, D. Kirkpatrick, and R. K. Brayton. Verification using finite
instantiations and uninterpreted functions. In Formal Methods in Computer-Aided
Design (FMCAD ’96), LNCS 1166, pages 218-232. November 1996.

A. J. Isles, R. Hojati, and R. K. Brayton. Computing reachable control states of
systems modeled with uninterpreted functions and infinite memory. In Computer-
Aided Verification (CAV ’98), LNCS 1427, pages 256-267. June 1998.

Shuvendu K. Lahiri and Randal E. Bryant. Deductive verification of advanced
out-of-order microprocessors. In Proc. Intl. Conference on Computer-Aided Veri-
fication, (CAV’03), LNCS 2725, pages 341-354, 2003.

Sanjit A. Seshia and Randal E. Bryant. Unbounded, fully symbolic model checking
of timed automata using Boolean methods. In Proc. Intl. Conference on Computer-
Aided Verification, (CAV’08), LNCS 2725, pages 154-166, 2003.

M. N. Velev and R. E. Bryant. Effective use of Boolean satisfiability procedures in
the formal verification of superscalar and VLIW microprocessors. In 38th Design
Automation Conference (DAC ’01), June 2001.

Lintao Zhang and Sharad Malik. Towards a symmetric treatment of satisfaction
and conflicts in quantified boolean formula evaluation. In Principles and Practice
of Constraint Programming (CP ’02), LNCS 2470, pages 200-215. Springer, 2002.

